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Abstract. The purpose of this essay is the investigation of efficient methods for the numerical inte-
gration of highly oscillatory functions, over both univariate and multivariate domains. Such integrals have
an unwarranted reputation for being difficult to compute. We will demonstrate that high oscillation is in
fact beneficial: the methods discussed in this paper improve with accuracy as the frequency of oscillation
increases. The asymptotic expansion will provide a point of departure, allowing us to prove that other, con-
vergent methods have the same asymptotic behaviour, up to arbitrarily high order. This includes Filon-type
methods, which require moments and Levin-type methods, which do not require moments but are typically
less accurate and are not available in certain situations. Though we focus on the exponential oscillator,
we also demonstrate the effectiveness of these methods for other oscillators such as the Bessel and Airy
functions. The methods are also applicable in certain cases where the integral is badly behaved; such as
integrating over an infinite interval or when the integrand has an infinite number of oscillations.

Extent of original research. Section 2 is a review section: only Corollary 2.2 and the example in
Figure 1 are due to me. All of the research is my own in Section 3 through Section 8. In Section 9, the
paragraphs on changing the interval of integration are my own research. This starts with the sentence that
begins “At first sight, . . .” on the top of page 30, and ends on the middle of page 31 with the sentence
“. . .Levin-type method, see Figure 19.”. The rest of Section 9 consists of quoted results. All of my research
was done on my own, except for Theorem 7.1, which is based on conversations with David Levin for the
asymptotic expansion of the integral of the Airy function.
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1. Introduction.

In its most general form, a highly oscillatory integral is

I[f ] =
∫

Ω

f(x) yω(x) dV,

where f is a smooth function, yω is an oscillatory function with parameter ω and Ω is some domain. The
parameter ω is a positive real number that represents the frequency of oscillations: large ω implies that the
number of oscillations of yω in Ω is large. The goal of this essay is the numerical approximation of such
integrals, with attention paid to the asymptotics of the errors of the approximations, as ω →∞. Most of the
existing research deals with the exponential oscillator case where yω(t) = eiωg(t), for some function g ∈ C∞.

Highly oscillatory integrals play a valuable role in applications. Using the Magnus expansion [10], highly
oscillatory differential equations of the form y′′ + g(t)y = 0, where g(t) → ∞ while the derivatives of g are
moderate, can be expressed in terms of an infinite sum of highly oscillatory integrals. Differential equations
of this form appear in many areas, including special functions, e.g., the Airy function. From the field of
acoustics, the boundary element method requires the evaluation of highly oscillatory integrals, in order to
solve integral equations with oscillatory kernels [8]. Other areas of application include fluid dynamics, image
analysis and more.

For large values of ω, traditional quadrature techniques fail to approximate I[f ] efficiently. Each sample
point for Gauss-Legendre quadrature is effectively a random value on the range of oscillation, unless the
number of sample points is sufficiently greater than the number of oscillations. In the univariate yω = eiωg

case with no stationary points, the integral I[f ] is O
(
ω−1

)
for increasing ω [18]. This compares with an error

of order O(1) that the traditional techniques have. This implies that it is more accurate to approximate I[f ]
by zero than to use Gauss-Legendre quadrature! It is safe to say that any approximation that is less accurate
than equating the integral to zero is fairly useless. Letting the number of sample points depend on ω, on
the other hand, results in an enormous amount of computation for large ω. For the multivariate case, the
number of sample points needed to effectively use repeated univariate quadrature grows exponentially with
each dimension. The method of stationary phase [14] is also unsuitable for our needs, as it only provides an
asymptotic approximation.

We will demonstrate several methods for approximating I[f ] such that the accuracy improves as the
frequency ω increases. Until Section 7, we focus on the exponential oscillator yω = eiωg. Section 2 contains
a brief overview of the asymptotic expansion and Filon-type methods. Like the asymptotic expansion, there
exists Filon-type methods with arbitrarily high asymptotic order. Unlike the asymptotic expansion, the
error of a Filon-type method can be made arbitrarily small. Section 3 describes a univariate Levin-type
method, which has the benefits of the Filon-type methods without requiring moments. Section 4 discusses
the multivariate asymptotic expansion and Filon-type methods, then Section 5 develops a Levin-type method
for multidimensional domains Ω, where Ω need not be square, nor even a polytope. In Section 6, we show
that by choosing a collocation basis wisely, the asymptotic order of a Levin-type method can be further
increased. Section 7 contains research on oscillators besides eiωg, where yω satisfies some known differential
equation. A classic example is the Airy function yω(x) = Ai (−ωx), cf. [2].

The last two sections look at how to handle problems where the integral is badly behaved. Section 8
investigates handling integrals over unbounded domains, as well as integrals with an infinite number of
oscillations within the interval of integration. In the exponential oscillator case, this corresponds to g′ →∞
at one of the endpoints of the interval. Section 9 investigates stationary points, as well as critical points in
higher dimensions.

2. Asymptotic expansion and Filon-type methods.

This section consists of an overview of the relevant material from [11]. We focus on the exponential
oscillator

I[f ] =
∫ b

a

f(x)eiωg(x) dx.

Until Section 9, we assume that g′ 6= 0 in [a, b], in other words there are no stationary points. The idea
behind the methods presented in this essay is to derive first an asymptotic expansion for I[f ], which we then
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use to find the order of error of other, more accurate, methods. The key observation is that

I[f ] =
∫ b

a

feiωg dx =
1
iω

∫ b

a

f

g′
d
dx

[
eiωg

]
dx =

1
iω

[
f

g′
eiωg

]b

a

− 1
iω

∫ b

a

d
dx

[
f

g′

]
eiωg dx

= Q[f ]− 1
iω
I

[(
f

g′

)′
]
,

where Q[f ] = 1
iω

[
f
g′ e

iωg
]b

a
. Because g′ is nonzero, there are no problems associated with dividing by g′.

Note that the integral in the error term is O
(
ω−1

)
[18], hence Q[f ] approximates I[f ] with an error of order

O
(
ω−2

)
. Moreover, the error term is another highly oscillatory integral, hence we can iterate this procedure.

By continuing this process, we derive the following asymptotic expansion:

Theorem 2.1. Suppose that g′ 6= 0 in [a, b]. Then

I[f ] ∼ −
∞∑

k=1

1
(−iω)k

(
σk(b)eiωg(b) − σk(a)eiωg(a)

)
,

where

σ1 =
f

g′
, σk+1 =

σ′k
g′
, k ≥ 1.

The error term for approximating I[f ] by the first s terms of this expansion is 1
(iω)s I[σ′s] = 1

(iω)s I
[
σs+1g

′].
The following corollary, from [15], will be used in the proof of the order of error for Filon-type and Levin-type
methods.

Corollary 2.2. Suppose that f = O(ω−n), where O(ω−n) states that the L∞[a, b] norm of f and its
derivatives are all O(ω−n), cf. Appendix A. Furthermore, suppose that

0 = f(a) = f ′(a) = · · · = f (s−1)(a) ,

0 = f(b) = f ′(b) = · · · = f (s−1)(b) .

Then I[f ] ∼ O
(
ω−n−s−1

)
, for ω →∞.

Proof : Each σk depends on f and its first k−1 derivatives, in the sense that it is a sum of terms independent
of ω, each multiplied by some function in the set

{
f, . . . , f (k−1)

}
. Thus it follows that 0 = σk(a) = σk(b) for

all k ≤ s, and the first s terms of the asymptotic expansion are identically zero. By expanding out to the
(s+ 1)-term expansion we obtain

I[f ] = − 1
(−iω)s+1

{
σs+1(b)e

iωg(b) − σs+1(a)e
iωg(a)

}
+

1
(−iω)s+1

∫ b

a

g′σs+2e
iωg dx.

From the properties of O(·) in Appendix A, we know that σs+1 = O(ω−n). Thence σs+1(b) and σs+1(a) are
O(ω−n). Furthermore, the integral is also of order O(ω−n), and all three terms are O

(
ω−n−s−1

)
.

Q.E.D.

We could, of course, use the partial sums of the asymptotic expansion to approximate I[f ]. This
approximation would improve with accuracy as the frequency of oscillations ω increased. Unfortunately,
the expansion will typically not converge for fixed ω, thus there is a limit to the accuracy of an asymptotic
expansion. Hence we derive a Filon-type method , a method which will provide convergent approximations
whilst retaining the asymptotic behaviour of an asymptotic expansion. The idea is to approximate f by
a polynomial v =

∑n
k=0 ckx

k using Hermite interpolation, i.e., determine the coefficients ck by solving the
system

v(xk) = f(xk) , v′(xk) = f ′(xk) , . . . , v(mk−1)(xk) = f (mk−1)(xk) , k = 0, 1, . . . , xν ,
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Figure 1: The error scaled by ω3 of the asymptotic expansion (left figure, top), QF [f ] with only endpoints
and multiplicities both two (left figure, bottom)/(right figure, top), and QF [f ] with nodes

{
0, 1

2 , 1
}

and
multiplicities {2, 1, 2} (right figure, bottom) for I[f ] =

∫ 1

0
cosx eiωx dx.

for some set of nodes {x0, . . . , xν} and multiplicities {m0, . . . ,mν}. We will assume for simplicity that
x0 = a and xν = b. If the moments of eiωg are available, then we can calculate I[v] explicitly. We define a
Filon-type method as

QF [f ] = I[v] =
n∑

k=0

ckI
[
xk

]
.

Because the accuracy of QF [f ] depends on the accuracy of v interpolating f , adding additional sample points
and multiplicities will typically decrease the error. If v converges uniformly to f , then the approximation
QF [f ] converges to the solution I[f ]. We can easily prove the asymptotic order of this method:

Theorem 2.3. Let s = min {m0,mν}. Then

I[f ]−QF [f ] ∼ O
(
ω−s−1

)
.

Proof : The order of error of this method follows immediately from Corollary 2.2:

I[f ]−QF [f ] = I[f ]− I[v] = I[f − v] ∼ O
(
ω−s−1

)
as ω →∞, since f − v and its first s− 1 derivatives are zero at the endpoints.

Q.E.D.

We will now compare Filon-type methods to the asymptotic expansion numerically to show that we can
indeed decrease the error by adding interpolation points, using an example from [15]. Consider the Fourier
oscillator eiωx with f(x) = cosx integrating over the interval (0, 1). In Figure 1 we compare several methods
of order three: the two-term asymptotic expansion, QF [f ] with nodes {0, 1} and multiplicities {2, 2}, and
QF [f ] with nodes

{
0, 1

2 , 1
}

and multiplicities {2, 1, 2}. Even when sampling f only at the endpoints of
the interval, the Filon-type method represents a significant improvement over the asymptotic expansion,
having approximately one-twelfth the error, while using exactly the same information. Adding a single
interpolation point results in an error almost indistinguishable from zero in comparison to the asymptotic
expansion. Adding additional node points continues to have a similar effect.

3. Univariate Levin-type method.

The major problem with using Filon-type methods is that they require explicit formulæ for the moments
I
[
xk

]
, which are not known for general functions g. To address this issue, we investigate another method

for approximating highly oscillatory integrals, which was originally developed in [13]. This method uses
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collocation instead of interpolation, removing the requirement that moments are computable. If there exists
a function F such that d

dx

[
F eiωg

]
= feiωg, then

I[f ] =
∫ b

a

feiωg dx =
∫ b

a

d
dx

[
F eiωg

]
dx =

[
F eiωg

]b

a
.

We can rewrite this condition as L[F ] = f for the operator

L[F ] = F ′ + iωg′F.

If we can approximate F , then we can approximate I[f ] easily. In order to do so, we use collocation with the
operator L. Let v =

∑ν
k=0 ckψk for some basis {ψk}. Given a sequence of nodes {x0, . . . , xν}, we determine

the coefficents ck by solving the collocation system

L[v] (x0) = f(x0), . . . ,L[v] (xν) = f(xν).

We can then define the approximation QL[f ] to be

QL[f ] =
∫ b

a

L[v] eiωg dx =
∫ b

a

d
dx

[
veiωg

]
dx =

[
veiωg

]b

a
.

