THE UNIVERSITY OF CHICAGO

CONSTRUCTION, IMPLEMENTATION, AND THEORY
OF ALGORITHMS BASED ON

DATA AUGMENTATION AND MODEL REDUCTION

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS

BY

DAVID ANTHONY VAN DYK

CHICAGO, ILLINOIS

AUGUST 1995

Acknowledgements

I wish to thank my advisor, Xiao-Li Meng, for his unending support as I
completed this project. He is a gifted and patient teacher who never failed to
make time to answer my questions, to point me in the direction of interesting and
fruitful research topics, or to think carefully and critically about my work. T am

very appreciative of his willingness to go far beyond the call of duty.

There are many others who have helped greatly in the completion of this
thesis. Here I can mention only a few, but would like to thank Don Rubin for
his help with Chapter 4, Augustine Kong for helping me obtain two summers of
research support, Jeffrey Fessler for comments pertaining to the SAGE algorithm
and Chapter 5, Sam Vandervelde for his never-ending willingness to help me with
the subtler details of the mathematics underlying my work, and Ron Thisted for

comments on presentation and pointing out several helpful references.

This work was supported in part by National Science Foundation grant
DMS 89-05292, the Department of Education (through GAANN program awards
P200A10027 and P200A40313), the U.S. Public Health Service/National Institutes
of Health (PHS/NIH GM 46800), The University of Chicago Louis Block Fund,
and the U.S. Census Bureau through a contract with the National Opinion Re-

search Center at the University of Chicago. Computations for this document were

performed using computer facilities supported in part by the National Science Foun-
dation under grants DMS 89-05292 and DMS 87-03942 awarded to the Department
of Statistics at The University of Chicago, and by The University of Chicago Block
Fund. T am grateful to all of these sources for their financial support.

Finally, I wish to thank Greg Jao and Peter Vassilatos for their many editorial

comments.

Abstract

In the thesis we provide a general framework for maximum likelihood al-
gorithms based on data augmentation and model reduction. Starting with this
theoretical framework, we explore methods of constructing and implementing effi-
cient algorithms. We show how to derive faster algorithms by optimizing the rate of
convergence as a function of a working parameter which is introduced into the data-
augmentation scheme. We then propose the Alternating Expectation/Conditional
Maximization or AECM algorithm which includes the EM, ECM, ECME, and
SAGE algorithms as special cases. We also show how the matrix rate of convergence
can be used to compute the asymptotic variance-covariance matrix of the maximum
likelihood estimates. The relative efficiency of competing model-reduction schemes
is explored via permutation of the conditional maximization steps within the ECM
algorithm. Finally, we explore the inferential use of the data-augmentation scheme
in the context of estimating the number of components in a finite mixture, with

possible extensions to other model-fitting problems.

Chapter 1

EM-type Algorithms:
Background and Notation

1.1. A Brief Overview

The Expectation/Maximization or EM algorithm (Dempster, Laird, and Rubin,
1977) is a formalization of an old ad hoc method for handling missing data. If we
had observed the missing values, we could estimate the parameters of a posited
model using standard complete-data techniques. On the other hand, if we knew the
model parameters, we could impute the missing data according to the model. This
leads naturally to an iterative scheme. The advantage of the EM formulation over
its ad hoc predecessor is that it recognizes that the correct imputation is through
the complete-data sufficient statistics, or more generally through the complete-data
loglikelihood function, and not the individual missing values. Specifically, at each
iteration the E-step computes the conditional expectation of the complete-data log-
likelihood given the observed data and the previous iterate of the parameter value,

and the M-step then maximizes this imputed loglikelihood function to determine

1

2

the next iterate of the parameter. We repeat this process until the algorithm con-
verges. Since EM separates the complete-data analysis from the extra complications
due to missing data and allows the use of complete-data maximization techniques,
it is both conceptually and computationally simple. When facing an incomplete-
data problem, we can first ask what would be done if there were no missing values,
and then proceed with the help of EM to deal with the missing data, assuming
that the missing-data mechanism (Rubin, 1976) has been taken into account. This
advantage has helped EM win great popularity among practical users. Meng and
Pedlow’s (1992) bibliography reveals that there are more than 1,000 EM-related

articles in almost 300 journals, most of which are outside the field of statistics.

1.1.1. Model reduction

In some cases, the complete-data problem itself may be complicated. For instance,
when a model has many parameters, finding maximum likelihood estimates (MLESs)
can be a demanding task. A natural strategy, in general, is to break a big problem
into several smaller ones. If some of the model parameters were known, it might
be easier to estimate the rest. In the complete-data problem, we can partition the
parameters into several sets and estimate one set conditional on all the others. This
model-reduction technique is well-known in the numerical analysis literature as the
cyclic coordinate ascent method (e.g. Zangwill, 1969) and is called in statistical
terms the Conditional Maximization or CM algorithm by Meng and Rubin (1993),
whose model-reduction scheme goes beyond a simple partition of the parameter, as

they find a more sophisticated model-reduction scheme is useful for certain statisti-

3

cal models. The Expectation/Conditional Maximization or ECM algorithm (Meng
and Rubin, 1993) is an efficient combination of the CM and EM algorithms. It
replaces the maximization step of EM with a set of conditional maximization steps,
and thus splits a difficult maximization problem into several easier ones. Conse-
quently, in many practical applications, the use of model reduction in ECM extends
the flexibility and power of EM while retaining its stability in the sense of monotonic
convergence of the likelihood along the induced sequence to the MLE. The flexi-
bility introduced by model reduction also allows more efficient data-augmentation

schemes, as we shall explore in this thesis.

1.1.2. Data-augmentation

Although the principal reasons for the popularity of EM and ECM are their sim-
plicity and stability, they are sometimes criticized because of their slow convergence
in some applications. Loosely speaking, the rate of convergence is governed by the
amount of missing information in terms of the observed Fisher information. The
more missing information, the slower the algorithms will converge. Although EM is
motivated by the idea of a missing-data structure, in many of its novel applications,
there is strictly speaking no missing data in the usual sense. That is, the observed
data is simply augmented to some larger data set for which analysis is simpler (for
this reason, in what follows we will use the more general term “augmented data”
in place of “complete data”). Choosing a sensible data-augmentation scheme is an
art which requires compromising between simplicity (which often means more aug-

mentation) and fast convergence (which often requires less augmentation). Thus,

4

careful selection of the data-augmentation scheme can lead to simpler and faster al-
gorithms. Good examples of careful selection include, the Expectation/Conditional
Maximization Either or ECME algorithm (Liu and Rubin, 1995a) and the Space-
Alternating Generalized EM or SAGE algorithm (Fessler and Hero, 1994), both of
which are extensions of the ECM algorithm. Both algorithms incorporate effective
data-augmentation schemes to improve the rate of convergence of the algorithm. A
primary contribution of this thesis is to illustrate a new technique for the construc-
tion of effective data-augmentation schemes, which leads to algorithms that not
only maintain the simplicity and stability of the EM algorithm but also substan-
tially improve upon its rate of convergence. In the problems we consider, the new
algorithms are often ten times or even hundreds of times faster than their standard

counterparts in terms of actual computation time.

1.1.3. Synopsis

In what follows, we will explore methods of constructing, implementing, and ana-
lyzing algorithms which incorporate both model-reduction and effective data aug-
mentation into the EM algorithm. Our exploration also illustrates the theoretical,
computational, and inferential use of the rate of convergence of EM-type algo-
rithms. Chapter 2 focuses on constructing optimal algorithms in terms of their
rate of convergence via the introduction of a working parameter indexing a class of
data-augmentation schemes. As we will see, this leads to simple changes in some
standard algorithms and results in dramatic increases in computational efficiency.

In Chapter 3 we will develop the Alternating Expectation/Conditional Maximiza-

5

tion or AECM algorithm, a generalization of EM which incorporates both model
reduction to simplify implementation and a scheme that allows the data augmenta-
tion to be altered at each iteration to improve the overall rate of convergence of the
algorithm. AECM will be shown to include not only EM, ECM, and SAGE but also
the soon-to-be-discussed PECM and MCECM algorithms (Meng and Rubin, 1993)
as well as the special case of ECME for which Liu and Rubin’s (1995a) convergence
theorems hold; we will discuss why their general theory applies only to this special

case.

All of these algorithms are designed to calculate maximum likelihood esti-
mates or posterior modes. In most statistical analysis, however, measures of uncer-
tainty (e.g., asymptotic variance-covariance matrix of the estimates) are also needed.
Chapter 4 develops the Supplemented ECM or SECM algorithm which is designed
to do this when implementing ECM and which can be used in most implementations
of the AECM algorithm. As we have seen, we incorporate model reduction into EM
by breaking the maximization step into several conditional maximization steps. The
order that these steps are performed is trivial to change but generally affects the
performance of the algorithm (e.g., rate of convergence). Chapter 5 thus explores
the effect of permutation of conditional maximization steps in the context of ECM
and illustrates several valuable lessons pertaining to the incongruence of empirical
and theoretical results that will have implications in other studies. Finally, Chap-
ter 6 looks at the inferential use of the data-augmentation scheme through the rate
of convergence of EM in the context of estimating the number of components in a

finite mixture, with possible extensions to other model fitting problems.

6

The remainder of the current chapter outlines the details and notation of
the EM, ECM, ECME and SAGE algorithms, as well as the theory of the rate of
convergence of EM-type algorithms, thereby explicitly illustrating model reduction

and data augmentation in EM-type algorithms.

1.2. The EM Algorithm

Let L(0|Yons) = log f(Yobs|@) be the observed-data loglikelihood function that we
want to maximize, where 6 = (01,...,0,) is a d-dimensional model parameter
with domain © . (For simplicity, we assume this model already has incorporated
any non-ignorable missing-data mechanism; see Rubin, 1976.) Let f(Yaug|0) be
a density for the augmented data Yaug = (Yobs, Ymis) , Where Yiis is the missing
(i.e., unobserved) part. The augmented data are chosen such that maximizing
L(0|Yaug) = log f(Yaug|f)) is much easier than directly maximizing L(6|Y,ps) . This
is the setting in which EM and its extensions are most useful.

Starting with an initial value () € © , the EM algorithm finds 6* , a maxi-

mizer of L(6|Yons), by iterating the following two steps (t =0,1,...):

E-step: Impute the unknown augmented-data loglikelihood L(6|Y,ue) by its

conditional expectation given Y, s and the current estimate o) .

Q<9‘9(t)) = /L(6|Yaug)f(Ymis‘YobS7e(t))deis~ (121)

7

M-step: Determine 6“t1) by maximizing the imputed loglikelihood Q(0]0®) :
QOTTVI0MY > Q(0|6), for all 6 € O. (1.2.2)

For exponential families, Q(A|0®) = L(A|S™ (Yyys)), where S (Vi) =
E[S(Yaug)|Yobs, 0] with S(Ya,g) being the augmented-data (vector) sufficient
statistic. The E-step therefore reduces to finding the conditional expectation of
S(Yaug) , and maximizing Q(0|6)) is computationally the same as maximizing
L(0|Yaug) , the augmented-data loglikelihood. The latter is one of the principal
reasons for the popularity of the EM algorithm in practice because it allows prac-
titioners to use existing (complete-data) techniques and software when Y, is
properly chosen.

The convergence properties of EM were established by Dempster, Laird, and
Rubin (1977) and Wu (1983). In particular, EM is a GEM (Generalized EM)
which ensures that L(A¢+D|Y,) > L(0W|Y,s) for any sequence {6 : t >
0} of EM iterates. Moreover, given mild regularity conditions, it can be shown
that EM converges to a stationary point (typically a local mode in practice) of
L(0|Yons) - These stability properties combined with simple implementation are
very attractive to analysts who are not necessarily numerically sophisticated and
whose main objectives are not computational or numerical. The following recent
generalizations of EM are aimed to further enhance the applicability, as well as

efficiency, of EM in practice.

1.3. The ECM Algorithm

In some applications of EM, the M-step many not be in closed form, in which
case EM looses its simplicity because it requires nested iterations within each M-
step. In many such cases, the ECM algorithm, which replaces the maximization of
Q(16M) by several simpler conditional maximizations, can regain the simplicity of
EM. Specifically, let G = {gs(0),s=1,...,5} beaset of S >1 preselected vector
functions that are “space filling” (Meng and Rubin, 1993) in the sense of allowing
maximization over the full space ©. ECM incorporates the model reduction de-
termined by G into the M-step by replacing it with S Conditional Maximization
(CM) steps:

sth CM-step: Find #¢*5) such that

QU+ 9M) > Q(8]9"), forall € O = {# € O : g, () = g, (05},

(1.3.1)
where s = 1,..., 5, and the next iterate 0(+1) = 9(t+2) _ The rationale behind the
CM-steps is that in problems where maximizing Q(0|0®)) over 6 € © is difficult,
it may be possible to choose G so that it is simple to maximize over 6 € @gt) for
s=1,...,5.

For example, a common useful choice of G is to choose ¢g4(0) = (V1,...,
Vs—1,0541,...,0g) for s =1,..., 5, where (¥1,...,9g) is a partition of . In
other words, at the s CM step, we maximize Q(#|6")) over ¥, with the rest of
the S — 1 subvectors fixed at their previous estimates. This common special class

of ECM is called the partitioned ECM or PECM algorithm by Meng and Rubin

9

(1992). More complicated choices of G can also be useful in practice, as we will
illustrate in Section 4.4.4.

A slight modification of ECM can improve its speed in some settings. The
multi-cycle ECM or MCECM algorithm (Meng and Rubin, 1993) is a variation in
which extra E-steps are added to each iteration in the hope of speeding up the
convergence. Consider, for example, the three CM-step ECM algorithm, ECM :
E — CM; — CMy; — CM3. The MCECM algorithm adds one or more E-step to

each iteration, for example,
MCECM: E—CM; - E— CM,; - E — CMs. (1.3.2)

In the MCECM algorithm, each of the E-steps are computed the same way as in
(1.2.1) with #® being the most up-to-date iterate of 6.

The convergence properties of ECM and its variations were established in
Meng and Rubin (1993) and are almost identical to those of EM presented in
Dempster, Laird and Rubin (1977) and Wu (1983). In particular, for any ECM
(or MCECM) sequence {#®) ¢t =0,1,...}, L(OUTD|Yops) > L(A®V)|Y,y,e), that is,

at each iteration an ECM sequence increases the likelihood being maximized.

10

1.4. The ECME Algorithm

The ECM algorithm generalizes EM by incorporating model reduction into the
M-step in order to regain the simplicity of EM. As expected, replacing the M-
step by a sequence of CM-steps can slow down convergence. (Surprisingly, this is
not universally true; see the counter-example provided by Meng, 1994.) Both the
ECME and SAGE algorithms use creative data-augmentation schemes to improve
the speed of convergence, and interestingly, such improvement is possible because
of the flexibility introduced by the model reduction (i.e., we can now use several
different data-augmentation schemes because the model has been broken-up into

several parts).

In their development of ECME, Liu and Rubin (1995a) recognize that in some
applications of the ECM algorithm the implementation of some CM-steps requires
similar computations for maximizing the conditional observed-data likelihood and
for conditional augmented-data likelihood, and thus, it is computationally more
efficient to directly maximize the former. That is to say that, motivated by the
principle that augmenting less results in faster algorithms, we can improve the
speed of convergence, often substantially, by not augmenting at all in some of the
CM-steps, provided we do not increase the complexity of implementing these CM-
steps. (Such a strategy, i.e., not augmenting, is not useful in the original EM

implementation because it eliminates the EM algorithm altogether.)

In the ECME algorithm presented in Liu and Rubin (1995a), any of the

CM-steps may be chosen to act on L(f|Yops) instead of Q(6|6®)). Unfortunately,

11

their proofs of the convergence results contain an error, as shall be discussed in
Chapter 3. We, therefore, present a somewhat restricted version of ECME whose
convergence will be proven as a special case of the AECM algorithm in Section 3.3.
Specifically, we require that at every iteration, the CM-steps which act on Q(8|6®)
all be performed before those which act on L(0|Yohs) . That is, for Sp < s < S,
the CM-step given in (1.3.1) is replaced by

sth CM-step: Find #¢*35) such that

L(g(t-F%)

Yobs) > L(8|Yors), forall§ € 0 = {0 €O : g,(0) = go (0.
(1.4.1)
The first Sy — 1 CM-steps remain as in ECM.
Liu and Rubin (1995a) give several examples in which the increased compu-
tation and/or human effort required by the constrained maximization of L(6|Yobs)
is greatly outweighed by the improved rate of convergence of the algorithm, with

substantial savings of actual computer time.

1.5. The SAGE Algorithm

Like the ECME algorithm, the SAGE algorithm (Fessler and Hero, 1994) is designed
to speed up the convergence of EM. Although Fessler and Hero developed the SAGE
algorithm without knowledge of ECM, their algorithm is easily understood as a
generalization of a multi-cycle PECM algorithm. That is, we will start with a

MCECM algorithm in which each CM-step is preceded by an E-step (i.e. (1.3.2))

12

and the constraint functions which define the CM-steps are of the special form which
partitions the parameter space as in PECM. Fessler and Hero (1994) recognized not
only that less data-augmentation results in faster EM-type algorithms but also that
a different data-augmentation scheme can be used in each E-step/CM-step pair.
This is illustrated in the SAGE algorithm which, at iteration ¢+ 1, partitions the
(unordered) parameter # into an active component ¥;,; and a fixed component

w41 and chooses the data augmentation Ya(ﬁgl) to be used in the iteration:

E-step: Compute

Qe (916) = / LOWAE) S (Vg Yors, 61) Y10

aug mis

y)

where Yaug (Yobs, Y(t+1)))

mis

CM-step: Determine #(+1) by maximizing Qyy1(0]0®)) under the constraint

_ @ .
Pt+1 = Pia1 "

Qu+1(0TV100) > Q411 (01601)

for all 6 such that ¢, = 4,01(;_?1 .
Clearly the sequence {9t > 1} must be chosen carefully so that the resulting
algorithm maximizes over all of ©, which we will formalize in Chapter 3. Note
that iterations are counted differently in SAGE by Fessler and Hero (1994) then in
ECM or MCECM. A SAGE iteration consists of one CM-step along with its E-step,
whereas a (MC)ECM iteration consists of a space-filling set of CM-steps along with

the E-step(s).

13

Like EM, the SAGE algorithm increases L(0|Y,ps) at each iteration (Fessler
and Hero, 1994) and, as we shall prove in Section 3.3, converges to a stationary
point of L(0|Y,ps) under mild regularity conditions. The advantage of SAGE is its
allowance of adaptive data augmentation, thus improving the speed of the algorithm.
In the context of medical imaging, Fessler and Hero (1994) provide both theory and
examples of the faster convergence of SAGE. The ECME algorithm also can be
viewed as a special case of SAGE (when ECM is a two-CM-step PECM) in the

sense that some CM-steps require no augmentation.

1.6. The Rate of Convergence of EM-type Algorithms

Like any deterministic iterative algorithm, an EM-type algorithm implicitly defines
a mapping M :) — 9t = Ar(9®)) from the parameter space © to itself.
Suppose that M (0) is differentiable in a neighborhood of 6* , then a Taylor’s series

approximation yields
(0D — %) &~ (8 — 0*)DM(6*) (1.6.1)

where

paso) = (2250,

When DM (6*) is nonzero, which is the case for EM-type algorithms, the mapping
is linear if we ignore the higher order terms in the Taylor’s series expansion. This

approximation becomes exact at convergence of the algorithm, and thus, DM (0*) is

14

called the (matrix) rate of convergence (e.g., Meng, 1994). In what follows DM (6*)
will always be evaluated at 6 = 6*. Thus, we will suppress its dependency on 6.

For the EM algorithm, Dempster, Laird, and Rubin (1977) established the
following fundamental identity. Suppose Q(#|6?)) is maximized by setting its first
derivative equal to zero, and 6* is in the interior of ©. Then, the matrix rate of
EM is given by

DMEM — [I = Ty — IopeI L (1.6.2)

aug — aug)

where

62 log f(Ymis|Yl)bs 9)
Irnis = - : anis Yo Sy 0 deis 1.6.
/ 50 el Vone, Vo] (1.6.3)
is the expected missing information,
02 log f (Yaug|?)
Iau = - = Ymis Y; 579 deis 1.6.4
o= [~ o O)Yin| (169
is the expected augmented information,
O?L(0|Yops)
Io s:Io Q*YI) s) = T TQ@an an 1.6.5
b (6 Yobs) 96-00 |,_,. (16.5)

is the observed information matrix, and [I; is a d X d identity matrix. Identity
(1.6.2) is fundamental because it directly relates the rate of convergence of EM with
the matrix fraction of missing information, Ips/, ;llg . If the augmented information
is large relative to the observed information, DM®M will be close to the identity
and EM will converge slowly. On the other hand, if the augmented information

is nearly equal to the observed information, DMF®M will be near zero, and EM

will converge quickly. Identity (1.6.2) is also crucial to the Supplemented EM or

15

SEM algorithm (Meng and Rubin, 1991a), which computes the asymptotic variance-
covariance matrix of 6*, namely [c;)ls , when implementing EM.

The matrix rate of convergence for the ECM algorithm (Meng, 1994) can be

expressed as a product of the matrix rates for the EM and CM algorithms
DMECM — DMFEM 4 (1, — DMEMIDMEM (1.6.6)

where DM is the matrix rate of the CM algorithm and is given by

DM®M = p; ... Pg, (1.6.7)
with
T7-1 —1oT -1
Py =V V] I V] 'V, s=1,...8 (1.6.8)

and Vs = Vgs(0*) being the gradient of the constraint function gs(f) evaluated at
0 = 0* . In Chapter 4, we will use (1.6.6) to develop the SECM algorithm which cal-
culates the asymptotic variance-covariance matrix of #* when implementing ECM.

Although Liu and Rubin (1995a) generalize (1.6.6) to an expression for the
matrix rate of ECME, a simpler expression can be derived for the corrected version
of ECME described in Section 1.4, as well as for the SAGE algorithm, since these
are both instances of AECM algorithms, which will be discussed in Chapter 3.

The global rate of convergence of the EM algorithm is defined as the limit of

169 — 6]
=~ t>1 1.6.9
SCE R R. 169
as t — oo, where || -|| is the Euclidean norm. Algorithms which have smaller

values of r; tend to converge more quickly. For EM the global rate of convergence,

16

r = limy_, o 7, always exists; under certain regularity conditions is equal to the
largest eigenvalue of DM¥®M ; and lies in the unit interval (see Meng and Rubin,
1994a). In practice, an easily computable measure of the global rate of convergence
is the empirical rate, = lim,_ o 7, , where 7, = |[#(®) — =1 /||9¢—1D) — p(t=2)]|| .
In Chapter 2 we will minimize r as a function of a working parameter introduced
into the data augmentation, thereby using (1.6.2) to optimize the efficiency of EM.
For other algorithms, a more complicated measure of the global rate of convergence
may be needed (e.g., the root convergence factor). In Chapter 5 we will generalize
the global rate to the ECM algorithm and investigate its usefulness in predicting

the actual number of steps required for convergence of ECM.

Chapter 2

Efficient Data Augmentation:
The Key to the Rate of Convergence

2.1. Speeding Up EM with Little Sacrifice

Since Dempster, Laird, and Rubin (1977) showed its great practical potential for
finding maximum likelihood estimates or posterior modes, the EM algorithm has
become one of the most well-known and used techniques in applied statistics. Al-
though the principal reasons for this popularity are its easy implementation and
stable convergence, various attempts have been made in the literature to speed up
EM as it has been observed that EM can converge slowly since it is a linear iter-
ation (in contrast with the Newton-Raphson algorithm, which converges superlin-
early with careful implementation and monitoring). Proposed methods to speed up
EM include the use of Aitkin acceleration (e.g., Dempster, Laird and Rubin, 1977;
Louis, 1982; Lindstram and Bates, 1988), combining it with Newton-Raphson-type
algorithms (e.g., Lange, 1995) or conjugate gradient methods (e.g., Jamshidian and

Jennrich, 1993). An undesirable feature of these accelerations is that the savings

17

18

in computer time is achieved typically at the expense of a much larger human in-
vestment for general users since these methods require not only more numerically
complex implementations but also more careful monitoring, and even with such care

the algorithms may not converge properly (e.g., Lansky and Casella, 1990).

However, there is a way of improving the speed of EM without much sacrifice
of its simplicity or stability. Since the rate of convergence of EM is determined by
the fraction of missing information (e.g., (1.6.2)), the data-augmentation scheme one
uses for constructing the augmented-data likelihood (or posterior) determines the
speed of EM. It has been well recognized since Dempster, Laird and Rubin (1977)
that by augmenting less, one can have a faster algorithm, but a common trade-off
is that the resulting M-step and/or E-step may be more difficult to implement.
If the M-step and E-step resulting from less augmentation are equally simple (or
somewhat less simple if the gain in speed is relatively substantial), then there is no

reason not to use the faster EM. This is, for example, the motivation and advantage

of the ECME algorithm and of the SAGE algorithm described in Chapter 1.

In this chapter we will present an approach that uses this idea for accelerating
EM by searching for an efficient data-augmentation scheme. By “efficient” we mean
less augmentation while maintaining the simplicity and stability of EM. Previous
attempts, as presented in Liu and Rubin (1995a) and Fessler and Hero (1994), have
stemmed from comparing several natural data-augmentation schemes inherent in
the underlying problems. Our key idea here is to introduce a working parameter
to index a class of possible data-augmentation schemes, most of which are not

“natural” in the original problem, to facilitate our search. Section 2.2 provides

19

the necessary theoretical derivations to compare the rates of convergence of EM
algorithms resulting form the data-augmentation schemes indexed by the working
parameter. In particular, we will show that minimizing the augmentation in terms of
the observed Fisher information results in the optimal EM algorithm. In Sections 2.3
we apply this idea to the problem of fitting univariate and multivariate t-models
and construct a class of algorithms which includes both the standard EM algorithm
and an interesting algorithm proposed in Kent, Tyler, and Vardi (1994), which
was up until now not recognized as EM. In Section 2.4 we will present empirical
evidence of the improvement of the optimal EM over the standard EM which is
particularly substantial (e.g., often more than 10 times faster) for small degrees of
freedom and/or large dimension and prove that the optimal EM is faster than (or as
fast as) the standard EM for any ¢-model being fit to any data set (not necessarily
from the posited t-model). In Sections 2.5 we apply the same idea to the random-
effects model and present several new algorithms along with an empirical comparison
(Section 2.6) showing dramatic improvement (e.g. often more than 100 times faster)
when the variance due to the random effects does not dominate the residual variance.
The idea of introducing a working parameter (or more generally other structures,
deterministic or random) into the data-augmentation scheme appears to be very
general and powerful, and we hope the work presented here will stimulate further

research in this direction, research that has direct practical impact.

20

2.2. Ordering Data-Augmentation Schemes

In general when constructing an EM algorithm, any data set can be used as the
augmented data so long as it contains Y, . Suppose we have a class of augmented-
data sets Yaug(a) with a working parameter a contained in an index set A, such
that Yaug(a) contains Yyps for each a € A, our goal is to determine values of a
that result in algorithms that are both quick to converge and easy to implement. The
question of ease of implementation must be considered on a case-by-case basis, so for
the moment we confine our attention to the rate of convergence of EM as a function
of a and write both the global rate, r(a), and the matrix rate, DMEM(a) =
I — IobsI(a) , as functionals of the data-augmentation scheme. Since large values
of 1 —r(a) result in faster algorithms, it is known as the global speed of EM and
is denoted by s(a) (e.g., Meng, 1994).

Our goal is to minimize 7(a) or equivalently maximize s(a) as a function
of a. Since I, is independent of the data-augmentation scheme, it is enough

to minimize I,uz(a) in the sense of a positive semi-definite ordering, as proved in

Theorem 2.1.

Theorem 2.1: Suppose Inyg(a) > Iag(a’), that is Tyug(a) — Tang(a’) is positive

semi-definite, then s(a) < s(a’).

1 1
Proof: Since Iobs >0, s(a) is the smallest eigenvalue of B(a) = 13 I\ (a)IZ .
But Inyg(a) > Iaug(a’) implies B(a) < B(a') (e.g., Horn and Johnson, 1985,

p.470), and thus, the result follows trivially from the Courant-Fischer representa-

tion: s(a) = minyty—q b’ B(a)b. |

21

Theorem 2.1 assumes Iyug(a) — Iayg(a’) is positive semi-definite, in which
case this defines an ordering of the data-augmentation schemes. When I,.4(a) >
Iug(a'), we may say the augmentation Y,ug(a’) is nested in Yaug(a). In such
cases, we may write I — DM¥FM (a) = SEM(a) (the matrix speed of the algorithm)

as

SEM (q) = IopsI L (a) Long(a) I (a) (2.2.1)

aug aug

= SEM(d) SPM(d!,),

where SPM(a/,a) can be viewed as the speed of the EM algorithm with “ob-
served data” Y,ue(a’') and augmented data Yi.e(a). (Strictly speaking, this in-
terpretation is not correct because SFM(a’,a) is evaluated at 6 = 6*(Ygps) , not
0 = 6*(Yaug(a')) , but we will ignore this technical issue which is not important in
our search for efficient data-augmentation schemes.) Thus, if the augmentations
are nested, not only are the global speeds of convergence appropriately ordered,
s(a) < s(a’), but the matrix speeds of convergence also form the product relation-
ship in (2.2.1). As we shall see in Section 2.4, this is the case with the ¢-distribution.

Of course, two augmentations need not be nested (i.e., Iayg(a) — Iaug(a’)
may be neither positive nor negative semi-definite). In such cases R(d’,a) =
Lug(a') 154 (a) will be defined as the relative augmented information but does not
correspond to the matrix speed of any EM algorithm and (2.2.1) must be rewritten

as

SEM (g) = SEM(¢\R(d/, a). (2.2.2)

Intuitively, if R(a’,a) is “small”, Y,ug(a’) results in a faster algorithm than

Yaug(a) , and if it is large, the opposite is true. When the augmentations are not

22

nested, as is the case in the random-effects model described in Section 2.6, Theo-
rem 2.1 does not apply but (2.2.2) may be helpful in selecting an efficient algorithm.
In principle, we can directly order the smallest eigenvalues s(a) and do not need
to resort to R(a’,a) for selection, which does not necessarily provide the correct
ordering of s(a). However, it is much easier to deal with R(a’,a) because it can be
calculated analytically, whereas s(a) is typically intractable analytically. We now
turn our attention to two specific examples where these ideas result in algorithms

that dramatically reduce the number of iterations required for convergence.

