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Abstract: This paper provides detailed theory, algorithms, and illustrations for com-

puting asymptotic variance-covariance matrices for maximum likelihood estimates us-

ing the ECM algorithm (Meng and Rubin (1993)). This Supplemented ECM (SECM)

algorithm is developed as an extension of the Supplemented EM (SEM) algorithm

(Meng and Rubin (1991a)). Explicit examples are given, including one that demon-

strates SECM, like SEM, has a powerful internal error detecting system for the im-

plementation of the parent ECM or of SECM itself.
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1. Introduction

The EM algorithm (Dempster, Laird and Rubin (1977)) is a formalization of

an old ad hoc method for handling missing data. If we had the missing data, we

could estimate the parameters of a particular model using standard complete-

data techniques. On the other hand, if we knew the model parameters, we could

impute the missing data according to the model. This leads naturally to an iter-

ative scheme. The advantage of the EM formulation over its ad hoc predecessor

is that it recognizes that the correct imputation is through the complete-data

su�cient statistics, or more generally through the complete-data loglikelihood

function. Since EM separates the complete-data analysis from the extra compli-

cations due to missing data, it is both conceptually and computationally simple.

When facing an incomplete-data problem, we can �rst ask what would be done if

there were no missing values, and then proceed with the help of EM to deal with

the missing data, assuming that the missing data mechanism (Rubin (1976)) has

been taken into account. This advantage has helped EM win great populatity

among practical users. Meng and Pedlow's (1992) bibliography reveals that there

are more than 1,000 EM related articles in almost 300 journals, most of which

are outside the �eld of statistics.
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In some cases, the complete-data problem itself may be complicated. For

instance, when a model has many parameters, �nding maximum likelihood es-

timates (MLEs) can be a demanding task. A natural strategy, in general, is to

break a big problem into several smaller ones. In a case with many parameters, if

some of the model parameters were known, it might be easier to estimate the rest.

In the complete-data problem, we can partition the parameters into several sets,

and estimate one set conditional on all the others. This technique is well-known

in the numerical analysis literature as the cyclic coordinate ascent method (e.g.

Zangwill (1969)) and is called, in statistical terms, the Conditional Maximization

or CM algorithm by Meng and Rubin (1993). The ECM algorithm (Meng and

Rubin (1993)) is an e�cient combination of the CM and EM algorithms. It re-

places the maximization step of EM with a set of conditional maximization steps,

and thus splits a di�cult maximization problem into several easier ones. Conse-

quently, in many practical applications, ECM extends the 
exibility and power

of EM and retains the stability of EM in the sense of monotonic convergence of

the likelihood along the induced sequence to the MLE.

Besides computing point estimates, statistical inference requires measures

of uncertainty, for example (asymptotic) variance-covariance matrix of the es-

timates. The Supplemented EM (SEM) algorithm (Meng and Rubin (1991a))

computes such matrices using a sequence of EM iterates to obtain the matrix

rate of convergence of EM. This rate is then used to in
ate the complete-data

asymptotic variance matrix to obtain the asymptotic variance matrix for the

observed-data MLEs. A key feature of SEM is that it requires only the code for

EM and the code for computing the complete-data asymptotic variance matrix.

Here we develop and illustrate an analogous supplemented algorithm for

ECM, namely, SECM, which computes the asymptotic variance-covariance ma-

trix of the MLEs. In addition to requiring the computation of both the rate of

convergence of ECM and the complete-data variance-covariance matrix, it re-

quires the computation of the rate of convergence of the CM algorithm. The

computations of SECM, however, remain as simple as SEM in the sense that

they only require the ECM code along with the code for computing the complete-

data variance matrix. Although our presentation is focused on the asymptotic

variance-covariance matrix of the MLEs, the SECM algorithm can just as easily

be applied to compute the asymptotic posterior variance-covariance matrix when

ECM is used to �nd a posterior mode, which includes penalized likelihood models

as a special case (e.g. Segal, Bacchetti and Jewell (1994)).

After providing the necessary theoretical development in Section 2, we detail

in Section 3 the computational steps of SECM. Section 4 presents two examples

to illustrate the SECM algorithm. The last section o�ers discussion on some

practical issues involved in implementing SECM.



SUPPLEMENTED ECM(SECM) ALGORITHM 57

2. Methodological Development

2.1. Notation and general setting

As in Meng and Rubin (1991a, 1993) and Meng (1994), let f(Y j�) be a den-

sity for the complete-data Y , where � = (�1; : : : ; �d) is a d-dimensional model pa-

rameter with domain �. In the presence of missing data we write Y = (Yobs; Ymis),

where Yobs represents the part of Y that is observed and Ymis the part that is

missing. The object is to �nd the MLE of � given Yobs, �
?, as well as the asymp-

totic variance-covariance matrix of (� � �?). That is, we seek both the �? that

maximizes the observed-data loglikelihood, L(�jYobs) = log f(Yobsj�) and the cor-

responding observed information matrix

Io(�
?jYobs) = �

@2L(�jYobs)

@�@�>

����
�=�?

: (2:1:1)

The use of the inverse of (2.1.1) as an asymptotic variance requires that �? is

in the interior of �, a condition that is also needed for the general EM theory

developed in Dempster, Laird and Rubin (1977) as well as in Wu (1983). We

therefore assume �? is in the interior of � throughout this paper. Because of the

missing data, direct analytic computation of �? and Io(�
?jYobs) can be di�cult

or impossible. This is the setting in which EM and its extensions are useful.