It was proved in [13] that, whenever the endpoints of the interval are used in the collocation system,
I[f ]−QL[f ] = O

(
ω−2

)
.

We obtain a Levin-type method by generalizing this method to include multiplicities, i.e. we associate a
sequence of multiplicities {m0, . . . ,mν} to the nodes {x0, . . . , xν}. This idea was presented by the current
author in [15]. The collocation system now has the form:

L[v] (xk) = f(xk),L[v]′ (xk) = f ′(xk), . . . ,L[v](mk−1) (xk) = f (mk−1)(xk), k = 0, 1, . . . , ν. (3.1)

If every multiplicity mk is one, then this is equivalent to the original Levin method. We will prove that, as in
a Filon-type method, if the multiplicities at the endpoint are greater than or equal to s, then I[f ]−QL[f ] ∼
O

(
ω−s−1

)
. Thus we obtain the same asymptotic and convergent behaviour as a Filon-type method without

requiring moments, and using exactly the same information about f and g. In order to prove the order of
error, we require that the regularity condition is satisfied, which states that the set of functions {g′ψk} can
interpolate any function at the given nodes and multiplicities.

Theorem 3.1. Suppose that the regularity condition is satisfied. Then

I[f ]−QL[f ] ∼ O
(
ω−s−1

)
,

where s = min {m0,mν} and

QL[f ] = v(b)eiωg(b) − v(a)eiωg(a).

Proof : The error term of the approximation is I[f ] − QL[f ] = I[f − L[v]]. In order to use Corollary 2.2
we need to show that f − L[v] = O(1). Since f is independent of ω, we need only worry about L[v]. Using
Cramer’s rule, we will show that each ck is of order O

(
ω−1

)
. Define the operator P[f ], written in partitioned

form, as

P[f ] =

 ρ0[f ]
...

ρν [f ]

 , where ρk[f ] =

 f(xk)
...

f (mk−1)(xk)

 .

Basically, P[f ] maps f to its values at every node in {x0, . . . , xν} with multiplicities {m0, . . . ,mν}. Note
that the system (3.1) can be written as Ac = f , for c = [c0, · · · , cn]> and

A = [P[L[ψ0]] , · · · ,P[L[ψn]]] = [P[ψ′0] + iωP[g′ψ0] , · · · ,P[ψ′n] + iωP[g′ψn]] = P + iωG,

where
P = [P[ψ′0] , · · · ,P[ψ′n]] , G = [P[g′ψ0] , · · · ,P[g′ψn]] , f = P[f ] .
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Figure 2: The error scaled by ω3 of the asymptotic expansion (left figure, top), QL[f ] (left figure, bot-
tom)/(right figure, top) and QF [f ] (right figure, bottom) both with only endpoints and multiplicities two
for I[f ] =

∫ 1

0
cos(x)eiω(x2+x) dx.

Solving the system Gc = f is equivalent to interpolating f by {g′ψk} at the given nodes and multiplicities.
Thus the regularity condition ensures that detG 6= 0. It follows that detA = (iω)n+1 detG+O(ωn), hence
large enough ω ensures that A is nonsingular and (detA)−1 = O

(
ω−n−1

)
. Furthermore detDk = O(ωn), for

Dk defined as the matrix A with the (k + 1)th column replaced by f . Hence

ck =
detDk

detA
= O

(
ω−1

)
.

It follows that v = O
(
ω−1

)
; hence L[v] = O(1), and the theorem follows.

Q.E.D.

Theorem 3.2 provides a simplified version of the regularity condition. It is especially helpful as it
ensures that the standard polynomial basis can be used with a Levin-type method and any choice of nodes
and multiplicities. Recall from [17] that a Chebyshev set is a basis that spans a set M that satisfies the Haar
condition; in other words, that every function u ∈M has less than n+ 1 roots to the equations u(x) = 0 in
the interval [a, b].

Theorem 3.2. Suppose that the basis {ψ0, . . . , ψn} is a Chebyshev set. Then the regularity condition is
satisfied for all choices of nodes and multiplicities.

Proof : Let M be equal to the span of {ψ0, . . . , ψn}. We begin by showing that {g′ψ0, . . . , g
′ψn} is a

Chebyshev set. Note that {g′ψ0, . . . , g
′ψn} is a family of linearly independent functions, since

∑
ckg

′ψk =
g′

∑
ckψk and g′ 6= 0. Let M̃ = span {g′ψ0, . . . , g

′ψn} and ũ ∈ M̃ , where ũ is not identically zero. We
know that ũ = g′u for some u ∈ M , and u is equal to zero less than n + 1 times. But if u(x) 6= 0 then
ũ(x) 6= 0. Thus M̃ satisfies the Haar condition. It follows that the basis {g′ψk} can interpolate at any
points {y0, . . . , yn} [17]. Thus, by a trivial limiting argument, we know that it can interpolate at the points
{x0, . . . , xν} with multiplicities {m0, . . . ,mν}.

Q.E.D.

The following example, taken directly from [15], will demonstrate the effectiveness of this method.
Consider the integral

∫ 1

0
cos(x)eiω(x2+x) dx, in other words f(x) = cosx and g(x) = x2 + x. We have

no stationary points and moments are computable, hence all the methods discussed so far are applicable.
We compare the asymptotic expansion with a Filon-type method and a Levin-type method, both with
nodes {0, 1} and multiplicities both two. For this choice of f and g, the Levin-type method is a significant
improvement over the asymptotic expansion, whilst the Filon-type method is even more accurate.

Figure 3 compares the Levin-type method and the Filon-type method with the addition of two sample
points. This graph helps emphasize the effectiveness of adding node points within the interval of integration.
With just two node points, only one of which has multiplicity greater than one, the error of QL[f ] is less than
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Figure 3: The error scaled by ω3 of QL[f ] (left figure, top) and QF [f ] (left figure, bottom) both with only
endpoints and multiplicities two compared to QL[f ] (left figure, middle) and QF [f ] (right figure) both with
nodes

{
0, 1

4 ,
2
3 , 1

}
and multiplicities {2, 2, 1, 2} for I[f ] =

∫ 1

0
cosxeiω(x2+x) dx.

a sixth of what it was. In fact it is fairly close to the former QF [f ] while still not requiring the knowledge
of moments. On the other hand, adding the same node points and multiplicities to QF [f ] results in an
error indistinguishable from zero in comparison to the original QL[f ]. It should be emphasized that even
QL[f ] with only endpoints is still a very effective method, as all the values in this graph are divided by
ω3 ≥ 2003 = 8 · 106.

4. Multivariate asymptotic expansion.

With a firm concept of how to handle the univariate case, we now begin delving into the approximation
of higher dimensional integrals in the form

I[f ] = Ig[f,Ω] =
∫

Ω

f(x)eiωg(x) dV,

where the domain Ω has a piecewise smooth boundary. As is the theme of this essay, we mirror the univariate
methods by first deriving an asymptotic expansion, which we then use to prove the order of error for
multivariate Filon-type and Levin-type methods. We begin by investigating the case where the non-resonance
condition is satisfied, which is somewhat similar in spirit to the condition that g′ is nonzero within the interval
of integration. The non-resonance condition is satisfied if, for every x on the boundary of Ω, ∇g(x) is not
orthogonal to the boundary of Ω at x. In addition, ∇g 6= 0 in the closure of Ω, i.e. there are no critical
points. Note that the non-resonance condition does not hold true if g is linear and Ω has a completely
smooth boundary, such as a circle, since ∇g must be orthogonal to at least one point in ∂Ω.

Based on results from [12], we derive the following asymptotic expansion. We also use the notion of a
vertex of Ω, for which the definition may not be immediately obvious. Specifically, we define the vertices of
Ω as:

• If Ω consists of a single point in Rd, then that point is a vertex of Ω.

• Otherwise, let {Z`} be an enumeration of the smooth components of the boundary of Ω, where each Z`

is of one dimension less than Ω, and has a piecewise smooth boundary itself. Then v ∈ ∂Ω is a vertex
of Ω if and only if v is a vertex of some Z`.

In other words, the vertices are the endpoints of all the smooth one-dimensional edges in the boundary of Ω.
In two-dimensions, these are the points where the boundary is not smooth. We denote the partial derivative
operator as Dm for m ∈ Nd and define |m | as the sum of the entries of m, cf. Appendix A.

Theorem 4.1. Suppose that Ω has a piecewise smooth boundary, and that the non-resonance condition is
satisfied. Then, for ω →∞,

Ig[f,Ω] ∼
∞∑

k=0

1
(−iω)k+d

Θk [f ] ,
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where Θk [f ] depends on Dmf for all |m | ≤ k, evaluated at the vertices of Ω.

Proof : Fix an integer s ≥ 1. From [12] we know that, if a domain S is a polytope and g has no critical
points in the closure S, then

Ig[f, S] = QA
g,s [f, S] +

1
(−iω)s

Ig[σs, S] ,

where

QA
g,s [f, S] = −

s−1∑
k=0

1
(−iω)k+1

∫
∂S

n>∇g σk

‖∇g‖2
eiωg dS,

n is the outward facing unit normal and

σ0 = f, σk+1 = ∇ ·

[
σk

‖∇g‖2
∇g

]
, k = 0, 1, . . . .

Let {S0, S1, . . .} be a sequence of polytope domains such that limSj = Ω, where each Sj is a tessellation of
Ω. Because ∇g is continuous, there is an open set U containing the closure of Ω such that ∇g 6= 0 in U .
Assume that each Sj ⊂ U , which is true whenever a sufficiently fine grid is used.

Note that σk is bounded in U for all k, because there are no critical points. Hence, due to the bound-
edness of each integrand and the dominating convergence theorem, it is clear that

Ig
[
f, Sj

]
→ Ig[f,Ω] ,

1
(−iω)s

Ig
[
σs, Sj

]
→ 1

(−iω)s
Ig[σs,Ω] ,∫

∂Sj

n>∇g σk

‖∇g‖2
eiωg dS →

∫
∂Ω

n>∇g σk

‖∇g‖2
eiωg dS.

It follows that Ig[f,Ω] = QA
g,s [f,Ω]+ 1

(−iω)s Ig[σs,Ω] = QA
g,s [f,Ω]+O

(
ω−s−d

)
, using the fact that Ig[σs,Ω] =

O
(
ω−d

)
[18].

We now prove the theorem by expressing QA
g,s [f,Ω] in terms of its asymptotic expansion. Assume the

theorem holds true for lower dimensions, where the univariate case follows from Theorem 2.1. For each `,
there exists a domain Ω` ∈ Rd−1 and a smooth map T` : Ω` → Z` that parameterizes Z` by Ω`, where every
vertex of Ω` corresponds to a vertex of Z`, and vice-versa. We can rewrite each surface integral in QA

g,s [f,Ω]
as a sum of standard integrals:∫

∂Ω

n>∇g σk

‖∇g‖2
eiωg dS =

∑
`

∫
Z`

n>∇g σk

‖∇g‖2
eiωg dS =

∑
`

Ig`
[f`,Ω`] , (4.1)

where f` is a smooth function multiplied by σk ◦ T`, and g` = g ◦ T`. It follows from the definition of
the non-resonance condition that the function g` satisfies the non-resonance condition in Ω`. Thus, by our
assumption,

Ig`
[f`,Ω`] ∼

∞∑
i=0

1
(−iω)i+d−1

Θi[f`],

where Θi [f`] depends on Dmf` for |m | ≤ i applied at the vertices of Ω`. But Dmf` depends on Dm [σk ◦ T`]
for |m | ≤ i applied at the vertices of Ω`, which in turn depends on Dmf for |m | ≤ i + k, now evaluated
at the vertices of Z`, which are also vertices of Ω. The theorem follows from plugging these asymptotic
expansions into the definition of QA

g,s [f,Ω].
Q.E.D.

It is not necessary to find Θk [f ] explicitly as we only use this asymptotic expansion for error analysis,
not as a means of approximation. The following corollary serves the same purpose as Corollary 2.2: it will
be used to prove the order of error for a multivariate Levin-type method.
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Corollary 4.2. Let V be the set of all vertices of a domain Ω. Suppose that f = O(ω−n). Suppose further
that

0 = Dmf(v)

for all v ∈ V and m ∈ Nd such that 0 ≤ |m | ≤ s− 1. Then

Ig[f,Ω] ∼ O
(
ω−n−s−d

)
.