2.3. The t-Model: An Optimal Fitting Algorithm

The multivariate (including univariate) ¢ is a common model for statistical analysis,
especially for robust estimation (e.g., Little and Rubin, 1987; Little, 1988; Lange,
Little, and Taylor, 1989). Here we let ¢,(u1, ¥,) denote a p-dimensional ¢ variable
with known degrees of freedom v and the density

_ (v+p)

fol@ln2) < [S72 v+ (@ =) S @ —p)]” 7, zER”

Fitting this model to a data set, Yops = (y1,--.,¥n), requires maximizing the
likelihood function [], f.(vi|p, X), which is known to have no general closed-form
solution. The EM algorithm provides a simple and stable iterative procedure for
carrying out this maximization. The standard implementation of EM relies on the
following data-augmentation scheme (see, for example, Dempster, Laird, and Rubin,

1980; Rubin, 1983; Liu and Rubin, 1995b) using the well-known representation of

23
tp(/lﬂ 27 V) :

$3Z
tp5tp(“7zvy) =p+ W: ZNNP(O7IP>7 qNXI%/V7 ZJ—Q: (231>

with I, the p-dimensional identity matrix and “_L” indicating independence.
Now assume y;,i = 1,...,n are i.i.d. realizations of this t,. Since ¢, follows
N,(p,%/q) conditional on ¢, if we further assume that the ¢;,i = 1,...n are
observed, that is, Yaue = {(vi,¢),9=1,...,n} is our augmented data, finding the
MLE of 6 = (u,X) follows directly from the weighted least-squares procedure given
in (2.3.3) and (2.3.4) below. This provides a simple M-step. The E-step finds the
expectation of the loglikelihood function of 6 based on the augmented data Y.,
conditional on Y,,s and #®) from the tthT iteration of EM. Since this loglike-
lihood is linear in the “missing” data Yiis = (¢1,-.-,qn), the E-step amounts to

calculating

V+Dp

(t+1) _ Mo D ()Y —
w; _E(Ql|ylnu 72) - ’
v+ dgt)

(2

i=1,....n, (2.3.2)

where dgt) = (y; — p)T[E®] = (y; — u®) . Consequently, the standard EM itera-

tion calculates the (¢4 1)st iterate with

(t+1),
(t+1) _ 2 Wi Yi (2.3.3)
EESRC 3
1
N+ = (t+1) ;— (t+1) ;- (t+1)\T 2.3.4
- Zw (i —) (s —)T (2.3.4)
where wgtﬂ) is calculated in (2.3.2). The algorithm then iterates among (2.3.2)—

(2.3.4) until it converges.

T We continue to use the standard notation of letting ¢ index the iteration.
This should not be confused with the ¢ variable or ¢-model.

24

Now let us consider a more general data-augmentation scheme by multiply-
ing both the numerator and denominator in (2.3.1) by |¥|~%, with @ being an

arbitrary constant, which results in
Dol 3507

, Z~Np(0,1), qla) ~[S7%0 /v, Z Lqla).
q(a)

tp(p, 3, v) = p+
(2.3.5)

In other words, we move a portion of the scale factor (this is more transparent for
the univariate case, p = 1) into the missing data, ¢(a), where the argument a
highlights the fact that its distribution now depends on the working parameter a .
Note that the standard augmentation scheme (2.3.1) corresponds to a = 0 (i.e.,
q(0) = ¢). Although (2.3.5) is mathematically equivalent to (2.3.1), it provides a
different data-augmentation scheme because when ¢(a) is assumed to be known it
also contributes to the estimation of ¥ . In other words, what (2.3.5) accomplishes
is to “transform” part of E-step into the M-step (or vise versa). For each given
a, one can proceed as before to derive the corresponding EM algorithm (which
may not be easy to implement) and its rate of convergence as a function of a
by treating Yaug(a) = {(yi,qi(a)),? = 1,...n} as the augmented data. Shortly,
we will show that the optimal a that maximizes the speed of the algorithm is
aopt = 1/(v 4+ p), a result that is neither obvious nor intuitive (at least to us).
Amagzingly, the corresponding optimal EM is not only very easy to implement, but
in fact only differs from the standard one (2.3.2) - (2.3.4) by a trivial modification,

that is, by replacing the denominator n in (2.3.4) with the sum of the weights:

P o) N (S AV CE S DA
s - Xewi (= D) (i = p)T (2.3.6)

5 Gy

This replacement does not change the limit, because). w

(t+1)

7

— N as

25

t — oo. This fact is proved by Kent, Tyler and Vardi (1994), who use it to
modify one of their EM algorithms for fitting ¢-distributions. They construct an
EM algorithm via a “curious likelihood identity” originally proposed in Kent and
Tyler (1991) for transforming a p-dimension location-scale t-distribution into a
(p 4+ 1) -dimensional scale-only ¢-distribution. They reported that this algorithm
converges slower than standard EM (2.3.2) — (2.3.4), but a modification using the
aforementioned fact converges faster. We were quite curious about their “curious”
and novel construction of that modified EM, and the work presented here provides
an answer to such curiosity because their modified EM turns out to be identical
to our optimal EM given by (2.3.2), (2.3.3) and (2.3.6). Our derivations not only
make it clear that their modified EM is indeed an EM algorithm — and thus possess
all the desirable properties of EM (e.g., monotone convergence in likelihood) — but
also show why it converges faster than the standard EM for any t¢-model being fit
to any data set, regardless of whether the t-model fits or not. More importantly,
the idea of introducing a working parameter seems quite general and (as we will
see in Section 2.4) leads to other fast EM algorithms (although its formulation, of

course, depends on the particular model being fit).

26

2.4. The t-Model: Empirical Results and Theory

2.4.1. Simulation Studies

Shortly, we will apply Theorem 2.1 to show theoretically that replacing (2.3.4)
with (2.3.6) results in the optimal EM algorithm among algorithms with data-
augmentation schemes in the class determined by (2.3.5). Here, by optimal, we
mean that it has the fastest asymptotic (with respect to the iteration index, t)
global rate of convergence. Such theoretic results provide a general understanding
and assurance, but do not tell us how much improvement a user can expect in
a typical implementation. (Here, happily, we do not need to consider the extra
human effort for implementing the new EM, because there is none.) In addition,
since the theoretical rate of convergence of EM only measures the speed of EM near
convergence, we have seen instances where examining only the rate of convergence
leads to misleading comparisons of the actual number of iterations required for

convergence (see Chapter 5 and van Dyk and Meng, 1994).

Therefore, in order to explore the actual gains in computational time, we
conducted several simulations. We first generated 100 observations from each of
three distributions: (i) N(0,1), (ii) #1(0,1,v = 1) (i.e., standard Cauchy), and
(iii) a mixture of two thirds N(0,1) and one third exponential with mean 3. We
then fit ¢;(u, X, v) with v =1 and v =5 to each data set using both the standard
and optimal EM algorithms. Such simulation configurations are intended to reflect
the fact that, in reality, there is no guarantee that the data are from a ¢-model —

or even from a symmetric model. (After all, the ¢-model is often fit in the context

27

of robust estimation.) We started both algorithms with the same standard initial
values, u(¥ =g and O = L5 (y; — §)(y; —y) " . (These sample values are well
determined, regardless of the underlying model or the model being fit.) We also
recorded Ngq and Nypt , the number of iterations required by the standard and
optimal algorithms, respectively, for achieving [|§®) —#t=1|2/]|¢~D|]2 < 10710,
where 6 = (u,Y) . The simulation was repeated 1000 times and the results appear
in Figure 2.1. (Comparing only the number of iterations is often misleading because
different algorithms may take more or less time to complete each iteration. In the
current case, however, the standard and optimal algorithms clearly require the same
amount of computation per iteration.) In all 6000 cases the optimal algorithm was
faster than standard EM. Generally the improvement was quite significant. In 5997
cases the improvement was greater than 10% and often reached as high as 50% when
the Cauchy model (v = 1) was fit, the case in which the improvement was most
significant. Since EM tends to be slower when v is smaller in the fitted model, the

observed improvement is best when it is most useful.

A second simulation was run to investigate the improvement in higher di-
mensions. We fit a ten-dimensional Cauchy model to 100 observations generated
from ¢19(0,V,v = 1), where V was randomly selected at the outset of the simu-
lation as a positive definite non-diagonal matrix. Using the same starting values
and convergence criterion, Ngq and Nyp were again computed for 1000 data
sets. Figure 2.2 is a scatter plot of (Ngta, Nopt) with the improvement Ngpa/Nopt
represented by the dashed lines. The improvement of the optimal EM algorithm

is dramatic. Standard EM was at least six-and-a-half times slower in every case

28

t-model fit with nu=1 t-model fit with nu=1 t-model fit with nu=1
true data model: normal true data model: cauchy true data model: mixture

300 500
300 500
300 500

0 100

T T T T T T 1 T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0 100
0 100

% improvement % improvement % improvement
t-model fit with nu=5 t-model fit with nu=5 t-model fit with nu=5
true data model: normal true data model: cauchy true data model: mixture

[=3 o o

B 3 3

o o o

] 8 8

8 8 8

S E E

o ﬂ ‘_l_‘ o o

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

% improvement % improvement % improvement

Figure 2.1. The percent improvement of the optimal EM algorithm over
the standard EM algorithm for the univariate ?-model. Each histogram
represents 1000 simulated data sets from one of three models to which one
of the two t -distributions was fit with both the standard and optimal algo-
rithms. The histograms show the relative improvement in iterations required
for convergence: % improvement = 100 - (Ngtqa — Nopt)/Nstd -

and was usually between 8 and 10 times slower. Comparing this result with the
first simulation, we see that the improvement seems to be much more pronounced
in higher dimensional problems. Again, when EM is slowest and improvement is
most useful, the gains demonstrated by the optimal algorithm are most striking. It
is truly remarkable that such striking gains are obtained without any increase in
computation, a true “free lunch”!

One more advantage of the optimal algorithm is worth mentioning. Both
algorithms started at the same point, but the optimal algorithm always arrived at

0* in fewer steps. Clearly this is accomplished by taking bigger steps. Figure 2.3

29

16

. _ 6.5times ~ . _T-times

14
\
\
\
-
\
\
\

N opt
12

!

|

|

\

\

|

|

\

® \\
o)
5 |
o
™
5]
o
b
¥
w2

" 10times

10
'

A e " __12times

95 100 105 110 115

N std

Figure 2.2. The improvement of the optimal EM algorithm over the stan-
dard algorithm when fitting t10(p, 2,7 = 1) . The plot shows the number
of iterations required for the standard EM algorithm Ngiq , and the optimal
EM algorithms Ngp¢ for each of 1000 simulated 10-variate Cauchy data

sets. Because Nopt and Ngyq are discrete, the points have been jittered
using Uniform(—0.2,0.2).

illustrates this for one of the Cauchy data sets generated in the univariate simula-
tion. The figure depicts the iterates of the standard and optimal algorithms on the
loglikelihood surface and shows how much larger the optimal algorithms steps are,
especially during the early iterations. Since we used the step-size convergence crite-
ria, convergence is determined when the step size becomes small and an algorithm
that takes big steps is at a disadvantage because convergence will be detected slowly.
A close look at the EM iterates reveals that this causes the optimal algorithm to
converge to a more precise approximation of #* than the standard algorithm. That

is, the optimal algorithm was closer to 6* than was the standard algorithm when

30

the convergence criterion was finally satisfied. The optimal algorithm converged

not only more quickly but also more precisely.

The difference between the two algorithms stems from the Q(#]0*)) func-
tions which result from the two augmentation schemes. In particular, the opti-
mal algorithm results from less data augmentation and, hence, a flatter expected
augmented-data loglikelihood. This is depicted in Figure 2.4 for the same data set

that was used in Figure 2.3 and will be explored analytically in the following section.

2.4.2. Theoretical derivations

It now remains only to show that replacing (2.3.4) with (2.3.6) results in the algo-
rithm that is optimal in the class indexed by a. For a fixed a, the loglikelihood
for (u,>) based on the augmented data Y,ug(a) is

n

L(s, S Yang(@)) =5 [a(p +v) — 1]log |5 (2.4.1)

B g, T -)+ (s8]

where

(Ve > o V(e — AT

= _ > gi(a)yi and S, = > 2i(a)(Yi — Yu)(Yi — Yuw) ' (2.4.2)
j > qi(a)

It follows immediately that the MLE given Y,ug(a) for p is %, . In order to simplify

the derivation of the MLE of ¥, we will differentiate (2.4.1) with respect to the ele-

ments of ¥ = X~ . The MLE of ¥ is the solution of the resulting normal equation

62) | optimal

93) | standard

Figure 4. Comparing the optimal and standard iterative mappings. The figure shows the mappings induced
on L(0|Y,ps) by the standard algorithm (+) and the optimal algorithm (X) for a one-dimensional Cauchy
data set fit with v = 1, starting from the same 6(©) (not shown). Notice how much larger the steps are

with the optimal algorithm.

1€

1fobs

Yaug (aopt)

Yaug(astd)

Figure 5. Comparing the loglikelihoods. The plot shows L(8|Yobs) , as well as E[L(8|Yaug)|Yobs, 0*] for
both the standard and optimal augmentations (each adjusted by their maximum value for comparison).
Notice that the optimal augmentation results in a flatter loglikelihood that better approximates L(0|Yyps) -

(45

33

L, Yaus(@) =

~ 5 [a(p+v) ~ 1] 25 - Diag(2)] (24.3)

B %|EI“ Zqi(aﬂ(ﬂw — 1)@ —)" + 28, — Diag(S,)]

+ 5 Zqz)|Z[*[28 — Diag(2)][v + (Jw — 1) 7 (G — 1) + (571 Sw)],

which follows from a%tr(\IlSw) = 2S5, — Diag(Sy) , and

oy {20 i
8%] Uy ifi=g’

where ;; is the ijth element of ¥ and W;; is the ij th cofactor of ¥ (Mardia,

(2.4.4)

Kent, and Bibby, 1979, pp. 478-79), and Diag(A) denotes a diagonal matrix with
the same diagonal elements as A . Finally the chain rule along with (2.4.4) and the

standard matrix algebra result that ¥ = (V;;)/|¥| give us
0 —a a .
A ¥ = alX]*[2% — Diag(2)]

and

0
50 log |¥| = 2% — Diag(¥).

Evaluating (2.4.3) at the MLE of pu = 7, and replacing [2Y¥ — Diag(X)] with X
and [25,, — Diag(S,,)] with S, , since we may solve (2.4.3) for each element of ¥

individually, we see that the MLE of ¥ satisfies

nla(p +v) —1]
RAEDPRAC)

Solving (2.4.5) with arbitrary a is quite difficult, but there are two values of a

Y+ Sy =aly+tr(X718,)]E. (2.4.5)

that make (2.4.5) trivial to solve. One is a = 0, corresponding to the standard

34

augmentation scheme, which yields ¥ = (3, ¢;/n)S, and thus (2.3.4). The other
is aopt = 1/(v + p), with which the first term on the left side of (2.4.5) is zero,
and thus, the solution ¥ must be proportional to S, . It is then easy to verify
that the proportionality constant must be one, and therefore the MLE of ¥ =S, ,
which yields the corresponding M-step given by (2.3.6). It is arguably a miracle
that (2.4.5) can be solved analytically for the optimal a, but for (almost) no other
a.

To show that aqp¢ yields the best possible rate of convergence under the
augmentation scheme (2.3.5), we apply Theorem 2.1 and need verify only that
Iug(a) > Iayg(aopt) for all a. Using techniques similar to those used to derive
(2.4.3), we can show

82

~59. 9920019

Iug(a) =

0=0*

na*—1 0) (0 0) 5
= n + n o = a“(p+v)—2a+1),
(0 =% [kajkn) 0 53¢t (@ +v))

where 6 = (u, vec(¥)) (again ¥ = ¥~1), the sub-matrix corresponding to vec(¥)
has rows indexed by 7 and j and columns indexed by k and [(in reference to
the position of a particular parameter in the matrix ¥), ¢'= vec(2X* —Diag(X)*),
and

it Wi ikl
b jikt) = Gy (—1) D (Iéfl -

with W(; .1y equal to the determinant of W* with distinct rows ¢ and %k and
distinct columns j and [deleted and c(; ;1) equal to the number of ways that

1,4,k and [can be arranged by permuting ¢ and j or k£ and [so as to result in

35

the deletion of two distinct rows and two distinct columns. That is,

0 if three or four of 7, j, k and [are equal

if there are not three equal but i = j and k =1
2 if no three are equal, i # j or k # [, but there are two equal
4 if all four are distinct.

Ci,gsk,1) =

Given (2.4.6) it is easy to show

2
1
Ing(a) — Taug(aopt) = (v + p) (a — I/——l—p) C for any a,
where C' is the positive semi-definite matrix (8 ”g‘(’)g"T) which does not depend
2
on a. Thus, the desired result that acpy = 1/(v + p) minimizes the augmented-

information is clear. With the note that the E-step for the optimal EM only differs
from the standard E-step of (2.3.2) by a scale factor that is independent of i and,
thus, is irrelevant for (2.3.3) and (2.3.6), this completes our proof that replacing
(2.3.4) by (2.3.6) results in a uniformly faster EM algorithm regardless of v, p or

Y;)bs .

2.5. Random Effects Models: New Fitting Algorithms

2.5.1. The standard EM algorithm

The random-effects (including variance-component) model is an increasingly com-
mon generalization of the standard linear model and is a routine, albeit sometimes
notoriously slow, application of the EM algorithm (e.g., Laird and Ware, 1982;

Laird et al., 1987; Liu and Rubin, 1995a). Here we assume

yi = X, B4+ Z b +e;, b ~Ny0,T), e ~N(0,0%, b Le;, (2.5.1)

36

for i =1,...,n,where X; (px1) and Z; (¢ x1) are known covariates; and 3 are
the (px1) fixed effects; b; = (bi1,...,biq) arethe (¢x1) random effects. Although
there is no general closed-from solution for the maximum likelihood estimate 6* =
(B*,0%*,T*) of = (8,02,T) given Yops = (¥1,...,%n), the EM algorithm again
provides a simple and stable fitting algorithm. The standard data augmentation
(Dempster, Laird and Rubin, 1977; Laird and Ware, 1982; Laird et al., 1987) which
treats the b; as missing data (i.e., Yaue = {(vi,0:);7 = 1,...,n}) leads naturally

to the following algorithm. The E-step calculates the augmented-data sufficient

statistics:
R (t)Z.(‘_XTﬁ(t))
t+1) _ eop. wy . IV Zi(yi — X,
bz‘ - E(bz|1/;)b57 0) - [0-2](15) + Z;rT(t)ZZ) (252)
R R . (t) 7.7 T(t)
‘(t—i—l) _ 2T)y — (t-l—l) [(‘t—l—l)}—r t) T 145
T, E(bib; |Yobs, 0'") = b; b; + T [02](t) n ZiTT(t)Zi' (2.5.3)

Since Q(|#®) factors into two terms, one involving B and o2 and the other
involving T', the M-step has a particularly simple form. First we update (3, 0?)
via the linear regression implied by (2.5.1),

n -1 n
o= (gpeat) (g ein-arie)
i=1

=1

(2.5.4)

(10— XTa 7730’

1 n
o(t41) _ 1
o 2

i=1

o (B -5])

Using the assumed marginal normality of b; , we then update T with the sums of

squares estimate
n

perny _ 1 ZT@H),

n“
=1

37

thus completing a single iteration of the standard algorithm.

2.5.2. A new EM algorithm

In Section 2.3, we rescaled the missing data by a power of its standard deviation,
thereby introducing a working parameter into the data augmentation which results
in a remarkable EM implementation for the t¢-model. Inspired by this success,
we obviously wanted to try the same idea with the random-effects model given in
(2.5.1). Because in this setting the unobserved random variable b can be a vector,
the theoretical derivation is much more complicated. In principle, we can rescale
b by T—%2, where a is an arbitrary constant, and treat {b;(a) = T~%/2b;,i =
1,...,n} as the missing data. Since T can be any positive definite matrix and
it is difficult to handle an arbitrary power of a matrix, however, the resulting EM
algorithm is very difficult if not impossible to implement. This clearly violates our
requirement that the resulting algorithm not only needs to be fast but also needs

to be simple and stable.

There are two ways of getting around the difficulties that arise from dealing
with the matrix scale factor T'. The first one is to deal only with a = 1. (Recall
that the standard algorithm given above corresponds to a = 0.) The second is to
diagonalize T so as to reduce the problem to ¢ scalar problems. In this section, we
will derive the algorithm corresponding to a = 1. At first, one might think that this
is rather restrictive and may not provide much computational gain. Surprisingly,
as we will illustrate in Section 2.6, the simple switch from a = 0 to a = 1 can

dramatically reduce the computation time. Nevertheless, in Section 2.5.3, we will

38

diagonalize T and create a more flexible class of data-augmentation schemes and,
thus, further improve computational efficiency.

To derive the new algorithm, we start by substituting b; = Sb; into (2.5.1),
where S is a symmetric matrix such that 7' = S?. That is, we express the model

as
yZ:XZTﬁ—l—ZZTSi)Z—f—e“ [N)ZNNq(O,I), €; NN(O,O'Q), IN)Z-J_ei, (255)

for ¢+ = 1,...,n. By doing this, we convert the variance parameter 7T into the
regression parameter S . Note that such a conversion is not one-to-one since S is
not unique. However, this does not create a problem for our formulation because
we are only using S as an intermediate device for deriving algorithms, and the
parameter of interest, namely 6 = (3,02,T), is uniquely determined and fitted
from the model.

Under model (2.5.5) we will treat Yaug = {(yi,0:),i = 1,...,n} as the aug-
mented data. Given this data, (2.5.5) can be fit via a simple linear regression with
missing values among the predictor variables. To see this more clearly, we re-express

the regression model in (2.5.5) as

n XlT ng €1
Y2 XQT ZQT ~ €2
. = . 6+ . S+ : , (2.5.6)
Yn X7 zZ! €n

where Z; = VEC(ZiBZT + giZiT)7

VEC(S), with VEC(A) being a one-to-one
mapping from a ¢x¢ symmetric matrix A = (a;;) toa ¢ = q(q+ 1)/2 dimensional

vector:

a a Ag—1.q9— a
VEC(A) = <%,a12,. <oy Qlg, %,@3,. <oy A2y - - .,%,aq_l,q, %) .

39

Here Z;,i = 1,...,n are unobserved, but follow N;(0,Var(Z;)), with Var(Z;)
completely known because b; ~ N,(0,1).

To implement the EM algorithm to fit (2.5.6), with Z = [Z1, Zs,..., 2"
as missing data, we first notice that the augmented-data loglikelihood is linear in Z

and B=2"7= Z Z;Z . Thus, at the (t+ 1) st iteration, the E-step computes
i=1

Zi(t-l-l) —E |:Zi|Yob579(t):|

— VEC (ZiE [Bﬂyobs, 9“)] +E [Bi\yobs, 9“)} z7) (2.5.7)
and
BHY = [zzT |Yobs,e<t>} , (2.5.8)
for i =1,...,n. The computation of (2.5.7) is straightforward because

D = € [l 0] = [5]

B 7 (y — XT3
(see (25.2)) = S92 (i X;ﬁt) , (2.5.9)
(02 + [SBZ;] [SVZ,]

where S = VEC™!(S®). The computation of (2.5.8) is a bit more involved,

because Bgtﬂ) is not a function of the matrix

T _ E [Bil;iT\Yobsﬁ(t)} (2.5.10)
S0z [s®Oz]"
02)® 4+ [s®z,] [s®© 7]

- - T
(see (2.5.3)) = otV [b?“)} 1, -

but is rather a function of the elements of Ti(tﬂ) , and some “bookkeeping” details

j’ﬂi(tJrl)

are required to express (2.5.8) as a function of the elements of . In particular,

from the definition of the VEC operator, Bi(tﬂ) is a function of

E | (zijbir + 2zinbij)?

Y'obsa g(t):| = Zizj [j;(t)} ik + 2ZZ]Z’LI€ [Tl(t)] . + lek [j;(t)} ,

J Jj

40

where Z; = (21, ..., 2iq), bi = (bi1, .. .,l;iq) , and [Ti(t)] N is the jkth element of
J
Once Z,L-(Hl) and Bi(tﬂ) are calculated for ¢ = 1,...,n, the M-step finds

the maximizer of Q(0|6")) as

n n 5 T -
B(e+) Soxx[Y x|z S X
U el B o o (2.5.11)
S+ >ozxn Y By >z My,
=1 =1 =1

and
1 — - 9
[02](t+1) S Z [<yz — X;rﬁ(t—kl) _ [Zi(t—kl)} Sv(t—|—1))
gt

N N T . _ _ T
+tr <S(t+1) [S(HU} (Bi(t-i-l) _ Zi(t-i-l) [Zi(t-l—l)]))] (2.5.12)

Computationally, a way to avoid inverting the (p+ ¢) x (p+ ¢) matrix in (2.5.11)
is to use the SWEEP operator to perform the regression; for details see Little and
Rubin (1987, pp. 153-57). Upon convergence, we will compute T* = [S*]2 , which
is always positive definite even though S* may not be. Furthermore, as we noted
earlier, although S* is not unique, T* is (given the regularity conditions that

guarantee the uniqueness of the mode of L(0|Yyps))-

2.5.3. Implementation of EM after diagonalization

We now describe a second approach, namely we will diagonalize (i.e., or-
thagonalize) T before we implement the EM algorithm. Let T'= AUAT | where
A is a lower triangular (¢ X ¢) matrix with ones on the diagonal, and U is a

diagonal matrix. It is well-known that such a decomposition exists and is unique

41

e.g., Horn and Johnson, 1985, p.162). Let ¢; = A~'b;, then ¢; ~ N, (0,U).
q

Since U = (u3,..., ug) is diagonal, we have the flexibility to rescale each element
of ¢; = (¢i1,-- -, ciq)T by a power of its own standard deviation. Specifically, for
any vector a = (a1,...,a,) € R?, we can define

ci(a) = <C” CGi2. Cig)T

and treat Yuug(a) = {(yi,ci(a)),i = 1,...,n} as the augmented data. For a =
(L, 1,...,1), ¢i(a) = Uzc; = AUZb; . From the representation T = AUAT | it is
clear that this data augmentation stems from using the lower diagonal square root
matrix in place of the symmetric square root which was used in the previous section.
The re-expression of model (2.5.1) corresponding to this data augmentation is
a q
yi = X, B+ Z Z cij(a)zidruy’ + e, (2.5.13)
5=1 k=j

where A = (0x;) and c¢;(a) = (ci1(a),...,ciq(a))T . Although we can in principle
implement the EM algorithm for any a € R? which will result in a fast algorithm, we
will focus on a € {0,1}9. That is, a; can only take on values 0 or 1 in order to keep
the resulting algorithms simple to implement which is one of the main objectives of

our search. Within this class of data-augmentation schemes, given Y,us(a), (2.5.13)

q(q—1)

q
5 + E a; regression coefficients when we

is a linear regression with p +
=1

—1 d
view {dgjuj, k> j, for a; = 1} U {dx;;k > j, for a; =0} as the % + Zaj
j=1
regression coefficients besides 3. The M-step thus has two parts. First, we update
(B,02%,A,{u;, for a; = 1}) via the linear regression (2.5.13), performed in the same

way as described in Section 2.5.2, by treating {c;;(a)zix, k > j}U{ci;j(a)zj, for a; =

42

1} as the missing covariates. For example, for a = (1,1,...,1), we can rewrite
(2.5.13) as

yi:XiTﬁ‘f‘XiTB-Fei,

where X; is a vector with components cij(a)zy for j=1,...,q, k> j and Ié
is a vector with corresponding components dy;ju; . In this case, the parameters can

be updated by

-1

n n 5 T n
Bt+1) ZXiXiT ZXi [XZ-(HU} ZXiyi
i = =t = - (2.5.14)
g(t+1) ZXi(tH)XiT ZBZ'(HD ZXi(tH)yi
=1 =1 =1
and

& 2
[0'2} (t+1) — l Z [<y1 _ Xi—rﬁ(t_'_l) . [Xi(t—’_l)] T B(H—l))

n
=1

~ ~ LI - 5 T
+tr <ﬁ(t—|—1) [ﬁ(t—l—l)} (Bi(t_H) _ Xi(t+1) [Xi(tﬂ)]))], (2.5.15)

where Xi(tﬂ) =E [Xi‘Yob&e(t)} and Bgtﬂ) =E [XiXﬂY},bs,H(t)] . Second, (for
any a € {0,1}7) we update {u;, for a; = 0} by using c;j(a) ~ N(0,u3) when

a; = 0 and thus

(t+1)2 _ 1 - 2 t : —
[u; "7 = - Z E [cij(a)|YObs, A)] , for j such that a; = 0. (2.5.16)

i=1
The E-step is also quite similar to that described in Section 2.5.1. First we calculate

(corresponding to (2.5.9)—(2.5.11) or (2.5.2)—(2.5.3))

T®(2 - a) [AD] T (g — X, M)
A(t+1) _ ,)] _ i i
A" (a) = E [cs(a) | Yors, 0] = Pl ARNGIHODNCI A G

and

43

0 (@) = E [ei(a)e] (@) Yos, 0
= éz('t+1)(a) [égt-i-l)(a)] T +TO@2(1 - a))

- - T
002 - a)A® 7 [U<t> (2 - a)A(t)Zi]
B 02O + ZTAOU® [AB] Z,

(2.5.18)

where U(d) = Diag { [ugﬂ " ey [uflt)} dq} for d = (dy,...,d,;). We then use the
elements of égtH)(a) and Ui(tﬂ)(a) , i=1,...,n to calculate the augmented-data
sufficient statistics. In particular, E [cfj(a)\Yobs, 0] needed for (2.5.16) is simply
the jth diagonal term of Ui(t+1)(a) , and the augmented-data sufficient statistics

needed for the regression (i.e., the input for the SWEEP operator or the terms needed

in (2.5.14) and (2.5.15)) are

E [Cij(a)zik‘yobs, Q(t)] = 2 (a),

]

for j=1,...,q and k> j and
E [Cij(a>zikcil(a>zim‘yl)bs,e(t)} = ZikZim [Ui(t“)(a)] .
J

for j=1,...,q, k>j,1=1,...,q and m > [, where é§;+1)(a) is the jth com-

ponent of the vector égtﬂ)(a) and [Ui(tﬂ)(a)]) is the jlth element of UZ-(HI)(&) .
j

Once the algorithm has converged, it is easy to compute the original parame-
ter T = Var(b) = Var(Ac) = AUAT . Tt should be noted that fitting the regression
model (2.5.13) can result in negative values for the {u},j =1,...,q}. This should
not be cause for alarm, however, since A*U*A*" will remain positive definite and

unique as long as T* is. In fact, since A and U are unique for each T, there are

44

exactly 29 modes of L(3,02,U, AlYss) (corresponding to the 29 diagonal roots
of U) for every mode of L(f3,02,T|Yops) -

We now have 27 + 2 algorithms that are straightforward to implement and
which will generally converge to a local maximum of L(6|Yops) . In order to evaluate
the relative computational merits of the algorithms, we will first present an empirical
study and then analyze the algorithms in terms of their matrix and global rates of

convergence.

2.6. Random Effects Models: Empirical Results
and Theory

2.6.1. Simulation Studies

Two sets of empirical studies were conducted, each with data generated from

the model

Yi = T4101 + 2282 + 2i1bi1 + ziobia + €, (2.6.1)

where x;1 = 1, x50 = 1, (Z;) ~ Ny (0, (3 8)) ,and e; ~ N(0,0?), with b;
and e; independent. In the first set of studies, (2.6.1) was treated as a variance-
component model (with covariates) and (2;1, z;2) took the four values in {0,1}? in
equal proportion. In the second set of simulations, (2.6.1) was treated as a random-
effects model and the z;; were generated independently from a standard normal

distribution at each replication.

