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• We present a method for computing solutions to matrix-valued Riemann–Hilbert problems:

• Reduction to a linear equation via Cauchy transform (same as yesterdays talk by Dienstfrey)

• Computing the Cauchy transform over a circle, real line and unit interval

• Construction of a spectral method

• Computing solutions to the homogeneous Painlevé II equation

• Numerical nonlinear steepest descent

• Negative x, Positive x and Hastings–McLeod solution



• We are concerned with computing the solution to the following 
Riemann–Hilbert problem:

• Given an oriented curve Γ in the complex plane and a matrix-

valued function G defined on Γ (in this talk, all functions on Γ 

are analytic along each piece of Γ);

• Find a matrix-valued function Φ that is analytic everywhere in 

the complex plane off of Γ such that

Φ+

Φ–
Φ+(z) = Φ−(z)G(z) for z ∈ Γ and Φ(∞) = I

where

Φ+(z) = lim
x→z

where x is left of Γ

Φ(x)

Φ−(z) = lim
x→z

where x is right of Γ

Φ(x)
Γ



• Many linear differential equations have well-known integral representations

• e.g., Airy equation, Bessel equation, Hypergeometric equation and Heat and wave 
equations (via Fourier transform)

• Matrix-valued RH problems can be (loosely) viewed as an analogue to these integral 
representations for nonlinear equations

• Importantly, RH problems can be used to determine asymptotics of solutions

• This works similar to integral representations: the contour is deformed along the path of 
steepest descent

• The goal of this talk is to demonstrate that they can also be used as numerical tools

• RH problems have a major advantage over the originating differential equations: they are 
linear



KdV Nonlinear Schrödinger equation

SOME EXAMPLE RH PROBLEMS

Orthogonal polynomials

Random matrices

Hilbert transform

Φ+(z)− Φ−(z) = f(z) and Φ(∞) = 0,

Φ+(z) + Φ−(z) =
1
iπ
−
�

Γ

f(t)
t− z

dt

for Γ = R for Γ = R

iut + uxx − 2 |u|2 u = 0
u(x, 0) = u0(x)

ut − 6uux + uxxx = 0
u(x, 0) = u0(x)

Φ+ =

�
1− |r(z)|2 −r̄(z)e−2i(4tz3+xz)

r(z)e2i(4tz3+xz) 1

�
Φ− Φ+ =

�
1− |r(z)|2 −r̄(z)e−2i(t2z2+xz)

r(z)e2i(2tz2+xz) 1

�
Φ−



Homogeneous Painlevé II

Φ+(z) = Φ−(z)G(z)

�
1 s2e−8i/3z3−2ixz

1

�

�
1

s1e8i/3z3+2ixz 1

�

�
1 −s3e−8i/3z3−2ixz

1

�

�
1

−s2e8i/3z3+2ixz 1

�

�
1 −s1e−8i/3z3−2ixz

1

�

�
1

s3e8i/3z3+2ixz 1

�

u�� = xu + 2u3

s1 − s2 + s3 + s1s2s3 = 0

u(x) = 2 lim
z→∞

zΦ12(z)

(see eg. Fokas et al 2006)



• We are trying to solve

Φ+(z) = Φ−(z)G(z) for z ∈ Γ and Φ(∞) = I

• This is a linear operator, except for the condition at infinity.  Therefore we 
change variables:

Now L is a linear operator from the space of functions analytic off Γ which 
decay at infinity to the space of functions defined on Γ.

• We premultiply this operator by the Cauchy transform to obtain an 
operator from the space of functions defined on Γ to itself.

Φ = Ψ+ I,
LΨ = Ψ+ −Ψ−G = G− I and Ψ(∞) = 0.



This map defines a one-to-one correspondence between a function defined 
on Γ and a function which is analytic everywhere off Γ which decays at ∞

• The Cauchy transform also solves the simple Riemann–Hilbert problem

• We thus need only solve the equation

• Consider the Cauchy transform

The operator LC is a map from the set of functions defined on Γ to itself 

CΓf(z) =
1

2iπ

�

Γ

f(t)

t− z
dt.

