NUMERICAL
 APPROXIMATION OF MIGMLY OSCHLAFORY INFEGRALS

Sheehan Olver
Numerical Analysis Group, DAMTP, University of Cambridge

WHAT ARE HIGHLY

OSCILLATORY INTEGRALS?

$$
I[f]=\int_{a}^{b} f(x) \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x
$$

- The frequency of oscillations ω is large
- To begin with, no stationary points in interval:
- $g^{\prime}(x) \neq 0$ for $a \leq x \leq b$

APPLICATIONS

- Acoustic integral equations
- Function approximation
- Spectral methods
- Modified Magnus expansions
- Computing special functions

"HARD" TO COMPUTE?

$x^{2} e^{\mathrm{i} 100 x}$
Gauss-Legendre quadrature error

HISTORY

- Asymptotic theory (expansions, stationary phase, steepest descent)
- Filon method (1928)
- Wrongly claimed to be inaccurate (Clendenin 1966)
- Levin collocation method (1982)

Other methods (numerical steepest descent, Zamfirescu method, series transformations, Evans \& Webster method)

ASYMPTOTIC EXPANSION

- Rewrite the equation:
$I[f]=\int_{a}^{b} f(x) \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x=\frac{1}{\mathrm{i} \omega} \int_{a}^{b} \frac{f(x)}{g^{\prime}(x)} \frac{\mathrm{d}}{\mathrm{d} x} \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x$
- Integrate by parts:
$=\frac{1}{\mathrm{i} \omega}\left(\frac{f(b)}{g^{\prime}(b)} \mathrm{e}^{\mathrm{i} \omega g(b)}-\frac{f(a)}{g^{\prime}(a)} \mathrm{e}^{\mathrm{i} \omega g(a)}-\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{f(x)}{g^{\prime}(x)} \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x\right)$
- Error term is of order

$$
-\frac{1}{i \omega} I\left[\frac{\mathrm{~d}}{\mathrm{~d} x} \frac{f(x)}{g^{\prime}(x)}\right]=\mathcal{O}\left(\frac{1}{\omega^{2}}\right)
$$

- Define σ_{k} by

$$
\begin{aligned}
\sigma_{1} & =\frac{f}{g^{\prime}} \\
\sigma_{k+1} & =\frac{\sigma_{k}^{\prime}}{g^{\prime}}
\end{aligned}
$$

- The asymptotic expansion is

$$
I[f] \sim-\sum_{k=1}^{\infty} \frac{1}{(-\mathrm{i} \omega)^{k}}\left[\sigma_{k}(b) \mathrm{e}^{\mathrm{i} \omega g(b)}-\sigma_{k}(a) \mathrm{e}^{\mathrm{i} \omega g(a)}\right]
$$

- For increasing frequency, the s-step partial sum has an error of order

$$
Q_{s}^{A}[f]-I[f] \sim \mathcal{O}\left(\omega^{-s-1}\right)
$$

COROLLARY

- Suppose

$$
\begin{aligned}
& 0=f(a)=f^{\prime}(a)=\cdots=f^{(s-1)}(a) \\
& 0=f(b)=f^{\prime}(b)=\cdots=f^{(s-1)}(b)
\end{aligned}
$$

If f and its derivatives are bounded as ω increases, then

$$
I[f] \sim \mathcal{O}\left(\frac{1}{\omega^{s+1}}\right)
$$

THE FILON-TYPE METHOD

- Interpolate f by a polynomial v such that the function values and the first $s-1$ derivatives match at the boundary (Hermite interpolation)
- $I[v]$ is a linear combination of moments
- We can compute $I[v]$ if we can compute moments
- Use corollary to determine the order of the error
- For nodes $a=x_{0}<\cdots<x_{\nu}=b$ and multiplicities $\left\{m_{k}\right\}$, let $v(x)=\sum c_{k} x^{k}$ satisfy the system

$$
\begin{aligned}
& v\left(x_{k}\right)=f\left(x_{k}\right) \\
& \vdots \\
& v^{\left(m_{k}-1\right)}\left(x_{k}\right)=f^{\left(m_{k}-1\right)}\left(x_{k}\right)
\end{aligned}
$$

$$
k=0,1, \ldots, \nu
$$

Approximate $I[f]$ by $I[v]$
If $m_{0}, m_{\nu} \geq s$ then the corollary implies

$$
I[f]-I[v]=I[f-v] \sim \mathcal{O}\left(\frac{1}{\omega^{s+1}}\right)
$$

0.25

Two-term asymptotic expansion, Filon-type method with endpoints and multiplicities equal to 2, and Filon-type method with nodes $\left\{0, \frac{1}{2}, 1\right\}$ and multiplicities $\{2,1,2\}$