As we shall see, the relative efficiency of the algorithms depends on the rela-

45

tive sizes of the random effects and the residual variance. The variance-component
study was therefore repeated with ¢? = 1, 4, 9 and 36. For each of these val-
ues, we generated 100 observations from (2.6.1). The starting values 3(®) and

[02](0) were obtained by fitting (2.6.1), ignoring the variance components, and

1 0.1
0.1 1

and EM (1 1), that is the new algorithm with Y,,5((0,0)) and Yaug((1,1)) respec-

T©) was set to <) . We ran the standard algorithm along with EM (g ¢
tively (i.e., with a = (0,0) and a = (1,1)), and recorded Ngta , N(o,0), and Ny 1)
— the number of iterations required by each algorithm before the convergence crite-
rion L(0®|Yype) —L(0¢ D |Y,ps) < 1077 was reached. The simulation was repeated

200 times and the results appear in Figure 2.5.

The scatter plots in the first column of the figure compares N) with Ngiq .
When o2 = 1, using Yaug((0,0)) requires slightly more iteration than the standard
algorithm, but the two algorithms seem quite comparable. The second column of
Figure 2.5 compares N(; 1) with Ngq and highlights the great computational

savings EM (1 1) offers over the standard algorithm, especially when o?

is large
relative to T'. In particular, with o2 = 36 (about 5.5 times the average random
effect, % > ZiT TZ,;), it was not unusual for the standard algorithm to require 100
times more iterations to converge, and sometimes it took 600 times more. Since all
of the algorithms require roughly the same computational time per iteration, this
translates into real computational savings. For example, an older Sun Workstation
might compute about 30 iterations of any one of the algorithms per second, in which

case the data cloud to the right of the scatter plot corresponding to EM (; ;) with

0? = 36 represents 12.5 minutes being cut to between 1 and 10 seconds.

o2 =36

46

EM (0,0 EM 1,1
500x 100x 10x equal 500x 100x 10x equal
Ro 10x Ro 10x
o o
e e
P4 P4
5 100x B° 100x
o o
< 500x - 500x
4 6 8 10 4 6 8 10
log(Nstd) log(Nstd)
500x 100x 10x equal 500x 100x 10x equal
o 10x =u | .- I ~110x
) " 1- -
o o tet +
s z R
e 100x B 1 . %4 . 7|100x
o o . 2
. 500x . | .77 1 |500x
4 6 8 10 4 6 8 10
log(Nstd) log(Nstd)
500x 100x 10x equal 500x 100x 10x equal
Ro 10x Ro 10x
o o
e e
P4 P4
D 100x B° 100x
o o
- 500x < 500x
4 10 4 10

6 8 6 8
log(Nstd) log(Nstd)
500x 100x 10x equal 500x 100x 10x equal

o + oy A+ o
= - =
gm 1 - 110x gm 10x
s [)
g =
2"] EC = -l 100x
. -|s00x 500x
4 10 4 10

6 8 6 8
log(Nstd) log(Nstd)

Figure 2.5. Comparing the log number of iterations required by EM (g)
and EM (1,1) for convergence with that of the standard algorithm. In the
plot “100x” means “100 times”, etc. On a computer that runs 30 iterations
per second, the tick marks 4, 6, 8, and 10 on the X and Y axes correspond
to 1.8 seconds, 13.4 seconds, 1.7 minutes, and 12.2 minutes.

47

Even when o2 = 1 (less than one sixth the average random effect) EM (1,1)
tended to be slightly more efficient than the standard algorithm. When the residual
variance is small, however, using EM (; 1) tends to offer more modest gains over the
standard algorithm. In order to examine how the algorithms compare when the
residual variance is very small, the simulation was repeated with o2 = 1/9 (about
one sixtieth of the average random effect). The results appear in Figure 2.6 and in-
dicate that the standard algorithm tends to be about 2.7 times faster than EM (4 1) .
Note, however, that N ;) is centered around e’ ~ 1100 iterations (37 seconds
at 30 iterations per second) compared with the el ~ 22000 (12.2 minutes) when
the standard algorithm was slow (see Figure 2.5). In this simulation, the standard
algorithm seems to be more efficient only when both algorithms are relatively fast.
Whereas EM (; 1) is more efficient when the standard algorithm is very slow and
improvement is badly needed (see Figure 2.7). Thus, unless the residual variance
is very small relative to the random effects, EM (1 1) seems to be the algorithm to

choose.

The second set of simulations was identical to the first except that in order
to look at the more general random-effects problem, the z;; were independently
generated from a standard normal distribution. The simulation was repeated for
o2 = 0.25, 1, 4, 9, 16, 25, 36, 49, 64, and 81. Again, we want to compare the
efficiency of the standard EM algorithm with EM (1 1) as a function of the relative
sizes of the residual variance and the random effects. In the previous simulation T’
and {Z;,i=1,...,n} were fixed, and it sufficed to consider efficiency as a function

of 02. Since {Z;,i =1,...,n} changes at each replication in the current simula-

48

500 times 100 times 10 times equal
o
—
~ © 10 times
—
)
£
E © mes
<« mes

log(Nstd)

Figure 2.6. Performance of EM (1 ;) when the residual variance is very
small. Here 02 = 1/9 and the average random effect is 6.5. Note that
the median number of iterations required by EM (1 1) is e’ = 1142 (38
seconds) which is less efficient than the standard algorithms e®26 = 194
iterations (6.4 seconds).

tion, we look at the log of the number of iterations required for convergence as a
function of log(c®*/1 3", Z,"T*Z;) . (This expression is evaluated at the MLE since
the matrix rate of convergence, I — I sl a_ulg is evaluated at the MLE.) Figure 2.8
displays a sequence of scatter plots. The first displays the efficiency of the standard
algorithm, which does well only when the residual variance is somewhat smaller
than the average random effect. The second scatter plot looks at EM (; 1y which
continues to do very well when the residual variance is large, but does not perform
as well when the residual variance is small. Note that when the residual variance
was small, both algorithms perform poorly in this simulation, as opposed to the

variance-component simulation in which both algorithms performed well. The final

49

o
—

~~

£ 0

S

N—r

()

E © A

=

c

S

S

c <A

8

o

()

S N A
o B - T o _______.

log(residual variance/average variance component)

Figure 2.7. The median run time at 30 iterations per second. The dashed
line represents EM (1 1) and the solid line represents the standard algorithm.
When the residual variance is very small the standard algorithm is somewhat
more efficient, but the gain is trivial relative to the the improvement of
EM (1,1) when the residual variance is moderate to large.

plot in Figure 2.8 compares the two algorithms. When the the residual variance
is less than about one-tenth of the average random effects, the standard algorithm
tends to slightly outperform EM (; ;) (as much as 3.4 times faster). On the other
hand, when the random effects do not dominate the residual variance, EM (1 1) is

clearly superior (as much as 1034 times faster).

Although the relative gain of the standard algorithm over EM (; ;) is small
even when the residual variance is very small, cutting the computational time even
in half can be significant since both algorithms are so slow in this case. In order to
take advantage of the standard algorithm when it is more efficient, a preliminary

approximation of #* can be used to decide between the two algorithms. In order

50

10
f
H
{

log(Nstd)

‘ ‘ ‘ ‘
0 10 20
log(residual variance/average random effect)

10

log(N(1,1))

‘ ‘ ‘ ‘
0 10 20
log(residual variance/average random effect)

log(N(1,1)/Nstd)

T T T T
0 10 20
log(residual variance/average random effect)

Figure 2.8. Iterations required by EM as a function of the log of the
fitted residual variance relative to the average fitted random effect (i.e.
% > ZiT T*Z;). The first plot reports the log of the number of iterations
required by the standard algorithm, the second the log of the number of it-
erations required by EM (1 1), and the third relative number. The standard
algorithm performs better when the residual variance is small, and EM (1 1)
performs better when the random effects are small. On a computer that
runs 30 iterations per second, the tick marks 4, 6, 8, and 10 on the Y axis
in the first two plots correspond to 1.8 seconds, 13.4 seconds, 1.7 minutes,
and 12.2 minutes.

51

to investigate this, we repeated the random-effects simulation (with new random
seeds) with an adaptive algorithm, which first runs EM (; ;) for 20 iterations and

then switches to the standard algorithm if
1
1[62]® < =N ZT 10 7, 2.6.2
) <15z 262

This criterion is based on the result of the following section that when T is assumed
diagonal in the fitted model, a; should be set to zero in the data-augmentation
2%

scheme (2.5.13) only if 20%* <]7 Zz?j, where 77* is the MLE of the jth
diagonal term of T. If we add thisZ:;pression over j = 1,...,q and adjust for
non-diagonal 7', we obtain (2.6.2) with the 4 being replaced by 2¢. As Figure 2.9
indicates, this algorithm almost always switched to the standard algorithm when
it was beneficial to do so. (Surprisingly, the switched algorithm was often slightly
faster than the pure standard algorithm.) Since this adaptive algorithm is easy
to implement and generally performs well against both EM (; ;) and the standard
algorithm, we recommend its use in practice.

Finally, we compare the algorithm of Section 2.5 to both the standard al-
gorithm and EM (; 1), using the simulation with randomly generated Z; which
was described earlier. Figure 2.10 shows that in terms of the number of iterations
required for convergence this algorithm performs as well or better than EM (q ;).
The final plot in Figure 2.10, however, reveals that there is a problem with this
algorithm. Although the number of iterations required for convergence is com-
parable to EM (1 1), each iteration is more expensive. This stems from the more
complicated bookkeeping required in implementing the M-step. Reduced overall

computation time along with the added versatility of being able to rescale some

52

log(Nadp/Nstd)
0

T T T T
0 10 20
log(residual variance/average random effect)

Figure 2.9. Picking the fastest algorithm. After 20 iterations of EM (1 1y,
the current approximation 029 was used to determine which algorithm

should be used. If 4 [02} 20 % > ZJT(0) Z; | the standard algorithm
was used until convergence. Otherwise, we continued with EM (1 1) until
convergence. Notice that this procedure almost always resulted in an algo-
rithm faster that the standard algorithm.

(but not necessarily all) of the random effects makes EM (; ;) more attractive than

this algorithm.

2.6.2. Theoretical derivations

The theory behind choosing an efficient augmentation scheme for the random-effects

model fit with the algorithms described in Section 2.5.2 is considerably more com-

plicated then for the t¢-models presented in Section 2.4.2. The main difficulty is

that the expected augmented-data information matrix, In.e(a) is generally of large

dimension and has a complicated structure. Specifically, the dimension of the pa-
q(q +1)

rameter 0 = (3,A,U,0?%) is p + — + 1, and Inug(a) consists of the following

53

log(Nnew/Nstd)
0

-10 0 10 20
log(residual variance/average random effect)

log(Nnew/N(1,1))
0
3

T
10 20

-10 0
log(residual variance/average random effect)

log(time(new)/time(1,1))
0

-10 0 10 20
log(residual variance/average random effect)

Figure 2.10. Scaling the random effects without diagonalizing 7. The
first two plots compare the number of iterations required for convergence
by the algorithm presented in Section 2.5.2 with the standard algorithm and
EM (1,1) and show that this algorithm tends to perform as well, or somewhat
better than, EM (1 1) . The final plot, however, compares the computational
time required by this algorithm with that of EM (1 1) and shows that because
the cost per iteration is higher, this algorithm does not generally perform as
well as EM (1 1) .

54

submatrices

Igg(a) Iga(a) Ipu(a) Ips2(a)
() I;A(a) IAA(CL) IAU(CL) IAgz(CL)
I (a) =
(@) Iiy(a) Tvo(@) Ius(a)

Iga2 (CL) I—Aro-z (CL) I(—]rg2 (CL) I0'202 (CL)

It is not difficult to show, by differentiating the expected augmented-data loglikeli-

hood
1 — . 2
QB,A,U,0%0) = = ; E {(yi - X[- 2] AU (a)ei(a)) [0, Yobs}
- g log(c?) — g 3 (1 — a;) log(u?) (2.6.3)

where U(a):Diag{ui‘l,...,u a} for a = (ai,...,aq) (thus U=0U(22,...,2)),

q
that we have (when evaluated at 6 = 6*) Ig,2(a) =0, Ias2(a) =0, Iyy2(a) =0,
and Igg(a) and I,2,2 do not depend on a. Furthermore, when E(y;|X;,Z;) =
X."3, that is, when the mean structure of the posited model is correct for the

1 1
data, lim —Iga(a) =0 and lim —Igy(a) =0. Thus, as long as n is not

n—oo N n—oo N
too small, the only part of I,.z(a) that can change substantially with a is the

gg+1) alg+1)
2 2

submatrix

IAA(CL) IAU(CL)
Lg(a) = . (2.6.4)
I y(a) Ivu(a)

55

In fact, even when Iga(a) or Igy(a) are nonzero, we expect they have little im-
pact on the smallest eigenvalue of the speed matrix relative to the impact of Ifa\u/g(a)
because the positiveness of In,g(a) requires that any off-diagonal blocks be dom-
inated by the diagonal blocks. We will thus focus on (2.6.4) when we search for

optimal, or good, values of a .

2.6.3. Theoretical derivaton with one random effect

We will attempt to apply Theorem 2.1 which requires us to order Inug(a), which,
as we have seen, is (approximately) equivalent to ordering I/a:g(a) . We start with
the simple case of one random effect (i.e., ¢ = 1), in which case fa\;g(a) is a scalar

and (2.6.3) reduces to

Q(B,u*,0”|0") = (2.6.5)

1 — 2 @A arn

— 550 | = X7 8)" =2 (i = XTB) (el (@)] + 2u [()]

=1
n A(t+1)

N oy _1g~ @ (9
5 log(0?) = 5 (1 a) log(u?) 3 2

(t+1)

where @ (a) is the scalar version of (2.5.18). In order to derive an expression

i

for I/avug(a) , we differentiate (2.6.5) twice with respect to u?:

9%Q
(Ou?)?

1 n
= o S [XD @) (02 — 20) + 22206 (@) (0? — a)
o°“u
=1

n " 16t
[u—ay—EEZLL—iJHw—Dm—z). (2.6.6)

2'11/4 n 4 u2—2a

56

Iug(a) is equal to (2.6.6) evaluated at 6 = 6*, in which case

~ 1 A x
CEH_ : ‘0:0* = E[bi|Y;)bs:9] = bi,
ﬂz('t—’_l)(a }9:9* = [b |Yl)bs, 9*] = 7A'
and — Z P = , SO We may write,
aug(a) = (2.6.7)
1 ~ . .
Lo 2y A Z [_(yz — X;B)zzb (a? — 2a) + 2227%*(a® — a)] _ 2u4*(1 —a)2.

i=1
Noting that all the augmented-data normal equations are satisfied for all values of
a at 0 = 0*, we evaluate the augmented-data normal equation for u? with a =1

at 6* to obtain T
P Zzlb* — X' 3%). (2.6.8)
=1 1=1

Substituting (2.6.8) into (2.6.7) yields

— 1
Lag(a) = 5o (pyon Zzl 7P+ (1 - a)2n> . (2.6.9)

Since E[7?] = u?, we can easily write (2.6.9) in terms of the observed quantities
{(yi, Xi,2i),i=1,...,n} and the maximum likelihood estimate 0* = (3*, o?*, u?*)

for large n. An even more satisfying result, however, is to rewrite (2.6.9) with-

out appealing to the asymptotic behavior of 72. In order to do this we observe

T With ¢ random effects and A assumed to be the identity in model (2.5.13),

this expression can be generalized to Z Z; TT*Z Z Z Tb* — X,'3*), where

A

Tr is (2.5.3) evaluated at) = §* .

57

n

20-2* 1 202*

1 1 - -
227 = Zzlb:(yl - X'
i=1 i=1

1 Z 20 (i — X, 5%)?

20-2* ‘ 0-2* +ZZ~2U2*

- i(yi - X 5)? — Xn: oy = X) (2.6.10)

202* |« 0'2*+Z-2U2*
=1 =1 %

where the first equality is (2.6.8); the second equality follows from the first equation

in (2.5.2) with) =0* and ¢ =1 (in which case T =u and Z; = 2); and the

third equation follows from substituting (z?u?* + o** — 02*) for z2u?*. To sim-
0
plify (2.6.10), we use two of the observed-data normal equations WL(Q\YobS))
differentiating first with respect to o2
2
1 yi — X 6"
I = B 2611
and then with respect to 72
2 zilyi — X759\
Z 272x 4 g2x Z (2272 | g2) : (2.6.12)
Adding 0% x (2.6.11) with 7%*x (2.6.12) yields *
P XT *\2
n=3 Wi = X)7 (2.6.13)

- 22272* + 0-2*
7

Substituting (2.6.13) into (2.6.10), we may conclude that the augmented information
for u? given in (2.6.9) is
1 2 IR Taan2_ 1 2

=1

— (yi — X/ 3")?
' With ¢ random effects, a similar derivation yields n = Z > ZZTT*Z ,

i=1

where T need not be diagonal.

58

which is minimized as a function of a for

n L T 3%)2
Zizl(yz Xz B) /TL+1

@opt = 202* 2

Unfortunately, implementing the EM algorithm with augmented data Yaug(@opt)
does not result in a simple closed-form M-step unless a € {0,1}. Thus, although
such an algorithm may converge faster, it does not satisfy our objective of using
algorithms that are simple and stable as well as fast. In what follows, we will
therefore confine our attention to algorithms that result from a € {0,1} (or, more
generally, for ¢ random effects a € {0,1}7). In this class of algorithms, (2.6.14) is

minimized by
n

1
0 L L T *\ 2 2%
lf’rLZ<yl Xzﬁ) > 3077,
Qopt = i=1 (2615)
1 otherwise.
That is, the (small sample) augmented information fa\/ug(a) is smaller for the new

algorithm (i.e., @ = 1) than for the standard algorithm (i.e., a = 0) if and only if

the total variance is less than three times the residual variance.

2.6.4. Theoretical derivations with ¢ random effects

We now return to the general case of ¢ random effects and will explore how];/g(a)
depends on a for a € {0,1}9. We start out by generalizing I/;;g(a) (e.g., (2.6.9))
to the case of ¢ random effects. In order to derive Iaa(a), we differentiate (2.6.3)

twice with respect to A:

0%Q(6]6%) NN ;
_ _ 2o (0] 2.6.1
P00y |,_,. o 2 U], (2.0.10)

59

where [UZ*} . is the jkth element of E[c;c; |Yobs,0*], with ¢; = A71b; . Likewise
j

we can derive the components of Iap(a) as
02Q(010* .
_97Q(6]9) 20%2* Zzll VAR [U] , (2.6.17)

66lm6u§
where [A*Z;]; is the jth component of the vector A*Z;. Finally we derive the

matrix Iyy(a) as

_0%Q(0197)
ou-ou |

n n
= Di 1—a1)?——,...,(1—a,)?
1ag {(al) 2'1,11%*7) (CLQ) 2U4*}

> DU} D, (2.6.18)

40-2*

a1 [A*Z;], aq [A*Z;],

e o
ug ug

mal a is clearly more complicated here than when ¢ = 1. In fact, we will show

where D; = Diag{ } . The task of computing the opti-

that, in general, we cannot order the information matrices as Theorem 2.1 requires,
even for large n. The problem is somewhat simpler when T is assumed to be

diagonal (i.e., we fit model (2.5.13) with A fixed at the identity). In this case

—_—

Iug(a) reduces to (2.6.18) which can be simplified for large n by re-expressing UZ*

using (2.5.3) evaluated at %) = #* (noting that T =U when A =1)
U2 U [- XTAE

o+ 21U Z: o>+ 2, U°Z; |

Thus, if E((y; — X,;' 8)%) = 02+ Z,' UZ; , which is certainly true if the model holds,

Ur =U* +

(2.6.19)

lim 1Iaug() =

n—oo M,

7(1_0’11) +a

24

221 1le 222 12“1}

g 22 77 Y o2

Using Theorem 2.1, when T is diagonal, the asymptotic optimal value of a € {0, 1}4

Diag{(l —ay)? 2ul +a

is a such that a; =0 if and only if

n

202 < 2 Y [AZ]2. (2.6.20)
=1

n -

SN

60

(We use [AZ;]; = zi; here to make the (2.6.20) easier to generalize to non-diagonal
T'.) Condition (2.6.20) says that the standard augmentation should be used on the

j th diagonal component of 7' if and only if the j th random effect dominates 202 .

Clearly, this result relies heavily on lim;_ I/:ug(a) being diagonal to show
the augmented-data sets are nested. When T is not diagonal, the situation is more
difficult since (2.6.17) involves = S°.[U#];; which remains positive even asymptot-
ically. Suppose, for example, ¢ = 2, §5; # 0 and we choose o’ = (0,1) and
a = (0,0). It can easily be shown that M = lim,_ fa\/ug(a’) - Ia/\u/g(a) then
has exactly one positive and one negative eigenvalue, and thus, the augmented-
data sets are not nested. Suppose further that (2.6.20) holds for j = 2, in which
case we would expect f:%(a) to be “smaller” than fa\;g(a’) and the standard
EM algorithm to be faster. It turns out that whenever a and a’ are of the form
(0,...,0,1,...,1), @’ having exactly one less zero than a , the dominate eigenvalue
of M is positive if and only if condition (2.6.20) holds (see Section 2.6.5 for details).

Thus, although (2.6.20) does not assure M will be positive definite, it does indicate

that it will be “more positive than negative”.

We now turn our attention to the relative augmented information R(a’,a =
(0,...,0)) for a’ € {0,1}7 defined in (2.2.2). That is, we will compare each of the
possible algorithms to one that uses Yu,4((0,...,0)), the data augmentation that

most closely approximates the standard algorithm. It is not difficult to show that

61

the diagonal terms of R(a’,a) are

Szl (o]

{1,...,1, (1—a1)*+a?

5o .
NN AR
(1 —a)2 + CL2 aq
1 1 2no2*

where the ones correspond to the elements of A. Since SEM(a) is fixed, (2.2.2)
indicates that we need to minimize R(a’,a) in order to maximize SF™(a’). This

suggests that a good choice of data augmentation is Y,ug(a’) with

1 — :
0 if?2 2% < = A*Zz 2 Uz* ’
if 207 < ;[Jj [L] (2.6.21)

1 otherwise.

Notice that asymptotically, this condition corresponds exactly to the optimal value
of a for the diagonal case given in (2.6.20).

The obvious difficulty with the conditions in (2.6.20) and (2.6.21) is that
they depend on the parameter values (unlike the t-model in which the optimal
algorithm is unique). Happily, however, the empirical studies showed that the

standard algorithm is only slightly more efficient when o2*

is small and that using
the new algorithm always will generally lead to great computational advantage and
sometimes will lead to only a slight disadvantage. Moreover, if the optimal algorithm

is desired, a rough approximation of 6* can be used to choose an algorithm as we

discussed in Section 2.6.1.

62

2.6.5. A dominant eigenvalue criterion for choosing an augmented-data set

Given two possible data-augmentation schemes Y,ug(a) and Yaug(a’) with
augmented information matrices that have a positive semi-definite ordering (i.e.,
M = Ig(a') — Laug(a) is either positive of negative semi-definite), Theorem 2.1
determines which will result in an EM algorithm with a faster global rate of con-
vergence. Unfortunately, in many cases M is neither positive nor negative semi-
definite. That is M will have both positive and negative eigenvalues. In such cases,
we can define a dominate eigenvalue comparison of two augmented information ma-
trices. In particular, we will say Iaug(a’) >cigen aug(a) if the dominant eigenvalue
(i.e., largest in absolute value) of M is positive. It is hoped that using this com-
parison in place of the positive semi-definite ordering will give a comparison that
approximates the latter. As we shall see, what this comparison suggests aligns very

well with the simulations presented in Section 2.6.1.

In this section we will consider the augmentations Yyuz(a) and Y,ug(a’),
where a and @' are such that a; = 0 if j < jo and 1 otherwise; and a} = 0

for j < jo — 1 and 1 otherwise (for some j, < ¢). For example, with ¢ = 3

and jo = 2, we would compare a = (0,0,1) with a’ = (0,1,1). In this setting

we will show that M = limn_mO% fa\ug(a’) — Laug(a)| has exactly one positive

and one negative eigenvalue and that the dominant eigenvalue has the same sign
[A*Z]5 1 , . . ,
as Z WQ*O o Thus, the asymptotic augmented information matrices do
% Jo
not have a positive semi-definite ordering, but they may be ordered using the dom-

inant eigenvalue comparison. In particular, we should choose a; = 0 if and only

if 2no?* < wk Y, [A*Z;)2 , which is identical to condition (2.6.20). Since the or-

Jo’?

63

der of the w; in the information matrix is arbitrary, we may order them so that
u?* > [A*Zﬂ?o is decreasing in j. In this case, after the ¢ — 1 pairwise compar-
isons resulting from taking jo =¢,q¢—1,...,2, a will be chosen so that a; =0 if
and only if 2no®* <wui* Y7, [A*Z¢]§ for each j, again corresponding to the results
in Section 2.6.4.

It remains to be shown that M has one positive and one negative eigenvalue
with the aforementioned condition on the sign of the dominant eigenvalue, for which

we will need the following lemma.

Lemma : Suppose the (j+k+ 1) x (j+ k+ 1) real matrix M is of the form

0O ... 0 a 0 ... O

M = ar ... Gy b ct ... Cg 5
0O ... 0 ¢ O ... O
0O ... 0 ¢ O ... O

then M has one positive and one negative eigenvalue with dominant eigenvalue

having the same sign as b.

Proof: It is easy to show that the characteristic function of M is

Nk <A2 — A — zj:af — Zk: c§>

i=1 i=1

and thus M has eigenvalues 0 (with multiplicity j + k — 1) and

b+ \/b2 + 4(321 a; +Z§:1 b7)
5)

Since M is a real symmetric matrix, it has real eigenvalues and the result is clear.

64

From (2.6.16)-(2.6.18) it is clear that M = lim, oo = | Ling(a') — Luug(a)| has

n

the form specified by the lemma, so we have proven that if a and a’ are as is

—_—

described above, I/avug(a) and I,ue(a’) cannot be ordered in the positive semi-

definite ordering sense but the dominant eigenvalue of M is positive if and only if
n

ufo* Z [A*Zi]io > no?*.
i=1

Chapter 3

The AECM Algorithm:
Model Reduction and Data Augmentation

3.1. Introduction

With the myriad of models and data structures in modern statistical analysis, max-
imum likelihood estimates and posterior modes are often impossible to ascertain
analytically. Today’s computers, however, offer enough power for many numerical
optimization methods to gain popularity. In this chapter, we will examine two of
these methods, data augmentation in the EM algorithm and model reduction in the
CM algorithm and will show how they can be combined to produce simple, stable

and efficient algorithms.

As we recall, the EM algorithm augments the observed data, Y,ps, to the
larger augmented-data set Y, . It then computes the maximum likelihood esti-
mate 0* as the convergent value of the iteration which sets ¢+1) to the maximizer
of Q(A|6W)=E [L(H\Yaug)ﬂ/},bs, H(t)] . The idea is to select Y., so that O+ g
easy to compute, thereby providing a simple, stable, although sometimes slow algo-

65

66

rithm. The CM algorithm, on the other hand, starts with a set of S > 1 (vector)
constraint functions G = {gs(0),s = 1,...,S} that are “space filling” (Meng and
Rubin, 1993) in the sense of allowing maximization over the entire parameter space.
The algorithm then sets #(*5) to the maximizer of L(f|Yops) , subject to the con-
straint 0 € O, = {0 € O : g,(0) = gs(04T*F))} for s=1,..., 5. This is repeated
until the algorithm converges to #*. The idea is to choose G so that each of the
constrained maximizations is easy to implement so as to again produce a simple
algorithm. One common choice of G is the partition {gs(0) = ¥os,s =1,...,5},

where 194 is a subvector of 0 = (V15,925),s=1,...,5.

Both the ECM (Section 1.3) and SAGE (Section 1.5) algorithms combine
data augmentation and model reduction. ECM starts with EM and adds model
reduction and SAGE starts with CM and adds data augmentation. In particular,
the ECM algorithm starts with EM in cases where although the M-step is not in
closed form, there is a space-filling set of constraints G, such that Q(0|6®)) is
simple to maximize subject to each of the constraints. In such cases, ECM replaces
the M-step of EM with the CM-steps defined by G, that is, one iteration of the

CM algorithm.

The SAGE algorithm, on the other hand, starts with a CM algorithm in
which each of the constraints in G form a partition of 8, but even the constrained
maximizations are not all in closed form. In this case, SAGE uses data augmentation
(i.e., EM) to optimize L(0|Y,ps) over ©,. That is, if a CM-step is not in closed
form, SAGE replaces it with one EM iteration of an algorithm that is designed to

iteratively calculate the maximizer of L(6|Y,ps) over ©g. We interpret SAGE in

67

this way to highlight the fact that since each EM algorithm maximizes L(6|Yops)
over a different subspace of O, it is natural to adopt a different data-augmentation

scheme for each.

The SAGE algorithm allows for more general data augmentation then does
ECM in that a different data augmentation can be used at each CM-step. On the
other hand, the ECM algorithm is more general than SAGE in that the constraint
functions need not partition €. Moreover, the MCECM algorithm (a slight gen-
eralization of ECM discussed in Section 1.3) allows additional E-steps to be added
to each ECM iteration, which consists of an E-step followed by S CM-steps, while
the SAGE algorithm must have an E-step preceding each of S CM-step. Thus,
ECM and SAGE generalize EM and CM in different directions. In what follows, we
will develop an algorithm that combines data augmentation and model reduction
in a way that is more general than either ECM or SAGE. The Alternating Expec-
tation/Conditional Maximization or AECM algorithm is built on the intuition of
Dempster, Laird, and Rubin (1977) but, as with ECM, incorporates model reduc-
tion to simplify the M-step; takes advantage of more flexible data augmentation as
in SAGE; and allows some permutation of the component steps within each itera-
tion. In Section 3.2 we will present the details of the AECM algorithm followed by
several convergence results in Section 3.3. Section 3.4 presents an example which
demonstrates how the combination of data augmentation and model reduction in
AECM can be used to develop algorithms that are not only simple and stable, but

also fast.

68

3.2. The AECM Algorithm

To present our algorithm in its most general form, we need to extend and standardize
the indexing system that has been commonly used in the EM literature. Specifically,

we need to develop the concept of a “cycle” in-between a “step” and an “iteration.”

Definition 3.1: A cycle consists of an E-step followed by a ordered set of CM-steps,
the last of which will be followed immediately by a new E-step (which is itself the

beginning of the next cycle). An iteration consists of one or more cycles.

For example, in the ECM algorithm, an iteration is the same as a cycle, but for
MCECM, an iteration consists of multiple cycles (hence its name). In what fol-
lows, we will use t, ¢, and s to index iteration, cycle, and step, respectively, as

illustrated in the following diagram.