LCV (z) = G(z)− I for z ∈ Γ

C+f − C−f = f and Cf(∞) = 0



•	
Having a method to compute the Cauchy transform and its left and right 
limits allows us to compute

where V is a matrix-valued function defined on Γ  

• Since this is a linear operator, we can now construct a spectral/
collocation method:  
	
 • For some basis  	
	
 	
 	
 	
        of matrix-valued functions defined on 
	
 	
 Γ and set of nodes	
 	
 	
       
	
 • Solve the linear system

{ψ1, . . . ,ψn}
{x1, . . . , xm}

LCV = C+V − (C−V )G

c1LCψ1(x1) + · · ·+ cnLCψn(x1) = G(x1)− I,
...

c1LCψ1(xm) + · · ·+ cnLCψn(xm) = G(xm)− I.



For homogeneous Painlevé II, we need to compute C over the domain

• But we can decompose the transform to a sum over each of Γ’s parts:
	
 	
 	
 	
 C          = C     + C     +  C     + C     + C     + C   

• We will compute these by conformally mapping each ray to the unit 
interval
	
 • Thus we have reduced the construction of our spectral method to one 
problem:  the computation of C(–1,1)

• This approach can be applied equally well to any Γ whose parts can 
individually be mapped to the unit interval.  This includes all of the Painlevé 
Riemann–Hilbert problems.



COMPUTATION OF CAUCHY TRANSFORMS

• Solvable over the unit circle using the FFT

• Then the real line by conformally mapping to the unit circle

• Then the interval by conformally mapping to the unit circle and 
using hypergeometric functions



CAUCHY 
TRANSFORM 
ON A CIRCLE: 
THE SIMPLEST 
RH PROBLEM

Φ+ Φ−

Φ+(z)− Φ−(z) = g(z) and Φ(∞) = 0

g(z) =
∞�

k=−∞
ĝkzk

(Used in Conjugation method, cf. Wegmann 1988)



Φ+(z)− Φ−(z) = g(z) and Φ(∞) = 0

g(z) =
∞�

k=−∞
ĝkzk

Φ− = −
−1�

k=−∞
ĝkzkΦ+ =

∞�

k=0

ĝkzk

(Used in Conjugation method, cf. Wegmann 1988)

CAUCHY 
TRANSFORM 
ON A CIRCLE: 
THE SIMPLEST 
RH PROBLEM



z1

z2

z3

zn

...

...
zn–1

NUMERICAL 
SOLUTION: 

FFT

Φ+ =
N�

k=0

ĝkzk Φ− = −
−1�

k=−N

ĝkzk



• We compute C over the following domains by mapping to the unit circle:

R
(−1, 1)

• Over the real line and the unit interval, this is in some sense a rederivation of known 
results for computing Hilbert transforms and finite Hilbert transforms, in terms of the RH 
framework.  What’s new is that we obtain the Cauchy transform throughout the complex 
plane, as well as its left/right limits
	
 •	
Also, the known result on the interval is in terms of power series, where we obtain an 
expression in terms of Chebyshev series, computable globally in n log n time

• This can be used in the computation of the Hilbert transform:

1

π
−
� ∞

−∞

f(t)

t− z
dt = i(C+

R f + C−
R f)



R

Consider the conformal map from the unit circle to the real line

R(z) = i
1− z

1 + z

Functions analytic inside the unit circle are mapped to functions 
analytic in the upper half plane, and functions analytic outside the unit 
circle are mapped to functions analytic in the lower half plane



Φ+ Φ−

Suppose we compute the 
Cauchy transform of the 
mapped function on the 
unit circle

Then the Cauchy 
transform over the real 
line is

Φ+(R−1(x))− Φ+(−1)

Φ−(R−1(x))− Φ+(−1)

(Essentially a re-derivation of Weideman 1995)

f(R(z))

f

Φ = C f(R(z)) CRf(x) = Φ(R−1(x))− Φ(R−1(∞))
= Φ(R−1(x))− Φ+(−1)



Consider the Joukowski map from the unit circle to the unit interval

Functions analytic inside and outside the unit circle are mapped to 
functions analytic off the unit interval.