Proof : We prove this corollary by induction on the dimension d, with the univariate case following from
Corollary 2.2. We begin by showing that QA

g,s+d [f,Ω] = O
(
ω−n−s−d

)
. Since every σk depends on f and

its partial derivatives, it follows that σk = O(ω−n). Furthermore, 0 = Dmσk(v) for all v ∈ V and every
|m | ≤ s− k− 1, where 0 ≤ k ≤ s− 1. Hence (4.1) is of order O

(
ω−n−(s−k)−(d−1)

)
for all 0 ≤ k ≤ s− 1. For

k ≥ s, we know that (4.1) is at least of order O
(
ω−n−(d−1)

)
. Since each (4.1) is multiplied by (−iω)−k−1 in

the construction of QA
g,s+d [f,Ω], it follows that QA

g,s+d [f,Ω] = O
(
ω−n−s−d

)
. Finally,

∣∣ Ig[f,Ω]−QA
g,s+d [f,Ω]

∣∣ =
∣∣∣∣ 1
(−iω)−s−d

Ig
[
σs+d,Ω

] ∣∣∣∣ = O
(
ω−s−n−d

)
,

since
∥∥σs+d

∥∥
∞ = O(ω−n). Thus Ig[f,Ω] ∼ O

(
ω−s−n−d

)
.

Q.E.D.

We find a generalization of Filon-type methods for multivariate integrals in [12]. As in the univariate
case, the function f is interpolated by a polynomial v, and moments are assumed to be available. Define

QF
g [f,Ω] = Ig[v,Ω] ,

where v is the Hermite interpolation polynomial of f at a given set of nodes {x0, . . . ,xν} with multiplicities
{m0, . . . ,mν}, obtained by solving the system

Dmv(xk) = Dmf(xk), 0 ≤ |m | ≤ mk − 1, k = 0, 1, . . . , ν.

From Corollary 4.2, it is clear that

QF
g [f,Ω]− Ig[f,Ω] = O

(
ω−s−d

)
,

where s is the minimum multiplicity associated with a vertex. Note that we require explicit formulæ for
the moments Ig

[
xk1

1 · · ·xkd

d ,Ω
]
. This is a much more stringent condition in the multivariate setting than

the univariate condition: it depends not only on the oscillator g, but also on the domain of integration Ω.
However, knowledge of such moments is known if Ω is a simplex and g is affine—i.e., linear plus a constant.

Remark : In this section we used a weaker definition for the non-resonance condition than that which was
found in [12]. Also, for the cited result in Theorem 4.1, we only require that g has no critical points, whereas
the original statement requires that the non-resonance condition holds. This is due to the proofs cited from
that paper holding true for the weaker conditions, without any other alterations.

5. Multivariate Levin-type method.

In this section, based on [16], we will derive a Levin-type method for the multivariate highly oscillatory
integral Ig[f,Ω]. As in the univariate case, we will not require moments. This enables the approximation
of highly oscillatory integrals with more complicated oscillators and over more complicated domains than
was possible with a Filon-type method. We begin by demonstrating how to derive a multivariate Levin-type

9
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e1

e2

H

Figure 4: A unit quarter circle H, where e1 = [1, 0]> and e2 = [0, 1]>.

method on a two-dimensional domain, namely a quarter unit circle H as seen in Figure 4. Afterwards, we
generalize the technique to higher dimensional and more general domains.

In the univariate case, we determined the collocation operator L[v] using the fundamental theorem of
calculus. We mimic this by using the generalized Stokes’ theorem. Suppose we have a bivariate function
F (x, y) = [F1(x, y), F2(x, y)]

> such that

I[f ] =
∫

∂H

eiωgF · ds =
∫

∂H

eiωg(F1 dy − F2 dx), (5.1)

where ds = [ dy,−dx]> is the surface differential. Define the differential form ρ = eiωg(x,y)F (x, y) · ds. Then

dρ = (F1,x + iωgxF1)e
iωg dx ∧ dy − (F2,y + iωgyF2)e

iωg dy ∧ dx (5.2)

= (F1,x + F2,y + iω(gxF1 + gyF2))e
iωg dx ∧ dy

= (∇ · F + iω∇g · F )eiωg dx ∧ dy
= L[F ] eiωg dx ∧ dy,

where L[F ] = ∇ · F + iω∇g · F . We can rewrite the condition (5.1) as L[F ] = f .

We now use the operator L[F ] to collocate f . Let v(x, y) =
∑n

k=0 ckψk(x, y), for some basis {ψk},
where ψk : R2 → R2. Given a sequence of nodes {x0, . . . ,xν} ⊂ R2 and multiplicities {m0, . . . ,mν}, we
determine the coefficients ck by solving the system

DmL[v] (xk) = Dmf(xk), 0 ≤ |m | ≤ mk − 1, k = 0, 1, . . . , ν,

where again m ∈ Nd and |m | is the sum of the rows of the vector m. We then obtain, using T1(t) =

10



[cos t, sin t]>, T2(t) = [0, 1− t]> and T3(t) = [t, 0]> as the positively oriented boundary,

Ig[f,H] ≈ Ig[L[v] ,H] =
∫∫

H

L[v] eiωg dx ∧ dy =
∫∫

H

dρ =
∮

∂H

ρ =
∮

∂H

eiωgv · ds

=
∫ π

2

0

eiωg(T1(t))v(T1(t)) · T ′1(t) dt+
∫ 1

0

eiωg(T2(t))v(T2(t)) · T ′2(t) dt+∫ 1

0

eiωg(T3(t))v(T3(t)) · T ′3(t) dt

=
∫ π

2

0

eiωg(cos t,sin t) [v2(cos t, sin t) cos t− v1(cos t, sin t) sin t] dt−∫ 1

0

v2(0, 1− t)eiωg(0,1−t) dt+
∫ 1

0

v1(t, 0)eiωg(t,0) dt.

This is a sum of three univariate highly oscillatory integrals, with oscillators eiωg(cos t,sin t), eiωg(0,1−t), and
eiωg(t,0). If we assume that these three oscillators have no stationary points, which can be shown to be
equivalent to the non-resonance condition, then we can approximate each of these integrals with a univariate
Levin-type method, as described in Section 3. Hence we define:

QL
g [f,H] = QL

g1

[
f1,

(
0,
π

2

)]
+QL

g2
[f2, (0, 1)] +QL

g3
[f3, (0, 1)] ,

for f1(t) = v2(cos t, sin t) cos t − v1(cos t, sin t) sin t, g1(t) = g(cos t, sin t), f2(t) = −v2(0, 1 − t), g2(t) =
g(0, 1− t), f3(t) = v1(t, 0) and g3(t) = g(t, 0).

We approach the general case in a similar manner. Suppose we are given nodes {x0, . . . ,xν} in Ω ⊂ Rd,
multiplicities {m0, . . . ,mν} and basis functions {ψk}, where ψk : Rd → Rd. Assume further that we are
given a positive-oriented boundary of Ω defined by a set of functions T` : Ω` → Rd, where Ω` ⊂ Rd−1 and the
`th boundary component Z` is the image of T`. Furthermore, assume we have the same information—nodes,
multiplicities, basis and boundary parameterization—for each Ω`, recursively down to the one-dimensional
edges. We define a Levin-type method QL

g [f,Ω] recursively as follows:

• If Ω = (a, b) ⊂ R, then QL
g [f,Ω] is equivalent to a univariate Levin-type method from Section 3.

• If Ω ⊂ Rd, the definition of L[v] remains

L[v] = ∇ · v + iω∇g · v.

Define v =
∑n

k=0 ckψk, where n + 1 will be the number of equations in the system (5.3). We then
determine the coefficients ck by solving the collocation system

DmL[v] (xk) = Dmf(xk), 0 ≤ |m | ≤ mk − 1, k = 0, 1, . . . , ν. (5.3)

We now define
QL

g [f,Ω] =
∑

QL
g`

[f`,Ω`] , (5.4)

where g`(x) = g(T`(x)) and f` = v(T`(x)) ·Jd
T`

(x), cf. Appendix A for the definition of Jd
T`

(x). Assume
that the nodes and multiplicities for each Levin-type method QL

g`
[f`,Ω`] contain the vertices of Ω` with

the same multiplicity as the associated vertex of Ω. In other words, if xj = T`(u) is a vertex of Ω, then
u has a multiplicity of mj .

The regularity condition for the multivariate case is defined by the following two conditions:

• The basis {∇g ·ψk} can interpolate at the given nodes and multiplicities.

• The regularity condition is satisfied for each Levin-type method in the right-hand side of (5.4).

We thus derive the following theorem:
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Theorem 5.1. Suppose that both the non-resonance and regularity condition are satisfied. Suppose further
that {x0, . . . ,xν} contains all the vertices of Ω, namely,

{
xi1

, · · · ,xiν

}
. Then

I[f ]−QL[f ] ∼ O
(
ω−s−d

)
,

where s = min
{
mi1

, · · · ,miν

}
.

Proof : Assume the theorem holds for all dimensions less than d. The univariate case was proved in
Theorem 3.1. We begin by showing that

Ig[f,Ω]− Ig[L[v] ,Ω] = Ig[f − L[v] ,Ω] = O
(
ω−s−d

)
.

This will follow if L[v] = O(1). Let

P[f ] =

 ρ0[f ]
...

ρν [f ]

 , for ρk[f ] =

 Dpk,1f(xk)
...

Dpk,nk f(xk)

 , k = 0, 1, . . . , ν,

where pk,1, . . . ,pk,nk
∈ Nd, nk = 1

2mk(mk + 1), are the lexicographically ordered vectors such that
∣∣pk,i

∣∣ ≤
mk−1. As in the proof of Theorem 3.1, P[f ] maps f to itself evaluated at the given nodes and multiplicities.
Note that (5.3) has the form Ac = f , where

A = [P[L[ψ0]] , · · · ,P[L[ψn]]] = [P[∇ ·ψ0] + iωP[∇g ·ψ0] , · · · ,P[∇ ·ψn] + iωP[∇g ·ψn]] = P + iωG,

for
P = [P[∇ ·ψ0] , · · · ,P[∇ ·ψn]] , G = [P[∇g ·ψ0] , · · · ,P[∇g ·ψn]] , f = P[f ] .

Note that G is the matrix associated with the system resulting from the basis {∇g ·ψk} interpolating at the
given nodes and multiplicities, hence the regularity condition ensures that detG is nonsingular. By the same
logic as in Theorem 3.1, it follows that the A is nonsingular for large ω and ck = O

(
ω−1

)
. Thus L[v] = O(1),

and Corollary 4.2 states that Ig[f,Ω]− Ig[L[v] ,Ω] = O
(
ω−s−d

)
.

We now show that
QL

g [f,Ω]− Ig[L[v] ,Ω] = O
(
ω−s−d

)
.

Define the differential form ρ = eiωgv · ds, where ds is the surface differential, cf. Appendix A. It can easily
be seen that dρ = L[v] eiωg dV , see (5.2). Thus

Ig[L[v] ,Ω] =
∫

Ω

dρ =
∫

∂Ω

ρ =
∑

`

∫
Z`

ρ,

where Z` = T`(Ω`). Furthermore, using the definition of the integral of differential form, cf. Appendix A:∫
Z`

ρ =
∫

Z`

eiωgv · ds =
∫

Ω`

eiωg(T`(x))v(T`(x)) · Jd
T`

(x) dV

=
n∑

j=0

cj

∫
Ω`

eiωg(T`(x))ψj(T`(x)) · Jd
T`

(x) dV

=
n∑

j=0

cjIg`

[
f`,j ,Ω`

]
,

for f`,j(x) = ψj(T`(x)) · Jd
T`

(x). By assumption, since the non-resonance and regularity conditions are
satisfied, QL

g`

[
f`,j ,Ω`

]
− Ig`

[
f`,j ,Ω`

]
= O

(
ω−s−d+1

)
, where this Levin-type method has the same nodes and

multiplicities as QL
g`

[f`,Ω`] in (5.4). Due to the linearity of QL, QL
g`

[f`,Ω`] =
∑n

j=0 cjQ
L
g`

[
f`,j ,Ω`

]
. Thus

QL
g [f,Ω]− Ig[L[v] ,Ω] =

∑
`

(
QL

g`
[f`,Ω`]−

∫
Z`

ρ

)

12



=
∑

`

n∑
j=0

cj
(
QL

g`

[
f`,j ,Ω`

]
− Ig`

[
f`,j ,Ω`

])
(5.5)

=
∑

`

n∑
j=0

O
(
ω−1

)
O

(
ω−s−d+1

)
= O

(
ω−s−d

)
.