E —step, {CM; step,s=1,...,5.,},...,E—step, {CM; step,s=1,...,5.,}

- - -
v~ '

[t + 1]th cycle [ci1]th cycle

-~

tth iteration

The flexibility of our general algorithm comes from allowing the data-augmentation
scheme, as well as the set of constraint functions, to depend on the cycle index.
Because of the alternating nature of the E-step as a consequence of the chang-
ing data-augmentation scheme, we call our algorithm the Alternating Expecta-

tion/Conditional Maximization or AECM algorithm. In the general framework, for

69

cycle ¢ we write Ya[ﬁ]g = (Yobs, YILI]S) where Y°]S is the unobserved part of Ya[ﬁ]g)
For a given ¢, we select a set of S. (vector) functions of 0, G. = {g[c](0),s
1,...,S8:} which induces a sequence of subspaces {6[86], s=1,...,5.} of the pa-
rameter space © , where O = ={ec0O: g[c](Q) = gLC](H[CJFSS;cl])}. The [c+ 1]st
cycle then consists of

E-steps Compute Qo (61611) = [LOIYIeE) (3152 Vo, 6

and S.41 CM-steps

s th CM-step: Calculate 9[C+ﬁ} such that
Qcﬂ(e[“ﬁ] 01) > Q.1 (86N for all feOlt] s=1...5.,; (3.2.1)

The input of the next cycle is taken as 9[C+22—iﬂ = glet1],
It is clear that without proper restrictions on the constraint functions,

Gl = {g[c] =1,...,S5.}, there is no reason to hope that the AECM algorithm
will converge properly. The needed condition here is the space-filling condition
which Meng and Rubin (1993) used for the ECM algorithm. Intuitively, this condi-
tion requires that, after a set of constrained maximizations, we will have searched
in all directions (radiating from a particular origin) of the parameter space. Op-
erationally, the space-filling condition holds for Gl¢ = {g[c] 1,...,S5.} at a
particular 6’ € © if and only if (see Meng and Rubin, 1993)

Se

() 70’) = {0}, (3.2.2)

s=1

where

J10) = { Vgl (@) : x e R

70

is the column space of the gradient of the d! -dimensional vector gLC](H). (We
always assume g[](9) is differentiable and VgLC](Q) is of full rank at each interior
point of © to avoid unnecessary technical complications.) For the ECM algorithm,
each iteration consists of one cycle, and G!¢ does not depend on the cycle index.
Thus, it was sufficient in Meng and Rubin (1993) to only consider (3.2.2) for one
cycle. With AECM, however, it is possible that the space-filling condition will not
hold for every cycle, that is, it may be useful (for the efficiency of the algorithm)
to allow the space-filling condition to be satisfied only after several cycles. More
precisely, in contrast with (3.2.2), we now only require

ﬂ ﬂ JI ") = {o}. (3.2.3)

c=c1 s=1
For theoretical as well as practical reasons, we will define an iteration of the AECM
algorithm as the smallest set of consecutive cycles such that (3.2.3) holds. More

precisely, we define an AECM iteration sequence {G(t),t >0} T as a subsequence

of the sequence generated by the output of each cycle {6l ¢ > 0} such that

Pt+1) — gleital if

ct41 Se ct+1—1 S,
() ()7 = {0}, but ()) JL(6!) # {0}. (3.2.4)
c=c¢+1s=1 c=c¢+1 s=1

In other words, we consider a set of consecutive cycles to form an iteration of the
AECM algorithm if and only if the last cycle of the set has completed the search of
the parameter space, starting from the previous iteration (not cycle) output, in the

sense of completing the space-filling requirement. Since the cycles are time-ordered,

T For clarity, we use parenthesis in the superscript indexing iteration number
and square brackets in the superscript indexing cycle number.

71

there is a unique sequence {c;;t > 0} that defines the iteration sequence. To avoid
the pathological theoretical possibility that there may be only a finite number of ¢;
which satisfy (3.2.4), we assume the sequence {c;;¢t > 0} contains infinitely many

distinct numbers.

There are three reasons that call for this definition of an iteration rather
than defining iterations as cycles (e.g., as in Hero and Fessler, 1994). First, the
common notion of an iteration completely updates 6, and thus it is natural to re-
quire that the whole space be searched at each iteration. (Note that even if a cycle
changes the values of all the components of 6, it may not completely update 6,
as a reparameterization of 6 will reveal if the space-filling condition is not satis-
fied.) Second, it is theoretically easier and more satisfactory to study an iteration
mapping from 0 to ¢+ when the mapping does not depend on t, which for
algorithms that satisfy the space-filling condition, is only possible (in addition to
other requirements) when each of the iterations searches the whole parameter space.
Finally, when monitoring convergence, which is of paramount concern in practice,
the iterates must be comparable. In particular, it is only meaningful to monitor
the difference of consecutive iterates (or functions thereof) when the iterates each
represent a complete update of the parameter rather than just part of it (in which
case one can easily be misled and declare convergence when a small difference is

caused by a small partial update of the parameter).

Table 3.1 provides an overview of how AECM generalizes several existing
algorithms including EM, ECM, SAGE, and ECME (which is given special attention

in Section 3.3.2). In addition to these, there are useful implementations of the

72

AECM i C, S, G.
EM Yaug 1 1 none
ECM Yaug 1 S G
PECM Yaug 1 S {9(0) = v}
MCECM Yaug C 1 Gc — Gc mod C
ECME Yaug codd 9 S1 codd G171 codd
Yobs € even Sy ¢ even G2 ceven

SAGE v, C, 1 {g}(0) = 9.}

Table 3.1. The special cases of the AECM algorithm. The table records
the data-augmentation scheme (Ya[ﬁ]g) , number of cycles per iteration (C}),
number of CM-steps per cycle (S.), and constraint functions (G.). When
the index ¢ (or t) is suppressed in the table, the quantity is fixed between
cycles (or iterations). The ECM algorithm introduced model reduction to
EM via the S constraint functions in G . In PECM these constraints have
a special form which partitions 6, that is ¥} is a sub-vector of 6. The
multi-cycle ECM (MCECM) algorithm adds an E-step before each of the
CM-steps. (All of these E-steps need not be added, but then the notation is
more cumbersome.) The ECME algorithm is actually more general than is
presented here in that the S7+ Sy CM-steps need not be separated into two
cycles but can be performed in any order. The SAGE algorithm introduced
variable data-augmentation, but updated only one sub-vector of 6 at a time.
In Fessler and Hero (1994) an iteration is equivalent to our cycle.

AECM algorithm which are not instances of any of the special cases in Table 3.1.
These include a generalized version of the optimal algorithm of Section 2.3 for
fitting multivariate t-distributions with unknown degrees of freedom, which will be

discussed in Section 3.4.

73

3.3. Convergence Theorems

3.3.1. Convergence of AECM

We now proceed to show that a sequence {#()} of iterates from an AECM algorithm
increases L(0|Yyps) at each iteration and that under standard regularity conditions,
AECM algorithms converge to a stationary point of L(6|Yops). These results are
the counterparts of the results for EM (Dempster, Laird, and Rubin, 1977; Wu,
1983) and for ECM (Meng and Rubin, 1993), and provide more complete results
for ECME and SAGE.

Our first result, which is most fundamental, states that AECM, like all of its
predecessors, maintains monotonic convergence of the likelihood values. Note that

this result dose not require the space-filling condition.

Theorem 3.1: Any AECM sequence increases (or maintains) L(0|Yohs) at every

cycle and thus increases (or maintains) L(0|Y,ps) at every iteration.

Proof: The result follows trivially from
s s—1
Qc+1(9[c+$] 16T > Qc+1(9[c+m} 01), for s=1,..., S

(as a consequence of (3.2.1)) and the Jensen inequality as used in Dempster, Laird
and Rubin (1977).

|
OL(0|Yobs)
00

= 0} where Oy is the interior of © (i.e., 8* is an interior stationary point), several

In order to prove the algorithm converges to 6* € L = {0 € O :

regularity conditions similar to the standard ones used by Wu (1983) and Meng

74

and Rubin (1993) for EM and ECM respectively will be required, in particular,
we assume Wu’s (1983) conditions (6) — (10). This is formalized by the global
convergence theorem (c.f., Wu, 1983, Zangwill, 1969) which states that it suffices

to show
(i) The points {#(Y)} are contained in a compact set of O ;
(i) The AECM mapping, ¢+ = MAECM (9(1)) is closed;
(iil) L(O“HD|Yops) > L(OWM|Yyps) with equality only if 8¢ € £ .

The weak inequality in (iii) is an immediate consequence of Theorem 3.1. This,
along with the assumption that the set ©g0) = {6 € O : L(6|Yops) > L(OD|Yops)}
is compact for any L(0(®|Y,ps) > —oo (i.e., Wu’'s condition (6)), gives (i). Thus,

it remains only to show (ii) and the equality statement of (iii) hold.

Under Wu’s compactness condition (6) and continuity condition (10), the
same argument used in Meng and Rubin (1993) to show that the ECM mapping,
MECM s closed can be applied to establish that the mapping determined by each
AECM cycle (i.e., letl = M[‘S]ECM(Q[C])) is closed. Since the iteration mapping
o+ = Mg (‘?)ECM (0®)) is a composition of several cycle mappings, it is also closed.
Unlike the ECM algorithm where MM does not change with iteration, however,
an AECM mapping can vary with iteration, and thus, Zangwill’'s (1969) global
convergence theorem does not apply directly. Although it is possible to extend
Zangwill’s global convergence theorem to iterate-dependent mappings by imposing
additional regularity conditions, we take a simpler approach by directly requiring

M (‘;‘)ECM () not depend on t for t >ty (typically tg = 1), and hence the simplified

notation given in (ii). The reason we choose to restrict M (‘?)ECM () in this way

75

is that, although the data-augmentation scheme in AECM varies with cycle and

thus with iteration, the resulting iteration mapping typically remains the same at

each iteration in real applications, as shall be illustrated by our t-model example
AECM

in Section 3.4. If useful applications of AECM arise in which M) depends on

t , we will develop the more general theory accordingly.

Finally, the equality statement of (iii) can be established using the space-
filling condition in the same way as in the proof of Theorem 2 of Meng and Rubin
(1993) because each AECM iteration contains a complete search of the parameter
space. The only modification needed is to extend (4.5) of Meng and Rubin (1993)
to cover all the cycles contained in one AECM iteration (since ECM contains only
one cycle per iteration) and to note that their (4.3) holds for any Q.(0]0l), ¢ > 1.
This completes the proof of the following main result on the convergence of an

AECM iteration sequence {6 t > 0}.

Theorem 3.2: Suppose (a) all the conditional maximizations in (3.2.1) are unique
and (b) the AECM iteration mapping, M(‘;‘)ECM 0 — 9+ does not depend
on t, then all the limit points of a AECM iteration sequence {#*) t > 0} are

stationary points of L(6|Yobs)-

As discussed in Meng and Rubin (1993), the uniqueness condition (a) is
often satisfied in practice (e.g., when the conditional maximizations are in closed
form), but even this condition can be eliminated if we force gler=m] = glets7]
whenever there is no increase in Q.1(6]0!)) at the sth CM-step within the (¢ +

1) st cycle. Other conditions are also possible to ensure the result as discussed in

Meng and Rubin (1993). Corollary 1 of Meng and Rubin (1993) also holds here,

76

that is, if L(0|Yobs) is unimodal with 6* being the only stationary point then under
the conditions of Theorem 3.2, any AECM iteration sequence will converge to the

global maximizer starting from any 6 € Q.

Finally, if in addition to assuming that M (‘?)ECM does not depend on t, we
assume each iteration has the same set of cycles, say {c1,...,cc}, we have the

following result regarding the rate of convergence of AECM, the proof of which
is essentially the same as Meng’s (1994) proof of the rate of convergence for the

multi-cycle ECM algorithm.

Theorem 3.3: Suppose the AECM iteration mapping is a composition of C' fixed-
cycle mappings, all the conditional maximizations in (3.2.1) satisfy the Lagrange
Multiplier equations, and 9[C+ﬁ} — 0* as ¢ — oo. Then the (matrix) rate of
convergence of the AECM iteration is

DAMAECM _ ﬁ {I[CJ [I[C]]_1 n (I . [I[C]]_1) ﬁp[cl} (3.3.1)
mis |‘aug obs |Laug s i

c=1 s=1

where

2
7 :/ 0%10 f (Yt Yo, 0) £y 0)aY L

mis 69 ae‘r mis mis . 9*7
02 log f(Yidk|6)
ti = [PRI iy]

1 -1 _
Iobs is given in (1.6.5), and pld = vl [[V[SC]]T [I‘L‘ﬂg} V[SC]] [V[SC]]T [I&ﬂg}
with Vil = vgld@r), [0, P = PR PY G = {gl(0),5=1,....5.},
and Ya[ﬁ]g being determined by the cth cycle, ¢ = 1,...,C. The global rate of
convergence is governed by the spectral radius of DMAFCM

When C = 1, the supplemented ECM algorithm (developed in Chapter 4)

uses (3.3.1) to calculate the asymptotic variance-covariance matrix of 6*, I ;DS

77

as a function of DMFCM Hfil P, and I,,,. When C > 1, there is often
a corresponding algorithm with C' = 1 which may be less efficient (e.g., SAGE)
for estimating 6* but can be used in conjunction with SECM to calculate I O_bls,
once #* has been obtained. This will be further discussed in Section 4.5.2. The
relationship between the spectral radius of DM , the largest eigenvalue of DM ,
and the global rate of convergence will be taken up in Section 5.2.

Theorem 3.3 assumes 9[64—#“] — 0*, whereas Theorem 3.2 only assures
that 6 — @*. In order to help bridge this theoretical gap we can show that
{6lc] ¢ > 0} converges to 6* along with its subsequence {#), ¢ > 0} if, in addition
to the assumptions of Theorem 3.2, we assume that for ¢ > ¢, 0l € @, a compact
subset of © such that L(6*|Yops) > L(0'|Yops) for all §” € © . This result follows

directly from the following lemma.

Lemma S: Suppose that U is a compact set and f : U — R is a continuous
function with a unique global maximum at z*, so that f(x) < f(z*) for any
x € U,z # x*. Furthermore, let {z;}$°, be a sequence of points in U such that
the sequence {f(z;)}2, is nondecreasing and such that there exists a convergent
subsequence {z,,}°; having z* as its limit. Then the entire sequence {z;}2,

converges to x> .

Proof: We first prove that given any € > 0 there exists ¢ > 0 such that |f(z) —
f(x*)] < 9 implies |xr — x*| < €. Suppose otherwise, then, for any natural number
N we could find an zy € U satisfying |f(zn) — f(2*)] < & while |zy —2*| > €.
In this way we obtain a sequence {xn}F_; with each zny € U — Be(z*), which

is also a compact set (where B.(z*) is the open ball of radius e and center x*).

78

Therefore, there exists a convergent subsequence {zy;}32; whose limit we shall

denote Z . Therefore

f(@) = f(lim zy;) = lim f(zn,) = f(z7),

J—00 J—00

where we have used the continuity of f in the middle step. However, T # x* since
|Z — x*| > € by construction, which contradicts the hypothesis that xz* was the
unique point at which f was maximized on U .

So suppose that € > 0 is given. By the above argument we can find § >
0 such that |f(z) — f(z*)] < § implies |r — 2*| < €. Since the subsequence
{zn,}2, converges to z*, the sequence {f(x,,)}2,; converges to f(z*) since
f is continuous. In particular, we can choose M large enough so that i > M
implies |f(zn,) — f(2*)] < d. As f(z*) is a maximum this means that f(z*)—4d <
f(zn,) < f(z*). But by assumption, the entire sequence {f(z;)}s2; is increasing,
so once one of the terms is within § of f(z*), they all must be. In other words,
|f(z;) — f(x*)| < § for all ¢ > nyps, which means that |z, — x*| < €, using our
result from the previous paragraph. Since e can be chosen arbitrarily small, we
have proven that

lim x; = 2.
11— 00

3.3.2. A note on step ordering within ECME

The ECME algorithm takes advantage of a simple idea in order to increase the rate

of convergence of the ECM algorithm. The CM-steps of ECM maximize Q(6]0®))

79

under each of the constraints in G in turn. When it is computationally attractive,
Liu and Rubin (1995a) replace several of these CM-steps with conditional max-
imizations of L(6|Yops) (using the same constraint functions) and accomplish a
remarkable increase in the rate of convergence. Unfortunately, there is a technical
error in their proof that an ECME algorithm monotonically increases the likelihood,
which relies on the assertion that the likelihood is increased at each CM-step. This
clearly does not always hold. For an extreme example, consider an ECME algorithm
that, after calculating Q(A|0(")) in the E-step performs one unconstrained maxi-
mization of L(6|Yns) followed by one unconstrained maximization of Q(]6)).
Clearly, the output from the second CM-step can decrease L(6|Yons). The prob-
lem stems from the statement in their proof that if Q(|#®)) increases, so does

L(0|Yons) (by Jensen’s inequality), that is

Q(9|9(t)) > Q(§|9(t)> = L(9|Yobs) > L(9~|Yobs>: (332>

which is, in fact, only guaranteed when 6 = ().

The AECM algorithm avoids this problem by always calculating 6t such
that Qer1(01°TU0I) > Quy1(019]09) via a series of CM-steps, each of which
increase Q.41(0]01) . If it is computationally advantageous, L(f|Yons) can then
be increased directly via a set of CM-steps in a separate cycle. Put another way,
we always perform an E-step whenever we introduce a different data augmentation.

It should be noted that, although it is easy to find examples of ECME algo-

rithms that do not increase L(0|Yons) at each CM-step, we have not yet found an

example of an ECME algorithm that does not increase L(6|Yons) at each iteration.

80

It is a proof that ECME (with arbitrary CM-step order) increases the likelihood at

each iteration that we are without.

3.4. Example: Fitting the t-Model with Unknown df

In Section 2.3 we presented an algorithm for fitting the multivariate t-distribution
which is more efficient than the standard iteratively reweighted least squares al-
gorithm when the degrees of freedom are known. Here, we will consider the same
model but with unknown degrees of freedom, a problem that is also of practical
interest (e.g., Lange, Little, and Taylor, 1989). The standard EM algorithm (i.e.,
using the augmentation Y,ue = {(yi,¢i),? = 1,...,n} as described in (2.3.1)) can
be very slow to converge, as Liu and Rubin (1995b) illustrated in their presentation
of the ECME algorithm, which offers great computational gain in this problem. In
this section, we will both extend the optimal algorithm of Section 2.3 to estimate
v and combine it with the ECME algorithm. We will investigate the performance
of the resulting algorithms empirically and show that the extension of the optimal

algorithm can outperform both the standard algorithm and ECME.

In order to construct the algorithm, we first reduce the model by breaking
the parameter space into two parts in order to use a two cycle algorithm. In the
first cycle, we will update (u,Y) given v, and in the second cycle, we will update

v given (i, X). In other words, we choose O = {# = (u, %, v) € © : v = vle=1]}

81

for ¢ odd and O ={#c O : (i, %) = (pl~U, B~} for ¢ even. The resulting
AECM algorithm has two cycles in each iteration and one CM-step in each cycle
as illustrated below. (We postpone an explicit formulation of Q.. 1(0|0l) and
Qcy2(0]01¢T1) for the moment.) The generic cycle index ¢ here is assumed to be

even.

Odd numbered cycles:
E-step: Compute Q.41(0]0!)

CM-step: Calculate pltll and Xlet1 such that
Qc+l(g[c+1] = (M[CH], ple+1 ,/[c])‘g[c]) > Qc+l(g|g[cl)

for all @ such that v = vl .
Even numbered cycles:
E-step: Compute Q. o(6]0lcH1)

CM-step: Calculate v[¢*2 such that
Qe (0112 = (plet wlett] pler2lyglerily > @ o (0]0l)

for all # such that p = plctll and ¥ = xlet1],
The iterations are defined by () = 92l and the space-filling condition is easily
satisfied by this algorithm because G;UG5 partition © as in the PECM algorithm
and each iteration uses the same partition G; U G5 .
As was discussed in Section 2.3, there are two choices for the data
augmentation when v is known (i.e., with the odd numbered cycles) which re-

sult in CM-steps that are simple to compute. The first is the standard aug-

82

mentation {(y:,q;),i = 1,...,n}, and the second is the optimal augmentation

{(yi,qi(agﬂt)),i =1,...,n}, where (y;,q;) is as in model (2.3.1), ¢;(a) = |X|"%q; ,

[c]

and ag,, = 1/ (vl + p). We see here that since vl changes with ¢, the op-
timal data augmentation is a function of the cycle, and thus, the resulting algo-
rithm does not fit into the standard EM (or ECM) paradigm. There are also two
data-augmentation schemes when we condition on g and ¥ (i.e., with the even
numbered cycles): the standard augmentation, {(y;,¢;),i =1,...,n}, and no aug-
mentation, {y;,7 = 1,...,n}. The latter was used by Liu and Rubin (1995a) in
their ECME implementation. Since the working parameter a does not affect the
cycle for updating vl the optimal and standard augmentation are equivalent
when ¢ is even. There are no known data-augmentation schemes that result in

a closed-form update of v, and both of these data augmentations require similar

computations via a univariate optimization routine.

In conjunction with the standard data augmentation in the odd cycles the
two augmentation schemes in the even cycles result in the MCECM and ECME
algorithms, respectively, and were compared by Liu and Rubin (1995a and 1995b).
Here we compare MCECM and ECME with two new algorithms (AECM 1 and
AECM 2, respectively) which result from replacing the standard augmentation with
the optimal augmentation when updating (u,Y) (see Table 3.2). As we shall see,
our simulations indicate that in order to achieve fast algorithms, the choice of data

augmentation when updating (u,) is more critical than when updating v .

Implementation of all four algorithms is straightforward. The odd-numbered

cycles are conditional on the current iterate v[¢ and are implemented exactly as

83

Model Reduction (CM-steps): update p and X update v
Data-Augmentation (E-step): | {(yi, 1)} | {(i ai(aSg0)} | {(wiai)} | {(wi)}
MCECM X X
ECME X X
AECM 1 X X
AECM 2 X X

Table 3.2. AECM algorithms used to fit the multivariate ¢ with unknown
degrees of freedom. When the degrees of freedom are unknown, it is conve-
nient to first update (i,) conditional on v and then update v condi-
tional on (u,Y). The MCECM algorithm computes the conditional expec-
tation of the augmented-data set {(v;,¢;),7 =1,...,n} in an E-step before
each of the CM-steps. The ECME algorithm uses only the observed data
to update v, and the extension of the optimal EM algorithm of Section 2.3
(AECM 1) uses the optimal data-augmentation {(y;, qi(aggt),i =1,...,n}
when updating (p,) . Using both of these replacements simultaneously re-
sults in the algorithm referred to as AECM 2.

described in Section 2.3 with v replaced by v[°. With the change of notation from
(t+1) to [c+1], the E-step is given in (2.3.2), and for the standard augmentation,
the CM-step is given in (2.3.3) and (2.3.4). For the optimal augmentation we
replace (2.3.4) with (2.3.6). Regardless of the data augmentation, the even cycles
require numerical optimization of Q.42(]01°tY) | where ¢ is even. Specifically,
when using Yaue = {(¥i,4i),¢ = 1,...,n}, we first execute an E-step which sets
wZ[CJrz] = (Wl + p)/(ld + d£c+1]) for each i, and then set v[°t? equal to the

solution of the equation:

84

_¢<2) +1og()+¢>< Hﬂ’) —log(V[C];_p)

+ = Z [log wi - wz[mq +1=0, (3.4.1)

where ¢(-) is the digamma function. Likewise, when using Yau, = {vi,i =

.,n}, v is updated by setting vl¢t2l equal to the solution of the equation

6 (%) +1og (%)+¢(”+p) —1og<”‘2”?)

+ = Z loga ™ — @l 1 1=0, (34.2)

~[c+2
where wl[CJr]

=w+p)/(v+ dECH]) . Equations (3.4.1) and (3.4.2) are special cases
of equations (27) and (30) given in Liu and Rubin (1995b).

Although using Yaue = {yi,¢ = 1,...,n} does not require an E-step (since
Yaug is fully observed), it results in a much more costly iteration for updating v then
Yaug = {(¥i,¢),i=1,...,n} since every time (3.4.2) is evaluated during numerical

optimization, the weights w[ct2]

, which depend on v, must be recomputed and the
function ¢(-) must be evaluated twice. Liu and Rubin’s (1995b) simulation shows
that, in their implementation, solving (3.4.2) for v actually took about seven times
longer than solving (3.4.1) for v. The hope is that augmenting less will result in
an algorithm that requires fewer iterations for convergence, which will make up for
the extra computational burden per iteration. This was certainly the case in the
examples presented in Liu and Rubin (1995a and 1995b), but as we shall see shortly,

is not the case in our simulations.

In order to compare the performance of the four algorithms described in

85

Table 3.2, we fit a ten-dimensional t-model to 100 observations generated from
t10(0,V,v = 1), where V was randomly selected at the outset of the simulation as
a positive definite, non-diagonal matrix. The half-interval method (e.g., Carnahan,
Luther, and Wilkes, 1969) was used to numerically update v. Using the same
convergence criterion and starting values for (u,Y) as described in the simulation
of Section 2.3 and the starting value v(®) = 10, the number of iterations required
for convergence was recorded for each of the four algorithms. Figure 3.1 contains
scatter plots which compare AECM 1 to each of the other three algorithms. As we
see, AECM 1 was 8 — 12 times faster than either MCECM or ECME. Remember that
the cost per iteration is less for AECM 1 and MCECM than for ECME. Moreover,
AECM 2 (the combination of the optimal EM algorithm and ECME) was only
slightly more efficient than AECM 1 in terms of the number of iterations required,

and less efficient in terms of actual computer time.

In our simulation the choice of data augmentation when updating v made
little difference in terms of the number of iterations required for convergence. Yet
Liu and Rubin (1995a and 1995b) have shown that ECME can be much more
efficient than MCECM. There are two principal differences between our simulations
and their examples. Specifically, both of their examples (example 3.1 of Liu and
Rubin 1995a and “artificial example” of Liu and Rubin, 1995b) are two dimensional
(as opposed to ten dimensional in our simulation) and contain much missing data
among the y; , whereas y; was completely observed in our simulations. Figure 3.2
contains the results of a replication of our simulations on two-dimensional data

and again indicates that ECME offers little advantage over MCECM (although the

86

14 times 12 times

imes

180

160

eS

120

eS

iterations required by
MCECM
140

100

12 14 16 18

iterations required by AECM 1

14 times 12 times

iterations required byECME

12 14 16 18

iterations required by AECM 1

iterations required by
AECM 2

T T T T
12 14 16 18

iterations required by AECM 1

Figure 3.1. Comparing AECM algorithms for fitting the multivariate ¢
with unknown degrees of freedom. The scatter plots compare the num-
ber of iterations required for convergence by each of MCECM, ECME, and
AECM 2 with AECM 1 respectively. AECM 1 and 2 use the optimal data-
augmentation of Section 2.3 for (i, Y) and perform very well. ECME and
AECM 2 use Yqp,s in place of Y,z when updating v and show only a small
improvement over MCECM and AECM 1 respectively. This improvement
is washed out by the increased computation time required per iteration by
AECM 2

iterations required by iterations required by

iterations required by

87

3 times
o -
_ 2times
0% L N
= EE T
L Sr s
O R - e
= -
g g |
8 ,
T T
20 25 30 35 40
iterations required by AECM 1
° 3 times
2 — - =
o | -
2-times
8 - e
w k -
3% RPN A
w LemTT
8 m
8 m
Sr a
T T T T T
20 25 30 35 40
iterations required by AECM 1
equal
g -
N .
LE) 0 omp
i cer SN
< . A R RT3 i
Bd wm Kl LT
N WG BN W - ,h—au
< 4 LA R LAl _ -
P . -7 .

20

25

30 35 40
iterations required by AECM 1

Figure 3.2. Comparing AECM algorithms for fitting the bivariate ¢ with
unknown degrees of freedom. The scatter plots compare the number of iter-
ations required for convergence by each of MCECM, ECME, and AECM 2
with AECM 1 respectively. The computational gain of not augmenting when
updating v is again dwarfed by the gain of using the optimal augmentation

for (u,X).

88
improvement is somewhat greater than in the 10 dimensional case). Thus, it seems
that when fitting ¢-models, ECME is most useful when there is much missing data
among the y; . How this interacts with the optimal augmentation for (u,) has

yet to be investigated.

Chapter 4

The SECM Algorithm:
Computing the Asymptotic Variance

4.1. Introduction

In the previous chapter we discussed how the AECM algorithm can be used to
compute maximum likelihood estimates in the presence of missing data. Generally,
statistical inference requires not only point estimates but also measures of uncer-
tainty, for example (asymptotic) variance-covariance matrix of the estimates. The
Supplemented EM (SEM) algorithm (Meng and Rubin, 1991a) computes such ma-
trices using a sequence of EM iterates to obtain the matrix rate of convergence
of EM. This rate is then used to inflate the augmented-data asymptotic variance-
covariance matrix to obtain the asymptotic variance matrix for the observed-data
MLEs. A key feature of SEM is that it requires only the code for EM and the code

for computing the augmented-data asymptotic variance-covariance matrix.

In this chapter we develop and illustrate an analogous supplemented algo-

rithm for ECM, SECM, which computes the asymptotic variance-covariance matrix

89

90

of the MLEs. In addition to requiring the computation of both the rate of con-
vergence of ECM and the augmented-data variance-covariance matrix, it requires
the computation of the rate of convergence of the CM algorithm. The computa-
tions of SECM, however, remain as simple as SEM in the sense that they only
require the ECM code along with the code for computing the augmented-data
variance-covariance matrix. Although our presentation is focused on the asymp-
totic variance-covariance matrix of the MLEs, the SECM algorithm can just as
easily be applied to compute the asymptotic posterior variance-covariance matrix
when ECM is used to find a posterior mode, which includes penalized likelihood

models as a special case (e.g., Segal, Bacchetti, and Jewell, 1994).

After reviewing the SEM algorithm and other necessary theoretical develop-
ment in Section 4.2, in Section 4.3 we detail the computational steps of SECM.
Section 4.4 presents four examples to illustrate a variety of applications of the
SECM algorithm. Section 4.5 offers discussion on some practical issues involved in
implementing SECM, in particular, we will discuss the computation of asymptotic

variance-covariance matrix when other EM-type algorithms are implemented.

4.2. Methodological Development

4.2.1. The SEM algorithm

The EM algorithm, as described in Section 1.2 is designed to calculate 6* the maxi-

mizer of the observed-data loglikelihood L(0|Y,ps) = log f(Yobs|#) . The SEM algo-

91

rithm supplements the EM algorithm in order to calculate the asymptotic variance-
covariance matrix of (6 — @*), that is, I', which is defined in (1.6.5). The

obs ?

algorithm is based on the fundamental identity, DM*M = I ;T a_ulg , as presented
in (1.6.2). This identity underlies the SEM computations because the desired infor-

mation matrix, I,ps, can be written as the difference between the augmented and

missing information (e.g., Orchard and Woodbury, 1972; Meng and Rubin, 1991a)

Iobs = Iaug - Irnis = [Id - IrnisI_1

aug

[Tang = [Ig — DMEM]T,0, (4.2.1)

where I; is the d x d identity matrix. In other words, to compute I,ps, we need
only compute DMFM and I,,,. When the augmented-data model, f(Yaug|6)
is from the exponential family, as is typically the case when the E-step is com-
putable, Ioue = Io(0*]S*(Yobs)), where S*(Yons) = E(S(Yaug)|Yobs, 0F) , as found
at the last E-step; we thus can compute I,,, using standard augmented-data pro-
cedures. Computing DMFM can be accomplished by numerical differentiation of
the EM mapping. Details of these SEM calculations are provided in Meng and

Rubin (1991a) and will be reviewed in Section 4.3 .