(−1, 1)

T (z) =
1
2

�
z +

1
z

�



We define four inverses to the Joukowski map:

T−1
+ (x) = x−

√
x− 1

√
x + 1 T−1

− (x) = x +
√

x− 1
√

x + 1

T−1
↓ (x) = x− i

√
1− x

√
1 + xT−1

↑ (x) = x + i
√

1− x
√

1 + x



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



T−1
+ (x)

T−1
+ (x+) = T−1

↓ (x)
T−1

+ (x−) = T−1
↑ (x)

T−1
− (x+) = T−1

↑ (x)
T−1
− (x−) = T−1

↓ (x)

Relationship between inverses

T−1
− (x)



Suppose we compute the 
Cauchy transform of the 
mapped function on the 
unit circle

Then the Cauchy 
transform over the 
interval is

−f(T (z))

f(T (z))

1
2

�
Φ+(T−1

↓ (x)) + Φ−(T−1
↑ (x))

�

Φ+ Φ−
1
2

�
Φ+(T−1

↑ (x)) + Φ−(T−1
↓ (x))

�

Φ = −C sgn arg zf(T (z)) C(−1,1)f(x) =
1

2

�
Φ(T−1

+ (x)) + Φ(T−1
− (x))

�



Unless f decays to all orders at the 
endpoints, or has square root singularities,

–f

f

has jumps at ±1

But we can still represent it efficiently as

Thus we consider the moment problem 

The first moment is straightforward:

arctanh z arctanh
1
z

arctanh z arctanh
1
z

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3

�3 �2 �1 1 2 3

�3

�2

�1

1

2

3−
∞�

k=−∞
f̂kz

ksgn arg z

iπ

2
Csgn arg z =

Czksgn arg z



z arctanh z z arctanh
1
z

Satisfies 

iπ
2

u(z) =

However, 

u+(z)− u−(z) = z sgn arg z

u(∞) = lim
z→0

1
z
arctanh z = lim

z→0

1
z

�
z +

z3

3
+ · · ·

�
= 1 �= 0



z arctanh
1
z
− 1z arctanh z − 1

Thus we choose 

Higher order moments     can be found 
in the same manner, by subtracting out 
the terms in the Taylor series of 
arctanh.

A closed form solution which avoids 
cancellation can be written as Lerch 
transcendent functions, or alternatively 
(and more accurately in Mathematica) 
as Hypergeometric functions.

ϕk

iπ

2
Cz sgn arg z =



We obtain

(Related formulæ for the Hilbert transform over the interval cf. King 2009)

where      can be expressed in terms of φk ϕk

C(−1,1)Tk(x) = −1

4

�
ϕk(T

−1
+ (x)) + ϕk(T

−1
− (x)) + ϕ−k(T

−1
+ (x)) + ϕ−k(T

−1
− (x))

�
,

C+
(−1,1)Tk(x) = −1

4

�
ϕk(T

−1
↓ (x)) + ϕk(T

−1
↑ (x)) + ϕ−k(T

−1
↓ (x)) + ϕ−k(T

−1
↑ (x))

�
,

C−
(−1,1)Tk(x) = −1

4

�
ϕk(T

−1
↑ (x)) + ϕk(T

−1
↓ (x)) + ϕ−k(T

−1
↑ (x)) + ϕ−k(T

−1
↓ (x))