2.2. The EM and ECM algorithms

Starting with an initial value �(0) 2 �, the EM algorithm �nds �? by iterating

between the following two steps (t = 0; 1; : : :):

E step: Impute the unknown complete-data loglikelihoodL(�jY )=log f(Y j�)

by its conditional expectation given the current estimate �(t):

Q(�j�(t)) =

Z
L(�jY )f(YmisjYobs; �

(t))dYmis: (2:2:1)

M step: Determine �(t+1) by maximizing the imputed loglikelihood Q(�j�(t)):

Q(�(t+1)j�(t)) � Q(�j�(t)); for all � 2 �: (2:2:2)

As we mentioned in Section 1, in some cases theM step is not in closed form.

Directly implementing EM then requires undesirable nested iterations. In many

such cases, the ECM algorithm, which replaces the maximization of Q(�j�(t))

by several simpler conditional maximizations, is more useful. Speci�cally, let

G = fgs(�); s = 1; : : : ; Sg be a set of S (� 1) preselected (vector) functions that

are \space �lling" (Meng and Rubin (1993)) in the sense of allowing maximization

over the full space �. With ECM, the M step is replaced by S Conditional

Maximization (CM) steps:
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sth CM step: Find �(t+s=S) such that

Q(�(t+s=S)j�(t)) � Q(�j�(t)); for all � 2 �(t)
s � f� 2 � : g(�) = g(�(t+(s�1)=S))g;

(2:2:3)

where s = 1; : : : ; S, and the next iterate �(t+1) � �(t+S=S). The rational behind

the CM steps is that in problems where maximizing Q(�j�(t)) over � 2 � is

di�cult, it may be possible to choose G so that it is simple to maximize over

� 2 �(t)
s for s = 1; : : : ; S.

For example, a common useful choice of G is to choose gs(�) = (#1; : : : ; #s�1,

#s+1; : : : ; #S) for s = 1; : : : ; S, where (#1; : : : ; #S) is a partition of �. In other

words, at the sth CM step, we maximize Q(�j�(t)) over #s with the rest of the

S � 1 subvectors �xed at their previous estimates. This common special class

of ECM is called the partitioned ECM (PECM) algorithm by Meng and Rubin

(1992). More complicated choices of G can also be useful in practice, as we will

see in Section 4.2.

2.3. The SEM algorithm

Having described EM and ECM, we brie
y review the SEM algorithm before

extending it to SECM. The SEM algorithm is built upon the following funda-

mental identity, established in Dempster, Laird and Rubin (1977), under the

condition that Q(�j�(t)) is maximized by setting its �rst derivative equal to zero,

DMEM = IomI
�1
oc : (2:3:1)

In (2.3.1), DMEM is the Jacobian of the EM mapping, �(t+1) = MEM (�(t)), at

� = �?,

Iom =

Z
�
@2 log f(YmisjYobs; �)

@�@�>
f(YmisjYobs; �)dYmis

����
�=�?

(2:3:2)

is the expected missing information, and

Ioc =

Z
�
@2 log f(Y j�)

@�@�>
f(YmisjYobs; �)dYmis

����
�=�?

(2:3:3)

is the expected complete information (see Meng and Rubin (1991a)). The identity

(2.3.1) is fundamental because it directly relates the rate of convergence of EM,

namely, DMEM , with the (matrix) fraction of missing information, IomI
�1
oc . It

underlies the SEM computations because the desired information matrix (2.1.1)

can be written as the di�erence between the complete and missing information

(e.g. Orchard and Woodbury (1972), Meng and Rubin (1991a))

Io(�
?jYobs) = Ioc � Iom = [Id � IomI

�1
oc ]Ioc = [Id �DMEM ]Ioc; (2:3:4)
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where Id is the d � d identity matrix. In other words, to compute Io(�
?jYobs),

we need only compute DMEM and Ioc. When f(Y j�) is from the exponential

family, as is typically the case when the E step is tractable, Ioc = Io(�
?jS?(Yobs));

where S?(Yobs) = E(S(Y )jYobs; �
?), as found at the last E step; we thus can

compute Ioc using standard complete-data procedures. Computing DMEM can

be accomplished by numerical di�erentiation of the EM mapping. Details of

these SEM calculations are provided in Meng and Rubin (1991a) and will be

reviewed in Section 3.

2.4. The rate of convergence of CM and ECM

To apply the logic of the SEM procedure to ECM, we need to relate the

rate of convergence of ECM to the fraction of missing information. Meng (1994)

extended (2.3.1) to the ECM case with the following result:

[Id �DMECM ] = [Id �DMEM ][Id �DMCM ]; (2:4:1)

where DMECM is the rate of convergence of ECM at � = �?, and DMCM is the

rate of convergence of CM at � = �?. If we knew DMECM and DMCM , we could

use (2.4.1) and (2.3.4) to calculate the asymptotic variance, [Io(�
?jYobs)]

�1.

As will be detailed in Section 3, DMECM can be computed by numerical

di�erentiation just like DMEM . The rate of convergence of CM, namely DMCM ,

can be computed in two ways. Meng (1994) shows that it can be calculated

analytically as

DMCM = P1 � � �PS; (2:4:2)

where

Ps = rs[r
>

s I
�1
oc rs]

�1r>

s I
�1
oc ; s = 1; : : : ; S; (2:4:3)

with Ioc given in (2.3.3) and rs = rgs(�
?) the gradient of the constraint function

gs(�) evaluated at � = �?. Notice that all the quantities in (2.4.2) involve only

the complete-data information matrix and the g functions, and thus they can be

computed once �? is obtained.