4.2.2. The matrix rate of convergence of CM and ECM

To apply the logic of the SEM procedure to ECM, we need to relate the matrix
rate of convergence of ECM to the fraction of missing information. Meng (1994)

extended (1.6.2) to the ECM case with the following result:
[Iy — DMPCM] = (1, — DMPM]|([1, — DMEM], (4.2.2)

where DMFECM s the rate of convergence of ECM at 6 = 6*, and DMM ig

92

the rate of convergence of CM at 6 = 0* . If we knew DMFCM and DMM | we

could use (4.2.2) and (4.2.1) to calculate the asymptotic variance, Vops = I}

obs *

As will be detailed in Section 4.3, DMPM can be computed by numerical
differentiation just like DMPM . The rate of CM, DMM | can be computed in
two ways. Meng (1994) shows that it can be calculated analytically as given in
(1.6.7) and (1.6.8). All the quantities in (1.6.7) involve only the augmented-data
information matrix and the ¢ functions, and thus, they can be computed once 6*

is obtained.

Alternatively, when the augmented-data model f(Yaug|0) is from an expo-
nential family, DM“M can be obtained numerically from the output of ECM at
convergence, (0*,5*(Yyps)), and an additional run of the code for the CM-steps. If
we take S*(Yops) to be the fixed augmented-data sufficient statistics, we can obtain
0(S*(Yons)) , the MLE of 6 given S*(Y,ps), using the CM algorithm starting from
6©) £ 6*; DMEM is the rate of convergence of this CM algorithm. This can be
proved by examining (1.6.8) and noting that if f(Ya,g]6) is from an exponential
family, lyue = I1o(6*|S*(Yons)) and that 6* = 0(S*(Yons)) . Thus, we can derive
DM®M by calculating the rate of convergence of the CM algorithm applied to
L(0]S*(Yopbs)) . This avoids the matrix inversions and computation of the V, in

(1.6.7) and (1.6.8), which are necessary when performing analytical calculations.

With the PECM algorithm described in Section 1.3, the computation of
DM®M g particularly easy. Let T be the block diagonal matrix of I with S
blocks corresponding to the S subvectors of € defined by the partition. Let T" be

the corresponding lower block triangular matrix of I, , that is, I . = T+IT+I7.

93

Meng (1990) established that in this case (1.6.7) reduces to
DM®M — 1Y +17]71, (4.2.3)

which makes analytical calculation of DMM very simple, as illustrated in Sec-

tion 4.4.2.

4.2.3. The basic identity for the SECM algorithm

Having obtained DMZCM = DMYM "and I,,, , we can combine (4.2.1) and (4.2.2)

to obtain
Tobs = Io(0*|Yors) = [Is — DMPCM[1; — DMOM] 7L, (4.2.4)
Equivalently, in terms of the variance,

Vobs = It = Vaug + AV, (4.2.5)

o

where Vyye = Ia_ulg can be viewed as the variance-covariance matrix of the MLE

given the augmented data, and
AV = Vaug[DMEM — DMEM[1; — DMEEM]! (4.2.6)

is the increase in variance due to the missing data.

Identity (4.2.6) is the basis for the SECM algorithm, and it reduces to (2.3.6)
of Meng and Rubin (1991a) when DM®M = 0, which corresponds to EM. An
interesting property of SECM (and SEM) is that, although AV is mathematically
symmetric, the right side of (4.2.6) is not numerically constrained to be symmetric

because Viue, DM CM and DMFCM are computed separately as described in

94

Section 4.3. Numerical symmetry is obtained only when all three of these are
computed without appreciable numerical imprecision. This property turns out to
be a surprisingly powerful tool for detecting implementation or numerical errors, as

illustrated in Section 4.4 and further discussed in Section 4.5.

4.2.4. When some components have no missing information

In certain situations, missing data only affect estimates for some components of
0, that is, there is no missing information for the rest of #. For example, with
0 = (91, 73) , there might be no missing data for the estimate of ¥; , in which case
we can compute the MLE 97 without using EM or ECM (see Section 4.4.5). An
efficient implementation of ECM in such cases fixes 195” = 7 and only updates
ﬁét) . For comparison with ECM applied to 6, for notational convenience, we will
refer to this version of the ECM algorithm as ECM * .

Since ECM * is really a special case of ECM, the corresponding SECM algo-
rithm (we will call it SECM *) can be used to calculate AV (¥5]97), the increase
in asymptotic conditional variance of 95 (conditioning on 9%) due to missing in-

formation. Specifically, we can compute AV (93]97) (see (4.2.6)) as
AV (05197) = {[Taugloo} ' [DMPCM — DMOM (1, — DMPOM 710 (4.2.7)

where the CM * algorithm is run with 195” fixed at 97, [laugloe is the submatrix
of I,ps corresponding to v, and do is the dimension of ¥, . It turns out that

(4.2.7) is all we need to compute the increase in variance, since

AV = (8 AV(zg;w;))' (4.2.8)

95

This identity holds because (i) there is no increase in variance or covariance of 97
and (ii) there is no increase in the part of the variance of 93 that can be explained
by 97 (see Meng and Rubin, 1991a). When there is no missing information for 9 ,
we can therefore calculate AV using (4.2.8) and then calculate Vs using (4.2.5).
It is, however, worth remarking that fixing 19@ at] increases the efficiency of
ECM and SECM but is not a required step since the standard ECM and SECM
algorithms will produce the desired estimates. This is in contrast to the standard
SEM algorithm, which fails in this situation and a special version of SEM must be

implemented. An example illustrating these points is given in Section 4.4.5.

4.3. Implementing the SECM Algorithm

4.3.1. A schematic

This section is designed to explain how to implement SECM in a step-by-step man-
ner. Readers not interested in details of implementation may wish to skip to the
examples in Section 4.4. We will describe in simple terms exactly how one can
compute 6* and V,,s. The schematic in Figure 4.1 describes the necessary steps
in broad terms. The user must provide routines that perform the E- and CM-
steps, as well as one that computes I,,, . These are described in Section 4.3.2. The
schematic also references Algorithms 1, 2, and 3, which compute 6*, DMFCM
and DMYM respectively and are described in Section 4.3.3. The mathematical

background for the routines that follow is given in Section 4.2 of this paper and

96

1. Set ¢ECM
é&SECM and é&SCM.

i

2. Calculate 6*,
S*(Yobs) using
Algorithm 1 (ECM)

|

3. Evaluate I,
and Voue = 1, —1

using ICOM. e
4. Calculate
DMFECM 5
ing Algorithm
2 (SECM).
5. Calculate DM®M os
using Algorithm 1o Y | 6. Evaluate DMCM
3 (SCM); or use using (2.4.4).
(2.4.2) and (2.4.3).

7. Evaluate AV
using (2.5.3).

¢

8. Adjust ¢FCM |
é&SECM, gSCM or

find programming
erTor.

Go to START.

Figure 4.1. Schematic of the SECM algorithm.

97

in Meng and Rubin’s (1991a) presentation of the SEM algorithm. Since SEM is a
special case of SECM, the algorithms presented here can also be used to implement
SEM. The only modification when running SEM is that the CMSTEPS routine should
compute the global maximum of Q(8|#®), that is, use only one CM-step, and the

DMCSM matrix should be set to 0.

4.3.2. User provided specific subroutines

The computations in the following three subroutines are problem specific; the first
two routines are used in the Algorithms in Section 4.3.3 and the third is used in Box 3
of Figure 4.1. These subroutines are developed assuming that f(Yaug|f) is from an
exponential family, beyond which the simplicity of EM-type algorithms is typically
lost because the E-step typically requires numerical integration or simulations (c.f.

Wei and Tanner, 1990).

Subroutine 1. ESTEP:
INPUT: 6®) | Y,
Compute S (Yobs) = E[S(Yaug)|0®), Yos] , where S(Yaug) is
the augmented-data sufficient statistic.

OUTPUT: S®(Yops)

Subroutine 2. CMSTEPS:
INPUT: S® (Yops), 6®)
Compute 01 with a sequence of constrained maximization

steps, as described in Section 1.3.

OUTPUT: 6(t+1)

98

Subroutine 3. ICOM:

INPUT: 6%, S*(Yobs)
Compute Inue = Io(6*[S*(Yons)) , the observed Fisher infor-
mation matrix based on the augmented-data model, evaluated
at 6% and S*(Yops) -

OUTPUT: I and Vi, = Ik

aug

4.3.3. General algorithms

Algorithm 1: Calculate #* and S*(Y,ps) using ECM.
Repeat the ECM steps:

INPUT: 6®)
Step 1: Calculate S® (Y,ps) with ESTEP;
Step 2: Calculate 0“1 with CMSTEPS:;

OUTPUT: §(t+1)
Continue until

5(0W, 9+ < ¢BEOM (4.3.1)
for some convergence criteria § and threshold ¢FCM . A discussion on how to
choose § and £FPCM | as well as £SFCM and ¢5CM | appears in Section 4.3.4.

FINAL OUTPUT : Set S*(Yops) equal to the output from the last ESTEP, and set

0* equal to the output from the last CMSTEPS.

99

Algorithm 2: Calculate DMFCM using SECM.

Let r;; be the (i,j)th element of the d x d matrix DMECM and define 6 (7)

as

yVe—1>

0O (i) = (0F,...,001,00, 05 1,...,0%), i=1,....d (4.3.2)

That is, #® (i) is 6* with the ith component active, i.e. replaced by the ith

component of §(*) .

Repeat the SECM steps:

INPUT: 6* and 6O

Repeat steps 1 and 2 for each 1
Step 1: Calculate (i) from (4.3.2), treat it as input for
Algorithm 1, and run one iteration of Algorithm 1 (that is,

one ESTEP and one CMSTEPS) to obtain 61 (7);

Step 2: Obtain the ratio

© _ % j

(2

0" (i) — 03

r for j=1,...,d; (4.3.3)

ouTPUT: {rV,i,j=1,...,d}.

17

FINAL OUTPUT: DMPCM = {1}, where r}; = i) is such that

J iJ

5(T(tz‘j) T(tz‘j‘H)) < ¢SECM (4.3.4)

i 0 liag

for some suitable convergence threshold ¢SFCM

100
Algorithm 3: Calculate DMYM using SCM.
For notational simplicity, the same notation is used for the elements of DMSM as

was used for those of DMECM

Repeat the SCM (e.g. supplemented CM) steps:

INPUT: 60*, 0 and S*(Yops)

Repeat steps 1 and 2 for each 1
Step 1: Calculate 0()(i) from (4.3.2) and run CMSTEPS once
using S*(Yons) and 6 (i) as input to obtain 41 (4);
Step 2: Obtain the ratio rgf) as in (4.3.3);

OUTPUT: {r{,i,j=1,...,d}.

FINAL OUTPUT: DMSM = {r};} where all the r}, = r{¥ are such that (4.3.4)

ij
is satisfied for some convergence threshold for SCM, £5¢M

When implementing the PECM algorithm, Algorithm 3 can be replaced by
a simple evaluation of (4.2.3). For the more general ECM algorithm, it can be com-
putationally advantageous to replace Algorithm 3 with the analytical calculations
described in (1.6.7) and (1.6.8). Finally, the outputs of ICOM and Algorithms 2
and 3 (i.e. Vaug, DMFOM - DMEM) are put together to calculate AV using

(4.2.6), and then (4.2.5) is used to obtain the desired variance-covariance matrix

V:)bs .

4.3.4. Notes on implementation

The convergence criterion §(a,b) is a discrepancy measure between a and b.

Common choices are (i) d(a,b) = max; |a; — b;|, (ii) d(a,b) = max; |[(a; — b;)/a;]

101

or max; |(a; — b;)/(a; +b;)|, and (iii) §(a,b) = ||a — b||, where || -|| denotes the
standard Euclidean norm, and a; and b; are the components of a and b. The
first of these, (i), was used in the examples in Section 4.4 and is generally fine unless
the magnitudes of the components vary greatly, in which case (ii) is preferred. The
same holds for SECM and SCM except that a and b are scalars, in which case (i)
and (iii) are the same.

When ECM is run alone, the convergence threshold ¢F¢M can be set to
obtain whatever level of precision is desired for 8*. When SECM is used, how-

EFCM must be quite small (compared to the magnitude of #*) to insure

convergence of 6 as well as rgi)

ever,
and thereby to insure satisfactory symmetry
in AV . Generally, £3F¢M and ¢5¢M gshould be about equal to the square root
of ¢ECM as discussed further in Section 4.5.1. Finally, note that Algorithms 2
and 3 assume that the ECM iterates were saved when Algorithm 1 was run. This
saves computational time, but requires extra storage. For some users, it may be
better to recompute the iterates than to save them. To do this, change the in-
put in Algorithms 2 and 3 to “INPUT: 6* and #¢~Y” and add “Step 0: Run
one ECM iteration on ¢~ to obtain #().” Generally, it is not necessary to
start the SECM or SCM algorithms at #(®) or to run them for as many steps as

ECM was run. Thus, saving all the iterates may not be economical, and it may be

computationally more efficient to recompute only the iterates that are needed.

102

4.4. Examples lllustrating the SECM Algorithm

4.4.1. Introduction to examples

In this section we present several examples that illustrate different aspects of SECM.
The first example is a simple bivariate normal used in Meng (1994) to illustrate
several surprising phenomena concerning the rates of convergence of EM, ECM, and
their variations. It shows how the basic building blocks of ECM are put together.
We also compare our simulation results to the theoretical results presented in Meng
(1994).

Our second example is a bivariate normal with stochastic censoring, often
applied in economics and known as the Type II Tobit model (e.g. Amemiya, 1984).
We demonstrate the easy implementation of SECM for this class of practically
useful models. We also show how inspecting the symmetry of the resulting variance-
covariance matrix led to the discovery of an error in the literature for computing

the E-step.

The third example illustrates a class of important applications of SECM —
computing the asymptotic variance-covariance matrix of maximum likelihood es-
timates fit to contingency tables in the presence of incomplete observations. The
algorithm essentially uses only the standard Iterative Proportional Fitting, or IPF
algorithm (e.g., Bishop, Feinberg and Holland, 1975) and a simple E-step that al-
locates the counts according to the estimated conditional cell probabilities.

Our last example is presented for numerical comparison with SEM results.

Meng and Rubin (1991a) uses this example to illustrate a variety of issues involved

103

in implementing EM and SEM. We repeat these for ECM and SECM, which allows

us to make direct comparisons with the results in Meng and Rubin (1991a).

4.4.2. A simple theoretical example

Suppose the augmented data consist of two observations from a bivariate normal

GG O e
Yi2 0 p 1

but we only observe z; = y11 and zo = Y92 — yo1. Here p is known and we

distribution

are interested in the MLE 6* of 6 = (01,65) based on z; ~ N(A,1) and 25 ~
N(62—61,2(1—p)) . In this case the MLE is in closed form, 6* = (21, 21 +22) , with

variance-covariance matrix () since z; and 29 are independent. Thus,

1 3—2p
this example allows us to compare empirical results with the theoretical values.
The E- and CM-steps follow simply from properties of the bivariate normal

distribution. Since p is known, the augmented-data sufficient statistics are simply

(41,%2) , where §; = % (y1; + y2;) - Thus,

|H

E : g%t) = E<y1|zl7227 9(75)) =Z + %(99 —+ gét) — 22)
B = (Gl 20,00) = 303 + plz1 — 67)) + 26 + 0 +)

MLl

1
oMy s 0 =g+ (o) — i),
2 1
CM: 67 =g+ p(0y " — "),
Notice that the E-step can easily be derived using the fact that o1 + y22 is inde-

pendent of Y25 — y21 and that the latter is observed. Iterating these three steps

as in Algorithm 1 leads to 6*. To implement SECM, we first run Algorithm 2 of

104

Section 4.3 to obtain DMEFYM (which depends on the known value of p). In this
case, DMM is particularly easy to compute because this is an example of PECM.

It is easy verify that

__ 2 L —=p g _ L1 p
Iaug—l_ipz(_p 1) and Vaug—Iaug_§<p 1 .

Thus, (4.2.3) gives

DMEM — Y 4T = (2 /?2) .

Once we have DMECM = DANCEM and Vaug , the desired matrix Vs follows
immediately from (4.2.5) and (4.2.6).

We ran two simulations, one with p = —0.5 and one with p = 0.5. For both
simulations we used FCM = 1078 and ¢9FCM = 1076, The calculated values
of 9%, DMPCM and Vs all agree with the theoretical results given above to 6

decimal places. The simulated data and results appear in Table 4.1.

4.4.3. Bivariate normal stochastic censoring model

Suppose (yi1,¥i2) | are independent observations from a bivariate normal distribu-
tion, where yo is never observed and y; is observed only if y5 > 0. For each unit,

the density is specified by

(yil) indep [(Br1zi1 + Brawiz + 0 - 233) (o? poy)] i1 "
Yi2 Borzi1 40 - zip + Bozxiz) \por 1)] B
Here the x;; are augmented observed, and we set 3 = (511,812, 521, 023) and

Y= 0-% pPo1
PO1 1)

p < 01) (21) < 91) Vaug DMEM DMCM DMECM

92 z92 92
—0.5) 4.9663 4.9663 b0 —.25 .25 .50 0 0 500 .3750
—10 —12.6183 —7.6520 —.25 .50 .25 .75 —.5 .25 125 8125
0.5) 3.9832 3.9832 .50 .25 .25 0 0 0 .250 0
—10 —15.9711 —11.9879 .25 .50 .25 .75 5 .25 375 8125

Table 4.1. Results for a simple bivariate normal example (Section 4.4.2).

a0t

106

This is an example of the so-called seemingly unrelated regression model
(Zellner, 1962), also known in economics as the Type II Tobit model (e.g., Amemiya,
1984). When the active covariates for y;; and y;2 overlap but are not identical (in
our example, (13 = (B2 = 0), even if all the y’s are observed, the MLEs of § and
Y. are not in closed form. Consequently, implementing EM would require nested
iterations within the M-step. However, given 3, the conditional MLE of ¥ is
simply the sum of squares of the residuals divided by n. On the other hand, given
Y., the conditional MLE for (3 can be easily obtained by weighted least squares.
ECM replaces the iterative M-step with these two CM-steps (detailed formulas are

given in Meng and Rubin, 1994b).

To compute the E-step, we need to find the conditional expectation of
(Yi1, Y4, Yiz, Y, Yiryiz) for i = 1,2,...,n, given the observed data and the pa-
rameters. These calculations follow from the properties of the bivariate normal
distribution and are given explicitly in Little and Rubin (1987, p. 225). There is,
however, an error in that presentation. When ;5 > 0, we also observe ;1 , and
must thus find E(y2|yi1, vi2 > 0) and E(y3|yi1, yi2 > 0), not E(y;2|yi2 > 0) and
E(y%|yi2 > 0) as presented there. This error will lead to incorrect results; in partic-
ular, it tends to underestimate the magnitude of p. For the data described below,
the true p = 0.5, the MLE p* = 0.482, but the incorrect procedure gives 0.200. We
discovered this error only after we found that the resulting variance-covariance ma-
trix from SECM was clearly asymmetric, which demonstrates the power of SECM
as a tool for detecting errors in implementing ECM. To correct the E-step, we need

to substitute the following two expectations for the second and fifth equations given

107

T T2 x3 Y, Y

-1 1 —1 —0.4443346 —2.9841022

—1 1 —1 —0.4038098 —0.9029128

-1 —1 —1 —0.4457312 —0.1776825

—1 —1 0 —0.1966688 0.4006104
0 1 0 0.5583971 0.3723503
0 —1 0 —0.7892194 1.1994856
0 1 2 —0.2868998 —0.5555625
0 —1 2 —0.4309087 0.7991658
1 1 2 1.2447119 1.4188357
1 1 3 1.3696260 2.1091285
1 —1 3 —0.4198308 0.0973109
1 —1 3 —0.3999554 1.1703623

Table 4.2. The data for the stochastic censoring example (Section 4.4.2).

in Little and Rubin (1987, p. 225):

) s ()), () 771‘(;)
E(yi2lyit, yiz > 0, 817, 5W) =niy" + 75" A QN K
Ti2

®
E(ylyin, yiz > 0,80, 51) :[Ti(zt)]z + [771'(;)]2 + Ti(zt)ng))‘ <%>)
Ti2

where A(z) = ¢(z)/®(2) is the inverse Mill’s ratio, and

Yi1 — 1
ni2 = E(yiz2lyi1, B, 2) = p2 + 0(071“), iz = /Var(yialyi, 5, %) = V1 — p2.

We ran SECM using the variance stabilizing transformations (log(o1), Z,)
in place of (o1,p), where Z, = 0.5log{(1 + p)/(1 — p)} is the Fisher Z trans-
formation of p. This transformation is used not only to ensure better normality
when invoking large sample approximations, but also to enhance the computational
stability of SECM since DM PCM () is more nearly constant (as a matrix function
of) near 6* when the loglikelihood is more nearly quadratic. The sample data
set of size 12 in Table 4.2 was simulated using the parameters in the first row of Ta-

ble 4.3. The observed data are the 8 observations of Y; for which the corresponding

108

Bi1 B2 P21 P23 log(oy) Z,
Oirue 0.2000 0.5000 —0.3000 0.3000 —0.6931 0.5493
o* 0.2643 0.6248 —0.5263 0.5274 —1.0857 0.5253
Var (0*) 0.0229 0.0147 0.2609 0.1614 0.0629 0.4948
AV 0.0094 0.0052 0.1769 0.1381 0.0231 0.4131

Table 4.3. Results for the stochastic censoring example (Section 4.4.2). The
table records the parameter values used to generate the data in Table 4.2, the
MLE of the parameter, its asymptotic variance, and the change in variance
due to missing data.

observation of Y5 is positive. None of the values of Y5 are observed. ECM was

EECM — 10712 | resulting in 249 iterations, from a starting value of all

run with
zeros. Table 4.3 contains the MLEs of 3, p, and o7 in the second row and the

corresponding asymptotic variances, which were found using SECM as described

below, in the third row.

Since the augmented-data distribution is from a standard exponential family,
Iug is just the augmented-data information matrix evaluated at 6* and S*(Yobs) ,
which yields the matrix in Figure 4.2. Since this is a PECM algorithm, using (4.2.3)
we can quickly calculate DMSM from Iug - In applying (4.2.3), T is the block
diagonal matrix indicated in Figure 4.2, and the nonzero portion of I' is the lower
left 2 x 4 submatrix of V,,s. SECM was run with E9ECM — 10=7 and Vs is
found by a simple application of (4.2.5) and appears in Figure 4.3, which indicates
that the symmetry holds to at least 4 decimal places verifying the accuracy of the
computations. Comparing V., and Vi,s, we can also easily find the increase in
variance due to missing data, as recorded in the fourth row of Table 4.3. (We have

applied a Jacobian transformation for the variances of o} and p*.)

B

Br2

P21
Vaug = B23
log(oy)
ZP

Figure 4.2. The augmented-data variance-covariance matrix for the stochastic censoring example (Sec-

Bua
0.013512
0.000000
0.001210

0.007259

—0.002169

—0.008234

b1z
0.000000
0.009502
0.013557

0.000000

0.000000

0.000000

B2
0.001210
0.013557
0.083980

0.003880

—0.000009

—0.002012

(a3
0.007259
0.000000
0.003880

0.023278

—0.000051

—0.012073

log(1)
—0.002169

0.000000
—0.000009

—0.000051

0.039834

0.016296

Zp
—0.008234
0.000000
—0.002012

—0.012073

0.016296

0.081700

tion 4.4.3). When implementing PECM, the block structure can be used to easily calculate DMCEM

60T

ﬁll
ﬁ12
a1

‘/obs = ﬁ23

log(o1)

Zp

Au
0.022862
—0.002858
—0.001765

0.007390

—0.000421

—0.004369

Prz
—0.002858
0.014679
0.008360

0.002187

—0.002109

—0.015253

a1
—0.001767
0.008360
0.260939

—0.081704

0.005719

0.115469

P23
0.007392
0.002188

—0.081708

0.161360

—0.003445

—0.143233

log(1)
—0.000422
—0.002109

0.005719

—0.003444

0.062933

0.029602

Zp
—0.004376
—0.015259

0.115485

—0.143232

0.029605

0.494789

Figure 4.3. The observed-data variance-covariance matrix for the stochastic censoring example (Sec-
tion 4.4.3). The symmetry holds to at least 4 decimal places, indicating accurate computations.

OTT

111

Survival (S)
Clinic (C) Prenatal Care (P) Died Survived
(a) Completely Classified Cases

A Less 3 176
More 4 293
B Less 17 197
More 2 23 N(@) =715 cases
(b) Partially Classified Cases
? Less 10 150
More 5 90 N® = 255 cases

Table 4.4. A 2 X 2 X 2 contingency table with partially classified obser-
vations.

4.4.4. A 2 x 2 x 2 contingency table

Table 4.4(a) presents a 2 x 2 X 2 contingency table on infant survival (Bishop,
Feinberg, and Holland, 1975, Table 2.4-2). The supplementary data in Table 4.4(b)
was added by Little and Rubin (1987, p. 187) to form a partially classified table.

Suppose we wish to fit a log-linear model with no three-way interaction:

log(@ijk) = Ug + (—1)1_11”3 + (—1)j_1uc + (—l)k_luS

+ (—1)i+juPC + (—1)j+kuCS + (—1>i+kuPS, (441)

where 6,5, is the cell probability for cell (i,7,k) for 4,5,k = 1,2, with ¢ cor-
responding to P, j to C' and k to S. We will derive the MLE of U =
)T

(ug,up,...,ups)' and Vs, the asymptotic variance-covariance matrix of U* .

Meng and Rubin (1991b, 1993) describe an ECM algorithm with three CM-

steps for this problem. Specifically, since the loglikelihood is linear in the cell counts,

112

Y = {yijr}, the E-step simply involves imputing the missing data,
(t)

0
) ~(a) | ~(b) Tijk
E vy = i + i JQ(t) , (4.4.2)
> i
where gjl(;,z are the cell counts in Table 4.4(a), and gjg::) are the marginal counts

classified only according to parental care and survival (see Table 3(b)). The CM-
steps make use of IPF. Given the current estimated cell probabilities {92(2:} , the

three CM-steps are

a3) Yig+
CM; : Gijk 3 = Qij(k) N

a2) Yitk
CM; : Qijk 3 = ei(j); AR

a3 (t+3) Y4k
CMs; : Gijk 3/ = e(i)j;

where N is the total count, 05 = 0k />, 0ijk is the conditional probability
of the third factor given the first two, and y;j+ = >, viji, etc. It is easy to
see that CM; maximizes L(0|Y) subject to 0;;1) = 92(;)(1) for each i and j,
so that the constraint function g1(0) = {6;;1)}. Likewise g¢2(6) = {0;1)x} and
93(0) = {0(1);r} - It is clear that this is not a PECM algorithm.

We start ECM with 0,5, = % for each i, j, and k, which satisfies the

constraint of no three-way interaction, and cycle according to ECM : E — CM; —

CM; — CMs. At each iteration, U® can then be calculated by regression
UY = (XTX) X Tlogh®, t=1,2,3,... (4.4.3)

where the design matrix X is derived from (4.4.1) with elements either +1 or
—1. Notice that we are defining two mappings, My : 6 — 90+ and My :

U® — U+l The 6 parameterization is more natural in the context of the E

113

and CM-steps. The U parameterization is more convenient in the context of the
log-linear model, and is a stable parameterization for the SECM calculations.

To compute V,ps on the U scale we need to derive DMEFCM — DMEM
and Viue = Var(U*|Y™), where Y* = E(Y|6*, Yobs) . Implementing Algorithm 2
on the mapping induced by My will yield DMFEM | Since this is not a PECM
algorithm, we cannot use (4.2.3) to derive DMM . Instead, SCM in Algorithm
3 is used. Replace Y = {l@%,i,j,k = 1,2} with Y* in each CM-step and
use the CM algorithm iteration, CM; — CMy; — CMj3 in CMSTEPS; Algorithm 3
differentiates this mapping and produces DM | Finally, we compute Vaug via a
log-linear models package. Since all standard programs use the sufficient statistics
as their input, and I, is linear in the augmented-data sufficient statistics, fitting

(4.4.1) using Y* as the data will yield V,.,. For example, in ‘S” (AT&T Bell

Laboratories) V,us can be computed with

> model<-glm(formula=Y* ~ P + C + S + PC + PS + CS,
family = poisson(link = log))

> summary(model)$cov.unscaled

where P, C, S, etc. are vectors of +1 and —1 determined by (4.4.1) and are the
columns of the design matrix X . The parameter uy in (4.4.1) is just a scale
parameter that insures that > 6;;;, = 1 and it should be ignored in the calculation
of Vius as there are only six free parameters. Replace DMFCM = DMEM and
Vaug Wwith the 6 x 6 submatrices corresponding to the other six parameters before
computing Vs using (4.2.5).

The results are presented in Table 4.5. The calculated matrix V,,s was

symmetric to nine places beyond the decimal, which is more accurate than expected

up

us

uc

upgs

ucs

upc

U 1 0.406944871

—1.565681190

0.181533221

—0.044421642

—0.424777146

—0.661665499

sd(U*) 0.117611832

0.092744286

0.135159680

0.117485008

0.132665503

0.058468375

0.013832543
—0.001820668

Vobs 0.010260487
0.012248728
0.009021918
—0.001188741

—0.001820669
0.008601503
0.003117086

—0.002317204
0.002471190

—0.000336477

0.010260487
0.003117087
0.018268139
0.008670459
0.016175245
—0.001602312

0.012248728
—0.002317203
0.008670460
0.013802727
0.009881753
0.001145066

0.009021917
0.002471191
0.016175245
0.009881752
0.017600136
0.000532728

—0.001188741
—0.000336477
—0.001602312
0.001145066
0.000532728
0.003418551

tud = —3.329440804

Table 4.5. The MLE U* and Vs for model (4.4.1) with data given in Table 4.4

VIT

115

Survival (S)

Clinic (C) Prenatal Care (P) Died Survived
A Less [0.0016, 0.0115] _ [0.2244, 0.2876]
More [0.0040, 0.0156] [0.3566, 0.4200]
B Less [0.0180, 0.0391] [0.2531, 0.3181]
More [0.0013, 0.0090] [0.0205, 0.0457]

Table 4.6. 95% marginal confidence intervals for * in model (4.4.1).

£ECM — 10—16, é&SECM — 10—8 £SCM —

since the algorithm was run with , and

10~ . The ECM algorithm required 70 iterations to converge.

The information in Table 4.5 can be used to construct confidence inter-
vals. For example, we can derive the Jacobian J of the transformation from
logit(#) to U in order to calculate the observed Fisher information matrix for
logit(0*) : I,(logit(6*)|Yons) = J ' I,(U*|Yops).JJ. Assuming approximate normality
on the logit(#) scale, we can construct confidence intervals for each of logit(6;;x) ,

and then transform to the 6 scale. Table 4.6 is an illustration.

The calculations presented in the context of this example are in fact quite
general. Bishop, Feinberg, and Holland (1975) describes how either IPF or closed
form solutions can be used to fit any hierarchical log-linear model to contingency
tables with augmented data. This means that the CM-steps can easily be identified
for any such model. Since the E-step in (4.4.2) can easily be generalized to any
table with incomplete data, the SECM algorithm for fitting a log-linear model to
any table can easily be formulated. These calculations are described more fully by

van Dyk (1993).

116

Y; 8 6 11 22 14 17 18 24 19

Y, 59 58 56 53 50 45 43 42 39
Yi 23 26 40 4 4 S 6 8 10

Yo 38 30 27 - - - - - -

Table 4.7. The data used in the monotone missing-data example (Sec-
tion 4.4.5.