Putting both parts together we obtain that Ig[f,Ω]−QL
g [f,Ω] = O

(
ω−s−d

)
.

Q.E.D.

Admittedly the regularity condition seems strict, however in practice it typically holds. There is no
equivalent to a Chebyshev set in higher dimensions [3], so we can not generalize Theorem 3.2. We can,
however, under certain circumstances show that the regularity condition is satisfied whenever the standard
polynomial basis can interpolate at the given nodes and multiplicities. The following corollary states, for
simplicial domains and affine g, that a Levin-type method is equivalent to a Filon-type method with the
standard polynomial basis. This is the main problem domain where Filon-type methods are effective, so in
essence Levin-type methods are an extension to Filon-type methods.

Corollary 5.2. If g is affine, then Ig[L[v] ,Ω] = QF
g [f,Ω] whenever ψk = ψk t, where ψk is the standard

polynomial basis and t ∈ Rd is chosen so that t · ∇g 6= 0. Furthermore, if Ω is the d-dimensional simplex Sd,
then QL

g [f, Sd] is equivalent to QF
g [f, Sd] whenever a sufficient number of sample points are taken.

Proof : Note that solving a Levin-type method collocation system is equivalent to interpolating with the
basis ψ̃j = L

[
ψj

]
= t · ∇ψj + iωψjt · ∇g. We begin by showing that ψ̃k and ψk are equivalent. Assume

that
{
ψ̃0, . . . , ψ̃j−1

}
has equivalent span to

{
ψ0, . . . , ψj−1

}
. This is true for the case ψ0 ≡ 1 since L[t] =

iωt · ∇g = C, where C 6= 0 by hypothesis. Note that ψj(x1, . . . , xd) = xp1
1 . . . xpd

d for some nonnegative
integers pk. Then, for t = [t1, · · · , td]

>,

ψ̃j =iωψjt · ∇g + t · ∇ψj = Cψj +
d∑

k=1

tkDekψj

=Cψj +
d∑

k=1

tkpkx
p1
1 . . . x

pk−1
k−1 x

pk−1
k x

pk+1
k+1 . . . x

pd

d .

The sum is a polynomial of degree less than the degree of ψj , hence it lies in the span of
{
ψ0, . . . , ψj−1

}
. Thus

ψj lies in the span of
{
ψ̃0, . . . , ψ̃j

}
. It follows that interpolation by each of these two bases is equivalent, or

in other words Ig[L[v] ,Ω] = QF
g [f,Ω].

We prove the second part of the theorem by induction, where the case of Ω = S1 holds true by the
definition QL

g [f, S1] = Ig[L[v] , S1]. Now assume it is true for each dimension less than d. Since g is
affine and each boundary T` of the simplex is affine we know that each g` is affine. Furthermore we know
that the Jacobian determinants of T` are constants, hence each f` is a polynomial. Thus QL

g`

[
f`, Sd−1

]
=

QF
g`

[
f`, Sd−1

]
= Ig`

[
f`, Sd−1

]
, as long as enough sample points are taken so that f` lies in the span of the

interpolation basis. Hence QL
g [f, Sd] = Ig[L[v] , Sd] = QF

g [f, Sd].
Q.E.D.

An important consequence of this corollary is that, in the two-dimensional case, a Levin-type method pro-
vides an approximation whenever the standard polynomial basis can interpolate f at the given nodes and
multiplicities, assuming that g is affine and the non-resonance condition is satisfied in Ω.

We can now demonstrate the effectiveness of this method with several numerical examples. For simplic-
ity, we take ψk = ψk 1, where ψk is the d-dimensional polynomial basis. Note that this attaches an artificial
orientation to this approximation scheme, however, this will not affect the asymptotics of the method. We
begin with the case of integrating over a simplex, which Corollary 5.2 showed is equivalent to a Filon-type
method. Let f(x, y, z, t) = x2, g(x, y, z, t) = x − 2y + 3z − 4t and approximate Ig[f, S4] by QL

g [f, S4] collo-
cating only at the vertices with multiplicities all one. As expected, we obtain an error of order O

(
ω−5

)
, as
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Figure 5: The error scaled by ω5 of QL
g [f, S4] collocating only at the vertices with multiplicities all one, for

Ig[f, S4] =
∫

S4
x2eiω(x−2y+3z−4t) dV .
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Figure 6: The error scaled by ω3 of QL
g [f, S2] collocating only at the vertices with multiplicities all one (left

figure), and the error scaled by ω4 with vertex multiplicities all two and an additional point at
[
1
3 ,

1
3

]> with

multiplicity one (right figure), for Ig[f, S2] =
∫

S2

(
1

x+1 + 2
y+1

)
eiω(2x−y) dV .

seen in Figure 5. Because this Levin-type method is equivalent to a Filon-type method, it would have solved
this integral exactly had we increased the number of node points so that ψk(x, y, z, t) = x2 was included as
a basis vector.

Now consider the more complicated function f(x, y) = 1
x+1 + 2

y+1 with oscillator g(x, y) = 2x − y,
approximated by QL

g [f, S2], again only sampling at the vertices with multiplicities all one. As expected we
obtain an order of error of O

(
ω−3

)
. By adding an additional multiplicity to each vertex, as well as the

sample point
[
1
3 ,

1
3

]> with multiplicity one to ensure that we have ten equations in our system as required
by polynomial interpolation, we increase the order by one to O

(
ω−4

)
. Both of these cases can be seen in

Figure 6. Note that the different scale factor means that the right-hand graph is in fact much more accurate,
as it has about 1/ωth the error.

Because Levin-type methods do not require moments, they allow us to integrate over more complicated
domains that satisfy the non-resonance condition, without resorting to tessellation. For example, we return
to the case of the quarter unit circle H. Let f(x, y) = ex cosxy, g(x, y) = x2 +x−y2−y, and choose vertices
for nodes with multiplicities all one. Note that g is nonlinear, in addition to the domain not being a simplex.
Despite these difficulties, QL

g [f,H] still attains an order of error O
(
ω−3

)
, as seen in the left hand side of

Figure 7. If we increase the multiplicities at the vertices to two, adding an additional node at
[
1
3 ,

1
3

]> with
multiplicity one, we obtain an error of order O

(
ω−4

)
. This can be seen in the right-hand side of Figure 7.

This example is significant since, due to the unavailability of moments, Filon-type methods fail to provide
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Figure 7: The error scaled by ω3 of QL
g [f,H] collocating only at the vertices with multiplicities all one (left

figure), and the error scaled by ω4 with vertex multiplicities all two and an additional point at
[
1
3 ,

1
3

]> with
multiplicity one (right figure), for Ig[f,H] =

∫
H

ex cosxy eiω(x2+x−y2−y) dV .

approximations in a quarter circle, let alone with nonlinear g. Were g linear, we could have tessellated H
to obtain a polytope, but that would have resulted in an unnecessarily large number of calculations. With
nonlinear g we do not even have this option, hence Filon-type methods are completely unsuitable.

6. Asymptotic basis condition.

It is important to note that, for a Levin-type method, there is no particular reason to use polynomials
for {ψk}. Not only can we greatly improve the accuracy of the approximation by choosing the basis wisely,
but surprisingly we can even obtain higher asymptotic order. The asymptotic basis condition is satisfied if
the basis {ψ0, . . . ,ψn} satisfies the following conditions:

∇g ·ψ1 = f, ∇g ·ψk+1 = ∇ ·ψk, k = 1, 2, . . . .

For the univariate case, this condition becomes

ψ1 =
f

g′
, , ψk+1 =

ψ′k
g′
, k = 1, 2, . . . .

Note that this is equivalent to defining ψk = σk, where σk was defined in the asymptotic expansion, cf. The-
orem 2.1, hence the term asymptotic basis condition. Surprisingly, this increases the asymptotic order to
O

(
ω−ñ−s−d

)
, where s is again the minimum vertex multiplicity and ñ + 1 is equal to the minimum of the

number of equations in every collocation system (5.3) solved for in the definition of QL, recursively down
to the univariate integrals. It follows that if Ω ⊂ R, then ñ = n. As an example, if we are collocating
on a two-dimensional simplex at only the three vertices with multiplicities all one, then the initial collo-
cation system has three equations, whilst each boundary collocation system has only two equations. Thus
ñ+ 1 = min {3, 2, 2, 2} = 2, and the order is O

(
ω−2−1−2

)
= O

(
ω−5

)
.

The following lemma is used extensively in the proof of the asymptotic order:

Lemma 6.1. Suppose {ψk} satisfies the asymptotic basis condition. Then, for k ≥ 1,

det
[
gk,ak, · · · ,ak+j , B

]
= det

[
gk, gk+1, · · · , gk+j+1, B

]
,

where B represents all remaining columns that render the matrices square and ak = pk + iωgk, for

pk = P[∇ ·ψk] , gk = P[∇g ·ψk] .
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Proof : We know that pk = P[∇ ·ψk] = P
[
∇g ·ψk+1

]
= gk+1. Thus we can multiply the first column by

iω and subtract it from the second to obtain

det
[
gk,pk + iωgk, · · · ,ak+j , B

]
= det

[
gk, gk+1,ak+1, · · · ,ak+j , B

]
.

The lemma follows by repeating this process on the remaining columns.
Q.E.D.

This lemma holds for any column interchange on both sides of the determinant. We can now prove the
theorem:

Theorem 6.2. Suppose every basis {ψk} in a Levin-typem method satisfies the asymptotic basis condition.
Then

QL
g [f,Ω]− Ig[f,Ω] ∼ O

(
ω−ñ−s−1

)
.

Proof : We begin by showing that L[v]− f = O(ω−n). Note that

L[v]− f =
n∑

k=0

ckL[ψk]− f =
n∑

k=0

ck (∇ ·ψk + iω∇g ·ψk)− f

=c0∇ ·ψ0 + iωc0∇g ·ψ0 +
n∑

k=1

ck
(
∇g ·ψk+1 + iω∇g ·ψk

)
−∇g ·ψ1

=c0∇ ·ψ0 +∇g ·
[
iωc0ψ0 + (iωc1 − 1)ψ1 +

n∑
k=2

(ck−1 + iωck)ψk + cnψn+1

]
=

detD0

detA
∇ ·ψ0 +

∇g
detA

·
[
iω detD0ψ0 + (iω detD1 − detA)ψ1

+
n∑

k=2

(detDk−1 + iω detDk)ψk + detDnψn+1

]
,

where again Dk is the matrix A with the (k + 1)th column replaced by f . We know that (detA)−1 =
O

(
ω−n−1

)
, thus it remains to be shown that each term in the preceding equation is O(ω). This boils down

to showing that each of the following terms are O(ω): iω detD0, iω detD1 − detA, detDk−1 + iω detDk for
2 ≤ k ≤ n and finally detDn. The first case follows directly from Lemma 6.1, since f = P[f ] = P[∇g ·ψ1] =
g1, hence

detD0 = det [g1,a1, · · · ,an] = det
[
g1, g2, · · · , gn+1

]
= O(1) .