Alternatively, when the complete-data model f(Y j�) is from an exponential

family, DMCM can be obtained numerically from the output of ECM at conver-

gence, (�?; S?(Yobs)); and an additional run of the code for the CM steps. If we

take S?(Yobs) to be the �xed complete-data su�cient statistics, we can obtain

�̂(S?(Yobs)), the MLE of � given S?(Yobs), using the CM algorithm starting from

�(0) 6= �?; DMCM is the rate of convergence of this CM algorithm. This can be

proved by examining (2.4.3) and noting that if f(Y j�) is from an exponential

family, Ioc = Io(�
?jS?(Yobs)) and that �? = �̂(S?(Yobs)). Thus we can derive

DMCM by calculating the rate of convergence of the CM algorithm applied to
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L(�jS?(Yobs)). This avoids the matrix inversions and computation of the rs in

(2.4.2) and (2.4.3), which are necessary when performing analytical calculations.

With the PECM algorithm described in Section 2.2, the computation of

DMCM is particularly easy. Let � be the block diagonal matrix of Ioc with S

blocks corresponding to the S subvectors of � de�ned by the partition. Let � be

the corresponding lower block triangular matrix of Ioc, that is, Ioc = �+�+�>:

Meng (1990) established that in this case (2.4.2) reduces to

DMCM = ��[� + �>]�1; (2:4:4)

which makes analytical calculation of DMCM very simple, as illustrated in Sec-

tion 4.1.

2.5. The basic identity for the SECM algorithm

Having obtained DMECM , DMCM , and Ioc, we can combine (2.3.4) and

(2.4.1) to obtain

Io(�
?jYobs) = [Id �DMECM ][Id �DMCM ]�1Ioc: (2:5:1)

Equivalently, in terms of the variance,

Vobs � I�1o (�?jYobs) = Vcom +�V; (2:5:2)

where Vcom = I�1oc can be viewed as the variance-covariance matrix of the MLE

given the complete-data, and

�V = Vcom[DMECM �DMCM ][Id �DMECM ]�1 (2:5:3)

is the increase in variance due to the missing data.

Identity (2.5.3) is the basis for the SECM algorithm, and it reduces to (2.3.6)

of Meng and Rubin (1991a) when DMCM = 0, which corresponds to EM. An

interesting property of SECM (and SEM) is that, although �V is mathematically

symmetric, the right side of (2.5.3) is not numerically constrained to be symmetric

because Vcom, DMCM , and DMECM are computed separately as described in

Section 3. Numerical symmetry is obtained only when all three of these are

computed without appreciable numerical imprecision. This property turns out

to be a surprisingly powerful tool for detecting implementation or numerical

errors, as illustrated in Section 4 and further discussed in Section 5.
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3. Implementing the SECM Algorithm

3.1. A schematic

This section is designed to explain how to implement SECM in a step by step

manner. Readers not interested in implementational details may wish to skip to

the examples in Section 4. We will describe in simple terms exactly how one can

compute �? and Vobs. The schematic in Figure 1 describes the necessary steps

in broad terms. The user must provide routines that perform the E and CM

steps, as well as one that computes Ioc. These are described in Section 3.2. The

schematic also references Algorithms 1, 2 and 3, which compute �?, DMECM

and DMCM respectively and are described in Section 3.3. The mathematical

background for the routines that follow is given in Section 2 of this paper and

in Meng and Rubin's (1991a) presentation of the SEM algorithm. Since SEM

is a special case of SECM, the algorithms presented here can also be used to

implement SEM. The only modi�cation when running SEM is that the CMSTEPS

routine should compute the global maximum of Q(�j�(t)), that is, use only one

CM step, and the DMCM matrix should be set to 0.

3.2. User provided speci�c subroutines

The computations in the following three subroutines are problem speci�c; the

�rst two routines are used in the Algorithms in Section 3.3 and the third is used

in box 3 of Figure 1. These subroutines are developed assuming that f(Y j�) is

from an exponential family, beyond which the simplicity of EM-type algorithms

is typically lost because the E step typically requires numerical integration or

simulations (c.f. Wei and Tanner (1990)).

Subroutine 1. ESTEP:

INPUT: �(t), Yobs
Compute S(t)(Yobs) = E[S(Y )j�(t); Yobs], where S(Y ) is the complete-data

su�cient statistic.

OUTPUT: S(t)(Yobs)

Subroutine 2. CMSTEPS:

INPUT: S(t)(Yobs), �
(t)

Compute �(t+1) with a sequence of constrained maximization steps, as de-

scribed in Section 2.2.

OUTPUT: �(t+1)

Subroutine 3. ICOM:

INPUT: �?, S?(Yobs)
Compute Ioc = Io(�

?jS?(Yobs)), the observed Fisher information matrix based
on the complete-data model, evaluated at �? and S?(Yobs).

OUTPUT: Ioc and Vcom = I�1oc
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START

1. Set �ECM ,
�SECM and �SCM:

2. Calculate ��,
S�(Yobs) using
Algorithm 1

(ECM).