4.4.5. A bivariate normal example

The data given in Table 4.7 are assumed to follow a bivariate normal distribution
with parameters (1, p2,01,02,p). As in Meng and Rubin (1991a), we will use the
parameterization 6 = (p1, p2,logoq,logos, Z,) . Notice that because of the mono-
tone pattern of missing values, there is no missing information for ¢¥; = (u1,01),
and hence we can use either the standard ECM algorithm, or first estimate
to get ¥ using standard augmented-data estimates and then use ECM * of Sec-
tion 4.2.4 to find 95 . To implement the standard ECM algorithm, we will use the

the two CM-steps

oMy s o = on(, | o)

CMy: 052 = M, |07, (4.4.4)

where Y9 = (p1,logo1, Z,) , and the function CM (§|¢) takes on the value of £ that
maximizes Q(0|0™) conditional on ¢. To implement ECM * , we will fix 9, = 9%
and use the algorithms in Section 4.3. We need only note that the input for ESTEP
is 9(t) = (19{,19%”) and CMSTEPS consists of the CM g -step given in (4.4.4). The

increase in variance due to the missing data, AV, can be calculated with (4.2.8)

117

where AV (959%) is given by (4.2.7). DMFCM™ and AV (959%) are given in

SECM SSECM .

Table 4.8 for several values of and

It is interesting to compare ECM * with EM. Since there is no missing in-
formation for ¥, in this example EM produces 9] in one step. Consequently, the
E-steps from EM after one iteration and form ECM * both condition on ¥ = 97
and will produce the same sufficient statistics, S (t) (Yops) for the same value of ﬂét) .
It is a simple fact of calculus in this example that CM (2|0 = 97) = CM(V2).
The maximization step from EM and ECM * will produce the same value of 195””
for the same value of S (Yyys) after one iteration. Therefore, the mapping induced
on Y9 by running ECM * will be the same as the mapping induced on 95 by run-
ning EM. Comparing DMFEM" given in Table 4.8 with DM* given in Meng
and Rubin (1991a) verifies this. There is a slight difference between the number of
iterations required because we used the convergence criterion (i) of Section 4.3.4

whereas they used (4ii) .

Since EM and ECM * induce the same mappings in this situation, SEM and
SECM * are identical. SECM has a distinct advantage over SEM, however. When
there is no missing information for #; , the standard SEM algorithm fails because
some of the denominators of (4.3.3) are zero and therefore a special version similar
to SECM * must be implemented (Meng and Rubin, 1991a). Since the CM algo-
rithm does not converge in one iteration even when there is no missing information,
the denominators are never zero, and thus the situation is less critical for SECM
and we may proceed with the standard algorithm. Table 4.9 records the results of

applying the standard SECM algorithm given in (4.4.4). As is evident from Ta-

Stopping ECM SECM
Criteria |Iterations|Iterations for DMECM” AV (95]97)
ECM;SECM | for 93 DMECM”
2 3 0.333 0.042 —-0.052 1.151285 0.138119 —0.232521
1074 1072 25 7T 6 1.407 0.289 0.010 | 0.170981 0.025525 —0.024140
11 5 —0.648 0.017 0.470 | —0.110795 —0.008875 0.039972
2 11 14| 0.333 0.040 —0.028 | 1.085282 0.166673 —0.093734
1078; 1074 44 19 17 16| 1.444 0.299 0.019 0.167022 0.028514 —0.009820
20 12 17| —-0.642 0.015 0.325 | —0.093318 —0.009753 0.019379
2 20 23| 0.333 0.050 -0.028 1.085838 0.167083 —0.093349
10712, 1076 63 29 26 26| 1.444 0.299 0.019 0.167087 0.028555 —0.009778
29 20 26| —0.642 0.015 0.325| —0.093344 —0.009777 0.019352

Table 4.8. Number of ECM * and SECM * iterations and convergent values of DMFCM™ and

under three different convergence threshold in the monotone missing-data example (Section 4.4.5).

AV (93]97)

8TT

Stopping ECM SECM
Criteria Iterations Iterations AV
ECM;SECM | for 6* for DMFCM

3 2 3 2 2]-0.216878 -0.026844 0.509994 0.034717 0.183486
10~4; 4 3 3 3 3| 0.008955 0.008688 -0.006716 0.004098 -0.014324
47 6 2 5 2 2] 0.343573 0.060970 0.331937 0.125992 -0.410751
102 5 6 7 5 6| 0.023331 0.012508 0.135287 0.032239 -0.035117
10 7 11 7 5 [-0.009776 -0.011889 -0.088636 -0.015762 0.043422
8 6 & 7 8| 0.022126 -0.001376 -0.116788 -0.003779 0.031776
108; 23 19 8 18 20| 0.000889 -0.001061 -0.003298 -0.001884 0.000524
88 26 9 23 13 20 |-0.019489 -0.002430 1.196050 0.165772 -0.125586
10~ 7 21 23 7 22| 0.001040 -0.001843 0.162477 0.025473 -0.009010
23 19 23 9 22]-0.000522 0.000661 -0.091476 -0.008647 0.019110
44 31 41 34 41 | -0.000001 0.000076 -0.000046 0.000073 0.000044
10~12; 35 32 29 31 32| 0.000001 0.000000 -0.000003 -0.000001 0.000000
130 47 31 44 34 41| 0.000027 -0.000094 1.085844 0.166995 -0.093399
10~6 28 33 35 31 34| 0.000003 -0.000001 0.167081 0.028554 -0.009779
35 31 35 28 34 |-0.000002 0.000000 -0.093342 -0.009777 0.019352

Table 4.9. Number of ECM and SECM iterations and convergent values of AV under three different conver-
gence thresholds in the monotone missing-data example (Section 4.4.5).

61T

120

ble 4.8, however, the standard SECM algorithm requires approximating the zero

elements in the rate matrix and is therefore less efficient and less stable. In partic-

£ECM é&SECM to

ular, SECM is slower to converge, requires smaller values of and
obtain satisfactory symmetry, and requires the calculation of the DMFCM matrix,
which can be of a much larger dimension than the DMFCM" matrix. Nevertheless,

it is noteworthy that standard SECM does produce Vgs, whereas SEM must be

modified in this situation.

4.5. Diagnostics and Variations

4.5.1. Checking the symmetry of V¢

One of the most valuable properties of SECM is that, like SEM, it has a built-in
diagnostic. Section 4.3 describes all the steps required by SECM. It is the last
step, the computation of AV, that helps us know if mistakes have been made
in any of these steps. The variance-covariance matrix, Vo,s = Vaug + AV, and
thus AV, must be symmetric, but if any of #*, DMFCM = DMCEM = or L
are not calculated correctly, it is practically certain that the resulting AV and
hence V,ps will be asymmetric. The example in Section 4.4.1 documents that
this diagnostic not only checks the computation of VL5 but also detects errors
in implementing the E and CM-steps. Convergence of the #(Y) sequence does not
insure that the convergent value is the MLE, 6*. Many erroneous algorithms

converge. In fact, we had an instance in which our algorithm increased the likelihood

121

at each step and converged, but the resulting V,,s was asymmetric. In this case,
careful checking led to the discovery of some subtle errors in implementation. There
is no other diagnostic known to us that can automatically detect these errors, and
one perhaps would never find them without the detection power of this tool. If
Vobs 1s symmetric, however, we are virtually assured that both 6* and Vs are
correct because it seems practically impossible to make separate errors in SECM

that cancel appropriately.

Even when SECM is implemented correctly, the convergence threshold ¢F¢M
needs to be quite small in order to obtain a Vs matrix with satisfactory symmetry;
this implies an increase in the number of iterations required, especially when 6 is
of high dimension. The more precisely we calculate 6* , the more accurately we are
able to compute Vs , because we are able to compute DMFCM and DMM more

accurately, as demonstrated by the example in Section 4.4.5. In general ¢SFCM

£9CM are chosen to be about equal to the square root of £¢M They should

and
be chosen as small as possible, however, so that (4.3.4) is satisfied for some t;;

for each i and j. In order to increase the accuracy of DMFCM and DMEM

é&SECM £SC’M

and may even be different for different components. When deciding
on convergence thresholds, a good rule of thumb is that V,ps will be symmetric to
about half as many digits as 6* is precise; for example, roughly, when £F¢M ig
10~8, we can expect 3 or 4 digits of accuracy in Vs . The accuracy of Vs can
always be judged by its symmetry, however, and gross asymmetry always indicates

either errors in implementation or numerical imprecision; also see Section 5 of Meng

and Rubin (1991a).

122

4.5.2. Computing Vs when implementing AECM

The AECM algorithm described in Chapter 3 is a generalization of ECM in which
the data-augmentation and model-reduction schemes are allowed to vary from it-
eration to iteration. Although this can lead to much faster algorithms, the mathe-
matical formulation of the rate matrix is much more complicated than that of ECM
(see Section 3.3). Consequently, direct implementation of the supplemented AECM
algorithm would be quite involved. Sometimes, however, there is an easy solution.
In Algorithms 2 and 3, we evaluate the ratio r;; using the ECM iterates in order
to calculate DMPEM and DMEM | But there is nothing that requires the use of
the ECM iterates in these algorithms, just the ECM code, and we can actually use
any sequence) converging to 6*. For the AECM algorithm there is generally
a corresponding ECM mapping (i.e., from the first cycle of each AECM iteration).
Such an ECM mapping may not be useful for computing 6* because it may not
be space filling, but it can be used for the SECM algorithm which does not re-
quire the space-filling condition once 6* is obtained. In the case of MCECM, we
can also obtain the ECM code by simply dropping all but the first E-step for each
space-filling sequence of CM-steps. With the ECM code in hand, we can use the
AECM iterates as input for the algorithms and compute Vs just as described in
Section 4.3. That is, AECM can be used when we calculate #* in Algorithm 1,
but the ECM algorithm should be used in Algorithms 2 and 3 in which ESTEP will
consist of one E-step, and CMSTEPS will consists of a space-filling set of CM-steps. If

the AECM iterations were not saved, we can simply run the ECM algorithm when

123

implementing the supplemented algorithm to calculate V,ps. Generally, running
ECM in this round will not slow the convergence, since we only need to start at

initial values that are close to 6* .

Chapter 5

Efficient Model Reduction:
Permuting CM Steps

5.1. Introduction

The AECM algorithm developed in Chapter 3 can increase the efficiency of the EM
algorithm via a more flexible data-augmentation scheme and simplifies its imple-
mentation by reducing the augmented-data model. Chapter 2 developed a method
of selecting an efficient data-augmentation scheme. In the current chapter, we will
examine the possibility of building more efficient algorithms by looking at a key
aspect of model reduction in the context of the ECM algorithm. Specifically, with
ECM, model reduction extends the EM algorithm by replacing the M-step with sev-
eral CM-steps. Because each of the CM-steps maximizes Q(8|6*)) over a different
subspace of © , the “space-filling” condition is required to guarantee that the whole
parameter space © will be searched after we perform a set of CM-steps, but there
is no restriction on the order in which we choose to perform them. Moreover, the

order of the CM-steps can significantly affect the number of iterations required for

124

125

convergence. Taking an extreme example, when the ECM algorithm was used to
fit a log-linear model to a certain sparse contingency table with partially classified
counts, the ECM algorithm with one order of CM-steps required 27 times as many
iterations (i.e., CPU time) as another order. It is therefore of practical interest
to conduct an investigation of the impact of ordering on the computation time re-
quired by ECM, especially since the same computations are required to implement

one iteration of ECM regardless of ordering.

The purpose of this chapter is twofold. First, using the common contingency
table problem, we illustrate the impact of changing orderings on the actual number
of steps required for convergence. Second, we bring to light several remarkable and
sometimes troubling phenomena that arose in our investigation. We will see how
the standard theory for studying such algorithms and the seemingly related theory
of stochastic iterative algorithms lead to conclusions that are quite different from
what we see in practice. At a very practical level, we will show that the missing-
data structure seems to be ancillary to the relative efficiency of CM-step orderings
and that in some situations one of the standard convergence criteria can be very
misleading. These findings reinforce a lesson that is often forgotten — empirical
study is an irreplaceable criterion for realistic evaluation. It is somewhat remarkable
that this lesson repeats itself again and again in one study, where theory, intuition

and common wisdom all fail the empirical evaluation.

In order to evaluate the effect of permuting CM-steps, the global rate of
convergence for ECM is introduced and developed in Section 5.2. The difference

between theory and empirical findings is reported in Section 5.3, which discusses

126

reversing the order of CM-steps, and an investigation of general permutations is
presented in Section 5.4. Section 5.5 explores the sources of variation in iterations
required for convergence. In light of the theory of stochastic relaxation, Section 5.6
studies the question of whether it is a good strategy in practice to cycle through the
different permutations of CM-steps or to randomly select an order at each iteration.
Section 5.7 provides concluding remarks including several interesting practical issues

in selecting a convergence criterion.

5.2. The Rate of Convergence of ECM

5.2.1. The matrix rate

In Section 1.6 we presented the matrix and global rates of convergence for EM. In
the development of the SECM algorithm, the matrix rate was extended to ECM in
Section 4.2.2. In this section, we will extend the global rate to ECM. Like EM, the
ECM algorithm implicitly defines a mapping MFCM . 9(t) — g(t+1) — prECM (g)
from the parameter space O to itself. Let 6* be the limit of {G(t) :t >0} . Suppose
that MFCM (@) is differentiable in a neighborhood of #*. Then a Taylor’s series

approximation yields
(9(t+1) . 9*) ~ (9(75) . 9*)DMECM(0*)

where

00;

127
and DMFCM(9*) is nonzero when there is missing information (Dempster, Laird,
and Rubin, 1977; Meng and Rubin, 1991a, 1994a) or when there is more than one
CM-step. Thus, the ECM mapping is linear if we ignore the higher order terms in
the Taylor’s series expansion. This approximation becomes exact at convergence of
ECM, and thus DMFCM(§*) is called the (matrix) rate of convergence of ECM
(e.g., Meng, 1994). Since DMFCM () will always be evaluated at 6 = 0* | we will

suppress the dependency on 6 when referring to the matrix rate of convergence.

5.2.2. The global rate

As with EM, in order to assess convergence, consider the ratio

16 — 6|
= t=12 ... 5.2.1
rt ||0(t_1)_0*H7 y“ ()
where || - || is the Euclidean norm. Algorithms which have smaller values of r;

tend to converge more quickly. It is trivial to show that

¢ i
Tim |/][00) — 0+] - [H]) (5.2.2)

The limsup of the term p, = {/m is known as the root convergence
factor (denoted p) and is equal to the spectral radius of DMFCM (i.e., the largest
norm of the eigenvalues; Ortega and Rheinboldt, 1970, 10.1.4). Equation (5.2.2)
says that the geometric mean of the r; tends to the spectral radius of DMFCM
Thus, the spectral radius of DMFCM controls the rate of convergence of the ECM
algorithm, and, in theory, algorithms with smaller spectral radii are preferred. For

computational purposes, we will use the empirical root convergence factor p; =

[Ty 7]/, where #; = [|94) — 86=D]|/||g6=1) — 9= i > 2.

128

It is worth noting that if DMFYM has a spectral decomposition under sim-
ilarity transformations (as is always the case with the EM mapping; see Meng
and Rubin, 1994a), r = lim;_, r¢ exists and is equal to the spectral radius of
DMFECM " Thus, in the EM literature (as in Section 1.6) the convergent value of
(5.2.1) is used to assess the rate of convergence of the algorithm. This will not suffice
in the ECM case as lim;_,~ r; may not exist and limsup,_,,, r; can be greater than
the spectral radius. This is illustrated in Figures 5.1 and 5.2 with a pure linear iter-
ation of a particular DMFYM matrix. In the figures, 6 is three dimensional and
the componentwise rate of convergence is defined as r;; = (92@ - 9;)/(9§t_1) —6r),
i=1,2,3 (i.e., (5.2.1) applied to each component).

In practice, the quantity of real interest is the actual number of iterations
an algorithm requires for convergence. If p; can be well approximated by p, the
spectral radius of DMPEM then the number of iterations required for convergence,

N, is related to p via
-1

N x ,
log(p)

(5.2.3)

where the constant of proportionality depends only on the starting value and the

convergence criterion.

5.2.3. Factors effecting the global rate

In order to study p under different orderings of CM-steps, we need to investigate
how DMPFCM varies with these orderings. As discussed in Chapter 1, Meng (1994)

showed that

[I — DMFCM) = [T — DMPM|[T — DME™M], (5.2.4)

componentwise rate

Estimating the Rates of convergence

iteration

Figure 5.1. Rates of convergence with a com-
plex dominant eigenvalue. The plot shows the
overall rate of convergence (5.2.1) as a func-
tion of the iteration (solid line). The dashed
lines are (5.2.1) applied to components of 6.

p =0.692

overall rate

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Overall Rate

LT | .,
(AR

T T T T T T
0 200 400 600 800 1000

iteration

Figure 5.2. The empirical root convergence
factor for large ¢ . The plot shows that the os-
cillation of (5.2.1) around p (the straight line)
does not dampen. Note that limsupr; >
p=0.692.

62T

130

where I is the identity matrix, DMPM =T — I, I=1 and

aug’

DMM = Py ... Pg, with P, =V V]I, V,]'"VII L and V,=Vg,(6").
(5.2.5)
In the above expressions, DMPM and DM®M denote the matrix rate of conver-
gence of the EM and CM algorithms respectively. From (5.2.4) — (5.2.5), we see that
DMPFEM depends on the data augmentation through DMFM and on the model
reduction scheme (in particular, the order of CM-steps) through DM%M where
the product of P;’s is calculated in the order that the CM-steps are performed.
There is another way of expressing DM M that turns out to be theoretically

convenient:

DMM = 2, {A, - Ag) T2, (5.2.6)

where

A, =& el e)] with & = LuV..

In other words, DM®M can be written as the product of symmetric (projection)

matrices.

5.3. Reversing the Order of CM-Steps

5.3.1. Theoretical results

Consider the two ECM algorithms, ECM (1, g) with steps ordered

E—CM —---— CMsg,

131

and ECM (g . 1y with steps
E—CMg—---— CM,.

In general, we will use the notation ECM , to denote the ECM algorithm with
CM-steps ordered as in the ordered set o (e.g., o = (1,2,4,3)). This section is
devoted to comparing ECM (; . gy and ECM (g . 1), the effect of reversals. The
following result asserts that the eigenvalues of DMF¢Ma....s) and DMFCMs....n)

are identical, a result that is not immediately intuitive.

Theorem 5.1: In the ECM algorithm, reversing the CM-steps has no effect on the

eigenvalues of DMFCM

Proof: From (5.2.4) — (5.2.6),

[— DMECMa..9)] =[I — DMEM|[T — T2y (A, - Ag) Inu]
:IObSIaug[I Iazug (A AS) aug]

obs[I_ I_ug (A AS) aug] (531)

aug

Since transposition does not change eigenvalues, (5.3.1) has the same eigenvalues

as

1

[l — Ind (A 49 141} = {15l — b (s 40 1nd } Lo
(5.3.2)
Finally, using the fact that for square matrices G and H, GH and HG have the
same eigenvalues, we can conclude from (5.3.1) — (5.3.2) that I — DMFCMa...s)

has the same eigenvalues as

132

ons[Ik — Iz (As -+ A1) L] = [I — DMEM|[T — DMCMs.on

aug

From the discussion in Section 5.2, Theorem 5.1 tells us that reversing CM-
steps within the ECM algorithm does not effect the root convergence factor of the
algorithm. We must recall, however, that although ECM tends to be linear near
0* , little is known about its behavior away from 6* . Moreover, the empirical root
convergence factor, p;, is only asymptotically (with respect to ¢) equal to the
spectral radius of DMFCM | So even if the algorithm is linear, it may take many

iterations before p; converges to the spectral radius.

5.3.2. Empirical results

To judge the applicability of Theorem 5.1, a simulation was performed. The ECM
algorithm was used to fit a log-linear model to data from a partially classified
2 x 2 x 2 contingency table (see Sections 3.5.2 and 4.4.4). This ECM algorithm has
three CM-steps, which correspond to the three steps of iterative proportional fitting
(IPF, Bishop, Feinberg, and Holland, 1975); the details are given in Section 4.4.4.
For each simulation 2000 data sets of size n were generated, of which n. were
completely classified and n; were classified only according to margin i (i =1,2,3).
Three simulations were run and the sample sizes for each appear in Table 5.1. Each

data set was generated from the no three-way interaction model

133

Sim. n Ne ni N9 ns
100 25 25 25 25

1
2 1000 100 300 300 300
3 100 40 20 20 20

Table 5.1. Sample sizes for simulations 1-3. This table records the total
number of observations 1, the number of observations that are completely
classified n., and the number m; which were classified only according to
margin ¢ .

Cyclic Permutations

Reversals of ECM (123) ECM (231) ECM (312)
CM Steps ECM (321) ECM (132) ECM (213)

Table 5.2. The ECM algorithms run in the simulations.

log<91]k) = Ug + (—1)i_1u1 + (—1)j_1U2 + (—1)k_IU3

+ (1) ugg + (1) ugg + (1) Fuys, (5.3.3)

where ;5 is the cell probability for cell (4,j,k). As an attempt to mimic the
variability in parameters governing real data sets, the log-linear parameters were
randomly selected for each data set from u; ~ N(0,1), and w, ~ N(0,0.25), in-
dependently for I[,m =1,2,3, and uy was then chosen so that the cell probabilities

sum to one.

For each data set the model in (5.3.3) was fit using a starting value of
, which is frequently used in practice, with each of the six ECM algo-
rithms resulting from the six possible orderings of the CM-steps. Suppose N;; (i =

1,2; 7 =1,2,3) are the number of steps required for convergence of the six algo-

134

rithms where Nj; correspond to three algorithms with different asymptotic rates
of convergence (c.f., columns of Table 5.2), and N;; correspond to the algorithms

with the CM-steps reversed (c.f., rows of Table 5.2). Consider the quantity,

3 2i(N1j — Noj)®

R? = =
Zz‘j(Nij _N-~)2

(5.3.4)

which is the proportion of the total variation among the NV;; that can be accounted
for by reversing the CM-steps. If Theorem 5.1 also implies that reversing the order
of CM-steps does not effect the actual number of steps required for convergence, R?
should be near zero. Figure 5.3 shows that simulated values of R? from the three
simulations are actually skewed towards one (computed when the denominator of
(5.3.4) was greater than zero). Thus, step reversals seem to be more important than
Theorem 5.1 implies.

To explore this further, Figure 5.4 shows estimated densities for the possible
percent increase in efficiency due to (a) step reversals (dotted line:
1 — min(Nyj, Naj)/ max(Ny;, No;)) and (b) general permutations (solid line: 1 —
min; ;(V;;)/ max; ;(N;;)). Notice that although the effect of general step permuta-
tions is slightly greater than that of simple step reversals, the step reversals account
for the majority of the variation. This implies that when we consider the effect of
permutation of CM-steps on CPU time, we must consider all S! possible orderings
(as will be discussed in the following section). More than this, however, we must
be somewhat skeptical of analysis of convergence properties of EM-type algorithms
based solely on the spectral radius of the mapping matrix. Such analysis is much
better defined mathematically and more widespread in the literature than attempts

to look at the actual CPU time required for convergence, but may not answer

Histogram of R squared

% times 10

—

f T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

RZ

Figure 5.3. A histogram of the 6000
values of R? observed in the three sim-
ulations described in Table 5.1. Notice
that R? tends to be large which sheds
doubt on the applicability of Theorem 1
to the number of steps required for con-
vergence.

135

Maximum effect of Steps
Reversals and Permutations

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

percent increase in efficiency

Figure 5.4. The figure shows the den-
sity of percent decrease in iterations re-
quired due to (a) step reversals: [1 —
min(Nlj, Ngj)/ max(Nlj, Ngj)] (dOt—
ted line); and (b) general permutation:
[1—min(V;;)/ max(N;;)] (solid line).

questions that users actually face. (An even more relevant comparison in practice

should take into account the users’ effort for implementing different algorithms, an

issue that fortunately need not be considered here because implementing a different

ordering does not increase users’ effort). For completeness, in the next section, we

will present several results which bound the effect of permuting CM-steps on the

spectral radius, but the rest of the chapter will focus on on the actual CPU time,

or equivalently when making comparisons, the actual number of iterations.

136

5.4. General Permutations of CM-steps

5.4.1. Theoretical results

For an ECM algorithm with S CM-steps, there are S! possible orders. In this
section we will explore how much difference there is between these S! algorithms
with regard to CPU time. Again, we will begin our discussion with a look at the
root convergence factor and compare this with results from the simulation presented

in Section 5.3.

Theorem 5.2 will help us to put a bound on the effect of permuting CM-steps

on the spectral radius of DMPEM in the three CM-step problem.

Theorem 5.2: For the general three CM-step ECM algorithm, the determinant of

I — DMFCM s invariant under permutations of CM-steps.

Proof: First we observe that in the three step CM algorithm, the eigenvalues of
DMYM do not depend on the order of CM-steps. To see this, note (i) CM is
a special case of ECM with I, = Iaug, so the observation holds under CM-
step reversals (Theorem 5.1); (ii) it is clear from (5.2.6) that the observation holds
under cyclic permutations (for ECM the eigenvalues will generally change with
cyclic permutations of CM-steps because of the E-step). Together (i) and (ii) give
all possible permutations in the three step algorithm. From this observation it is

clear that |I — DMYM| is constant over permutations of CM-steps. Finally, note

137

that from (5.2.4), we have

I — DMPM| = |Iops| [I5s] [T — DMEM| (5.4.1)
The result is now clear since none of the quantities on the right are effected by
permutation of CM-steps.

[
For the general ECM algorithm, Theorem 5.2 holds only when S = 3. For

the important special case of PECM, however, the result holds for any S'.

Theorem 5.3: For the PECM algorithm (see for example Section 1.3),

Iau Io S
|I—DMCM|:7|S sl an |I—DMECM|:7|S]°| ,
ITis: [T T2, [l

where T,; are the submatrices of the block diagonal matrix YT (4.2.3). Both are

invariant under permutations of CM-steps.

Proof: From (4.2.3), we can write

I - DM M) = [T +TT +T][Y+T7]7! = L [T +T7]7%
Since [T +T'"] is a block triangular matrix, with diagonal submatrices Y, its
determinant is Hle |T;| , which gives the result for [I — DM“M|. Again, (5.4.1)

easily extends this to |I — DMFCM|.

|
The following corollary relates Theorems 5.2 and 5.3 to the spectral radius of

DMECM)

Corollary: Let p, < pg be the spectral radii of DMFMa and DMFEMs respec-

tively, where ECM , and ECM g are either both PECM or both three step ECM

138

algorithms, and in either case, both algorithms are identical except for the order of
the CM-steps. Suppose

I — DMECMs| <1 — pg, (5.4.2)

then
Pp > Pa>1— {/1—pg, (5.4.3)
where d is the dimensionality of 6.

Proof: Let 0 < [[Aa1]l < -+ < |[Aadl] = pa < 1 be the ordered eigenvalue norms
(in complex space) of DMF¢Ma (p, <1 whenever ECM , converges). Using the
fact that the determinant is the product of the eigenvalues, we have
d
(1= pa)® < TTIN = Aaill = [T = DMPOMe| = [T = DMPOMs| < 1 — pg,
i=1
where the first inequality follows from (1 — pg) < ||1 — Aai|| for i < d.
|
Condition (5.4.2) is satisfied whenever all the eigenvalues of DMFCMs are
real and positive, a condition that holds for any EM algorithm. Unlike DMFM
however, it is possible for DMFCM to have imaginary or negative eigenvalues.
But when this happens, our simulations show that the imaginary part of complex
eigenvalues or negative eigenvalues tends to be small in magnitude. We thus expect
that condition (5.4.2) can eventually be removed or proved to be true under simpler
conditions.
Although the bound in the corollary is very crude, it is nontrivial even for
quite large values of d (e.g., d > 20). To see this we use (5.2.3) to put the corollary

in terms of the number of iterations required by the fastest and slowest algorithms

139

that result form permuting CM-steps. Specifically, suppose Nyax and Ny, are
the number of iterations required by the slowest and fastest algorithms respectively,

then

Nrnin > log(prnax)
Nrnax o lOg(l - \/d 1— pmax),

(5.4.4)
where pmax 1S the root convergence factor of the slowest algorithm. A plot of the
right side of (5.4.4) for several values of d appears in Figure 5.5. This represents
the maximum improvement that we could see by permuting CM-steps as a function
of the slowest rate of convergence. Notice that the slower the algorithm (large p)
the more improvement we can hope for, which is consistent with our intuition. We

see that the crude bound provided by the corollary eliminates a nontrivial part of

the impossible values of Nyin/Nmax (i-e, the area below the curves in Figure 5.5).

5.4.2. Empirical Results

Recalling that (5.4.4) is based on the theoretical approximation (5.2.3), we again
turn our attention to the simulations described in Section 5.3 regarding the actual
number of steps required. The simulations use a three CM-step ECM algorithm and
falls under Theorem 5.2. The six possible ECM algorithms were run on each of the
data sets. The quantity Npyin/Nmax was calculated along with the empirical root
convergence factor at convergence of the slowest algorithm, p; . Figure 5.6 shows a
plot of these for the three simulations along with results from a fourth simulation
run with n =200, n. = 140, and n; = 20 for each i, which was added to include
smaller values of p (less missing information). The solid line is the right side of

(5.4.4) with d = 6. Given that we have seen substantial discrepancy between

Nmin/Nmax

1.0

0.8

0.6

0.4

0.2

0.0

A Lower Bound for Nmin/Nmax

0.0 0.2 0.4 0.6 0.8 1.0
rho

Figure 5.5. Bounding Npin/Nmax - This is
a plot on the bound givin in (5.4.4) for d =
2,3,5,10, and 20 (from top to bottom).

Nmin/Nmax

1.0

0.8

0.6

0.4

0.2

0.0

Testing The Bound

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
rho
Figure 5.6. Testing the bound on
Nmin/Nmax - We plot the 8000 simulated

values of p versus the relative increase in effi-
ciency due to permuting CM-steps compared
with the bound given in (5.4.4) for d = 6.

ovI

141

theoretical approximations and simulation studies, it is somewhat remarkable that
(5.4.4) holds for all the simulated data sets. This probably is because the bound is
crude and therefore conservative, but the plot also indicates that it is approachable
by a few actual cases. We also notice that except for a few extreme cases which
converge very slowly, there seems to be little empirical evidence for substantial

increased relative improvement with p.

5.5. Factors Affecting Relative Gain

In Figure 5.4, we see that the relative reduction in the number of steps required
by choosing the optimal order is typically within 20%. But there is a non-trivial
portion of cases where the relative gain is more substantial. In practice, we would
like to know what factors in the data and of the model will make large improvements
likely. In this section we will discuss three possibilities: the number of CM-steps,
the relative amount of incomplete data, and the sparseness of the data relative to

the number of model parameters.