THE ORIGINAL LEVIN
 COLLOCATION METHOD

- Suppose F is a function such that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[F(x) \mathrm{e}^{\mathrm{i} \omega g(x)}\right]=f(x) \mathrm{e}^{\mathrm{i} \omega g(x)}
$$

- Rewrite preceding equation as

$$
L[F] \equiv F^{\prime}(x)+\mathrm{i} \omega g^{\prime}(x) F(x)=f(x)
$$

- Collocate F by $v=\sum c_{k} \psi_{k}$ using the system

$$
L[v]\left(x_{0}\right)=f\left(x_{0}\right), \cdots, L[v]\left(x_{\nu}\right)=f\left(x_{\nu}\right)
$$

- Approximate $I[f]$ by

$$
Q^{L}[f] \equiv I[L[v]]=v(b) \mathrm{e}^{\mathrm{i} \omega g(b)}-v(a) \mathrm{e}^{\mathrm{i} \omega g(a)}
$$

LEVIN-TYPE METHOD

- For nodes $\left\{x_{k}\right\}$ and multiplicities $\left\{m_{k}\right\}$ suppose

$$
\begin{gathered}
L[v]\left(x_{k}\right)=f\left(x_{k}\right) \\
\vdots \\
L[v]^{\left(m_{k}-1\right)}\left(x_{k}\right)=f^{\left(m_{k}-1\right)}\left(x_{k}\right)
\end{gathered} \quad k=0,1, \ldots, \nu
$$

Regularity condition: $\left\{g^{\prime} \psi_{k}\right\}$ can interpolate the nodes and multiplicities (always satisfied with polynomial basis)

Then, for $m_{0}, m_{\nu} \geq s$:

$$
I[f]-Q^{L}[f]=I[f-L[v]] \sim \mathcal{O}\left(\frac{1}{\omega^{s+1}}\right)
$$

SKETCH OF PROOF

- The order follows from the corollary if $f-L[v]$ and all its derivatives are bounded for increasing ω
- Collocation matrix can be written as $A=P+\mathrm{i} \omega G$
- Regularity condition ensures G is non-singular
- From Cramer's rule

$$
c_{k}=\frac{\operatorname{det} A_{k}}{\operatorname{det} A}=\frac{\mathcal{O}\left(\omega^{n}\right)}{(\mathrm{i} \omega)^{n+1} \operatorname{det} G+\mathcal{O}\left(\omega^{n}\right)}=\mathcal{O}\left(\omega^{-1}\right)
$$

- Hence v and its derivatives are $\mathcal{O}\left(\omega^{-1}\right)$ and

$$
L[v]=v^{\prime}+\mathrm{i} \omega g^{\prime} v=\mathcal{O}(1)
$$

$\omega^{4} \mid$ Error $\mid \quad \int_{0}^{1} \cos x \mathrm{e}^{\mathrm{i} \omega\left(x^{2}+x\right)} \mathrm{d} x$

Asymptotic expansion, Filon-type method with only endpoints and multiplicities equal to 3 , and Levin-type method with same nodes and multiplicities

$$
\omega^{3} \mid \text { Error } \mid \quad \int_{0}^{1} \cos x \mathrm{e}^{\mathrm{i} \omega\left(x^{2}+x\right)} \mathrm{d} x
$$

2.5
2
1.5

1
0.5

Levin-type method and Filon-type method with endpoints and multiplicities 2, Levin-type method and Filon-type method with nodes $\{0,1 / 4,2 / 3,1\}$ and multiplicities $\{2,2,1,2\}$

MULTIVARRATE HIGHLY OSCILLATORY INTEGRALS

$$
\int_{\Omega} f(x, y) \mathrm{e}^{\mathrm{j} \omega g(x, y)} \mathrm{d} V
$$

- The boundary of Ω is piecewise smooth
- Nonresonance condition is satisfied:
- ∇g is never orthogonal to the boundary
- No critical points in domain:
- $\nabla g(x, y) \neq 0$ for $(x, y) \in \Omega$
- There exists an asymptotic expansion that depends on f and its derivatives at the vertices
- The s-step approximation, which uses the order $s-1$ partial derivatives of f at the boundary, has an error