3. Evaluate Ioc
and Vcom = I�1

oc

using ICOM.

4. Calculate
DMECM using
Algorithm 2

(SECM).

5. CalculateDMCM

using Algorithm 3

(SCM); or use (2.4.2)
and (2.4.3).

PECM?
6. Evaluate DMCM

using (2.4.4).

7. Evaluate �V
using (2.5.3).

8. Adjust �ECM ,
�SECM , �SCM or
�nd programming
error.

enough?
Is �V symmetric

OUTPUT:
�� and
Vcom +�V .

Return to START.

no yes

no yes

Figure 1. Schematic of the SECM algorithm.



SUPPLEMENTED ECM(SECM) ALGORITHM 63

3.3. General algorithms

Algorithm 1: Calculate �? and S?(Yobs) using ECM.

Repeat the ECM steps:

INPUT: �(t)

Step 1: Calculate S(t)(Yobs) with ESTEP;

Step 2: Calculate �(t+1) with CMSTEPS;

OUTPUT: �(t+1)

Continue until

�(�(t); �(t+1)) < �ECM (3:3:1)

for some convergence criterion � and threshold �ECM . A discussion on how to

choose � and �ECM , as well as �SECM and �SCM appears in Section 3.4.

FINAL OUTPUT : Set S?(Yobs) equal to the output from the �nal ESTEP, and

set �? equal to the output from the �nal CMSTEPS.

Algorithm 2: Calculate DMECM using SECM.

Let rij be the (i; j)th element of the d� d matrix DMECM and de�ne �(t)(i) as

�(t)(i) = (�?1; : : : ; �
?
i�1; �

(t)
i ; �?i+1; : : : ; �

?
d); i = 1; : : : ; d: (3:3:2)

That is, �(t)(i) is �? with the ith component active, i.e. replaced by the ith

component of �(t).

Repeat the SECM steps:

INPUT: �? and �(t)

Repeat Step 1 and Step 2 for each i

Step 1: Calculate �(t)(i) from (3.3.2), treat it as input for Algorithm 1, and

run one iteration of Algorithm 1 (that is, one ESTEP and one CMSTEPS) to obtain
~�(t+1)(i);

Step 2: Obtain the ratio

r
(t)
ij =

~�
(t+1)
j (i)� �?j

�
(t)
i � �?i

for j = 1; : : : ; d; (3:3:3)

OUTPUT: fr
(t)
ij ; i; j = 1; : : : ; dg.

FINAL OUTPUT: DMECM = fr?ijg, where r
?
ij = r

(tij)
ij is such that

�(r
(tij )
ij ; r

(tij+1)

ij ) < �SECM (3:3:4)

for some suitable convergence threshold �SECM .

Algorithm 3: Calculate DMCM using SCM.
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For notational simplicity, the same notation is used for the elements of

DMCM as was used for DMECM .

Repeat the SCM (e.g. supplemented CM) steps:

INPUT: �?; �(t) and S?(Yobs)

Repeat Step 1 and Step 2 for each i

Step 1: Calculate �(t)(i) from (3.3.2) and run CMSTEPS once using S?(Yobs)

and �(t)(i) as input to obtain ~�(t+1)(i);

Step 2: Obtain the ratio r
(t)
ij as in (3.3.3);

OUTPUT: fr
(t)
ij ; i; j = 1; : : : ; dg.

FINAL OUTPUT: DMCM = fr?ijg where all the r
?
ij = r

tij
ij are such that (3.3.4)

is satis�ed for some convergence threshold for SCM, �SCM .

When implementing the PECM algorithm, Algorithm 3 can be replaced by

a simple evaluation of (2.4.4). For the more general ECM algorithm, it can be

computationally advantageous to replace Algorithm 3 with analytical calculations

described in (2.4.2) and (2.4.3). Finally, the outputs of ICOM, and Algorithms 2

and 3 (i.e. Vcom, DMECM , DMCM) are put together to calculate �V using

(2.5.3), and then (2.5.2) is used to obtain the desired variance-covariance matrix

Vobs.

3.4. Notes on implementation

The convergence criterion �(a; b) is a discrepancy measure between a and b.

Common choices are (i) �(a; b) = maxi jai � bij; (ii) �(a; b) = maxi j(ai � bi)=aij

or maxi j(ai � bi)=(ai + bi)j, and (iii) �(a; b) = jja � bjj, where jj � jj denotes the

standard Euclidean norm, and ai and bi are the components of a and b. The �rst

of these, (i) was used in the examples in Section 4 and is generally �ne unless the

magnitudes of the components vary greatly, in which case (ii) is preferred. The

same holds for SECM and SCM except that a and b are scalars, in which case

(i) and (iii) are the same.

When ECM is run alone, the convergence threshold �ECM can be set to obtain

whatever level of precision is desired for �?. When SECM is used, however, �ECM

must be quite small (compared to the magnitude of �?) to insure convergence of

�(t) as well as r
(t)
ij and thereby to insure satisfactory symmetry in �V . Generally

�SECM and �SCM should be about equal to the square root of �ECM , as is discussed

further in Section 5.1.