5.5.1. The effect of the number of CM-steps

In order to evaluate the impact of the number of CM-steps, we ran a simulation on a
2 x 2 x 2 x 2 table. This simulation was designed to be comparable with simulation
1 (see Table 5.1) and is described in the second row of Table 5.3 as simulation 5. As

in simulation 1 there were ni, ns and ns observations which were not classified

142

Sim. n Ne ny no ns 100 X ¢4 L
1 100 25 25 25 25 6.00 0.75
57 233 59 58 58 58 6.00 0.75
6 40 16 8 8 8 15.00 0.60
7 75 30 15 15 15 8.00 0.60
8 150 60 30 30 30 4.00 0.60
9 500 200 100 100 100 1.20 0.60
10 10000 4000 2000 2000 2000 0.06 0.60
11 100 16 28 28 28 6.00 0.84
12 100 31 23 23 23 6.00 0.69
13 100 46 18 18 18 6.00 0.54
14 100 61 13 13 13 6.00 0.39
15 100 76 8 8 8 6.00 0.24
16 50 10 30 10 0 12.00 0.80

T Four CM step algorithm for a 2 x 2 x 2 x 2 contingency table

Table 5.3. Simulation sample sizes for simulations 5 — 16. This table records
the total number of observations 7, the number of observations that are
completely classified 7., the number n; which were classified only accord-
ing to margin ¢, the index of sparseness (s, and the index of the amount
of incomplete data ¢; .

by two of the categorical variables, this time resulting in three 2 x 2 marginal
tables. In order to keep simulation 5 comparable with simulation 1, the index of
the amount of incomplete data (i.e. ¢; = 1—mn./n) and the index of sparseness (i.e.
ts = (number of parameters)/n) were held constant as described in the first
two rows of Table 5.3. The data was simulated by the method analogous to that
described in Section 5.3, and we fit the model with only main effects and two-way
interactions. This model requires six CM-steps and resulted in 6! = 720 possible
algorithms, all of which were run for 1000 simulated data sets. Again, for each
data set the number of iterations required by the fastest and the slowest algorithms

were recorded, Npin, and Npax respectively. The quantity Nuyin/Nmax 1S the

CDF of min(N)/max(N) CDF of min(N)/max(N)

CDF of min(N)/max(N)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.2 0.4 0.6

0.0

1.0

0.8

0.6

0.4

0.2

0.0

143

Effect of the Number of CM-Steps

1 six steps
three steps

r T T T 1

0.80 0.85 0.90 0.95 1.00

effect of permutation

Effect of Sparseness of the Data

Ls =0.1500
Ls =0.0800
Ls =0.0400

| Ls =0.0120
Ls =0.0006

0.80 0.85 0.90 0.95 1.00

Effect of Amount of Incomplete Data

L; =0.84
L; =0.69
L; =0.54
L; =0.39
: L; =0.24

r T T T 1

0.80 0.85 0.90 0.95 1.00
effect of permutation

Figure 5.7. CDFs of the number of iterations required for convergence for
the simulations described in Table 5.3. The CDF's demonstrate the effect of
the number of CM steps and sparseness of the table; and the lack of effect
of the missing data structure.

144

complement of the maximum percent increase in efficiency due to permutation of
CM-steps and its cumulative density function (CDF) appears as the top line in the
top panel of Figure 5.7. This can be compared with the bottom line which is the
CDF for the same statistic from simulation 1. Since the CDF of simulation 1 is
lower than that of simulation 5 we see that the six step algorithm tends to produce
lower values of Nyin/Nmax , and thus permutations are more important in the six
step algorithm. This, of course, confirms our intuition that the more CM-steps we
have, the more possible orders there are, and thus the more discrepant the minimum

and maximum number of steps required should be.

5.5.2. The effect of sparseness

To evaluate the effect of the amount of incomplete data and sparseness, we return
to the 2 x 2 x 2 table described in Section 5.3. Ten additional simulations were run
and are described in Table 5.3. Simulations 6 — 10 are designed to look at the effect
of sparseness and thus the amount of incomplete data were fixed at ¢; = 60% for
each of them. The CDF of Nyin/Nmax for each of these simulations appears in the
second panel of Figure 5.7; simulation 6 is on the top and simulation 10 is on the
bottom. The effect of sparseness is clear — permutations make more difference in
tables with less data. In particular, in tables with several zero cells permutations
are especially important. In addition to the 2 x 2 x 2 tables, in simulation 5 which
used a six CM-step algorithm, in 0.8% of the 2 x 2 x 2 x 2 tables generated, a
relative improvement in efficiency of over 90% was observed (e.g. optimal order is

more than 10 times faster than the slowest order). All of these tables had several

145

zero cells. This finding suggests that it is more important to study the issue of
ordering with sparse tables, where the gain (or loss) can be very substantial. The
reason that sparseness is important is somewhat elusive. One possible explanation,
however, stems from the fact that each CM-step computes MLEs conditional on
a function of the parameters and the data. When there are more data relative
to the number of parameters, the data become relatively more important in this
computation. The function of the parameters becomes less important and thus the

order in which we condition on different functions of the parameters matters less.

5.5.3. The effect of the amount of incomplete data

Simulations 11 — 15 investigate the effect of the amount of incomplete data and
the sparseness was fixed at ts = 0.06. The corresponding CDFs of Npyin/Nmax
appear in the final panel of Figure 5.7. When there are more incomplete data, the
CDF's tend to be smoother since they require more steps to converge and thus the
integer division in Npin/Nmax results in less of a step function. On the other hand,
the relative decrease in steps required does not seem to change as ¢; increases. It
should be noted, however, that when there is more missing information the ECM
algorithm is slower so that even with the same relative increase in efficiency, the

absolute increase in efficiency (i.e. absolute time saved) will increase with ¢; .

Another way to look at the effect of incomplete data is to look for a relation-
ship between the missing-data structure and the specific order of CM-steps. For
example, in a 2x 2 X 2 table, when the no three-way interaction model is fit, each of

the three CM-steps estimates the main effects and the two-way interaction in one of

146

the three 2 x2 marginal tables. Depending on the incomplete-data structure, these
marginal tables may have more or less incomplete data. To be specific, consider
simulation 16 of Table 5.3, where 60% of the data are classified only according to the
first margin. Thus, when we add across this margin these data will be completely
unclassified. Since n3 = 0, however, when we add across the third margin all of
the data will be at least partially classified. It therefore may be efficient in this
simulation to first run the CM-step that operates on the marginal table which sums
over the third margin, that is, the first CM-step is to fit the 2 x 2 table correspond-
ing to the first two factors. This strategy has been a rule of thumb in practice,
and seems to be inspired by the common technique of factoring the likelihood when
some marginal densities have no missing data. For example, an application of ECM
to bivariate normal data (Section 4.4.5) illustrates the computational advantage of
estimating first those parameters with no missing information. In the context of
simulation 16, however, there seems to be little benefit in first running the CM-step
with the most data (i.e., the step corresponding to summing over the third factor).
Figure 5.8 compares the log of the number of iterations required for each of the
six possible orderings. Each of the smaller plots compares two orderings and each
point represents one of the 1000 data sets. There is no indication that any one or-
dering tends to be more efficient. This was confirmed by several other simulations.
The missing-data structure does not seem to help us identify the optimal order of

CM-steps, at least not as much as conventional wisdom would have predicted.

147
Effect of Missing Data Structure

2 3 4 5 6 2 3 45 6 2 3 4 5 6

orderl

order2

order3

order4

order5

order6

log of number of steps required

Figure 5.8. This plot compares the log of the number of steps required
for each pair of the six possible ordering of C'M steps. Notice how closely
orderings 1 and 3 and orderings 4 and 6 coincide.

148

5.5.4. Summary of factors affecting relative gain

To summarize the results we can look at the ECM algorithm as a composite of
the EM algorithm which works on the missing data and the CM algorithm which
introduces model reduction via conditional maximization. More missing data slow
down the EM or ECM algorithms, as is evident by the relative smoothness of the
CDFs in the bottom plot in Figure 5.7, but has little effect on how the CM-steps
interact. Whether or not there are missing data it is the sparseness of the data
defined by ¢, and the number of CM-steps that are important in gains due to CM-
step permutation. Since neither of these are characteristics of the missing data,
it may suffice to look only at the characteristics of the CM algorithm in order
to understand how to improve ECM through CM-step permutation. In the next
section we will look at a strategy that has been suggested in a stochastic version of

the CM algorithm known as stochastic relaxation.

5.6. The Cycled and Random ECM Algorithms

5.6.1. The cycled ECM algorithm

If changing the order of CM-steps greatly affects the rate of convergence of ECM,
we could lose efficiency by making the wrong choice of how to order the CM-steps.
Lacking a method for choosing a good order, we might hope to decrease the risk of
a badly inefficient algorithm by somehow averaging the orderings. One strategy a

practitioner might employ is the “cycled” ECM algorithm described below.

149

Given an ECM algorithm with S CM-steps, let ECM ,, (i=1,...,5!) be
the algorithms resulting from all the possible permutations of the CM-steps. The
cycled ECM algorithm runs one iteration from each of these algorithms in an arbi-
trary order, and then continues to cycle through them until convergence. As will be
described in Section 5.7, this can create instability in the step size ||§®*) —gt=1]|,
and care must be taken when evaluating convergence of the algorithm. In the simu-
lation, we ran the algorithms until the difference between consecutive loglikelihood
values, L(0¢HD|Yyys) — L(OM|Yyps), was within a pre-specified threshold. Since
this requires the evaluation of the actual likelihood, it may not always be feasible in
practice, although it is always desirable, since it allows us to be sure the likelihood

is increasing at each iteration, a feature of ECM when it is implemented correctly.

5.6.2. Empirical evaluation of cycled ECM

The rationale behind the cycled ECM algorithm is the hope that although it will
not be as fast as the fastest ordering of CM-steps, it also should not be as slow as
the slowest. It turns out that neither of these is true. In the simulations described in
Table 5.1, in addition to the six ECM algorithms, we ran the cycled ECM algorithm
that incorporated the six ECMs. There were cases where cycled ECM was the
fastest, but also cases where cycled ECM was the slowest. A useful comparison
is to compare cycled ECM with a randomly selected ECM algorithm. That is, on
the outset of running the ECM algorithm, an order for the CM-steps is chosen
at random and fixed until convergence. Let the number of iterations required for

convergence of the resulting ECM be Ny . This is compared with N, , the number

150

Sim.]\ff>.NC Nf:NC Nf<NC

1 0.340 0.141 0.512
2 0.447 0.095 0.459
3 0.325 0.207 0.468

Table 5.4. N_. versus Njy. The number of iterations required for con-
vergence for the cycled ECM algorithm (N.) and ECM with CM-steps in
a randomly chosen fixed order (Ny) for the 6000 simulated data sets de-
scribed in Table 5.1.

of iterations required for cycled ECM. For a fair comparison, we define an iteration
to be one E-step followed by three CM-steps for both algorithms (regardless of the
order of CM-steps). The results for the three simulations in Table 5.1 appear in
Table 5.4, and make it clear that on average cycled ECM offers no advantage over

haphazard selection of a fixed order of CM-steps, at least in this example.

5.6.3. The random ECM algorithm

In what has been described above, the order in which we cycle through the ECM
algorithms is chosen in advance. Instead of doing this, however, we could randomly
select an order at each iteration. The rational for this strategy stems from Amit
and Grenader’s (1991) recommendation in the context of stochastic relaxation (or
Gibbs Sampler), a procedure useful when it is difficult or impossible to draw from
the joint density L(61,...,60s), but it is relatively easy to draw from all conditional
densities L(0s0s;s" # s) (s = 1,...5). This situation is very similar to situa-
tions where ECM is useful: the augmented-data joint MLE for (6, ...60g) is hard
to calculate, but the augmented-data conditional MLE of 6, given {fs;s" # s}
is easy to obtain for all s. With stochastic relaxation, given the current draws

(9&”, .. .,ef;)),egt“) is drawn from £(91|9§t), e, Qg)) , and so on until 9g+1) is

151

Sim. N;>N, N;j=N, N;<N,

1 0.330 0.144 0.527
2 0.445 0.095 0.460
3 0.323 0.218 0.460

Table 5.5. N, versus Ny. The number of iterations required for con-
vergence for the random ECM algorithm (XN,) and ECM with CM-steps
in a randomly chosen fixed order (Ny) for the 6000 simulated data sets
described in Table 5.1.

drawn from £(95|9§t), e Qgt)_l) . Replacing the conditional draws by conditional
maximizations, the CM-steps of ECM mimic exactly the same process. In this
sense, ECM can be regarded as a deterministic version of stochastic relaxation, as
discussed in Meng and Rubin (1992). Amit and Grenander (1991) found bounds on
the convergence rates of stochastic relaxation for both deterministic periodic and
random orderings. Their bound for random orderings was lower and they therefore
recommended that in the absence of prior knowledge of the particular form of the
iteration, the random ordering be used. Given the similarity between ECM and
stochastic relaxation, we hypothesized that random orderings would outperform
deterministic orderings with the ECM algorithm as well.

To check our hypothesis we again turned to the simulations described in
Table 5.1. We compared the number of iterations required by the algorithm that
randomly selects an order at each step, N,., and the algorithm that randomly selects
an order on the outset, Ny. The comparison appears in Table 5.5 and shows that
cycled and random order algorithms are essentially indistinguishable, and thus we
have not obtained evidence for the advantage of using these more sophisticated

“averaging” strategies instead of simply fixing an arbitrary ordering at the outset.

152

5.7. Discussion

5.7.1. Convergence Criteria

In this section, we will show how the standard “step length” criterion can be quite
misleading and discuss the sensitivity of the results of the previous sections to the
convergence criterion. In all the simulations except those of Section 5.6, we used
the standard step length criterion: [|§®) — §*=1|| < e, which was useful for our
purposes both because of its popularity and because it underlies (5.2.3) which relates
the number of steps required for convergence to the spectral radius. In the context
of cycled ECM, however, this criterion can lead to difficulties. If each iteration of
cycled ECM is defined as one E-step followed by S CM-steps, then the resulting
sequence {#) : ¢t > 0} is not a simple linear iteration even at convergence since
the mapping that maps 6®) to #¢+1) changes with ¢. The difficulty with this
is demonstrated in Figure 5.9, which is a representation of the mapping induced
on a subspace of © by three ECM algorithms each with a fixed ordering (the
smooth curves) and by the cycled ECM algorithm that combines them (the jagged
curve). The three ECM algorithms are listed in the first row of Table 5.2. This
is again an example of fitting a log-linear model to a partially classified 2 x 2 x 2
contingency table. The asterisks represent the sequences and show that the cycled
ECM algorithm tends to have larger steps. In fact, using the standard convergence
criterion, [|0¢+1) —9®)|| < e, this cycled ECM algorithm took 50 times longer to

converge than any of the three ECM algorithms. This is in spite of the fact that all

153

the algorithms increased the loglikelihood at about the same rate. (Cycled ECM is
the solid line in Figure 5.10.) Since the loglikelihood is increased at each iteration
an alternative convergence criterion is L(0¢FY|Yohe) — L(0®|Yops) < €, which is
more desirable in the context of maximum likelihood estimation as described in
Section 5.6.

This brings up the question of how sensitive the results of the simulations
are to the convergence criterion. Figure 5.11 shows the values on Nyin/Nmax (as
defined in Section 5.4) for the simulations in Table 5.1 using the step length criterion
with € = 107'% and loglikelihood criterion with € = 10~®. The loglikelihood
criterion leads to more smaller values of Npyin/Nmax than does the standard length
criterion. Thus, CM-step permutations appear to be more important when the
loglikelihood criterion is used. (The comparisons here are not strictly “fair” because
of the choices of the threshold e. However, it is difficult to decide what is fair here,
and the impact of e on the relative value Ny, /Nmax should be small as long as
€ is not too big.)

Certainly, the convergence criterion plays an important role in both simula-
tion and practice and thus must be chosen carefully. The fact that the step length
criterion failed in cycled ECM shows that the practitioner must be careful when
evaluating convergence of algorithms that change even in subtle ways at each it-
eration. Whenever possible, we recommend the use of the likelihood criterion, in

addition to the step length criterion.

Comparing the Mappings

theta 2
0.20
|

0.14
|

0.08
|

0.12 0.14 0.16 0.18 0.20 0.22
theta 1
Figure 5.9. The mapping induced by the cycled ECM
algorithm. The mapping induced on the parameter space
(cell probabilities) by three ECM algorithms (dotted lines)
and the composite cycled algorithm (solid line). Notice the
jagged step pattern of the cycled ECM algorithm.

Tracking the Likelihood

-39.2
|

Loglikelihood
39.4
|

-39.8
|

T T T T T
0 50 100 150 200

iteration

Figure 5.10. Tracking the likelihood with the cycled
ECM algorithm. The figure shows how the four algo-
rithms mapped in Figure 5.9 increase the loglikelihood.
The fixed order ECM algorithms (upper dashed lines) are
indistinguishable and increase the loglikelihood somewhat
faster than the cycled algorithm (lower solid line).

21!

155

Effect of Convergence Criteria

1.0

0.6
1

0.4

Nmin/Nmax using the Likelihood Criterion
0.2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Nmin/Nmax using the Length Criterion

Figure 5.11. Compareing the loglikelihood and step length convergence
criteria. This is a plot of Nyin/Nmax using both criteria for the 6000 simu-
lations described in Table 5.1. Notice that the effect of CM-step permutation
tends to be larger with the loglikelihood criterion.

5.7.2. Stratagies for ordering CM-steps

The simulations presented in Sections 5.3 and 5.4 show that the effect of permuting
CM-steps on the number of iterations required for convergence can be much more
substantial than the theoretical results predict. This finding is rather informative
since most studies of the convergence of EM type algorithms have been conducted
purely with regards to the asymptotic character of the iteration. The result, how-
ever, is somewhat discouraging in light of how evasive exact analysis of the iteration
can be.

When considering the problem of ordering, perhaps the question of most

interest is how large the effect of ordering can be. We have seen that an increase

156

in efficiency of 20% is not uncommon in the 2 x 2 x 2 table. Other simulations
suggest that in problems with more CM-steps the effect tends to be larger. In the
contingency table setting, the sparseness of the table is also important. In tables
with less data, the effect of CM-step permutation can be greater. Effective strategies
for maximizing efficiency continue to be elusive. Neither relative amounts of missing
data nor characteristics of the subspaces onto which the CM-steps project (i.e.,
Alternating Projection Algorithm, Kayalar and Weinert, 1988) have been found
to be useful in determining a general technique for choosing an efficient ordering.
Based on our limited simulations, a user who is faced with a sparse table with
many CM-steps is perhaps best off randomly selecting the order of CM-steps at the
outset of running the algorithm. In general, when one is unsure if more sophisticated
strategies will pay off, we recommend randomly fixing an order of CM-steps before

implementing the ECM algorithm.

Finally, we emphasize that our general philosophy behind investigating the
effect of permuting CM-steps is to see if there is a “free and better lunch,” not
a “better but costly lunch” in terms of human and computational effort. Given
the diversity of applications of EM-type algorithms, it seems impossible to find an
“optimal” order-choosing rule that will be universally applicable. Even if such a rule
could be found, it has no practical value unless the savings it provides outweighs
the cost of implementing it. On the other hand, a practitioner may be interested in
knowing about strategies that will lead to relatively efficient algorithms in common
implementations of EM-type algorithms (e.g, ECM applied to contingency tables)

especially when the algorithm is slow to converge, and in what situations the issue

157
of ordering is not worth consideration because it is unlikely to have an appreciable
impact on the problem at hand. In either case, the practitioner is informed by a

general investigation that helps to answer these questions.

Chapter 6

The Global Rate of EM as an Inferential Tool:
Finite Mixtures

6.1. Finite Mixture Distributions

Finite mixtures appear in many areas of the statistical literature. The density of
the general finite mixture distribution is the weighted average of the k densities

(subpopulations) f;(y|5;) and can be formulated as

f(ylok) = Zaifi(y\ﬁz% (6.1.1)

where > a; = 1 and 0y = (a1,...,0%,01,--.,0k). Attempts to estimate the
parameters in (6.1.1) date back at least to Pearson’s (1894) method of moments
solution to a mixture of two univariate normals with different means and variances.
The algebra was formidable indeed, the first step of the solution requiring a neg-
ative root of a “nonic” equation. Since then graphical, likelihood, Bayesian, and
minimum density distance solutions have been proposed (see Titterington, Smith,
and Markov, 1985 for a nice review). Even when k is known, likelihood estimation

has generally been hindered by the fact that the loglikelihood does not take the

158

159

familiar additive form. A simple yet general computational strategy, however, is
to apply the EM algorithm, treating the subpopulation memberships (i.e., mixture

indicator) as missing data.

The mixture problem is further complicated when the number of subpop-
ulations k is unknown, and thus needs to be estimated. The two facts that k&
is discrete and that gsug f(yl0r) is nondecreasing in k£ make estimation of k&

€
a nontrivial task. Thekre iks a diverse and creative literature of attempts to solve
this rather challenging estimation and the related testing problems. Noticing that
f(YlOk+1) is a just f(ylOr) with agi1 =0 (or fes1(ylBr+1) = fr(ylBr)), Wolfe
(1970) proposed using the likelihood ratio test with its standard asymptotic distri-
bution. It was pointed out later, however, that the fact that the constrained space
is on the boarder of the parameter space destroys the standard asymptotic result.
Others have suggested methods based on the chi-square distance from the empiri-
cal CDF (Henna, 1985), modified likelihood ratio tests (Aitkin and Rubin, 1985),
Monte Carlo estimation (Aitkin, Anderson and Hinde, 1981), graphical techniques

(c.f., Titterington, Smith and Makov , 1985), and order statistics (Maine, Boullion,

and Rizzuto, 1991).

One particularly interesting approach was proposed by Windham and Cutler
(1992), in which the rate of convergence of EM is used to estimate k. As we have
seen, the larger the augmented information (relative to the observed information),
the slower the EM algorithm converges. In the mixture problem, EM is run condi-
tional on an assumed k and the augmented data is {(y;,2;),i = 1,...n}, where z;

indicates the subpopulation membership of observation y;. Windham and Cutler

160

(1992) argued that if the assumed k is too large or too small compared to the
underlying true k, the subpopulation memberships are “ill-defined” making the
algorithm slow. Thus, after running several EM algorithms with different values of
k(> 2), they propose to estimate k as the number of subpopulations that results
in the fastest EM algorithm. This idea suggests that the augmented-data loglike-
lihood contains information for the parameter k£ beyond what is contained in the
observed-data loglikelihood.

Windham and Cutler’s argument for this method was largely heuristic and
their evidence came from a single example. Nevertheless, the idea is not only novel
but also if successful has great potential in EM application outside of finite mixture
models. In this chapter, we will continue to explore the usefulness as well as the
limitations of this method. In Section 6.2, we introduce the necessary details of the
EM algorithm used to fit finite mixture models and its rate of convergence and in
Section 6.3 we briefly review the details of Windham and Cutler (1992). In Sec-
tion 6.4, we show that Windham and Cutler’s approach can be viewed as a minimax
estimator. We then discuss the large-sample behavior of the estimator, conducting
an empirical study (Section 6.5) and presenting a more theoretical argument (Sec-
tion 6.6), both of which indicate that the estimator can be inconsistent and tends to
underestimate the true k. Finally, Section 6.7 proves several propositions presented

in Section 6.6 and presents an outline of a more thorough theoretical investigation.

161

6.2. Using EM to Fit Finite Mixture Models

As described in Dempster, Laird, and Rubin (1977), to implement the EM algorithm
in the context of finite mixture analysis, we augment each of the observed-data
points, y; with its (unknown) subpopulation membership, z;, where z;; is the
indicator function of whether y; belongs to subpopulation j. We will label the
observed values Yons = {y1,...,yn} and the augmented data Yaus = {(vi, %), =
1,...,n}. Given a working model f(y|0;) we can write the expected augmented-

data loglikelihood

Q<9k‘9}(ct)) = /L(ek‘Yaug)f(YmidYVobs, elgt))dymis' (621)
Since this function is linear in {z;;,7 =1,...,n}, the E-step amounts to computing
(t) (t)
o (Y| B2
E[2;|Yops, 0] = ——2 fiwilf;) j=1,...ki=1,...,n, (6.2.2)

k b
Skl fi(yil 8Y)

which is simply P(z;; = 1|91(f), y;) . The M-step then maximizes Q(9k|01(f)) , & com-

putational task that is the same as maximizing the augmented-data loglikelihood
L(0k|Yaug) , with z;; replaced by the probability found in (6.2.2).

In the context of the mixture problem, both the matrix rate DMFM and the
global rate r will depend on the working model f(y|f;) and thus on k, as well as
on the data and thus the true model f(y|0,), where ko may be different from k&
(here we assume that the true model is indeed a finite mixture). Since k and k¢ are
of primary interest here, we will write the matrix rate DMEM (k|ky) and the global

rate (i.e., the largest eigenvalue of DMEM (k|ko)) 7, (k|ko) T, where n indexes the

T The subscript on r will always be the sample size in this chapter and should
not be confused with the subscript on r; as defined in (1.6.9), which indicates the
iteration number in the computational formula for r.

162

sample size (i.e., the number of observations in Ygp,s). For computational purposes,

we will use 7, (klko) = limy—o 1057 — 07171165 ™" = 0177||.

6.3. The Windham and Cutler Approach

The fraction of observed information or information ratio matrix I — DMEM (k|kg)
= Ions], a_ulg is presented in Windham and Cutler (1992) as a measure of “the ability
of the data to distinguish the component densities [of the mixture|.” Specifically,
when the ratio is close to the identity, I,,s will be large relative to I,,, and
Yhis , the subpopulation memberships, contains little more information than the
observed-data themselves. For example, letting ¢(u, o) be the normal density with
mean p and variance o2, if we have 1000 observations from a mixture of ¢(0,1)
and ¢(20,1), even without Yis, there is little question as to the subpopulation
memberships. In general, directly using DM (k|kg) can be complicated since it
can be of rather high dimension; for example, a mixture of two trivariate normals
results in a 19 x 19 rate matrix. As we have seen, however, the largest eigenvalue
of DMFPM (k|kg) corresponds to the global rate of convergence of the algorithm and
is a good summary of the matrix. With this in mind, Windham and Cutler (1992)
propose fitting mixtures with several different values of k£ > 2, and estimating k

with k&, , the number of subpopulations that results in the fastest EM algorithm,

as calculated with the 7, (k|ko) :

kr = argming,s o {7 (k|ko)} - (6.3.1)

163

The restriction k£ > 2 is needed because when k = 1, there is no missing data
and DMPEM (1|kg) = 0. Thus, we will only consider nontrivial mixtures. It should
also be mentioned that Windham and Cutler define l%r as the k that maximizes

1 — 7, (k|ko) , which they call the minimum information ratio (MIR).

Windham and Cutler’s basic justification for this procedure, in addition to
the heuristic argument presented above, was the application to a mixture of three
spherical bivariate normals with known and equal standard deviation. When the
standard deviation was small relative to difference in means, it is not surprising that
the method worked well (almost any method would work well). When the standard
deviation was relatively large, however, their tables reveal that k, picked the true
value of k£ only about half the time and underestimated almost every other time.

As we will see, this pattern continues in other examples.

To fully understand and explore this idea, we conducted both theoretical
and simulation studies, with a focus on constructing possibly better estimating

procedures.

6.4. The Rate Function and the Minimaxity of %,

It is clear from (1.6.2) — (1.6.5) that r,(k|ko) is attempting to measure differences
between the observed-data loglikelihood function, L(0k|Yons) and the projection
of the augmented-data loglikelihood onto the observed-data space, i.e., the condi-

tional expectation of the augmented-data loglikelihood, Q(6x|0), where 6% is the

164

maximum likelihood estimate of 6. It remains unclear, however, what specific
properties it is measuring, or if what it is measuring is an appropriate basis for es-
timating kg . In this section we introduce a more general and direct measure of the
difference between L(0j|Yons) and Q(0x|6%), inspired by r,(k|ko). Specifically,

we define the rate function as

L(0*|Yons) — L(6]Yons)
Q(6*16%) — Q(016%)

where 6* is the limit of an EM sequence. (We have suppressed the subscript

R(O|Yops) =1 —

(6.4.1)

k because the theory is general.) In order to gain an intuition for the numerical
properties of this function, we generated 10000 observations from Yy pg ~ %gb(O, 1)+
$0(3,1), used EM to fit the model Yops ~ a¢(u1,0) + (1 — a)d(u2,0) and plotted
(6.4.1) as a function of each of the four parameters fixing the other three at their
MLE (see Figure 6.1). The wild fluctuations of R(6|Y,ps) near the 0y = 65 are due
to numerical inaccuracy as the denominator in (6.4.1) approaches zero. The actual
plot near 6* can be interpolated as a smooth function. We would like to compare
R(6|Y,bs) with the rate of convergence of EM, which is plotted as the horizontal
dashed line on each of the plots. From the plots, we see R(0|Y,ps) is always in the
unit interval, that the limg_g« R(0|Y,ps) does not exist, and that each of the limits
along the axes of © are different but are less than the rate of convergence of EM.

Theorem 6.1 clarifies these properties.

Theorem 6.1: If 6* is the global maximizer of L(0|Yons) then the function
R(0|Y,ps) defined in (6.4.1) has the following property

(1) 0 < R(f|Yons) <1 forall #€06.

Furthermore, if VL(0|Yops) e = VQ(0]6%) g = 0, then

R(a|Yobs)

00 02 04 06 08 10

R(0*|Yons)

R(p1]Yobs)
00 02 04 06 08 10

00 02 04 06 08 10

R(F’Q‘YobS)

00 02 04 06 08 1.0

165

EMLE

0.0 0.2 0.4 0.6 0.8 1.0

sMLE

0.6 0.8 1.0 12 1.4

sMLE

H1

sMLE

2
Figure 6.1. Plotting R(0k|Yons) as a function of 6. The solid lines
represent R(0x|Yops) as a function of each of the components of 0 with the
other components fixed at their MLEs. These are compared with the dashed
line which represents the rate of convergence of the EM algorithm. The limit
as 0 approaches 0 along each of the axes are rates of convergence of the
conditional EM algorithms and are different.

166
(2) sup,olime_o R(6* + eu|Yops) = r, the largest eigenvalue of DMPM(9*).
(3) hméiaéf R(6%,...,07_,0;, éz‘*+17 -, 0%|Yops) = 7i, where 6; is the i th com-
ponent of # and 7; is the rate of convergence of the EM algorithm whose
M-step only updates 6; conditional on the other components of 6*. These
conditional rates are just the ratio of the (i,7) diagonal elements of I,,;s and

Lo -

(4) r > 71; for each i.

Proof:
(1) Let H(0|0*) = Q(0]6*) — L(0|Yops) - It is known that H(0*|0*) > H(6|6*) for
any 6 € ©, (Dempster, Laird, and Rubin, 1977), and thus
Q(67(6™) — Q(010%) = [L(6"[Yobs) — L(6|Yons)] + [H(67]6") — H(6]0")]
> L(607[Yobs) — L(0]Yons) = 0,
which implies (1).
(2) Using Taylor’s expansion (assuming the required derivatives exist)

L(0" + eu[Yobs) = L(6%|Yobs)+

1
e’ [VL(0|Yobs)|y_p. | + €U

and similar expansion for Q(0* + eu|6*), and remembering that the gradients eval-

T [V L(O]Yors)|g_g.] €+ o€”)

uated at 6* are zero we obtain

u' [V2L(0]Yobs)|o=0+] u + o(e)
ul [V2Q(0]6%)]p=6+] u + o(c)
UTIobsu + O(E>

R(0* + eulYops) = 1 —

=1-) 6.4.2
uT Inygu + 0(€) ()
It follows that,
U [Tong — Tobs|t u' st
lim R(6* Yobs) = e o — — == (6.4.3
zsl,l;épo EE% (* EU| b) il;épo UTIaugu igﬁlg UTIaugu ()

167

which is the largest eigenvalue of Imlslaug since Ipue > 0.

