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Abstract

Solar activity follows a roughly 11-year cyclic pattern that was discovered
through proxy variables such as the observed number of sunspots. Correla-
tions between parameters of the consecutive 11-year cycles have also been
discovered using sunspot numbers. Other proxies of solar activity, such as
sunspot areas and the 10.7cm flux, show similar patterns and correlations as
the sunspot numbers. We model solar activity using data from proxies that
have become available more recently, while also taking advantage of the long
history of observation of sunspot numbers. Yu et al. (2012) propose a Bayesian
multilevel model of the solar cycle that uses only the sunspot numbers, which
we extend to incorporate other proxies. Since proxies have different temporal
coverage, we devise a multiple-imputation scheme to account for missing data.
We take advantage of strong linear correlations between proxies by using prin-
cipal component analysis to produce a univariate summary of solar activity
at each time point. To examine the effect of incorporating additional proxies
we compare fits of the Bayesian multilevel model using multiple proxies and
the sunspot numbers alone, finding significant differences in the inferred cycle
properties between the two model fits. Specifically, we find that the model
fit with multiple-proxies has shorter falling times and shorter overall cycle
lengths than the model fit with the sunspot numbers alone.

1.1 Introduction

Highly energetic solar eruptions involving bursts of radiation and discharges
of plasma can eject charged particles into space and damage technological in-
frastructure (e.g. radio communications, electric power transmission, and the
performance of low-Earth orbit satellites). Such “space weather” events are
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common during periods of high solar activity—a loose term that is defined only
by observable proxy variables. Variations in the level of solar activity follow
a roughly 11-year cyclic pattern, which is known as the solar cycle. Since en-
ergetic space weather events are more common near the solar maximum—the
peak in solar activity during the 11-year cycle—there is considerable inter-
est in predicting the timing and amplitude of future solar maxima, which has
practical value in the planning of space missions. Nevertheless, predicting solar
maxima remains a difficult task, with different methods yielding substantially
different predictions (see Pesnell, 2012, for an analysis of the various predic-
tions made for the current solar cycle).

The solar cycle was first discovered by observing 11-year cyclic patterns in
the average number of sunspots visible on the solar disk as viewed from Earth
(Wolf, 1852). Sunspots are dark patches on the face of Sun (when viewed
in optical light) that occur when intense magnetic fields inhibit convection,
temporarily producing areas of reduced surface temperature. Sunspots are
therefore linked to the overall magnetic activity of the Sun, and have long
been a valuable proxy for solar activity. This value is partly derived from the
fact that sunspot numbers (SSNs) comprise the longest uninterrupted set of
observations in astronomy, with records starting in the early seventeenth cen-
tury and available as monthly estimates since 1749. Correlations with solar
activity have been established in other proxies such as the 10.7cm flux (i.e.
the solar radio flux per unit frequency with a wavelength of 10.7cm), solar
flare numbers, sunspot areas, etc. (Hudson, 2007). Solar activity can be re-
constructed using radiocarbon measurements that are dated using tree-ring
data (Bonev et al., 2004; Solanki et al., 2004). Still, the SSNs are the baseline
for establishing properties of the solar cycle, and predictions for future cycle
maxima are generally based off the SSNs.

Although the oldest SSNs were collected 265 years ago, the data are sur-
prisingly reliable. The sunspot number is R = k(10g + s), where s is the
number of individual spots, g is the number of sunspot groups, and k is a
factor that corrects for systematic differences between instruments and obser-
vatories. Despite advances in technology and the advent of higher resolution
images of the Sun, the historical values of R are not expected to have signif-
icantly higher uncertainty for two reasons: (1) sunspot size visibility, which
affects our ability to see the faintest individual spots, is limited by atmospheric
conditions and that limit was reached a long time ago and (2) sunspot groups
are always counted as ten individual spots, regardless of the actual number of
spots in the group.

Using this data, Waldmeier determined that, within a cycle, the time for
SSNs to rise to maximum is less than the time to fall to minimum (Waldmeier,
1935). Other relations, such as the amplitide-period effect—the correlation
between the duration of a cycle and the amplitude of the following cycle—
were established using SSNs, and can be utilized to predict characteristics of
future cycles (e.g., Hathaway et al., 1994, 2002; Watari, 2008). Yu et al. (2012)
analyzes the SSNs to empirically derive statistically meaningful correlations
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between several parameters that they use to describe the solar cycle as part of
building a Bayesian multilevel model that accounts for uncertainties in both
the average monthly sunspot numbers, and in predicting the characteristics
of future cycles. Such correlations help constrain physical models of the solar
dynamo—the physical mechanism that generates the Sun’s magnetic field—
that attempt to explain the general solar cycle (Schüssler, 2007).