Finally, note that Algorithms 2 and 3 assume that the ECM iterates were

saved when Algorithm 1 was run. This saves computational time, but requires

extra storage. For some users, it may be better to recompute the iterates than

to save them. To do this, change the input in Algorithms 2 and 3 to \INPUT: �?

and �(t�1)" and add \Step 0: Run one ECM iteration on �(t�1) to obtain �(t)."
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Generally, it is not necessary to start the SECM or SCM algorithms at �(0) or to

run them for as many steps as ECM was run. Thus, saving all the iterates may

not be economical, and it may be computationally more e�cient to recompute

only the iterates that are needed.

4. Examples illustrating SECM

4.1. Bivariate normal stochastic censoring model

Suppose (yi1; yi2)
> are independent observations from a bivariate normal

distribution, where y2 is never observed and y1 is observed only if y2 > 0. For

each unit, the density is speci�ed by 
yi1

yi2

!
indep
� N

��
�11xi1 + �12xi2 + 0 � xi3
�21xi1 + 0 � xi2 + �23xi3

�
;

�
�21 ��1
��1 1

��
; i = 1; : : : ; n:

Here the xij are completely observed, and we set � = (�11; �12; �21; �23) and

� =

�
�21 ��1
��1 1

�
.

This is an example of the so called seemingly unrelated regression model

(Zellner (1962)), also known in economics as the Type II Tobit model (e.g.,

Amemiya (1984)). When the active covariates for yi1 and yi2 overlap but are not

identical (in our example, �13 = �22 = 0), even if all the y's are observed, the

MLEs of � and � are not in closed form. Consequently, implementing EM would

require nested iterations within the M step. However, given �, the conditional

MLE of � is simply the sum of squares of the residuals divided by n. On the other

hand, given �, the conditional MLE for � can be easily obtained by weighted

least squares. ECM replaces the iterative M step with these two CM steps

(detailed formulas are given in Meng and Rubin (1995)).

To compute the E step, we need to �nd the conditional expectation of

(yi1; y
2
i1; yi2; y

2
i2; yi1yi2) for i = 1; 2; : : : ; n, given the observed data and the pa-

rameters. These calculations follow from the properties of the bivariate normal

distribution and are given explicitly in Little and Rubin (1987), p: 225. There

is, however, an error in that presentation. When yi2 > 0, we also observe yi1,

and must thus �nd E(yi2jyi1; yi2 > 0) and E(y2i2jyi1; yi2 > 0), not E(yi2jyi2 > 0)

and E(y2i2jyi2 > 0) as presented there. This error will lead to incorrect results, in

particular it tends to underestimate the magnitude of �. For the data described

below, the true � = 0:5, the MLE �? = 0:482, but the incorrect procedure gives

0.200. We discovered this error only after we found that the resulting variance-

covariance matrix from SECM was clearly asymmetric, which demonstrates the

power of SECM as a tool for detecting errors in implementing ECM. To correct

the E step, we need to substitute the following two expectations for the second
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and �fth equations given in Little and Rubin (1987), p: 225,

E(yi2jyi1; yi2 > 0; �(t);�(t)) = �
(t)
i2 + �

(t)
i2 �

 
�
(t)
i2

�
(t)
i2

!
;

E(y2i2jyi1; yi2 > 0; �(t);�(t)) = [�
(t)
i2 ]

2 + [�
(t)
i2 ]

2 + �
(t)
i2 �

(t)
i2 �

 
�
(t)
i2

�
(t)
i2

!
;

where �(z) = �(z)=�(z) is the inverse Mill's ratio, and

�i2 = E(yi2jyi1; �;�) = �2 + �
(yi1 � �1)

�1
; �i2 =

q
Var(yi2jyi1; �;�) =

p
1� �2:

We ran SECM using the variance stabilizing transformations (log(�1); Z�) in

place of (�1; �), where Z� = 0:5 logf(1+�)=(1��)g is the Fisher Z transformation

of �. This transformation is used, not only to ensure better normality when

invoking large sample approximations, but also to enhance the computational

stability of SECM sinceDMECM(�) is more nearly constant (as a matrix function

of �) near �? when the loglikelihood is more nearly quadratic. The sample data set

of size 12 in Table 1 was simulated using the parameters in the �rst row of Table

2. The observed data are the 8 observations of Y1 for which the corresponding

observation of Y2 is positive. None of the values of Y2 are observed.

Table 1. The data for Example 4.1

x1 x2 x3 Y1 Y2

�1 1 �1 �0:4443346 �2:9841022

�1 1 �1 �0:4038098 �0:9029128

�1 �1 �1 �0:4457312 �0:1776825

�1 �1 0 �0:1966688 0:4006104

0 1 0 0:5583971 0:3723503

0 �1 0 �0:7892194 1:1994856

0 1 2 �0:2868998 �0:5555625

0 �1 2 �0:4309087 0:7991658

1 1 2 1:2447119 1:4188357

1 1 3 1:3696260 2:1091285

1 �1 3 �0:4198308 0:0973109

1 �1 3 �0:3999554 1:1703623

ECM was run with �ECM = 10�12, resulting in 249 iterations, from a starting

value of all zeros. Table 2 contains the MLEs of �, � and �1 in the second row
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and the corresponding asymptotic variances, which were found using SECM as

described below, in the third row.