The second case follows from Lemma 6.1 after rewriting the determinants as

iω detD1 − detA =iω detD1 − det [a0,p1 + iωg1,a2, · · · ,an]
=iω detD1 − iω det [a0, g1,a2, · · · ,an]− det [a0,p1,a2, · · · ,an]
=− det [a0, g2,a2, · · · ,an] = O(ω) ,

where we used the facts that p1 = g2. Similarly,

detDk−1 + iω detDk =det
[
a0, · · · ,ak−2, g1,pk + iωgk,ak+1, · · · ,an

]
+ iω det

[
a0, · · · ,ak−2,pk−1 + iωgk−1, g1,ak+1, · · · ,an

]
=det

[
a0, · · · ,ak−2, g1,pk,ak+1, · · · ,an

]
+ iω det

[
a0, · · · ,ak−2, g1, gk,ak+1, · · · ,an

]
+ iω det

[
a0, · · · ,ak−2, gk, g1,ak+1, · · · ,an

]
− ω2 det

[
a0, · · · ,ak−2, gk−1, g1,ak+1, · · · ,an

]
=det

[
a0, · · · ,ak−2, g1,pk,ak+1, · · · ,an

]
− ω2 det

[
a0, · · · ,ak−2, gk−1, g1,ak+1, · · · ,an

]
.
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Figure 8: The error scaled by ω4 of the asymptotic expansion (left figure, top), QF [f ] with endpoints for
nodes and multiplicities two (left figure, bottom), and QB [f ] with nodes

{
0, 1

2 , 1
}

and multiplicities all one
(right figure) for I[f ] =

∫ 1

0
log(x+ 1)eiωx dx.
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�16
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Figure 9: The base-10 logarithm of the error of the s-term asymptotic expansion (top), QF [f ] with endpoints
for nodes and multiplicities s (middle), and QB [f ] with nodes {k/ (s− 1)}s−1

k=0 and multiplicities all one
(bottom) for I[f ] =

∫ 1

0
log(x+ 1)eiωx dx.

Using Lemma 6.1 the first of these determinants is O(ω), whilst the second determinant has two columns
equal to gk−1, hence is equal to zero. The last determinant detDn is also O(ω), due to Lemma 6.1. Thus
we have shown that L[v]− f = O(ω−n).

From Corollary 4.2, it follows that Ig[f,Ω] − Ig[L[v] ,Ω] = O
(
ω−n−s−d

)
= O

(
ω−ñ−s−d

)
. For the

univariate case the lemma has been proved, since QL
g [f, (a, b)] = Ig[L[v] , (a, b)]. By induction, QL

g`

[
f`,j ,Ω`

]
−

Ig`

[
f`,j ,Ω`

]
= O

(
ω−ñ−s−(d−1)

)
in (5.5). It follows that

Ig[f,Ω]−QL
g [f,Ω] =

(
Ig[f,Ω]− Ig[L[v] ,Ω]

)
−

(
QL

g [f,Ω]− Ig[L[v] ,Ω]
)

=O
(
ω−ñ−s−d

)
.

Q.E.D.

We will use QB [f ] to denote a Levin-type method whose basis satisfies the asymptotic basis condition.
In the univariate case, we assume that ψ0 ≡ 1. Consider the integral with the Fourier oscillator and
f(x) = log(x+1). We compare methods of order O

(
ω−4

)
. This includes the three-term asymptotic exansion,

QF [f ] (which is equivalent to QL[f ]) with nodes {0, 1} and multiplicities both two, and QB [f ] using nodes{
0, 1

2 , 1
}

and multiplicities all one. With this set up we obtain Figure 8. The results are decent, with QB [f ]
being slightly more accurate than QF [f ] on average.

The problem with the asymptotic expansion and QF [f ] with endpoints for nodes and multiplicities both
s is that, in general, as s→∞ these methods diverge. Hence another worthwhile comparison is to see how
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Figure 10: The error scaled by ω3 ofQF [f ] with endpoints and multiplicities both two (left figure, top), QL[f ]
with endpoints and multiplicities both two (left figure, bottom), the asymptotic expansion (right figure, top),
and QB [f ] with endpoints and multiplicities all one (right figure, bottom) for I[f ] =

∫ 1

0
e10xeiω(x2+x) dx.

s Asym. expan. QF [f ] QL[f ] QB [f ]
2 0.0083 0.042 0.015 0.00059
3 0.00011 0.0016 0.00043 2.8 · 10−6

5 1.7 · 10−8 1.3 · 10−6 3 · 10−7 9.9 · 10−12

Table 1: The absolute value of the errors for ω = 200 of the following methods of order O
(
ω−s−1

)
: the

s-term asymptotic expansion, QF [f ] and QL[f ] with endpoints and multiplicities both s, and QB [f ] with
nodes {k/ (s− 1)}s−1

k=0 and multiplicities all one for I[f ] =
∫ 1

0
e10xe200i(x2+x) dx.

QB [f ] compares to these two methods for fixed ω and increasing asymptotic order. Thus fix ω = 50, chosen
purposely relatively small since the larger ω, the longer it takes for increasing the asymptotic order to cause
the approximation to diverge. This choice results in Figure 9, where we take the base-10 logarithm of the
errors. This figure clearly shows the benefit of using QB [f ] for this particular case. Though at lower orders
the errors of QF [f ] and QB [f ] are very similar, at higher orders they differ by orders of magnitude.

A problem exists whenever f is not easily approximated by polynomials. In [15], the current author
examined in detail the affect of Runge’s phenomenon on Filon-type and Levin-type methods. Another
similar situation is when f increases much too rapidly to be accurately approximated by polynomials. Let
f(x) = e10x and g(x) = x2 + x. Note that this appears to be a ludicrously difficult example—not only do
we have high oscillation but f exceeds 22, 000 in the interval of integration! Amazingly, we will see that the
methods described within this paper are still very accurate, especially a Levin-type method with asymptotic
basis. We compare QB [f ] which has only endpoints for nodes and multiplicities all one to the asymptotic
expansion, QL[f ] and QF [f ] with only endpoints for nodes and multiplicities both two in Figure 10. In
Table 1, we compare each method with different asymptotic orders. Even with only four sample points,
QB [f ] has the astoundingly small error of 9.93 · 10−12. This example demonstrates just how powerful
these quadrature techniques are compared to Gauss-Legendre quadrature: even with 100, 000 panels Gauss-
Legendre quadrature had an error of 0.11, not even close to the accuracy of the Filon-type method, to say
nothing of QB [f ].

We now turn our attention to the bivariate case. For the remainder of this section, and for historical
reasons, we will use the basis ψk = [ψk,−ψk]>, where

ψ0 ≡ 1, ψ1 =
f

gx − gy

, ψk+1 =
ψk,x − ψk,y

gx − gy

, k = 1, 2, . . . .

This satisfies the asymptotic basis condition, since

∇g ·ψ1 =
f

gx − gy

∇g · [1,−1]> = f, ∇g ·ψk+1 =
ψk,x − ψk,y

gx − gy

∇g · [1,−1]> = ψk,x − ψk,y = ∇ ·ψk.
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Figure 11: The error scaled by ω4 of QB
g [f, S2] collocating only at the vertices with multiplicities all one (left

figure), and the error scaled by ω5 with vertices and boundary midpoints
{

[1/2, 0]> , [0, 1/2]> , [1/2, 1/2]>
}

again with multiplicities all one (right figure), for
∫

S2

(
1

x+1 + 2
y+1

)
eiω(2x−y) dV .
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Figure 12: The error scaled by ω4 of QB
g [f,H] collocating only at the vertices with multiplicities all one

(left figure), and the error scaled by ω7 of QB
g [f,H] collocating only at the vertices with multiplicities all

two (left figure), for Ig[f,H] =
∫

H
ex cosxy eiω(x2+x−y2−y) dV .

Recall the case where f(x, y) = 1
x+1 + 2

y+1 with oscillator g(x, y) = 2x − y over the simplex S2. We now
use QB

g [f, S2] in place of QL
g [f, S2], collocating only at the vertices. Since this results in each univariate

boundary collocation having two node points, we know that ñ = 1. Hence we now scale the error by ω4, i.e.,
we have increased the order by one, as seen in Figure 11. Since the initial two-dimensional system has three
node points, adding the midpoint to the sample points of each univariate integral should increase the order
again by one to O

(
ω−5

)
. This can be seen in the right-hand side of Figure 11.

There is nothing special about a simplex or linear g: the asymptotic basis works equally well on other
domains with nonlinear g, assuming that the regularity and non-resonance conditions are satisfied. Recall
the example with f(x, y) = ex cosxy and g(x, y) = x2 +x−y2−y on the quarter circle H. As in the simplex
case, QB

g [f,H] collocating only at vertices with multiplicities all one results in an error of O
(
ω−4

)
, as seen

in the left-hand side of Figure 12. Note that increasing multiplicities not only increases s, but also ñ. If we
increase the multiplicities to two, then s = 2 and ñ = 3, and the order increases to O

(
ω−7

)
, as seen in the

right-hand side of Figure 12. It should be emphasized that, though the scale is large in the graph, the error
is being divided by ω7 ≥ 1007 = 1014. As a result, the errors for the right-hand graph are in fact less than
the errors in the left-hand graph.
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7. Higher order oscillators.

Many of the techniques discussed so far can be generalized for use with other oscillators besides the
exponential oscillator. As an example, consider the integral

I[f ] =
∫ b

a

fyω dx =
∫ b

a

f(x) Ai (−ωx) dx,

where 0 < a < b. In order to imitate the preceding sections, we need to first derive an asymptotic ex-
pansion. To accomplish this, we use an idea due to David Levin for the Airy case: replace Ai (−ωx) by
−(ωx)−1Ai ′′(−ωx) and integrate by parts twice. We can handle other oscillators which solve differential
equations in the same manner: simply write yω in terms of its derivatives and integrate by parts. For
notational brevity, we write y in place of yω.

Theorem 7.1. Assume that f = O(1) for increasing ω. Suppose that y satisfies a differential equation of
the form

py′′ + qy′ + ωγry = 0.

Assume that p and q are independent of ω, r 6= 0 in the domain of integration and 1/r = O(1). If γ > 0,
then

I[f ] =
∫ b

a

fy dx ∼
∞∑

k=1

ω−kγ

[(σkp

r

)′
y − σkq

r
y − σkp

r
y′

]b

a

,

where

σ1 = f, σk+1 =
(σkq

r

)′
−

(σkp

r

)′′
.

Proof : Let u = 1/r. Integrating by parts twice, we obtain

I[f ] =
∫ b

a

fy dx = −
∫ b

a

fpy′′ + fqy′

ωγr
dx = −ω−γ

∫ b

a

fpuy′′ + fquy′ dx

= ω−γ [−fpuy′ − fquy]ba + ω−γ

∫ b

a

(fpu)′y′ + (fqu)′y dx

= ω−γ [−fpuy′ − fquy + (fpu)′y]ba + ω−γ

∫ b

a

[(fqu)′ − (fpu)′′] y dx

= Q[f ] + ω−γI[σ2] .

where Q[f ] = ω−γ [−fpuy′ − fquy + (fpu)′y]ba. Since σ2 = (fqu)′−(fpu)′′ = O(1), we obtain an asymptotic
expansion using induction.

Q.E.D.

We can derive a similar asymptotic expansion when y satisfies the differential equation

ωαpy′′ + ωβqy′ + ωγry = 0,

however, we will not investigate this case since all of our examples are in the form of Theorem 7.1. Corol-
lary 7.2 follows immediately from the asymptotic expansion. It is based on Corollary 2.2, and can likewise
be used to prove the order of error for Filon-type and Levin-type methods.

Corollary 7.2. Assume that ‖y‖∞ and ‖y′‖∞ are o(ωγ), and that ‖y‖∞ = o(‖y′‖∞) as ω →∞. Suppose
that f = O(ω−n) and γ > 0. If

0 = f(a) = f ′(a) = · · · = f (s−1)(a) ,

0 = f(b) = f ′(b) = · · · = f (s−1)(b) ,

then

I[f ] ∼
{
O

(
ω−n−γ(s+1)/2 ‖y‖∞

)
, if s is odd;

O
(
ω−n−γ(s+2)/2 ‖y′‖∞

)
, if s is even.
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For the case of the Airy function, we know that

y′′(x) = ω2Ai ′′(−ωx) = −ω3xAi (−ωx) = −ω3xy(x) .

