Tag: Cardiovascular

Survival of the fitness: from Ancient Greece to modern day preventive medicine

Is physical activity good for us?

London Marathon – the biggest sporting spectacle of the year – is fast approaching. This Sunday will see over 40,000 runners take part in the gruelling 26.2-mile course starting at Blackheath and finishing in front of Buckingham Palace. The event is highly televised with elite runners, celebrities, politicians and fundraisers all taking part together. The London Marathon has gained popularity since its inception in 1981 and has raised over £450 million for charity, making it the world’s largest annual fundraising event. With its high media profile, the London Marathon certainly sparks the enthusiasm of the general public with many taking to streets in the bid to train for next year’s event or for shorter distance races.

Such efforts should be encouraged in the population as individuals achieving 150 minutes per week of moderately intense physical activity or 75 minutes per week of vigorous intensity physical activity can reduce their cardiovascular disease (CVD) risk by 35%. This well-established benefit has been derived from multiple studies and reports dating back to Greek Antiquity and in particular, the Physician Hippocrates 5th BC quoted that:

All parts of the body, if used in moderation and exercised in labors to which each is accustomed, become thereby healthy and well developed and age slowly; but if they are unused and left idle, they become liable to disease, defective in growth and age quickly.

Following on from Hippocrates, William Heberden in 1768 documented that his patient had nearly cured himself of his angina symptoms by sawing wood for half an hour per day. However, it wasn’t until the 1950’s that modern-day research entertained the notion that CVD is attributed to physical inactivity. This notion was first described by Professor Jerry Morris and colleagues who compared the death rates of physically active London transport workers to their sedentary counterparts. In their study, Professor Morris noted that bus drivers were nearly twice as likely to die from coronary heart disease (CHD) when compared to bus conductors who climbed over 750 steps per day, 11-days per fortnight. (more…)

Cracking the genetic code of cardiomyopathy in Egyptians

 

Over the past decade, several institutions in Egypt have been making huge scientific progress that is steadily reaching worldwide recognition. It is under these circumstances that I have been fortunate to join the Magdi Yacoub Foundation (MYF), which is recognised as one of Egypt’s most prominent charity organisations. The Aswan Heart Centre – located along the banks of the Nile in Aswan – is an integral part of MYF, offering state-of-the-art medical services for the underprivileged. It focuses on expanding the research on heart disease across the Middle East and beyond to contribute to the world’s scientific knowledge.

With the rise of precision medicine, an approach that uses clinical, molecular, cellular and genetic information to offer effective personalised treatment to patients, Imperial’s Professor Sir Magdi Yacoub emphasised the need to investigate the genetic architecture of the Egyptian population. Understanding the genetics of the disease in the local population will allow for a more accurate diagnosis, a better understanding of the disease mechanism and could potentially facilitate the development of better treatment.

The focus of my PhD project is to identify the genetic determinants of cardiomyopathy – a term which encompasses different heart diseases that often progress to heart failure. Ultimately, I will try to correlate this genetic information with the clinical phenotype of these patients. This project is a collaboration with Imperial College London under joint supervision by Dr Yasmine Aguib and Professor Sir Magdi Yacoub from MYF-Egypt and Dr Paul Barton and Dr James Ware from Imperial. (more…)

Big hearts and giant genes: What lies at the end of the yellow brick road?

Upasana Tayal was shortlisted for the MRC Max Perutz Science Writing Competition 2017 for the following article:

“Hearts will never be practical until they can be made unbreakable”, said the Wizard of Oz. “But I still want one”, replied the Tin Woodsman.

Your heart makes you human, makes you love, and keeps you alive. In just one year, it will beat 40 million times, without rest or time off for good behaviour. A pretty impressive piece of machinery you might agree, no wonder the Tin Man wanted one so much.

And like many things in life, he may have wished for a big heart at the end of the yellow brick road.

He would be forgiven for imagining a big heart to be a good thing, extra caring and compassionate, and if the Tin Man was scientifically inclined, more effective at doing its job of pumping blood around the body.

Unfortunately for the 1 in 250 people in the world living life with a big heart, the reality is very different. (more…)

Understanding our achy breaky hearts

Broken heart syndrome, officially known as takotsubo syndrome, is an acute type of heart failure, where the bottom of the heart stops beating in situations of extreme stress. A condition predominantly affecting post-menopausal women, it has been dubbed broken heart syndrome owing to the frequent occurrence during bereavement after the loss of a loved one. However, this is just one example of the various circumstances in which takotsubo syndrome can occur. Indeed, any stressful event can lead to a surge in adrenaline which can result in takotsubo syndrome. This could be physical or emotional, and includes trauma such as car accidents, drug abuse, and even happy events such as weddings!

This varied list of triggers and the association with a ‘broken heart’ has attracted interest from the media. Furthermore, the specific localisation of the poorly contracting region of the heart and patient demographics are also very interesting from a research standpoint. Often when describing my PhD, the concept of a ‘broken heart’ understandably resonates with people. (more…)

World Heart Day: Building new hearts at the BHF Regenerative Medicine Centre

We are excited by the news that our BHF Regenerative Medicine Centre has been renewed for another four-year term from 1 October 2017! At Imperial we have been concentrating on the big challenge of producing new muscle for the damaged heart, along with our partners in the Universities of Nottingham, Glasgow, Hamburg and Westminster.

The heart has a very limited capacity to repair itself after a heart attack, or during the more insidious damage from high blood pressure, diabetes or chemotherapy. We have been looking at various kinds of stem cells to explore their power to become new cardiac muscle cells – one of the big successes of the current Centre. Pluripotent stem cells – those which have the capability of turning into any cell type in the body – can now be turned very efficiently into beating heart muscle in the laboratory dish, and made into strips of engineered heart tissue. Our partner, Professor Chris Denning, at the University of Nottingham has automated the process of making the cells and Professor Thomas Eschenhagen in Hamburg has contributed his technology for converting this into muscle. (more…)

Weighing up dodgy diets

Weighing up dodgy dietsMagazines and newspapers are full of so-called ‘tips’ or ‘advice’ for the image conscious, detailing extreme diets followed by the rich and famous to achieve dramatic weight loss, or new diets apparently supported by the latest scientific research. One example is the gluten-free diet, made fashionable particularly in the sporting world by former world number one tennis player Novak Djokovic (1). Having had a reputation for being physically weaker than his rivals, Djokovic was eventually diagnosed with coeliac disease and the resulting gluten intolerance. Eliminating gluten from his diet transformed his career.

Many have since adopted the gluten-free diet with the hope of boosting their own energy levels, but have had mixed results. Recent studies show that being ‘gluten-intolerant’ is hardly a medical condition that can be diagnosed and scientists have struggled to establish a mechanism for supposed gluten intolerance. So unless you suffer from coeliac disease triggered by gluten, following a gluten-free diet could do more harm than good, as gluten-free foods are often low in fibre and key nutrients, and high in sugar. (more…)