(3) This is a simple extension of (2). If we let ¥ = (61,...,0;_1,0;41,...,0q)
and condition on ¥ = ¥*, we are left with the one parameter model with like-
lihood L(6;|Yops,). The proof goes through as before except that u is a
scalar and cancels in (6.4.3) so that the sup operation is unnecessary. Thus,
élin%* R(OT,....0F 100" - ., 0%|Yons) converges to the ratio of the 1 x 1 con-
dzitioinal information matrices which is exactly the rate of convergence of the condi-
tional EM algorithm.

(4) This is a simple consequence of (2) and (3) by using (6.4.3)

u' Inisu e Inise

= 7, 6.4.4
"= iipou Lygu — el Iyge " ()

where e’ = (0,...,0,1,0,...,0) with i*" element 1.
[|

~

Property (2) makes clear what criterion k, uses to estimate k. The EM
algorithm is designed to formulate Q(6|0r) so that the same value of 6 will
maximize it and L(0x|Y,ps) . The estimate k, tries to take this one step further,
by choosing the value of k for which VZL(65|Yops) is closest to V2Q(65]0%) (or
by minimizing (6.4.3)); namely, it attempts to match the curvature of the two
likelihood surfaces. In other words, k. can be viewed as a minimax estimator in
that it minimizes the maximum directional loss of information in a neighborhood
of 05 .

minsup lim R(0; + eu|Yops) = sup hm R(@ + eu|Yops)-
k u#£0 e—0 0 e—0

This minimax formulation not only helps us to understand the procedure

better, but also helps to establish the underestimating property of k, as detailed

168

in the next sections. Although we could have discussed this minimax in terms
of DMEM (k|ky) directly by using the first equality in (6.4.4), the formulation
of R(6|Yobs) is interesting in its own right, lends insight into Windham and Cut-
ler’s approach and may lead to improved estimation procedures as discussed in

Section 6.6.

6.5. Large-Sample Behavior of i, — Empirical Results

Based on Windham and Cutler’s results, we suspect that k, may tend to underesti-
mate the actual number of subpopulations, kg . In this section we will provide simu-
lation evidence that];’T indeed underestimates kg . In order to show this, our strat-
egy is to approximate r(k|ko) by r,(k|ko) when n is large enough so that we can
ignore the error in this approximation, and then to show that argmin ., {7(k|ko)}
is not necessarily kg . To accomplish this we ran a simulation which drew n obser-
vations from Ygps ~ %QS(O, 1)+ %gb(d, 1)+ %gb(%, 1). The simulation was repeated
for 90 values of & between 1 and 10 and for n = 1000,10000 and 100000. For

each data set EM was run to fit the model

k
Yobs ~ Zajqb(,ujv 1)7 Zaj = 17 (651)
j=1

with & =2 and 7,(2]|3) was calculated and is plotted for each n as a function of
0 in Figure 6.2 (the solid line corresponds to n = 100000). The plot demonstrates
that 7,(2|3) is converging as n increases and that 7100000(2|3) offers a reason-

able Monte Carlo approximation of 7(2|3) (i.e., the following comparison can be

169

regarded as free of finite-sample variation).

For the second step, we will show that k, # ko = 3 for some models, thus
showing that the estimate is not consistent. Consider a simulation similar to the
one presented in Figure 6.2 except that we fit the correct model in equation (6.5.1)
with k& = 3. Again, we can run EM and plot 7100000(3|3) as a function of §. This
function is superimposed on 7190000(2|3) in Figure 6.3. The dashed line corresponds
to k =2 and the solid line corresponds to k = 3 (the correct model). We see that
for § < 3.3 (approximately) the procedure will tend to choose the incorrect value
ky =2 since 7100000(2[3) < F100000(3]3) -

Although k, is not always consistent, it will be consistent if r(k|ko) is
minimized when k = kg. Whether or not this occurs depends on the distribution
of the data and the model that is being fit. Thus, it is useful to explore the behavior
of r(k|kp) in several common situations. Now we will describe a set of numerical

calculations of 7190000(k|ko) = 7(k|ko) and attempt to characterize the estimate’s

behavior. The true model is taken to be

Yops ~ Z —$((j — 1) % 6,1),

with kg = 1,...,5 and 0 varying form 0.5 to 5. We calculate #19¢000(k|ko) for
the fitted model in equation (6.5.1) with & = 2,...,6. Figure 6.4 contains a five by
five matrix of plots of #109000(k|ko) versus & . The rows of Figure 6.4 correspond
to the data models (values of kg) and the columns correspond to the fitted models
(values of k). It is clear that the plots on or above the diagonal correspond to very
slow algorithms, regardless of the value of §. All of these fit more subpopulations

than occur in the data. When the correct value is fit, there is a similar pattern for

™ (2[3)

0.4

n(K[3)

0.4

0.8

0.0

0.8

0.0

Figure 6.2. The convergence of 7,(k|kg). The three lines show 7, (2|3)
as a function of ¢ for several values of n (dotted: n = 1000, dashed:
n = 10000, solid: m = 100000). The convergence of 7,(2|3) as n

increases is clear.

Figure 6.3. The estimator fcr is not consistent. The solid line approximates
7(3]3) and the dashed line 7(2|3) . Since 7(2|3) < r(3|3) for § < 3.3 the

estimator k, is not consistent.

171

number of subpopulations fit

k=2 k=3 k=4 k=5 k=6
o
-
@
o
©0
o
ko=1
<
o
N
=}
=
o
o
- —_— _/
@©
o
©
o
ko=2
~
o
N
o
o
S
(2]
c
2 o
B b - —_—
>
§ 3 /\\\////
i) g
7 ko=3 -
"‘5 o
o
2 s
S o
>)
c
(O]
]
“): o
— _—
@©
o
©
o
ko=4 -
=}
N
o
=
o
o
= /\/\/ /\/\—// I
@
o
©
S}
ko=5 -
o
N
o
=
o
01 2 3 4 5 01 2 3 4 5 01 2 3 4 5 01 2 3 4 5 01 2 3 45

delta delta delta delta delta

Figure 6.4. ANOVA. The plots analyze the effect of the true number of
subpopulations (kg), the fitted number of subpopulations (k), and J on
r(k|ko) . Although k, tends not to overestimate kg , it will often under-
estimate it when ¢ is small. The plots in the top row do not depend on ¢
since the model does not involve ¢ when there is only one subpopulation.

172

all of the values of kg . The algorithm converges quite slowly if ¢ is less than about
2.5 and then begins to converge more quickly, converging rather fast at 6 = 5.
The situation is more complicated when we fit models that are too small. It is not
uncommon for these models to converge faster than the true model (especially for
k = 2). Figure 6.5 superimposes the plots with the same value of kg, the actual
number of subpopulations. The solid lines correspond to fitting the correct model,
the dotted lines to models that are too big and the dashed lines to models that
are too small. It is evident from the plot that when ¢ is small, it is not at all
uncommon for one of the smaller models to converge faster than the true model
(this is especially clear when kg =4). Thus, k, will generally not pick the correct
value of kg when there are several subpopulations and ¢§ is small, no matter how

much data is observed.

One final aspect of the simulations warrants our attention. It seems reason-
able to expect the algorithms to converge more quickly as § grows. This, however,
is not always the case when k < kg . This is especially clear for kg =3 and k = 2
(see Figure 6.2), for which there are two critical points, at which the curve changes
its monotonicity. To understand what is happening, remember that the data fall
into three groups but the model is only fitting two. What is to be done with the
data in the third group? One of two things: either it is combined with one of the
other subpopulations, or it is split between both subpopulations. For small values
of 9, the subpopulations overlap very much and it works well to split the middle
group. As 0 grows, however, this becomes more difficult and we observe the first

critical point (J ~ 2.5). As 0 continues to grows the subpopulations become more

r(k|2)
00 02 04 06 08 10

r(k|2) r(k|2)
00 02 04 06 08 1.0

00 02 04 06 08 10

r(k|2)
00 02 04 06 08 10

173

True Number of Subpopulations = 2

delta

True Number of Subpopulations = 3

delta

True Number of Subpopulations = 4

delta

True Number of Subpopulations = 5

delta

Figure 6.5. Estimating k with]%,«. The plots show how well different
models fit for each of four values of kg . The solid line represents the correct
model, dashed lines models that are too small, and the dotted lines models
that are too big. Minimizing 7(k|ko) will often result in models that are
too small.

174

o
—
©
» °
a
o ©
S o
o
—
<&q.
- O |
[}
o]
(q\]
S o
o
o
0 2 4 6 8 10
)

Figure 6.6. Splitting and combining subpopulations. When we fit a model
that has too few components some of the subpopulations will be either split
or combined. This plot shows how this is reflected in r(k|kg) . The dotted
line is 710000(2|3) of Figure 6.2, the solid lines are o* and 1 — a*, and
the dashed lines are at 1/2 and 1/3. For § < 5 the middle subpopulation
is being split, for d > 5 two subgroups are being combined.

distinct, the algorithm stops splitting the middle subpopulation and begins to com-
bine it with one of the others, and we observe the second critical point (J = 5).
This can be seen clearly by plotting the fitted value of a as a function of § (Fig-
ure 6.6). Notice that for values of ¢ less than about 5, a* is near one half because
the middle population is being split. For larger values of §, a* is near one third

because two subpopulations are being combined.

The empirical studies have illuminated an important characteristics of k. Tt

tends to underestimate the true number of subpopulations because it is influenced

175

not so much by kg as it is by the number of subpopulations salient in the observed

data. This characteristic will be the topic of the next section.

6.6. Large-Sample Behavior of i, — Discussion

In order to understand the Windham and Cutler method, we must carefully ana-
lyze the data-augmentation scheme. When the EM algorithm converges fast, the
subpopulation memberships are salient in the observed data. That is, when the
subpopulations have little overlap, the augmented data will contain little informa-
tion that is not contained in the observed data. On the other hand when there is a
lot of overlap among the subpopulations, the EM algorithm will require much data

augmentation, and will converge slowly. This will be formalized by two propositions.

The propositions consider what happens to the Fisher information matrices
that determine the rate of convergence of EM when the fitted number of subpopu-
lations results in a salient separation of the data (proposition 1) and a separation
that is not salient at all (proposition 2). In particular, we will consider the ex-
pected subpopulation memberships z* = {zi*j,i =1,...,n,5 = 1,...,k}, where

zy = E[zij|Yobs, 0*] , which can be represented by an n x k matrix with elements

on the unit interval such that 2?21 z;; = 1 for each i. (We denote such a ma-
trix space by Z,xx.) By a salient separation of the data, we mean z* is close
to the boundary of Z, 4 (i.e., matrices with only zero or one elements satisfying

the constraint ;% = 1 for each i). A set of subpopulations which result in

176

a separation of the data that is far from salient can be represented by z* “deep
inside” Z,,xy, , for example z7; = % for each ¢ and j. The two propositions look

at these two extremes for z* in detail.

Proposition 1: Suppose f(y|0x) = 2?21 a;9(y|B;) , where g(y|B) is twice differ-
entiable in the scalar parameter (3, the normal equations are satisfied at the MLE

of 0y, and z* is on the boundary of Z, . , then

Iobs = Iaug'

Proposition 2: Suppose f(y|0x) = Z?zl a;9(y|B;) , where g(y|B3) is twice differ-

entiable in the scalar parameter (3, and z* has two rows identical, then
[Iobs| = 0.

The proofs of the proposition will be presented in Section 6.7. The first proposi-
tion suggests that if the subpopulations are salient in the observed data, EM will
converge very quickly. The second suggests if there is no information to distinguish
between two subpopulations in the observed data, EM will converge very slowly.
Although both of the propositions assume the subpopulations densities differ only
in the value of a scalar parameter, a close look at the proofs suggests that they
could be generalized.

Several informal observations can be made based on these propositions. First,
k, does not estimate the true number of subpopulations but rather determines the

number of subpopulations that results in the most salient (per the above definition)

division of the data. We see this in action in Figure 6.6. Note that when ¢ is about

177

5, and the middle subpopulation is being split between the two subpopulations in
the model, EM converges very slowly since the observations in the middle population
could easily have come from either of the subpopulations. When § grows a little,
however, we see EM converging much more quickly as a more salient division of the
data is possible — namely, combining two of the populations into one in the model. A
second observation is that even with large data sets k, will not be a good estimate

of the true number of subpopulations. If two or more of the subpopulations have

*

7 will not go

heavy overlap, more data will not help to separate them (i.e., the z

to zero or one as m increases).

Although k, may not be a good estimator of the number of subpopulations,
it is not without merit. As we have seen, r,(k|kg) is a good measure of how
well the data can be broken into k subgroups. Trying to minimize this quantity,
however, may not be the best strategy. After all, any data set falls nicely into one
population, and any well separated mixture with kg = 4 will separate nicely into
two or three subpopulations. Thus, a large value of k that results in reasonable
convergence may be a good estimate of kg, even if it does not result in the most
salient separation of the data (i.e., minimizing 7, (k|ko)). Reading across the rows
of Figure 6.4 indicates that taking k as large as possible such that EM does not
converge pathologically slow often results in a good estimate. To see why this is
true, suppose k > kg, in which case we are fitting several parameters for which
there are really no observed Fisher information. Thus, L(0;|Yons) will be very flat
along these parameters, and the rate function will be nearly 1 as 6, approaches 0}

in these directions. Thus, by (2) of Theorem 6.1, r,(k|ko) will be nearly 1 and EM

178

will be very slow to converge. For k < ky, on the other hand, the EM algorithm
generally converges reasonably well if k& results in a reasonably salient separation
of the data. Thus, estimating k£ as the largest value which does not result in
pathologically slow convergence often leads to a good estimate of kg. Of course,
this procedure may not be well defined in some cases since “pathologically slow”
may be a relative term. In our experience, however, fitting too many subpopulations
leads to very ill-behaved values of r,(k|kg) , which not only were large but also did

not converge well as ¢ increased.

In summary, it seems likely that these procedures will tend to underestimate
the true k. Although this underestimation is less than ideal, it perhaps is the
best we can hope for and in fact may be a good reflection of the behavior of the
observed data. As is well known, when dealing with real data, all we can hope for
is to detect a few major mixture components, which fortunately is often enough for
the purpose of inference. In any case, mixture models for real data can only be
viewed as a useful approximation that help to identify some important underlying

heterogeneous groups.

One shortcoming in both our simulations and the example in Windham and
Cutler (1992) is that the variance structure was known, and not estimated from
the data. There are many difficulties in implementation that are avoided when
only location parameters are estimated. The likelihood for finite mixtures tends to
be very badly behaved with multi-modalities and unidentifiable parameters. These
difficulties tend to be more acute when scale parameters are estimated from the

data. In preliminary studies in this context, we have found that there are indeed

179

many modes of the likelihood function and that the rate of convergence can be
difficult to calculate (i.e., 7, as defined in (1.6.9), does not converge well) and
varies from mode to mode, especially when k > kg . It is important, therefore, that
we are not quick to generalize our findings to the unknown scale problem before
more work is done.

Finally, it is important to note that the idea of using the rate of convergence
to help select a model is not limited to fitting finite mixture distributions. For
example, it could be used to estimate the number of factors in factor analysis. If
an approach can be shown to be effective in the context of mixtures, it is likely to

be useful in other applications involving estimating the number of latent variables.

6.7. Theoretical Development

6.7.1. Proof of propositions 1 and 2

Proof of Proposition 1: In this proof we will write the observed information in

terms of 2, and «j using the relationship

Ty AT =1..... k. i=1.... 7.1
of flulery T om T 671

which follows from evaluating (6.2.2) at) = ¢*. We will then evaluate the
observed information at z* € B(Z,,«p) , the boundary of Z,, ., toshow that I,.,, =

Iohs - In this and the next proof, we will suppress the subscript k& on the parameter

f to avoid confusion with the parameter subscripts which index the subpopulations.

180

We will show that Ions = Ia,g term by term, beginning with:

_%9 9*5 obs(af,ay,) for Im=1,...;k—1
_ Z 9l B7) — 9(wilB7)) (9(wil B5,) — 9(wil B))
f2(yil0*)

n * * *
* * * * : e
Py % oy, oy, Qg

Evaluating (6.7.2) at z* € B(Z,xp), in which case 23z}, =0 for | # m (which

follows form }_, 27 = 1), and thus

2
* ok *

* *\ _ ~il “im ik
Ions(af, ap,) = =% + (—*)

Yo lu if1#m
= =t (6.7.3)

n Z*
il ik :
> (Zh+) iti-m

i=1 k

Q(919)

which is exactly the same as the corresponding element of I, , T Do .
a0ay, 1o=0+

Now we will consider the terms off the block diagonal:

L] Yons)
9010 Prm

= Iows(f, 0r,) for I=1,....k—1 m=1,...,k

0=60*
yz|ﬁl (yzlﬁ;:)) d9(yi|BL,)
tm Z ((y:0*) 9Bm,

_ L _ Cik . 7.4
o Z (b ey, (67.9

Evaluating (6.7.4) at 2* € B(Z,xp) yields

p

0 if m # [and m # k,
— 25, 0logg(wilBy) ..
Ls(al, B5) = Zl ST i m =1, 6.7.5)
tm Ologg(yilBh,) .
— Z a5, ifm==%.

181

But Ions(af, By,) =0 when m =1 or m =k as well since (6.7.5) is the observed
data normal equation for f,,. Thus, again Ios(af, 5;,) = 0 agrees with the the

corresponding I (o, Br,) , which is zero.

Next we turn to (and first consider [# m

 OPL(]Yons)

= Lows(5], 5r,) for im=1,...k

06108y, lo=6~
. aja mag g(%‘ﬁl)ag 9(yil Bm)
Z f2(y:]0%)
. dlog g(y:|BF) 0log g(yilBy,)
_Zal Zil%im aﬁl aﬁm 3

which is zero at z* € B(Z,x,) since | # m, again agreeing with I...(8}, Br,) -

Finally, we consider | =m,

~ O*L(0]Yons)

= Iobs(ﬂl*7 ﬂl*)

0308 lo=0+
2 *
i agl 9(yilBr) N aa—glzg(yiwl)
N of * TN T g
i=1 F(wil6*) f(yil0%)
n [* 8_2 . *
e (M)_M
=l I el |
Once again, after noting that 2, = U , when z* € B(Z,,xp) the expression agrees

with T (B[, B;,) , which completes the proof.

Proof of Proposition 2: Without loss of generality, we assume the last row of

z* is identical to the jth row of z*, where j # k. Clearly o} = af, since

182

o =) _; z;;/n. This fact along with (6.2.2) gives us

Thus, Iobs(af,€*) =0, where ¢ is any component of ¢ (see (6.7.2) and (6.7.4)).

6.7.2. Large-sample behavior of %, — preliminary theoretical results

Figure 6.2 gives evidence that r,(k|ko) — r(k|ko) . In this section we use this propo-
sition along with a second proposition to show that with probability one the limit
supremum of k, will be no larger than kg , thus confirming the non-overestimation
that we observed in the previous sections. After we present Theorem 6.2, we will

discuss how the two new propositions, (P3) and (P4), might be proven.

Theorem 6.2: Suppose
(P3) lim,,— o0 7o (k|ko) = r(k|ko) , almost surely for any &k > ko

(P4) If £ > kg then T(k|]€0> > T(k0|]€0> .

Then if kg > 2,

lim sup l%n < kg, a.s.

n—oo

Proof: For any k > ko, from (P3) and (P4) we have,

P [ﬁ G {rn(klko) < Tn(k0|/€0)}] = 0. (6.7.6)

m=1n=m

Since k takes on only countably many values, (6.7.6) implies

P[G ﬁ D{Tn(klko)érn(kolko)}] = 0. (6.7.7)

k=ko+1m=1n=m

183

By the definition of k, , we have
{k =k} C {ra(klko) < rp(kolko)},

and thus (6.7.7) implies
Pl U N Ulk=k=0
k=ko+1m=1n=m
|
Now it remains to discuss propositions 3 and 4, the first of which is more of a

regularity condition.

Proposition 3: If Y,us = (y1,%2,...,¥yn) consists of independent observations from

(6.1.1) with kg components, then
lim r,(klko) = r(k|lko) exists almost surely.

In order to prove Proposition 3, by (6.4.3) of Theorem 6.3, it suffices to show that

with probability 1,

TIrnis
lim sup lim R(0} + eu|Yons) = lim sup {ui(n)u} = sup lim {

T
u' Imis(n)u
=00 4,-£() e—0 n—00 4,40 UTIaug(n)u uz£0 M0

U Tyug(n)u

exists. If 60 is consistent, we should be able to prove this without too much
difficulty. The technical difficulty here involves dealing with the possibility that
I,w; may be ill-behaved when 6} converges to a boundary value of ©j . This
problem will be the subject of future work. The next proposition will likely prove

to be even more challenging.

Proposition 4: If k> ko, then r(k|ko) > r(kolko) -

184

This proposition is at the heart of Theorem 6.2 and its proof has many subtleties.
For the moment we will prove a related result that we hope will ultimately lead to

Proposition 4.

Proposition 4’': Let k > ko and 0 = (0x,,&), where £ are the additional

parameters the model f(y|fx) has compared with f(y|0k,). Then
T (klko) > 13, (kolko, § =€),

where 1/ (kolko,& = £*) is the rate of convergence of the EM algorithm that cal-

culates 0f conditional on § = £*, where 60} = (9,:0,5*) is the MLE of 6, from

fitting f(y/0%) .

Proof: This result can be seen from (6.4.3):
T T
U Inist U Lnist
(K| ko :sup{&}z sup {ﬁ}zrﬁl kolko, & = £¥),
(‘) u#0 UTIaugu u#0,ucld UTIaugu (|)
where U is a subspace of R? with all elements corresponding to ¢ equal to zero.
[

The relevance of Proposition 4’ to Proposition 4 lies in showing

lim 7/, (kolko, & = €*) = ' (kolko, & = 0),

n—oo

the final term of which is r(kolko) (lim,— o 7n(k|ko) = 7(k|ko) is guaranteed by
Proposition 3). The reason that we can expect this to be true is as follows. If
we fit a model with k > ky, the true model is contained in the subspace ©qy of
Oy, where 6, has a; =0 for j > kg + 1. If maximum likelihood estimates are

consistent, then 07 will converge to a value in ©¢. Thus, the conditional EM

185

algorithm with model f(Yyps|0k) should converge at the same rate, asymptotically
as the unconditional EM algorithm with model f(Yobs|0k,). We must be cautious,
however, since ©(is contained in the boundary of Oy and thus the standard
consistency arguments need to be carefully checked. Even more important, (6.4.3)
assumes that VL(0y|Yops) =0 at 6, = 65 . However, the fact that 6} converges
to a boundary point of ©; implies that this condition might not hold, a possibility

that will complicate the theoretical derivation here.

References

Aitkin, M., Anderson, D. and Hinde, J. (1981). Statistical modeling of data on
teaching styles. J. R. Statist. Soc. A, 144, 419-461.

Aitkin, M., and Rubin, D. B. (1985). Estimation and hypothesis testing in finite
mixture models. J. R. Statist. Soc. B, 47 67-75.

Amemiya, T. (1984). Tobit models: a survey. J. Econometrics 24, 3-61.

Amit, Y. and Grenander, U. (1991). Comparing sweep strategies for stochastic
relaxation. J. of Multivariate Analysis. 37, 197-222.

Beaton, A. E. (1964). The use of special matrix operations in statistical calculus.

Education Testing Service Research Bulletin, RB-64-51.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate
Analysis: Theory and Practice. MIT Press, Cambridge, Massachusetts.

Carnahan, B., Luther, H. A. and Wilkes, J. O. (1969). Applied Numerical Methods.
John Wiley & Sons, New York.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood
estimation from incomplete-data via the EM algorithm (with discussion).
J. R. Statist. Soc. B, 39, 1-38.

Dempster, A. P.; Laird, N. M. and Rubin, D. B. (1980). Iteratively reweighted
least squares for linear regression when errors are normal/independent dis-
tributed. Multivariate Analysis V, 35-37.

Dyk, D. A. van (1993). Fitting log-linear models to contingency tables with incom-
plete data. Technical Report 381, Department of Statistics, University of
Chicago.

186

187

Dyk, D. A. van and Meng, X. L. (1994). Permuting CM steps within the ECM
algorithm: implementational strategies and cautions. Technical Report 397,
Department of Statistics, University of Chicago. Submitted to J. Computat.
Graph. Statist.

Dyk, D. A. van, Meng, X. L. and Rubin, D. B. (1994). Maximum likelihood estima-
tion via the ECM algorithm: computing the asymptotic variance. Technical
Report 380. Dept. of Statistics, University of Chicago.

Dyk, D. A. van, Meng, X. L. and Rubin, D. B. (1995). Maximum likelihood estima-
tion via the ECM algorithm: computing the asymptotic variance. Statistica
Sinica 5, 55-75.

Fessler, J. A. and Hero, A. O. (1994). Space-alternating generalized expectation-
maximization algorithm. IEEE Tran. on Signal Processing 42 2664-77.

Henna, J. (1985). On estimation of countable mixtures of continuous distributions.

J. of the Japan. Statist. Soc. 15, 75-82.

Horn, R. A. and Johnson, C. R. (1985). Matriz Analysis. Cambridge University
Press, New York.

Jamshidian, M. and Jennrich, R. I. (1993). Conjugate gradient acceleration of the

EM algorithm. J. Am. Statist. Assoc. 88, 221-228.

Kayalar, S. and Weinert, H. L. (1988). Error bounds for the method of alternating
projections. Math. Control Signals Systems 1, 43-59.

Kent, J. T. and Tyler, D. E. (1991). Redescending M-estimates of multivariate
location and scatter. Ann. Statist. 19, 2102-2119.

Kent, J. T., Tyler, D. E. and Vardi, Y. (1994). A curious likelihood identity for the
multivariate t-distribution. Commun. Statist. — Simula. 23, 441-453.

188

Laird, N., Lange, N. and Stram, D. (1987). Maximizing likelihood computations
with repeated measures: application of the EM algorithm. J. Am. Statist.
Assoc. 82, 97-105.

Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal data.
Biometrics 38, 967-74.

Lange, K. (1995). A quasi-Newtonian acceleration of the EM algorithm. Statistica
Sinica 5, 1-18.

Lange K., Little, R. J. A. and Taylor, J. M. G. (1989). Robust statistical modeling
using the t-distribution. J. Am. Statist. Assoc. 84, 881-896.

Lansyk, D. and Casella, G. (1990). Improving the EM algorithm. Computing
Science and Statistics: Proceedings of the Symposium on the Interface, 420-

424.

Lindstrom, M. J. and Bates, D. M. (1988). Newton-Raphson and EM algorithms
for linear mixed-effects models for repeated-measure data. J. Am. Statist.

Assoc. 83, 1014-1022.

Little, R. J. A. (1988). Robust estimation of the mean and covariance matrix from

data with missing values. Applied Statistics, 37, 23-39.

Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data.
John Wiley & Sons, New York.

Liu, C. and Rubin, D. B. (1995a). The ECME algorithm: a simple extension of EM

and ECM with fast monotone convergence. Biometrika, 81, 633-48.

Liu, C. and Rubin, D. B. (1995b). ML estimation of the t-distribution using EM
and its extensions, ECM and ECME. Statistica Sinica, 5, 19-40.

Louis, T. A., (1982). Finding the observed information matrix when using the EM
algorithm. J. R. Statist. Soc. B, 44, 226-233.

189

Maine, M., Boullion, T. and Rizzuto, G. T. (1991). Detecting the number of com-
ponents in a finite mixture having normal components. Commun. Statist.

—~Theory Meth. 20, 611-620.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. Aca-

demic Press, London.

Meng, X. L. (1990). Towards complete results for some incomplete-data Problems.
Ph.D. Thesis, Harvard University, Department of Statistics.

Meng, X. L. (1994). On the rate of convergence of the ECM algorithm. Ann.
Statist. 22, 326-339.

Meng, X. L. and Pedlow, S. (1992). EM: A bibliographic review with missing
articles. Proc. Statist. Comp. Sect., 24-27. Washington, D.C.: American
Statistical Association.

Meng, X. L. and Rubin, D. B. (1991a). Using EM to obtain asymptotic variance-

covariance matrices: the SEM algorithm. J. Am. Statist. Assoc. 86,

899-909.

Meng, X. L. and Rubin, D. B. (1991b). IPF for contingency tables with missing data
via the ECM algorithm. Proc. Statist. Comp. Sect., 244-247. Washington,

D.C.: American Statistical Association.

Meng, X. L. and Rubin, D. B. (1992). Recent extensions to the EM algorithm (with
discussion). In Bayesian Statistics 4, Ed. J. M. Bernardo, J. O. Berger, A.
P. Dawid and A. F. M. Smith, pp. 307-20. Oxford University Press.

Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM

algorithm: a general framework. Biometrika 80, 267-78.

Meng, X. L. and Rubin, D. B. (1994a). On the global and componentwise rates
of convergence of the EM algorithm. Linear Algebra and its Applications

(Special issue honoring Ingram Olkin) 199, 413-425.

190

Meng, X. L. and Rubin, D. B. (1994b). Efficient methods for estimating and testing
with seemingly unrelated regressions in the presence of latent variables and

missing data. To appear in a special volume in honor of Arnold Zellner.

Orchard, T. and Woodbury, M. A. (1972). A missing information principle theory
and application. Proceedings of the 6th Berkeley Symposium on Mathemat-
ical Statistics and Probability 1, 697-715.

Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solutions of Nonlinear
Equations in Several Variables. Academic Press, New York.

Pearson, K. (1894). Contribution to the mathematical theory of evolution. Phil.
Trans. Roy. Soc. A, 185, 71-110.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.

Rubin, D. B. (1983). Iteratively reweighted least squares, Encyclopedia of the Sta-
tistical Sciences, Vol. 4. John Wiley & Sons, New York, pp. 272-275.

Segal, M. R., Bacchetti, P., and Jewell, N. P. (1994). Variances for maximum
penalized likelihood estimates obtained via the EM algorithm. J. R. Statist.
Soc. B, 56, 345-352.

Titterington, D. M., Smith A. F. M. and Markov U. E. (1985). Statistical Analysis
of Finite Mixture Distributions. John Wiley & Sons, New York.

Wei, C. G. and Tanner, M. A. (1990). A monte carlo implementation of the EM al-
gorithm and the poor man’s data augmentation algorithms. J. Am. Statist.
Assoc. 85, 699-704.

Windham, M. P. and Cutler, A. (1992). Information ratios for validating mixture
analyses. J. Am. Statist. Assoc. 87, 1188-1192.

Wolfe, J. H. (1970). Pattern clustering by multivariate mixture analysis. Multivar.
Behav. Res., 5, 329-350.

191
Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. Ann.
Statist. 11, 95-103.

Zangwill, W. (1969). Nonlinear Programming — A Unified Approach. Prentice-Hall,
Englewood Cliffs, New Jersey.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated regres-
sions and tests for aggregation bias. J. Am. Statist. Assoc. 57, 348-368.