It follows that p(x) = 1, q(x) = 0, r(x) = x and γ = 3. Thus we obtain the asymptotic expansion:

I[f ] ∼ −
∞∑

k=1

1
ω3k

[
σk(x)
x

y′(x) +
(
σk(x)
x

)′

y(x)

]b

a

=
∞∑

k=1

1
ω3k

[
ω
σk(x)
x

Ai ′(−ωx)−
(
σk(x)
x

)′

Ai (−ωx)

]b

a

,

for σ1(x) = f(x) and σk+1(x) =
(

σk(x)
x

)′′
. Using the fact that Ai ′(−ωx) = O

(
ω1/4

)
and Ai (−ωx) =

O
(
ω−1/4

)
[2], we determine that the s-step asymptotic expansion has an error of order O

(
ω−

3
2 s− 7

4

)
. Note

that we are counting the ω σk(x)
x Ai ′(−ωx) and

(
σk(x)

x

)′
Ai (−ωx) terms as separate steps in the asymptotic

expansion.
A Filon-type approximation follows immediately, since we know explicit formulæ for the moments of

the Airy function in terms of the scorer function Gi and its derivative, cf. [2]. Clearly, if the interpolating
polynomial has multiplicity at least s at each endpoint, then the error term is of order O

(
ω−

3
2 s− 7

4

)
. However,

though we have formulæ for the moments, computation of the scorer functions is difficult for large values of
ω, though can be accomplished by using techniques from [5]. Furthermore, moments are not available for
other functions we might want to integrate using these techniques: for example y(x) = Ai (−ωg(x)) for more
complicated functions g.

To combat these issues, we will again derive a Levin-type method that does not require moments.
The collocation in Section 3 depends on the oscillator satisfying a first order differential equation, which
allows us to integrate the function explicitly. Unfortunately, second order ODEs do not lend themselves
as well to collocation. If we write the integral as a system of first order differential equations, we can
use a generalization of the vector-valued version of the original Levin method [13]. As in the exponential
oscillator case, we generalize this method by adding multiplicities. Using our method of proof, we have the
extra benefit of reducing the number of equations needed to obtain a given asymptotic order.

Assuming that p ≡ 1—which can be made true whenever p 6= 0—we can rewrite any function that
satisfies a second order ODE as a system of first order ODEs. Our oscillator y leads to the system

y′(x) = A(x)y(x), A(x) =
(

0 1
−ωγr(x) −q(x)

)
, y =

(
y(x)
y′(x)

)
.

We rewrite the highly oscillatory integral as

I[f ] =
∫ b

a

fy dx =
∫ b

a

ϕy dx,

where ϕ = [f, 0] is a row vector-valued function. We now collocate by another row vector-valued function
v = [v1, v2] using the operator

L[v] = v′ + vA,

where v =
∑n

k=0 ckψk for some set of basis functions {ψk}, where ψk : R → R2. We will not require that the
multiplicity for each dimension of the operator L[v] is the same. Thus assume we are given nodes {x0, . . . , xν}
and multiplicities

{
m

(1)
0 , . . . ,m

(1)
ν

}
,
{
m

(2)
0 , . . . ,m

(2)
ν

}
. Again we assume that x0 = a and xν = b. Define the

operators l1[v] and l2[v] so that L[v] = [l1[v] , l2[v]]. In other words,

l1[v] = v′1 − ωγrv2,

l2[v] = v′2 + v1 − qv2.

21



We determine the coefficents ck by solving the collocation system

l1[v](xk) = f(xk), · · · , Dm
(1)
k l1[v](xk) = Dm

(1)
k f(xk),

l2[v](xk) = 0, · · · , Dm
(2)
k l2[v](xk) = 0,

k = 0, 1, . . . , ν. (7.1)

Then

I[f ] =
∫ b

a

ϕy dx ≈
∫ b

a

L[v]y dx = [vy]ba = [v1y + v2y
′]ba .

As in the exponential oscillator case, we require a regularity condition. Define

G = [P[ψ0] , · · · ,P[ψn]] , P[f1, f2] =



ρ0,1[−ωγrf2]
...

ρν,1[−ωγrf2]
ρ0,2[f

′
2 + f1 − qf2]

...
ρν,2[f

′
2 + f1 − qf2].


ρk,j [g] =


g(xk)
g′(xk)

...
g

(
m

(j)
k
−1

)
(xk)

 .

The regularity condition is satisfied if G is nonsingular.
We can now prove the order of error for this method:

Theorem 7.3. In addition to the hypotheses of Theorem 7.1, assume that p ≡ 1 and r = O(1). If the

regularity condition is satisfied, then, for s = min
{
m

(1)
0 ,m

(1)
ν ,m

(2)
0 + 1,m(2)

ν + 1
}

,

I[f ]−QL[f ] ∼
{
O

(
ω−γ(s+1)/2 ‖y‖∞

)
, if s is odd;

O
(
ω−γ(s+2)/2 ‖y′‖∞

)
, if s is even .

where
QL[f ] = [vy]ba = [v1y + v2y

′]ba .

Proof : Using Cramer’s rule—in a manner similar to the proof of Theorem 3.1—we will determine that
each coefficient ck for the function v is of order O(ω−γ). The system (7.1) can be written as Ac = f , for
A = P +G, where G was defined in the regularity condition and

P = [R[ψ0] , · · · ,R[ψn]] , R[f1, f2] =



ρ0,1[f
′
1]

...
ρν,1[f

′
1]

ρ0,2[0]
...

ρν,2[0]


=


ρ0,1[f

′
1]

...
ρν,1[f

′
1]

0

 , f =


ρ0,1[f ]

...
ρν,1[f ]

0

 .

The regularity condition ensures that detG 6= 0, hence (detA)−1 = O(ω−n1γ), where n1 =
∑ν

k=0m
(1)
k .

Again, let Dk be the matrix A with its (k + 1)th column replaced by f . This has one less column of order
O(ωγ), hence detDk = O

(
ω(n1−1)γ

)
. It follows that ck = detDk(detA)−1 = O(ω−γ) and v = O(ω−γ). As

a result l1 = O(1) and l2 = O(ω−γ).
Note that the function values and at least the first s − 1 and s − 2 derivatives of f − l1[v] and l2[v],

respectively, are zero at the endpoints. We can write

I[f ]−QL[f ] = I[f ]−
∫ b

a

l1[v]y+ l2[v]y
′ dx = I[f − l1[v]]−

∫ b

a

l2[v]y
′ dx = I[f − l1[v]]− [l2[v]y]

b
a + I[l2[v]

′] .

Due to Corollary 7.2, I[f − l1] has the correct order. If s is one and l2 is not even zero at the endpoints, then
[l2y]

b
a = O(ω−γ ‖y‖∞), and we obtain the correct order. For s ≥ 2 we have [l2y]

b
a = 0, thus we can focus on

the I[l′2] term. Because we have already taken a derivative, we know that only the first s− 3 derivatives are
zero for l′2. However, l′2 = O(ω−γ), hence we know from Corollary 7.2 that I[l′2] also has the correct order.

Q.E.D.
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Figure 13: The error scaled by ω13/4 of the asymptotic expansion (left figure) and QL[f ] collocating only at
the endpoints with multiplicities all one (right figure), for I[f ] =

∫ 2

1
Ai (−ωx) dx.
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Figure 14: The error scaled by ω5/2 of the asymptotic expansion (left figure, top), QL[f ] collocating only
at the endpoints with multiplicities both one (left figure, bottom) and QL[f ] collocating at the nodes
{1, 5/4, 3/2, 7/4, 2} with multiplicities all one (right figure), for I[f ] =

∫ 2

1
cosxJ0(ωx) dx.

For the Airy case, QL[f ] approximates I[f ] with an order of error O
(
ω−

3
2 s− 7

4

)
. We begin with the

simple example of computing the zeroth moment
∫ 2

1
Ai (−ωx) dx. In Figure 13 we compare the asymptotic

expansion with order ω−13/4, namely −ω−2
[
x−1Ai ′(−ωx)

]2
1
, to a Levin-type method, collocating only at

the endpoints with multiplicities all one, using the standard polynomial basis

ψk(x) =
{ [

xk/2, 0
]
, if k is even;[

0, x(k−1)/2
]
, if k is odd.

This graph shows that this Levin-type method is slightly more accurate than the asymptotic expansion. Not
pictured is the error when we collocate at the midpoint, in addition to the endpoints. This reduces the error
of the Levin-type method further, to less than 0.13ω−

13
4 .

Though we so far have focused on the Airy function, this technique works with other oscillators as well.
Consider the Bessel function y(x) = J0(ωx), where we know from [2] that

x2J ′′0 (x) + xJ ′0(x) + x2J0(x) = 0.

As a result, y satisfies the differential equation

x2y′′ + xy′ + ω2x2y = 0.

Dividing by x2 to ensure that p ≡ 1, we obtain q(x) = x−1, γ = 2 and r ≡ 1. Assuming that zero is
not in our interval of integration, we can use the methods developed in this section. Using the fact that
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Figure 15: The error scaled by ω5/2 of QL[f ] collocating only at the endpoints with multiplicities all one
(left figure) and the error scaled by ω7/2 of QL[f ] collocating only at the endpoints with multiplicities all
two (right figure), for I[f ] =

∫ 2

1
ex J2(ωx) dx.

J0(ωx) = O
(
ω−

1
2

)
and J ′0(ωx) = −J1(ωx) = O

(
ω−

1
2

)
, cf. [2], we determine that ‖y‖∞ = O

(
ω−

1
2

)
and

‖y′‖∞ = O
(
ω

1
2

)
. Thus a Levin-type method will have an error of order O

(
ω−s− 3

2

)
. Consider the highly

oscillatory integral
∫ 2

1
cosxJ0(ωx) dx. In Figure 14 we compare the one-term asymptotic expansion to the

Levin-type method collocating only at the endpoints with multiplicities one, and the Levin-type method
collocating at

{
1, 5

4 ,
3
2 ,

7
4 , 2

}
. This figure emphasizes how much of an improvement can be made over the

asymptotic expansion without significantly increasing computational costs.
As another example, consider the case where y(x) = J2(ωx). Now y satisfies the differential equation

x2y′′ + xy′ + (ω2x2 − 4)y = 0.

We have the same parameters as J0, except now r(x) = 1−4/(ω2x2). Assume that ω > 2, in order to ensure
that r is nonzero within the interval of integration. It is not hard to see that r and 1/r are O(1), hence we
can proceed without difficulty. For the integral

∫ 2

1
exJ2(ωx) dx, Figure 15 compares QL[f ] collocating at the

endpoints with multiplicities all one to the same with multiplicities all two. As can be seen, the order does
indeed increase by one.

8. Unbounded integration domains and infinite oscillations.

In the following two sections, we begin to investigate what happens when the fairly stringent conditions
on g and Ω are lifted. The first question is how the methods handle the case where Ω is unbounded, for
example Ω = (a,∞). Consider the integral

E1(−iω) =
∫ ∞

1

eiωx

x
dx,

where E1 is the exponential integral [2]. This function is important since we can derive the cosine integral
Ci and sine integral Si from its real and imaginary parts. As before, we begin by deriving an asymptotic
expansion, where the assumption that a > 0 can be weakened by reparameterizing the integral:

Theorem 8.1. Let Ω = (a,∞) for a > 0. Suppose that g and its derivatives are bounded in (a,∞), g′ does

not approach zero in Ω, f(x) → 0 as x → ∞ and
(

f(x)
g′(x)

)′
= xαu(x), for a smooth function u such that it

and its derivatives are bounded. If α < −1, then

I[f ] ∼
∞∑

k=1

1
(−iω)k

σk(a)eiωg(a),

where, as before,

σ1 =
f

g′
, σk+1 =

σ′k
g′
, k ≥ 1.
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Proof : Expanding out the first term of the asymptotic expansion we have∫ M

a

feiωg dx =
1
iω

[
f

g′
eiωg

]M

a

− 1
iω

∫ M

a

(
f(x)
g′(x)

)′

eiωg dx.

We know that f(M)
g′(M)e

iωg(M) → 0 as M → ∞, since g′ does not approach zero. Furthermore, the integral

I

[(
f
g

)′]
converges absolutely, since the integrand decays faster than x−1. Finally, we obtain

(
σ′1(x)
g′(x)

)′

=
(
xαu(x)
g′(x)

)′

= xα

(
u′(x)
g′(x)

+ α
u(x)
xg′(x)

− u(x)g′′(x)
g′(x)2

)
.