�
,

C(−1,1)Tk(x) ∼
x→−1

− 1

2iπ
(−1)k [log(−x− 1)− log 2] +

1

iπ
φk(−1) ,

C(−1,1)f(x) ∼
x→1

1

2iπ
[log(x− 1)− log 2] +

1

iπ
φk(1) ,



What we do now is map the unit interval to the half line

(0,∞)

H(x) =
1 + x

1− x

We then obtain

Clearly, we can compute for other rays by rotation

Cr(y) = Φ(H−1(y))− Φ+(1)

Φ = Cf for f(x) = r(H(x))



COMPUTATION OF THE HILBERT TRANSFORM

•We can write

• Then

C±
(−∞,∞)r(y) = C±

(−∞,0)r(y) + C(0,∞)r(y) for y ∈ (−∞, 0),

C±
(−∞,∞)r(y) = C(−∞,0)r(y) + C±

(0,∞)r(y) for y ∈ (0,∞),

C±
(−∞,∞)r(0) =

∞�

k=0

(f̌1,k − f̌2,k)(φk(1)− φk(−1))

f1(x) = r(H(x)), f2(x) = r(−H(x))

1

π
−
� ∞

−∞

f(t)

t− z
dt = i(C+

R f + C−
R f)



Applying this technique to compute the Hilbert transform, we obtain spectral 
accuracy for a wider class of functions than existing methods:

50 100 150 200 250 300
2 n

10�13

10�10

10�7

10�4

0.1

1000 2000 3000 4000 5000
n

10�5

0.001

0.1

Two half lines Real line mapped to circle

r(y) =
erf y

y + i
=

�10 �5 5 10

�0.4

�0.2

0.2

0.4



CONSTRUCTION OF THE 
SPECTRAL METHOD FOR 

RIEMANN–HILBERT PROBLEMS



• At the origin, the Cauchy transforms over the individual rays blow up:

We define the finite part along a curve at angle t as the circled part:

• Whenever the limits of V along each ray sum to zero, this expression is an equality 

CΓkf(z) ∼
z→0

− f(0)

2iπ
log(−eiθkz) + C

CΓkf(z) ∼ C − f(0)

2iπ
i arg(−ei(θk+t))− f(0)

2iπ
log |z|

CΓV (z) = CΓ1V1(z) + · · ·+ CΓ6V6(z)

= − 1

2iπ
(V1(0) + · · ·+ V6(0)) log |z|+ bounded terms

∼ bounded terms



• Spectral method for the homogeneous Painlevé II equation:

• Choose the basis of Chebyshev polynomials mapped to each ray

• Using the Cauchy transform formulæ, construct the linear system

where we take the finite part at zero

• This will be justified because the limits along each ray of the computed solution will 
always sum to zero whenever s1s3 – s1s2 – s2s3 ≠ 9
• Otherwise, the linear system has an extra degree of freedom, and we can add the 

following condition:

LCΓjc
Γj

1 ψ
Γj

1 (xk) + · · ·+ LCΓjc
Γj
n ψΓj

n (xk) = Gj(xk)− I,

j = 1, . . . , 6 and k = 1, . . . , 4n.

�

k,j

c
Γj

k

�
Finite part of LCψΓj

k at zero
�
= 0



• We can easily find the asymptotic behaviour of C   for each basis term at ∞, to 

compute

• We can also apply this approach for computing the derivative of u(x), reusing much 

of the computation

• This is possibly the first reliable numerical method for computing the initial 
conditions for given Stokes’ constants

• And asymptotics are determined from the Stokes’ constants (though can very 
greatly with small errors)

u(x) ≈ 2 lim
z→∞

z
�

k,j

ck,1,2CΓjψ
Γj

k (z)



• Consider the Hastings–McLeod solution, which is equivalent to the choice
 (s1,s2,s3) = (i,0,–i)

• Numerical values of the Hastings–McLeod solution at a set of points are available 
(Prähofer and Spohn 2004) 

• Computed by using the known asymptotics to determine initial conditions for large x, 

then very high precision arithmetic to integrate to zero:  a very inefficient method