Since the complete-data distribution is from a standard exponential family,

Ioc is just the complete-data information matrix evaluated at �? and S?(Yobs),

which yields

V
com

=

0
BBBBBBBBBBBBBB@

�11 �12 �21 �23 log(�1) Z�

�11 0:013512 0:000000 0:001210 0:007259
.
.
. �0:002169 �0:008234

�12 0:000000 0:009502 0:013557 0:000000
.
.
. 0:000000 0:000000

�21 0:001210 0:013557 0:083980 0:003880
.
.
. �0:000009 �0:002012

�23 0:007259 0:000000 0:003880 0:023278
.
.
. �0:000051 �0:012073

� � � � � � � � � � � � � � � � � � � � �

log(�1) �0:002169 0:000000 �0:000009 �0:000051
.
.
. 0:039834 0:016296

Z� �0:008234 0:000000 �0:002012 �0:012073
.
.
. 0:016296 0:081700

1
CCCCCCCCCCCCCCA

:

Since this is a PECM algorithm, using (2.4.4) we can quickly calculate DMCM

from Ioc. In applying (2.4.4), � is the block diagonal matrix indicated in the

above display, and the non zero portion of � is the lower left 2 � 4 submatrix

of Vcom. SECM was run with �SECM = 10�7, and Vobs is found by a simple

application of (2.5.2):

V
obs

=

0
BBBBBBBBBB@

�11 �12 �21 �23 log(�1) Z�

�11 0:022862 �0:002858 �0:001767 0:007392 �0:000422 �0:004376

�12 �0:002858 0:014679 0:008360 0:002188 �0:002109 �0:015259

�21 �0:001765 0:008360 0:260939 �0:081708 0:005719 0:115485

�23 0:007390 0:002187 �0:081704 0:161360 �0:003444 �0:143232

log(�1) �0:000421 �0:002109 0:005719 �0:003445 0:062933 0:029605

Z� �0:004369 �0:015253 0:115469 �0:143233 0:029602 0:494789

1
CCCCCCCCCCA
:

We see here the symmetry holds to at least 4 decimal places, indicating

accurate computation. Comparing Vcom and Vobs, we can also easily �nd the

increase in variance due to missing data, as recorded in the fourth row of Table

2 (we have applied a Jacobian transformation for the variances of �?1 and �?).
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Table 2. The results from Example 4.1

�11 �12 �21 �23 �1 �

�true 0:2000 0:5000 �0:3000 0:3000 0:5000 0:5000

�? 0:2643 0:6248 �0:5263 0:5274 0:3377 0:4818

Var(�?) 0:0229 0:0147 0:2609 0:1614 0:0072 0:2918

�V 0:0094 0:0052 0:1769 0:1381 0:0027 0:2435

4.2. A 2�2�2 contingency table

Table 3(a) presents a 2� 2� 2 contingency table on infant survival (Bishop,

Fienberg and Holland (1975), Table 2.4-2). The supplementary data in Table

3(b) was added by Little and Rubin (1987, p: 187) to form a partially classi�ed

table. Suppose we wish to �t a log-linear model with no three way interaction:

log(�ijk) = u0 + (�1)i�1uP + (�1)j�1uC + (�1)k�1uS

+ (�1)i+juPC + (�1)j+kuCS + (�1)i+kuPS ; (4:2:1)

where �ijk is the cell probability for cell (i; j; k) for i; j; k = 1; 2, with i correspond-

ing to P , j to C and k to S. We will derive the MLE of U = (u0; uP ; : : : ; uPS)
>

and Vobs, the asymptotic variance matrix of U?.

Table 3. A 2� 2� 2 contingency table with partially classi�ed observations

Survival (S)

Clinic (C) Prenatal care (P) Died Suvivied

(a) Completely classi�ed cases

A Less 3 176

More 4 293

B Less 17 197

More 2 23 N (a) = 715 cases

(b) Partially classi�ed cases

? Less 10 150

More 5 90 N (b) = 255 cases

Meng and Rubin (1991b, 1993) describe an ECM algorithm with three CM

steps for this problem. Speci�cally, since the loglikelihood is linear in the cell
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counts, Y = fyijkg, the E step simply involves imputing the missing data,

E : y
(t)
ijk = ~y

(a)
ijk + ~y

(b)
ik

�
(t)
ijkP
j �

(t)

ijk

; (4:2:2)

where ~y
(a)
ijk are the cell counts in Table 3(a), and ~y

(b)
ik are the marginal counts

classi�ed only according to parental care and survival (see Table 3(b)). The CM

steps make use of IPF. Given the current estimated cell probabilities f�
(t)
ijkg, the

three CM steps are

CM1 : �
(t+ 1

3

)

ijk =�
(t)

ij(k)

yij+

N
; CM2 : �

(t+ 2

3

)

ijk =�
(t+ 1

3

)

i(j)k

yi+k

N
; CM3 : �

(t+ 3

3

)

ijk =�
(t+ 2

3

)

(i)jk

y+jk

N
;

where N is the total count, �ij(k) = �ijk=
P

k �ijk is the conditional probability

of the third factor given the �rst two, and yij+ =
P

k yijk, etc. It is easy to

see that CM1 maximizes L(�jY ) subject to �ij(1) = �
(t)

ij(1) for each i and j, so

that the constraint function g1(�) = f�ij(1)g. Likewise g2(�) = f�i(1)kg and

g3(�) = f�(1)jkg. It is clear that this is not a PECM algorithm.

We start ECM with �ijk = 1=8 for each i, j and k, which satis�es the con-

straint of no three way interaction, and cycle according to ECM : E ! CM1 !