It is not hard to see that u′(x)
g′(x) + α u(x)

xg′(x) −
u(x)g′′(x)

g′(x)2 is smooth and it and its derivatives are bounded, thus
σ′1(x) satisfies the conditions on f , and the theorem follows by induction.

Q.E.D.

A version of Corollary 2.2 follows immediately, where now f only depends on the endpoint a. We cannot,
however, use this corollary to derive a Filon-type method, since polynomials do not decay at infinity. We
can show that Levin-type methods do work with any basis:

Theorem 8.2. Suppose that f and g satisfy the requirements of Theorem 8.1. Then, using the notation
of Theorem 3.1,

QL[f ]− I[f ] = O
(
ω−s−1

)
,

where s = m0 and

QL[f ] = −v(a)eiωg(a).

Proof : Suppose each function in the set {ψ0, . . . , ψn} satisfies the conditions on f in Theorem 8.1. Then
the proof of this theorem is unaltered from Theorem 3.1, since I[L[v]] = QL[f ]. If {ψ0, . . . , ψn} does not
satisfy the conditions, we replace it by a basis

{
ψ̃0, . . . , ψ̃n

}
that does satisfy these properties. Define ψ̃k(x)

so that it equals ψk(x) for all x0 ≤ x ≤ xν , goes to zero smoothly in xν < x < N <∞ for some fixed constant
N > xν and ψ̃k(x) ≡ 0 for N ≤ x < ∞. The collocation system (3.1) with this new basis is unchanged
from the original collocation system, hence QL[f ] is also unchanged. However, ψ̃k now satisfies the requisite
properties, and the theorem follows.

Q.E.D.

Returning to the E1 case, we obtain an asymptotic expansion

E1(−iω) ∼ eiω
∞∑

k=1

(−1)k−1 (k − 1)!

(−iω)k
.

It should come as no surprise that this is equivalent to the expansion in [2]. We can use the asymptotic
basis with a Levin-type method to derive an approximation. Consider the case of arbitrarily chosen nodes
{1, 5, 10, 20, ∞} with multiplicities all one. This has an order of error O

(
ω−6

)
, thus we compare it to

the asymptotic expansion of order O
(
ω−6

)
in the left-hand side of Figure 16. Even with arbitrarily chosen

nodes, QB [f ] is substantially more accurate than the asymptotic expansion; in this case it has less than a
tenth of the error. We can also compare the real parts of each approximation to −Ci (ω), where Ci is the
cosine integral as defined in [2]. This results in the right-hand side of Figure 16.

Another potential issue is when there are an infinite number of oscillations within the interval of inte-
gration. For example, consider the integral ∫ 1

0

eiωx−1
dx.

The convergence of such integrals follows from the definition of a Riemann integral. Assuming g′ goes to
infinity at a sufficiently fast rate, we can indeed derive an asymptotic expansion:
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Figure 16: On the left, the error scaled by ω6 of the asymptotic expansion (top) and QB [f ] with nodes
{1, 5, 10, 20,∞} and multiplicities all one (bottom) for I[f ] =

∫∞
1

1
xeiωx dx compared to E1(−iω). On the

right, the real parts of the same approximations compared to −Ci (ω).

Theorem 8.3. Suppose that g is smooth, g′ is nonzero in [a, b), 1/g′(x) = (x − b)αu(x) and f(x) =
(x− b)βv(x), where α ≥ 1. Suppose further that u, v and their derivatives are bounded. If α+ β ≥ 1, then

I[f ] ∼
∞∑

k=1

1
(−iω)k

σk(a)eiωg(a).

Proof : Note that∫ ε

a

feiωg dx =
1
iω

[
f

g′
eiωg

]ε

a

− 1
iω

∫ ε

a

(
f

g′

)′

eiωg dx =
1
iω

[
(x− b)α+βuveiωg

]ε

a
− 1

iω

∫ ε

a

(x− b)α+β−1ṽeiωg dx,

where ṽ = (α+ β)uv + (x− b)(uv)′, which satisfies the conditions on v. Since α+ β ≥ 1 > 0, we know that
(x − b)α+β → 0 as ε → b. Furthermore, β̃ = α + β − 1 > 0, hence the integrand is bounded. Thus we let
ε→ b to obtain

I[f ] =
1
iω
f(b)
g′(b)

eiωg(b) − 1
iω

∫ b

a

(x− b)β̃ ṽeiωg dx.

Since α+ β̃ = 2α+ β − 1 ≥ α ≥ 1, we can repeat the process with (x− b)β̃ ṽ in place of f . The asymptotic
expansion follows by induction.

Q.E.D.

An equivalent theorem holds over unbounded intervals:

Corollary 8.4. Assume that a > 0. Consider the integral over (a,∞), where 1
g′(x) = xαu(x), f(x) = xβv(x)

and α < 0. If α+ β < 0, then

I[f ] ∼
∞∑

k=1

1
(−iω)k

σk(a)eiωg(a).

Proof : The proof to this corollary is similar to Theorem 8.3. Let s be an integer large enough so that
sα+ β ≤ −2. Then the s-term expansion over (a,M) is

−
s∑

k=1

1
(−iω)k

{σk(M)− σk(a)}+
1

(−iω)s

∫ M

a

σ′se
iωg dx.

Note that σ1(x) = xα+βu(x)v(x), and σ′1(x) = xα+β((α + β)x−1u(x)v(x) + (u(x)v(x))′. Hence σk(x) =
xkα+β ṽ for some smooth function ṽ, where ṽ = O(1). It follows that the terms evaluated at M of the
expansion vanish as M →∞. Furthermore the integral I[σ′s] converges absolutely, since |σ′s(x) | ≤ Cxsα+β ≤
C ′x−2.

Q.E.D.
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Figure 17: Errors scaled by ω2 of the asymptotic expansion (top) compared to a Levin-type method
collocating at {1/2, 1} with multiplicities both one, for I[f ] =

∫ 1

0
eiωx−1

dx.

A Filon-type method for the bounded interval case follows immediately, where now the order of the
method depends only on the multiplicity at a. If inverse moments are available, then we can also derive a
Filon-type method over an unbounded interval. Finding a Levin-type method is more difficult. We derive it
for the finite interval case, though the infinite interval case can be handled in the same manner. Note that∫ ε

a

L[v] eiωg dx = v(ε)eiωg(ε) − v(a)eiωg(a).

In order for this to converge as ε→ b, v(ε) must go to zero. Hence assume that the collocation basis satisfies
ψk(b) = 0. In this case, we define

QL[f ] = I[L[v]] = −v(a)eiωg(a).

The behaviour of L[v] = v′+iωg′v at b depends on the order of the zeroes of ψk at b: if the order of the pole
of g′ is greater than that of the zeroes, then L[v] will be unbounded at b. Thus we ensure that the order of
the zeroes of each ψk are at least that of the order of the pole of g′. Assuming that b is not a collocation
point, we can, for any basis, replace ψk by some smooth ψ̃k such that ψ̃k(x) = ψk(x) for all a ≤ x ≤ xν ,
ψ̃k(x) goes to zero in xν ≤ x ≤ N < b and ψ̃k(x) ≡ 0 for N ≤ x ≤ b, where N is some constant. As in
Theorem 8.2, this does not effect the collocation system at all, meaning that replacing ψk by ψ̃k has no effect
on QL[f ]. Hence the requirements on the basis are effectively unchanged.

Theorem 8.5. Suppose that f satisfies the requirements of Theorem 8.3 or Corollary 8.4. Then

QL[f ]− I[f ] = O
(
ω−s−1

)
,

where s = m0 and QL[f ] = −v(a)eiωg(a).

As a numerical example, consider the integral I[f ] =
∫ 1

0
eiωx−1

dx. Figure 17 compares a Levin-type
method to the asymptotic expansion. In Figure 18, we consider the unbounded integral

∫∞
1

cosx eiωx2
dx,

and compare two Levin-type methods to the asymptotic expansion: the first Levin-type method of order
O

(
ω−2

)
and the second Levin-type method of order O

(
ω−3

)
. In all three diagrams, the Levin-type method

is a clear improvement over the asymptotic expansion of the same order.
We can also generalize these techniques for higher order oscillators. For simplicity, we will focus on

the case yω(x) = Ai (−ωx), over the interval (a,∞). Assume that f and its derivatives are bounded. This
integral has both an infinite domain, as well as an increasingly large frequency of oscillations at ∞. The
convergence of the integral will follow from the proof of the asymptotic expansion. Recall that:

I[f ] =
∫ M

a

fyω dx = − 1
ω3

[
f(x)
x

y′ω(x) +
(
f(x)
x

)′

yω(x)

]M

a

− 1
ω3
I

[(
f(x)
x

)′′
]
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Figure 18: Errors scaled by ω2 of the asymptotic expansion (left figure, top) compared to a Levin-type
method collocating at {1, 2} with multiplicities both one (left figure, bottom), and errors scaled by ω3 of
the asymptotic expansion (right figure, top) compared to a Levin-type method collocating at {1, 2} with
multiplicities {2, 1} (right figure, bottom), for I[f ] =

∫∞
1

cosx eiωx2
dx.

As M →∞, the contributions from that endpoint in the first term go to zero. Moreover, note that:

I

[(
f

·

)′′
]

= 2I
[
f

·3

]
− 2I

[
f ′

·2

]
+ I

[
f ′′

·

]
.

The first two of these integrals converge absolutely as M →∞. To prove that the last integral converges, we
integrate it by parts once more. The non-integral terms evaluated at M go to zero. The remaining integral
term can be written as:

I

[(
f ′′

·2

)′′
]

= 6I
[
f ′′

·4

]
− 4I

[
f (3)

·3

]
+ I

[
f (4)

·2

]
.

All three of these integrals converge absolutely. Thus it follows that we can let M →∞ to obtain∫ ∞

a

fyω dx =
1
ω3

[
f(a)
a

y′ω(a) +
(
f(a)
a

)′

yω(a)

]
− 1
ω3
I

[(
f(x)
x

)′′
]
.

Using induction we derive an asymptotic expansion:

Theorem 8.6. Suppose that f and its derivatives are bounded in (a,∞). Then∫ ∞

a

f(x)Ai (−ωx) dx ∼ −
∞∑

k=1

1
ω3k−1

{
σk(a)
a

Ai ′(−ωa)− 1
ω

(
σk(a)
a

)′

Ai (−ωa)

}
,

for σ1(x) = f(x) and σk+1(x) =
(

σk(x)
x

)′′
.

A Levin-type method can be proved using the same method as Theorem 7.3, where now

QL[f ] = −v(a)y(a) = −v1(a)y(a)− v2(a)y
′(a).

Figure 19 compares the asymptotic expansion to a Levin-type method for the first moment over the interval
(1,∞). An application of this theorem will appear in the next section.

9. Stationary points.

Up until this point, we have assumed that there are no stationary points in the interval of integration,
i.e., g′ 6= 0. We will now investigate relaxing this condition. The fundamental problem with stationary
points is that we must divide by zero in the derivation of the asymptotic expansion. Since this creates a
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Figure 19: The error scaled by ω13/4 of the asymptotic expansion (left figure) compared to a Levin-type
method collocating at {1, 3} with multiplicities all one, for I[f ] =

∫∞
1

Ai (−ωx) dx.

singularity in the integrand, we can no longer use partial integration. We obtain a solution to this problem
from [11]. Assume that there is only one stationary point at ξ, and that g′′(ξ) 6= 0, a condition that can
similarly be weakened. Then

I[f ] = f(ξ) I[1] + I[f − f(ξ)] = f(ξ) I[1] +
1
iω

∫ b

a

f − f(ξ)
g′

d
dx

eiωg dx.