• This computation is particularly difficult because a small perturbation of initial 
conditions can introduce oscillations or poles



n = 60

n = 100

n = 140

• Spectral convergence is evident

• When the Hypergeometric functions are precomputed, the method takes less than 4 seconds per point for n 
= 140

• (Bornemann 2010), where the related Tracy–Widom distribution is computed using its Fredholm determinant 
representation, is more efficient for this case (but doesn’t generalize to other Stokes’ constants)
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n = 60

n = 100

n = 140

• Spectral convergence is evident

• When the Hypergeometric functions are precomputed, the method takes less than 4 seconds per point for n 
= 140

• (Bornemann 2010), where the related Tracy–Widom distribution is computed using its Fredholm determinant 
representation, is more efficient for this case (but doesn’t generalize to other Stokes’ constants)
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OTHER SOLUTIONS

(1,2,1/3)(1 + i, –2, 1 – i)
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(1,0,–1)

Real and imaginary parts



OTHER SOLUTIONS

(1,2,1/3)(1 + i, –2, 1 – i)

�5 5
x

�5

5

10

�5 5
x

�20

20

40

�5 5
x

�0.2

0.2

0.4

(1,0,–1)

Real and imaginary parts

Spectral system becomes badly conditioned at 
poles (can be used to compute location of poles)



NONLINEAR STEEPEST DESCENT

• As x becomes large, the jump matrix G becomes increasingly oscillatory

• Resolving oscillations requires more basis functions

•When s2 is nonzero, the method is also badly conditioned

• Both issues can be resolved by deforming Γ through the saddle points of the jump 
function and along the path of steepest descent

• This is how asymptotics of solutions to the Painlevé equation are determined 
(Deift & Zhou 1995); we instead use it as a computational tool

• Obtaining higher order terms of the asymptotic expansion appears to be difficult, 
whereas our approach can easily achieve high accuracy



• The key to the numerical approach is that we can readily compute the Cauchy transform 
over domains conformally mappable to the unit interval

• We simply interpolate the path of steepest descent by a piecewise affine curve

• Motivated by (Huybrechs & Vandewalle 2006), which developed a numerical approach for 
steepest descent for oscillatory integrals, the collocation points (thus the break points of 
the linear interpolant) must coalesce at the saddle points in the asymptotic regime

• For negative x and s1s3 ≠ 1 this proceeds similar to deformation of oscillatory integrals, 

with the addition of requiring an LDU factorization and parametrix

• For positive x or s1s3 = 1 (such as in Hastings–McLeod) we need to change the oscillator 

also to avoid exponential growth/cancellation



Numerical nonlinear steepest descent:
negative x



• We first do the transformation

	
 so that 

• This has two stationary points 
at ±1/2, thus we deform the 

contour to obtain the 
Riemann–Hilbert problem:

z �→
√
−xz

e±8i/3z3±2ix �→ e±i(−x)3/2(8/3z3−2z)

S6S1S2

S1

S2

S3

S4

S5

S6

(Based on Deift & Zhou 1995 and 
Fokas et al 2006)



• We first do the transformation

	
 so that 

• This has two stationary points 
at ±1/2, thus we deform the 

contour to obtain the 
Riemann–Hilbert problem:

z �→
√
−xz

e±8i/3z3±2ix �→ e±i(−x)3/2(8/3z3−2z)

�
1 s2e−

2
3 i(−x)

3
2 (4z2−3)z

0 1

�

�
1 0

s1e
2
3 i(−x)

3
2 (4z2−3)z 1

��
1 0

s3e
2
3 i(−x)

3
2 (4z2−3)z 1

�

�
1 0

−s2e
2
3 i(−x)

3
2 (4z2−3)z 1

�

�
1 −s1e−

2
3 i(−x)

3
2 (4z2−3)z

0 1

� �
1 −s3e−

2
3 i(−x)