$$
\mathcal{O}\left(\frac{1}{\omega^{s+d}}\right)
$$

- The multivariate Filon-type method consists of interpolating f and its derivatives at the vertices
- For a function \boldsymbol{F}, we write the integral as
$\oint_{\partial \Omega} \mathrm{e}^{\mathrm{i} \omega g(x, y)} \boldsymbol{F} \cdot \mathrm{d} \boldsymbol{s}=\oint_{\partial \Omega} \mathrm{e}^{\mathrm{i} \omega g(x, y)}\left(F_{1}(x, y) \mathrm{d} y-F_{2}(x, y) \mathrm{d} x\right)$
- Green's theorem states that the above integral is the same as

$$
\iint_{\Omega}\left[F_{1, x}+F_{2, y}+\mathrm{i} \omega\left(g_{x} F_{1}+g_{y} F_{2}\right)\right] \mathrm{e}^{\mathrm{i} \omega g} \mathrm{~d} V
$$

- Thus collocate f by \boldsymbol{v} using the operator
$L[\boldsymbol{v}]=v_{1, x}+v_{2, y}+\mathrm{i} \omega\left(g_{x} v_{1}+g_{y} v_{2}\right)=\nabla \cdot \boldsymbol{v}+\mathrm{i} \omega \nabla g \cdot \boldsymbol{v}$

LEVIN-TYPE METHOD

- For nodes $\left\{\boldsymbol{x}_{k}\right\}$ and multiplicities $\left\{m_{k}\right\}$ collocate $\boldsymbol{v}=\left[v_{1}, v_{2}\right]^{\top}=\sum c_{k} \boldsymbol{\psi}_{k}$ using the system

$$
\frac{\partial^{|\boldsymbol{m}|}}{\partial \boldsymbol{x}^{\boldsymbol{m}}} L[\boldsymbol{v}]\left(\boldsymbol{x}_{k}\right)=\frac{\partial^{|\boldsymbol{m}|}}{\partial \boldsymbol{x}^{\boldsymbol{m}}} f\left(\boldsymbol{x}_{k}\right)
$$

$$
\begin{aligned}
& k=0,1, \ldots, \nu \\
& |\boldsymbol{m}| \leq m_{k}-1
\end{aligned}
$$

- Regularity condition: $\left\{\nabla g \cdot \psi_{k}\right\}$ can interpolate at the given nodes, plus regularity condition satisfied in lower dimensions
- Method has asymptotic order $\mathcal{O}\left(\omega^{-s-2}\right)$

$$
\begin{aligned}
& \iint_{\Omega} f \mathrm{e}^{\mathrm{i} \omega g} \mathrm{~d} V \approx \iint_{\Omega} \mathcal{L}[\boldsymbol{v}] \mathrm{e}^{\mathrm{i} \omega g} \mathrm{~d} V=\oint_{\partial \Omega} \mathrm{e}^{\mathrm{i} \omega g} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{s}=\sum_{\ell} \int_{T_{\ell}} \mathrm{e}^{\mathrm{i} \omega \boldsymbol{g}} \boldsymbol{v} \cdot \mathrm{~d} \boldsymbol{s} \\
&=\sum_{\ell} \int_{0}^{1} \mathrm{e}^{\mathrm{i} \omega g\left(T_{\ell}(t)\right)} \boldsymbol{v}\left(T_{\ell}(t)\right) \cdot \boldsymbol{J}_{T_{\ell}}(t) \mathrm{d} t \approx Q_{g}^{L}[f] \\
& \text { for }
\end{aligned}
$$

$$
Q_{g}^{L}[f]=\sum_{\ell} Q_{g\left(T_{\ell}(t)\right)}^{L}\left[\boldsymbol{v}\left(T_{\ell}(t)\right) \cdot \boldsymbol{J}_{T_{\ell}}(t)\right] \quad \boldsymbol{J}_{T}(t)=\binom{T_{2}^{\prime}(t)}{-T_{1}^{\prime}(t)}
$$

Domains

* Simplex

* Quarter Circle

$$
\omega^{3} \mid \text { Error } \left\lvert\, \iint_{S}\left(\frac{1}{x+1}+\frac{2}{y+1}\right) \mathrm{e}^{\mathrm{i} \omega(2 x-y)} \mathrm{d} V\right.
$$

$$
\left.\begin{aligned}
& 0.6 \\
& 0.5 \\
& 0.4 \\
& 0.5 \\
& 0.3 \\
& 0.2 \\
& 0.1
\end{aligned} \right\rvert\,
$$

Levin-type method with only vertices and multiplicities all one on a two-dimensional simplex

Levin-type method with only vertices and multiplicities all two on a quarter circle