CM2 ! CM3: At each iteration, U (t) can then be calculated by regression

U (t) = (X>X)�1X> log �(t); t = 1; 2; 3; : : : ; (4:2:3)

where the design matrix X is derived from (4.2.1) with elements either +1 or

�1. Note that we are de�ning two mappings, M� : �
(t) ! �(t+1) and MU : U (t) !

U (t+1). The � parameterization is more natural in the context of the E and CM

steps. The U parameterization is more convenient in the context of the log-linear

model, and is a stable parameterization for the SECM calculations.

To compute Vobs on the U scale we need to derive DMECM , DMCM , and

Vcom � V (U?jY ?), where Y ? = E(Y j�?; Yobs). Implementing Algorithm 2 on the

mapping induced byMU will yieldDMECM . Since this is not a PECM algorithm,

we cannot use (2.4.4) to derive DMCM . Instead, SCM in Algorithm 3 is used,

with Y ? being the complete data. That is, we use the standard IPF procedure,

which induces the mapping given by CM1 ! CM2 ! CM3, to bit (4:2:1) to

Y ?; Algorithm 3 di�erentiates this mapping and produces DMCM . Finally, we

compute Vcom via a log-linear models package. Since all standard programs use

the su�cient statistics as their input, and Ioc is linear in the complete-data

su�cient statistics, �tting (4.2.1) using Y ? as the data will yield Vcom. For

example, in `S' (AT&T Bell Laboratories) Vcom can be computed with

> model<-glm(formula=Y ?� P+C+S+PC+PS+CS, family=poisson(link=log))

> summary(model)$cov.unscaled
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where P, C, S, etc: are vectors of +1 and �1 determined by (4.2.1) and are the

columns of the design matrix X. The parameter u0 in (4.2.1) is just a scale

parameter that insures that
P
�ijk = 1 and it should be ignored in the calculation

of Vobs as there are only six free parameters. Replace DMECM , DMCM and Vcom
with the 6 � 6 submatrices corresponding to the other six parameters before

computing Vobs using (2.5.2).

The results are presented in Table 4. The calculated matrix Vobs was sym-

metric to nine places beyond the decimal (due to space limitations, only �ve are

shown in Table 4), which is more accurate than expected since the algorithm was

run with �ECM = 10�16, �SECM = 10�8 and �SCM = 10�7. The ECM algorithm

required 70 iterations to converge.

Table 4. The MLE U? and Vobs for Model (4.2.1) with data given in Table 3

uP uS uC uPS uCS uPC

U?
y 0:40694 �1:56568 0:18153 �0:04442 �0:42478 �0:66167

sd(U?) 0:11761 0:09274 0:13516 0:11749 0:13267 0:05847

0:01383 �0:00182 0:01026 0:01225 0:00902 �0:00119

�0:00182 0:00860 0:00312 �0:00232 0:00247 �0:00034

Vobs 0:01026 0:00312 0:01827 0:00867 0:01618 �0:00160

0:01225 �0:00232 0:00867 0:01380 0:00988 0:00115

0:00902 0:00247 0:01618 0:00988 0:01760 0:00053

�0:00119 �0:00034 �0:00160 0:00115 0:00053 0:00342

y u?0 = �3:32944

Table 5. 95% marginal intervals for �? for Model (4.2.1) with data given in Table 3

Survival (S)

Clinic (C) Prenatal care (P) Died Suvivied

A Less [0:0016; 0:0115] [0:2244; 0:2876]

More [0:0040; 0:0156] [0:3566; 0:4200]

B Less [0:0180; 0:0391] [0:2531; 0:3181]

More [0:0013; 0:0090] [0:0205; 0:0457] N = 970 cases

The information in Table 4 can be used to construct con�dence intervals.

For example, we can derive the Jacobian J of the transformation form logit(�) to

U in order to calculate the observed Fisher information matrix for logit(�?):

Io(logit(�
?)jYobs) = J>Io(U

?jYobs)J: Assuming approximate normality on the

logit(�) scale, we can construct con�dence intervals for each of logit(�ijk), and
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then transform to the � scale. Table 5 is an illustration.

The calculations presented in the context of this example, are in fact quite

general. Bishop, Fienberg and Holland (1975) describe how either IPF or closed

form solutions can be used to �t any hierarchical log-linear model to contingency

tables with complete data. This means that the CM steps can easily be identi�ed

for any such model. Since the E step in (4.2.2) can easily be generalized to any

table with incomplete data, the SECM algorithm for �tting a log-linear model to

any table can easily be formulated. These calculations are described more fully

by van Dyk (1993).

5. Diagnostics and Variations

5.1. Checking the symmetry of Vobs

One of the most valuable properties of SECM is that like SEM, it has a built

in diagnostic. Section 3 describes all the steps required by SECM. It is the last

step, computation of �V that helps us know if mistakes have been made in any

of these steps. The variance matrix, Vobs = Vcom +�V; and thus �V , must be

symmetric, but if any of �?, DMECM , DMCM , or Ioc are not calculated correctly,

it is practically certain that the resulting �V and hence Vobs will be asymmetric.

The example in Section 4.1 documents that this diagnostic not only checks the

computation of Vobs but also detects errors in implementing the E and CM steps.