3
2 (4z2−3)z

0 1

�

S6S1S2

(Based on Deift & Zhou 1995 and 
Fokas et al 2006)



• Each of the paths to infinity have no oscillations and super-exponential decay

• But the path connecting ±1/2 is still oscillatory:

• The key now is that we can split Riemann–Hilbert contours:

S6S1S3 =

�
1 −s3e−

2
3 i(−x)

3
2 (4z2−3)z

0 1

��
1 0

s1e
2
3 i(−x)

3
2 (4z2−3)z 1

��
1 s2e−

2
3 i(−x)

3
2 (4z2−3)z

0 1

�

=

�
1− s1s3 e−

2
3 i(−x)

3
2 (−3+4z2)zs1

e
2
3 i(−x)

3
2 (−3+4z2)zs1 1 + s1s2

�

ABC
C

B

A



• We want to write S6S1S2 as ABC where A goes to the identity matrix near the negative 

imaginary axis, B is nonoscillatory and C goes to the identity matrix near the positive 

imaginary axis

• This happens to be satisfied by the LDU factorization:

• Note that we must restrict our attention to the case where s1s3 ≠ 1

• This excludes the Hastings–McLeod solution

• Though a different factorization can be used in this case (will touch on later)

S6S1S2 = LDU =

�
1 0

s1
1−s1s3

e
2
3 i(−x)

3
2 (−3+4z2)z 1

��
1− s1s3

1
1−s1s3

��
1 s1

1−s1s3
e−

2
3 i(−x)

3
2 (−3+4z2)z

0 1

�



S1

S6S4
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• We can implement a spectral method for this Riemann–Hilbert 
problem just as we did for the canonical six rays case

• The problem: 

• The solution is not analytic along circled connecting curve 

• Fortunately, we have a closed form solution (parametrix) 
for the contribution from that curve from the analytic 
development:
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We now write the solution as



• Where V satisfies 

the RH problem:
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Plot of solution Comparison 
with known asymptotics

(s1,s2,s3) = (0.5,0,–0.5)

x

�40 �30 �20

�0.0004

�0.0002

0.0002

x

�40 �30 �20

�0.10

�0.05

0.05

0.10

0.15



• If we were to try the same approach as in the negative x case, we would have 
exponential growth at the stationary points which cancel, introducing large round-off 
errors

• Instead, as in the analytic development, a function g is introduced which has the same 
asymptotic behaviour as our oscillator, but is zero at the stationary points

• This is possible by allowing it to have a branch cut along our RH graph

• And is related to equilibrium measures

• A similar situation also applies when the LDU decomposition fails for negative x, such 
as the in the Hastings–McLeod solution

NUMERICAL STEEPEST DESCENT:
POSITIVE x



• We use the choice

• Note that this has three stationary points 
at

• Furthermore

• We now need to do two separate 
decompositions, above and below zero

• As before, we also need to introduce a 
parametrix to avoid the singularities near 
the stationary points
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Positive x RH problem



We can now extend the graph for (s1,s2,s3) = (1,2,1/3)
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We can now extend the graph for (s1,s2,s3) = (1,2,1/3)
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We can now extend the graph for (s1,s2,s3) = (1,2,1/3)
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Sketch of Γ for complex x (not yet implemented)



CONCLUSIONS

• Riemann–Hilbert problems can be numerically solved, efficiently and accurately

• This allows us to compute solutions to Painlevé equations

• In short, we can connect initial conditions with asymptotic behaviour

• This could potentially form the building block of a toolbox for computing Painlevé 
equations

• Conformally mapping the entire path would result in high asymptotic accuracy (and hence 
very few points needed, and a very rapid approximation)



OTHER APPLICATIONS

• Orthogonal polynomials

• Integrable PDEs (needs computation of reflection coefficients) 

• Random matrix theory distributions (implemented for higher order Tracy–Widom with 
Kuijlaars and Claeys)
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