The singularity in the integrand is now removable, hence we can integrate by parts:

I[f ] = f(ξ) I[1] +
1
iω

[
f − f(ξ)

g′
eiωg

]b

a

− 1
iω
I

[(
f − f(ξ)

g′

)′
]

= Q[f ]− 1
iω
I

[(
f − f(ξ)

g′

)′
]
,

where Q[f ] = f(ξ) I[1] + 1
iω

[
f−f(ξ)

g′ eiωg
]b

a
. If we assume that the first moment is available, we can compute

Q[f ] explicitly, which approximates I[f ] with an error of order O
(
ω−3/2

)
. In other words, we have derived

an approximation with an asymptotic order one more than that of the integral itself. By approximating the
error term by Q[f ] repeatedly, we arrive at an asymptotic expansion:

Theorem 9.1. Suppose that, for some ξ ∈ (a, b), g′(ξ) = 0, g′′(ξ) 6= 0 and g′(x) 6= 0 for all x ∈ (a, b)\ {ξ}.
Then

I[f ] ∼ I[1]
∞∑

k=0

1
(−iω)k

ρk(ξ)−
∞∑

k=1

1
(−iω)k

[
eiωg

g′
{
ρm−1 − ρm−1(ξ)

}]b

a

,

where

ρ0 = f, ρk+1 =
(
ρk − ρk(ξ)

g′

)′

, k = 0, 1, . . . .

Note that the asymptotic expansion now depends on f evaluated at the endpoints of the interval and
the stationary point, as well as requiring the knowledge of the first moment. In fact, in order to obtain
the same asymptotic order, it requires twice as many derivatives at the stationary point, since we must use
L’Hôpital’s rule in order to determine ρk(ξ). Hence the following analogue to Corollary 2.2 can be derived:

Corollary 9.2. Suppose that

0 = f(a) = f ′(a) = · · · = f (s−1)(a) ,

0 = f(ξ) = f ′(ξ) = · · · = f (2s−2)(ξ) ,

0 = f(b) = f ′(b) = · · · = f (s−1)(b) .

Then I[f ] ∼ O
(
ω−s− 1

2

)
.

29



20 40 60 80
Ω

0.1

0.2

0.3

0.4

0.5

Figure 20: Error scaled by ω2 of the asymptotic expansion (top), QL[f ] collocating at {±1,±2} with
multiplicities both one (middle) and QL[f ] collocating at {±1,±2,±3} with multiplicities all one (bottom),
for I[f ] =

∫ 1

−1
eiωx2

dx.

It follows immediately that a Filon-type method will have an order of error O
(
ω−s− 1

2

)
, if m0,mν ≥ s and

the multiplicity at the stationary point is greater than or equal to 2s− 1.
At first sight, it appears that something similar can be done for a Levin-type method; namely, ensure

that the stationary point is sampled with a sufficiently large multiplicity. Unfortunately, this will not work.
The regularity condition requires that the basis {g′ψk} must be able to interpolate the given nodes and
multiplicities. However, this basis is always identically zero at the stationary point, hence can not interpolate
any nonzero function. This prevents us from using Corollary 9.2 to prove the order of error for a Levin-type
method, and we are forced to look for other methods to handle this problem.

We will now present two ways of numerically approximating integrals with stationary points without
using moments. For simplicity, we focus on computing the moments I

[
xk

]
, since, for general f , we can

always use these calculations in conjunction with a Filon-type method. The first method is to change the
interval of integration so that it does not contain a stationary point. This can be accomplished if we know
the value of the integral over an interval that includes (a, b) as a subset. As an example, consider the case
where g(x) = x2 and a < 0 < b, assuming initially that f(x) = 1. This oscillator has a single stationary
point at x = 0. Note that erf

(√
−iω

)
can be expressed in this form, where erf is the error function [6]. From

the method of stationary phase [14], we know that∫ ∞

−∞
eiωx2

dx =
(−1)(1/4)

√
π√

ω
. (9.1)

Thus, we can write I[1] as

I[1] =
(−1)(1/4)

√
π√

ω
−

∫ b

−∞
eiωx2

dx−
∫ ∞

a

eiωx2
dx.

Since g has no stationary points except at zero, we can use a Levin-type method on each integral, by using
the techniques from Section 8 to handle the infinite domain integrals. We thus define

QL[f ] =
(−1)(1/4)

√
π√

ω
−QL

g [f, (−∞, b)]−QL
g [f, (a,∞)] .

We can express the other moments in terms of elementary functions and the first moment, using the integral
recurrence relationship∫ b

a

xeiωx2
dx =

1
2iω

∫ b

a

d
dx

eiωx2
dx =

1
2iω

(
eiωb2 − eiωa2

)
,∫ b

a

xkeiωx2
dx =

1
2iω

∫ b

a

xk−1 d
dx

eiωx2
dx =

1
2iω

(
bk−1eiωb2 − ak−1eiωa2

)
− k − 1

2iω

∫ b

a

xk−2 d
dx

eiωx2
dx.

Figure 20 compares the asymptotic expansion to two Levin-type methods approximating the first moment.
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Remark : It is not a coincidence that the value of the integral (9.1) is exactly the same as the contribution
from the stationary point in the method of stationary phase [14]. Unfortunately, this cannot be generalized
to other oscillators: for any other oscillator, the stationary phase contribution is asymptotic, not exact.

This technique will also work for the case of integrating the Airy function Ai (−ωx) in a domain which
contains the turning point x = 0. When a < 0, computing the integral over the interval (a, 0) is numerically
trivial: the integrand is non-oscillatory, and the integral itself goes to 1

3 exponentially fast as ω → ∞ [2].
Thus assume that a = 0. From [2], we know that∫ ∞

0

Ai (−ωx) dx =
2

3ω
,

hence we can write

I[f ] =
∫ b

0

Ai (−ωx) dx =
2

3ω
−

∫ ∞

b

Ai (−ωx) dx.

From Section 8, we know how to approximate the integral
∫∞

b
Ai (−ωx) dx, thus we have found a way of

approximating I[1]. All other moments can be expressed explicitly in terms of Ai, Ai′, and the first moment,
by using the recurrence relationships from [2]:∫

xAi (x) dx = Ai ′(x) ,∫
x2Ai (x) dx = xAi ′(x)−Ai (x) ,∫

xk+3Ai (x) dx = xk+2Ai ′(x)− xk+1Ai (x) + (n+ 1)(n+ 2)
∫
xnAi (x) dx.

For a numerical example of a Levin-type method, see Figure 19.
Returning to the original problem of stationary points with the exponential oscillator, another solution

is to use analytic continuation to change the path of integration. In [9] we find a method based on steepest
descent [6]. In brief, it distorts the integration interval to the path of steepest descent, and then uses
generalized Gauss-Laguerre quadrature. This method has an error of order O

(
ω−2n− 1

2

)
, where n is the

number of quadrature points [9]. This suffers from two problems: the difficulty of having to compute, or at
least approximate, the path of steepest descent; and handling oscillators such as g(x) = cosx which grow
exponentially. Similar techniques can be used with other oscillators, for example the path of steepest descent
for the Hankel function can be found in [1].

The multivariate case is more difficult. Resonance points, i.e., points where ∇g is orthogonal to the
boundary of Ω, correspond to points in the boundary integral. This follows since, if T parameterizes the
boundary and T (ξ) is the resonance point, then

g̃(ξ) = (g(T (ξ)))′ = ∇g(T (ξ))T ′(ξ) = 0.

Thus resonance points can be handled in the bivariate case if the existing univariate methods can handle
the resulting stationary point. Research is still ongoing on how to handle critical points where ∇g = 0.
The most difficult situation is when there exists a curve of critical points. Suppose ∇g = 0 along a curve
T ⊂ Ω ⊂ R2. From [19], we know that the asymptotic expansion of such integrals depends on∫

T

f√
gxx + gyy

ds.

This is a non-oscillatory integral, hence it cannot be expanded asymptotically. In order to derive a Levin-
type method or Filon-type method we would need the interpolating function to be zero everywhere along
the curve T . This is not in general possible, and such integrals require more research.
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10. Closing remarks.

Several methods exist for approximating highly oscillatory integrals efficiently, where the accuracy im-
proves as the frequency of oscillations increases. This is true in both the univariate and multivariate case,
with different choices of oscillators, over both finite and infinite intervals and even when there are an infinite
number of oscillations within the interval of integration. When moments are available, we can use a Filon-
type method, whilst a Levin-type method uses collocation to provide an approximation whenever there are
no stationary points. There are techniques in which we can handle the case of stationary points or turning
points. In short, a large number of highly oscillatory integrals can be approximated by at least one of the
methods discussed in this paper.

Many special functions have highly oscillatory integral representations. We have already shown the
application of these methods to a few simple special functions, namely the exponential integral and error
function. Another case is the computation of the Airy function for negative argument. Its integral represen-
tation has both an infinite number of oscillations over an unbounded interval and a stationary point, whose
location depends on ω. It might be possible to combine the techniques of Section 8 and Section 9 to obtain an
accurate approximation. Another possibility is to use the Magnus expansion, followed by using Levin-type
methods to approximate the infinite sum of integrals. A more complicated example is the approximation of
basic hypergeometric functions [4], which have contour integral representations that are highly oscillatory.

Another area of research is applying the techniques presented in this essay to the numerical compu-
tation of highly oscillatory differential equations. An extremely important example is the time-dependent
Schrödinger equations. Magnus expansion techniques have been used recently to approximate such equa-
tions with numerical success [7]. Whether the integrals in such an expansion can be approximated with
acceptable asymptotic behaviour remains to be seen. The applications of numerically efficient methods for
approximating such equations are wide and numerous.

Acknowledgments: I would like to thank my supervisor Arieh Iserles, David Levin, Daan Huybrechs, Gates
Cambridge Trust and the University of Cambridge.

Appendix A. Notation.

We define the differential operator Dm as follows:

• D0 is the identity operator.

• Dm for nonnegative integer m ∈ N is the mth derivative

Dm =
dm

dmx
.

• Dm for m = [m1, · · · ,md] ∈ Nd is the partial derivative

Dm =
∂|m |

∂xm1
1 . . . ∂xmd

d

,

where |m | = ‖m‖1 =
∑d

k=1mk. Note that the absolute-value signs are not needed since each mk is
nonnegative.

The bottom two definitions are equivalent in the scalar case if we regard the scalar m as a vector in N1.
Furthermore, it is clear that Dm1Dm2 = Dm1+m2 .

Suppose f is a function from Rd to R. We write f = O(p(ω)) if the L∞(cl Ω) norm of f and its partial
derivatives are of order O(p(ω)) as ω → ∞. In other words, ‖Dmf‖∞ = O(p(ω)), for all m ∈ Nd. The
most common usage is f = O(1), which states that f and its derivatives are bounded in Ω for increasing
ω. Note that this class of functions has the following properties, for every function f = O(p(ω)), function
g = O(q(ω)), c = O(r(ω)) and point x ∈ cl Ω:

f(x) = O(p) , Dmf = O(p) , f + g = O(max {p, q}) ,
fg = O(pq) , cf = O(pr) ,

∫ b

a
f dV = O(p) .
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Note that if a basis ψk is independent of ω, hence O(1), and the coefficients ck are O(r(ω)), then the linear
combination

∑
ckψk is O(r(ω)).

The definition of the determinant matrix of a map T : Rd → Rn, with component functions T1, . . . , Tn,
is simply the n× d matrix

T ′ =

De1T1 · · · DedT1
...

. . .
...

De1Tn · · · DedTn

 .

Note that ∇g = g′ when g is a scalar-valued function. The chain rule states that (g◦T )′(x) = g′(T (x))T ′(x).
The Jacobian determinant JT of a function T : Rd → Rd is the determinant of its derivative matrix T ′.
For the case T : Rd → Rn with n ≥ d we define the Jacobian determinant of T for indices i1, . . . , id as
J i1,...,id

T = JT̃ , where T̃ =
[
Ti1

, · · · , Tid

]>.
Define the d-dimensional surface differential as

ds =
[
dx2 ∧ · · · ∧ dxd, . . . , (−1)d−1 dx1 ∧ · · · ∧ dxd−1

]>
.

Finally, define

Jd
T (x) =

[
J2,...,d

T (x),−J1,3,...,d
T (x), · · · , (−1)d−1J1,...,d−1

T (x)
]>

.

From the definition of the integral of a differential form, we know that if T maps Ω ⊂ Rd−1 onto Z ⊂ Rd,
then ∫

Z

f · ds =
∫

Ω

f(T (x)) · Jd
T (x) dV.
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