STATIONARY POINTS

- Consider the integral

$$
\int_{-1}^{1} f(x) \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x
$$

where

$$
0=g(0)=g^{\prime}(0)=\cdots=g^{(r-1)}(0), \quad g^{(r)}(0)>0
$$

STATIONARY POINTS

- Filon-type methods work, but still require moments (which are harder to find since the oscillator is more complicated)
- Levin-type methods do not work
- We will combine the two methods to derive a Moment-free Filon-type method

ASYMPTOTIC EXPANSION

Can still do integration by parts ($r=2$):

$$
I[f]=I[f-f(0)]+f(0) I[1]
$$

$$
=\frac{1}{\mathrm{i} \omega} \int_{-1}^{1} \frac{f(x)-f(0)}{g^{\prime}(x)} \frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{\mathrm{i} \omega g(x)} \mathrm{d} x+f(0) I[1]
$$

$$
=\left[\frac{f(1)-f(0)}{g^{\prime}(1)} \mathrm{e}^{\mathrm{i} \omega g(1)}-\frac{f(-1)-f(0)}{g^{\prime}(-1)} \mathrm{e}^{\mathrm{i} \omega g(-1)}\right]
$$

$$
-\frac{1}{\mathrm{i} \omega} I\left[\frac{\mathrm{~d}}{\mathrm{~d} x}\left[\frac{f(x)-f(0)}{g^{\prime}(x)}\right]\right]+f(0) I[1]
$$

- Unfortunately requires moments
- Idea: find alternate to polynomials that can be integrated in closed form for general oscillators
- Can be used to find an asymptotic expansion which does not require moments (turns out to be stationary phase under a different guise)
- Can be used as an interpolation basis in a Filontype method, to improve accuracy like before

FUNCTIONS

- Suppose $g(x)=x^{r}$
- Solve the differential equation

$$
\mathcal{L}[v]=v^{\prime}+\mathrm{i} \omega g^{\prime} v=v^{\prime}+r \mathrm{i} \omega x^{r-1} v=x^{k}
$$

- Solution is known:

$$
\begin{gathered}
v(x)=\frac{\omega^{-\frac{1+k}{r}}}{r} \mathrm{e}^{-\mathrm{i} \omega x^{r}+\frac{1+k^{2}}{2 r} \mathrm{i} \pi}\left[\Gamma\left(\frac{1+k}{r},-\mathrm{i} \omega x^{r}\right)-\Gamma\left(\frac{1+k}{r}, 0\right)\right] \\
x \geq 0
\end{gathered}
$$

- Now replace occurrences of x^{r} with $g(x)$
- We obtain

$$
\begin{gathered}
\phi_{r, k}(x)=D_{r, k}(\operatorname{sgn} x) \frac{\omega^{-\frac{k+1}{r}}}{r} \mathrm{e}^{-\mathrm{i} \omega g(x)+\frac{1+k}{2 r} \mathrm{i} \pi}\left[\Gamma\left(\frac{1+k}{r},-\mathrm{i} \omega g(x)\right)-\Gamma\left(\frac{1+k}{r}, 0\right)\right] \\
D_{r, k}(\operatorname{sgn} x)= \begin{cases}(-1)^{k} & \operatorname{sgn} x<0 \text { and } r \text { even } \\
(-1)^{k} \mathrm{e}^{-\frac{1+k}{r} \mathrm{i} \pi} & \text { sgn } x<0 \text { and } r \text { odd }, \\
-1 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Calculus can show that

$$
\mathcal{L}\left[\phi_{r, k}\right](x)=\operatorname{sgn}(x)^{r+k+1} \frac{|g(x)|^{\frac{k+1}{r}-1} g^{\prime}(x)}{r}
$$

- These functions look ugly, but have following nice properties:
- Are smooth: $\phi_{r, k}, \mathcal{L}\left[\phi_{r, k}\right] \in C^{\infty}$
- $\left\{\mathcal{L}\left[\phi_{r, k}\right]\right\}$ form a Chebyshev set (can interpolate any given nodes/multiplicities)
$\mathcal{L}\left[\phi_{r, k}\right]$ are independent of ω
- Are integrable in closed form:

$$
I\left[\mathcal{L}\left[\phi_{r, k}\right]\right]=\phi_{r, k}(1) \mathrm{e}^{\mathrm{i} \omega g(1)}-\phi_{r, k}(-1) \mathrm{e}^{\mathrm{i} \omega g(-1)}
$$

Asymptotic expansion versus Moment-free Filon-type method with endpoints and zero and multiplicities equal to $\{2,3,2\}$