Convergence of the �(t) sequence does not insure that the convergent value is the

MLE, �?. Many erroneous algorithms converge. In fact, we had an instance in

which our algorithm increased the likelihood at each step and converged, but the

resulting Vobs was asymmetric. In this case, careful checking led to the discovery

of some subtle errors in implementation. There is no other diagnostic known to

us that can automatically detect these errors, and one perhaps would never �nd

them without the detection power of this tool. If Vobs is symmetric, however, we

are virtually assured that both �? and Vobs are correct because it seems practically

impossible to make separate errors in SECM that cancel appropriately.

Even when SECM is implemented correctly, the convergence threshold �ECM

needs to be quite small in order to obtain a Vobs matrix with satisfactory sym-

metry; this implies an increase in the number of iterations required, especially

when � is of high dimension. The more precisely we calculate �?, the more ac-

curately we are able to compute Vobs, because we are able to compute DMECM

and DMCM more accurately. An example demonstrating this is given in Section

4.5 of van Dyk, Meng and Rubin (1994). In general �SECM and �SCM are chosen

to be about equal to the square root of �ECM . They should be chosen as small as

possible, however, so that (3.3.4) is satis�ed for some tij for each i and j. In order

to increase the accuracy of DMECM and DMCM , �SECM and �SCM may even be

di�erent for di�erent components. When deciding on convergence thresholds, a
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good rule of thumb is that Vobs will be symmetric to about half as many digits as

�? is precise; for example, roughly, when �ECM is 10�8, we can expect 3 or 4 digits

of accuracy in Vobs. The accuracy of Vobs can always be judged by its symmetry,

however, and gross asymmetry always indicates either errors in implementation

or numerical imprecision; also see Section 5 of Meng and Rubin (1991a).

5.2. Computing Vobs when implementing MCECM

The multi-cycle ECM or MCECM algorithm (Meng and Rubin (1993)) is

a variation of the ECM algorithm in which extra E steps are added to each

iteration, in the hope that adding E steps will speed the convergence. Consider,

for example, the three CM -step ECM algorithm : E!CM1!CM2!CM3: The

MCECM algorithm adds one or more E steps to each iteration, for example,

MCECM : E ! CM1 ! E ! CM2 ! E ! CM3: (5:2:1)

Like ECM, this algorithm increases L(�jYobs) at each iteration and converges to

�? under the same conditions that guarantee that ECM does. The rate of con-

vergence of MCECM is, however, more complicated than that of ECM (see Meng

(1994)). Consequently, direct implementation of the supplemented MCECM

algorithm would be quite involved. There is, however, an easy solution. In

Algorithms 2 and 3, we evaluate the ratio rij using the ECM iterates in order to

calculate DMECM and DMCM . But there is nothing that requires the use of the

ECM iterates in these algorithms, just the ECM code, and we can actually use

any sequence �(t) converging to �?. In particular, we can use the MCECM iter-

ates as input for these algorithms and compute Vobs just as described in Section

3. That is, the sequence of steps in (5.2.1) can be used when we calculate �?

in Algorithm 1, but the standard ECM algorithm should be used in Algorithms 2

and 3 in which ESTEP will consist of one E step, and CMSTEPS will consists of the

three CM steps. If the MCECM iterations were not saved, we can simply run

the regular ECM algorithm (i.e., drop the added E steps) when implementing

the supplemented algorithm to calculate Vobs. Dropping the added E step in this

round will not slow the convergence, since we can start at initial values that are

closer to �? than the original �(0).

5.3. When some components have no missing information

In certain situations, missing data only a�ect estimates for some components

of �, that is, there is no missing information for the rest of �. For example, with

� = (#1; #2), there might be no missing data for the estimate of #1, in which

case we can compute the MLE #?1 without using EM or ECM; see example 4.4 of

Meng and Rubin (1991a). An e�cient implementation of ECM in such cases �xes
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#1 = #?1, and only updates #
(t)
2 . Since this implementation of ECM conditions on

#1 = #?1, the corresponding SECM algorithm can be used to calculate �V (#?2j#
?
1),

the increase in asymptotic conditional variance of #?2 (conditioning on #?1) due to

missing information. Speci�cally, we can compute �V (#?2j#
?
1) (see (2.5.3)) as

�V (#?2j#
?
1) = f[Ioc]22g

�1
[DMECM �DMCM ][Id

2

�DMECM ]�1; (5:3:1)

where the ECM and CM algorithms are run with #1 �xed at #?1, [Ioc]22 is the

submatrix of Io(�
?jYobs) corresponding to #2, and d2 is the dimension of #2. It

turns out that (5.3.1) is all we need to compute the increase in variance, since

�V =

�
0 0

0 �V (#?2j#
?
1)

�
: (5:3:2)

This identity holds because (i) there is no increase in variance or covariance of

#?1, and (ii) there is no increase in the part of the variance of #?2 that can be

explained by #?1 (see Meng and Rubin (1991a)). When there is no missing infor-

mation for #1, we can therefore calculate �V using (5.3.2) and then calculate Vobs
using (2.5.2). It is, however, worth remarking that �xing #1 at #

?
1 increases the

e�ciency of ECM and SECM, but is not a required step since the standard ECM

and SECM algorithms will produce the desired estimates. This is in contrast to

the standard SEM algorithm, which fails in this situation because some of the

denominators of (3.3.3) are zero and therefore a special version of SEM must be

implemented. An example illustrating these points is given in van Dyk, Meng

and Rubin (1994). Also, see Meng and Rubin (1991a), especially sections 3.4

and 5, for a related discussion, as well as other implementational considerations

(e.g. how computational e�ort increases with the dimension of �).
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