LEVIN-TYPE METHOD

ASYMPTOTIC BASIS

- Use terms from the asymptotic expansion as the collocation basis:

$$
\nabla g \cdot \boldsymbol{\psi}_{1}=f, \quad \nabla g \cdot \boldsymbol{\psi}_{k+1}=\nabla \cdot \boldsymbol{\psi}_{k}, \quad k=1,2, \ldots
$$

- Captures asymptotic behaviour of the expansion while allowing for possibility of convergence
- If the regularity condition is satisfied then we obtain an order of error $\mathcal{O}\left(\omega^{-n-s-d}\right)$, where n is the size of the system and s is again the smallest endpoint multiplicity

Asymptotic expansion, Filon-type method with only endpoints and multiplicities equal to 3 , and Levin-type method with asymptotic basis with nodes $\left\{0, \frac{1}{2}, 1\right\}$ and multiplicities all one

$\omega^{4} \mid$ Error $\left\lvert\, \quad \iint_{S}\left(\frac{1}{x+1}+\frac{2}{y+1}\right) \mathrm{e}^{\mathrm{i} \omega(2 x-y)} \mathrm{d} V\right.$

Levin-type method with asymptotic basis with only vertices and multiplicities all one on a two-dimensional simplex

AIRY FUNCTION

- Write the Airy function as

$$
\begin{aligned}
\operatorname{Ai}(x) & =\Re\left[\frac{1}{\pi} \sqrt{x} \int_{0}^{\infty} \mathrm{e}^{\mathrm{i} x^{3 / 2}\left(t^{3}-t\right)} \mathrm{d} t\right] \\
& =\Re\left[\frac{1}{\pi} \sqrt{x} \int_{0}^{2} \mathrm{e}^{\mathrm{i} x^{3 / 2}\left(t^{3}-t\right)} \mathrm{d} t+\frac{1}{\pi} \sqrt{x} \int_{2}^{\infty} \mathrm{e}^{\mathrm{i} x^{3 / 2}\left(t^{3}-t\right)} \mathrm{d} t\right]
\end{aligned}
$$

- Approximate first integral with Moment-free Filon-type method
- Approximate second integral with Levin-type method with asymptotic basis
$\log _{10} \mid$ Error \mid

$$
\operatorname{Ai}(-\omega)
$$

One-term asymptotic expansion, Moment-free Filon-type method \& Levin-type method with asymptotic basis with nodes $\{0,1,2\},\{0,0.5,1,1.5,2,3\}$ and $\{0,1,2\}$ with multiplicities $\{2,3,2\}$ compared to $\mathrm{Ai}(-\omega)$
$\omega=200 \quad \int_{0}^{1} e^{10 x} e^{i \omega\left(x^{2}+x\right)} d x$

Order
 4
 5
 7

Flon-type

Levin-type
Asymptotic expansion

Levin
asymptotic basis

0.042	0.0016	$1.3 \cdot 10^{-6}$
0.015	0.00043	$3 \cdot 10^{-7}$
0.0083	0.00011	$1.7 \cdot 10^{-8}$
0.00059	$2.8 \cdot 10^{-6}$	$9.9 \cdot 10^{-12}$

miscellaneous

- Filon-type and Levin-type methods do not need derivatives to obtain high asymptotic orders

- Can use incomplete Gamma functions for multivariate integrals with stationary points
- Can replace collocation with least squares
- Collocation with WKB expansion can be used to approximate oscillatory differential equations

ACKNOWLEDGEMENTS

- Arieh Iserles
- Daan Huybrechs
- David Levin
- Syvert Nørsett
- University of Cambridge
- Gates Cambridge Trust

REFERENCES

- Clendin, W. W. (1966), A method for numerical calculation of Fourier integrals, Numeri. Math. 8, 422-436.
- Iserles, A. \& Nørsett, S. P. (2005a), Efficient quadrature of highly oscillatory integrals using derivatives, Proceedings Royal Soc. A., 461: 1383-1399.
- Levin, D. (1997), Procedures for computing one and two-dimensional integrals of functions with rapid irregular oscillations, Math. Comp. 38: 531-538.
- Olver, S. (2006a), Moment-free numerical integration of highly oscillatory functions, IMA J. of Num. Anal. 26: 213-227.
- Olver, S. (2006b), On the quadrature of multivariate highly oscillatory integrals over nonpolytope domains, Numer. Math. 103: 643-665.
- Olver, S. (2007), Moment-free numerical approximation of highly oscillatory integrals with stationary points, to appear in Euro. J. Appl. Maths.