The statistical model of Yu et al. (2012) uses a multilevel structure to
capture complex patterns in the solar cycle. The first level of the model pa-
rameterizes the solar cycle using using cycle-specific parameters, and describes
the distribution of the observed monthly average SSNs around the parameter-
ized cycle. The second level of the model incorporates relationships between
the parameters of consecutive cycles, resulting in a hidden Markov model that
generates characteristics of cycle i+1 given the characteristics of cycle i. While
this model was initially fit using observed SSNs, the model can in principle
be fit using other proxies that follow the same underlying solar cycle.

A plot of the estimates of monthly average SSNs going back to the mid-
nineteenth century is presented in the top panel of Figure 1.1. The cyclic
pattern of SSNs that led to the discovery of the solar cycle is clearly vis-
ible. The available data extends back to January, 1749, and is maintained
and made available by the Solar Influences Data Analysis Center in Belgium
(http://sidc.oma.be). The bottom two panels of Figure 1.1 present the
available data for two additional proxies of solar activity: (1) monthly average
total sunspot areas, extending back to May, 1874, also available from the So-
lar Influences Data Analysis Center and (2) the monthly average 10.7cm flux,
which can be obtained from the National Oceanic and Atmospheric Admin-
istration’s National Geophysical Data Center (http://www.ngdc.noaa.gov/
stp/solar/flux.html). Although the SSNs, sunspot areas, and the 10.7cm
flux have differing temporal coverage, from the period of overlap it is clear
that all three of these proxies follow a similar underlying pattern, which is
the solar cycle. There are differences, however, in the cycle properties implied
by the proxies. For example, the sunspot areas appear to have shorter cycle
lengths and less pronounced peaks, especially in the first few observed cycles.
The proxies are nonetheless highly correlated and believed to be associated
with a common underlying solar cycle. Our goal is to combine information
from the multiple proxies into a single omnibus estimate of the underlying
cycle.

There are physical explanations as to why these proxies are correlated; the
total areas of sunspots will obviously depend on the number of sunspots, and
there is evidence that the 10.7cm flux values are influenced by the magnetic
fields associated with sunspots (Greenkorn, 2012). Because such proxies have
varying temporal coverages and may have varying cadences, it is challenging to
combine them to model the underlying solar cycle in a sophisticated statistical
analysis. Ideally, we would like to take advantage of the depth of high quality
data that has become available in recent years, while incorporating the long
record of SSNs.
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FIGURE 1.1
The observed proxies. Top row: monthly average sunspot numbers. Middle
row: monthly average sunspot areas. Bottom row: monthly average 10.7cm
flux. The roughly 11-year cycle of sunspot numbers follows the overall solar
cycle, and we observe similar patterns in the sunspot areas and the 10.7cm
flux.
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Given the interest in predicting future solar maxima, diverse methodologies
have been utilized including those based on i) models of the solar dynamo—the
physical mechanism that produces the Sun’s magnetic field (e.g., Choudhuri,
1992; Charbonneau and Dikpati, 2000; Dikpati and Gilman, 2006; Choudhuri
et al., 2007; Charbonneau, 2007), ii) measurements of geomagnetic activity
that act as precursors (e.g. Hathaway and Wilson, 2006), and iii) statistical
analysis of historical and current data (e.g., Hathaway et al., 1994; Benestad,
2005; Gil-Alana, 2009; Yu et al., 2012), among others. An overview of the
various predictions made for the current solar cycle, cycle 24, is given in Pesnell
(2012). Within the solar physics community there has been debate over the
amplitude of cycle 24, with different physical models producing a large range
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of predictions (e.g., Dikpati et al., 2006; Choudhuri et al., 2007). For the
previous cycle, cycle 23, Kane (2001) notes that among twenty predictions of
the smoothed maximum sunspot number made by different researchers, only
eight were within an acceptable range of the later observed value. The Bayesian
method of Yu et al. (2012) showed that there is considerable uncertainty in
predicting an upcoming solar maximum using data up to the current solar
minimum.

This chapter is divided into five sections. In Section 2 we review the Yu
et al. (2012) Bayesian multilevel model for the solar cycle. In Section 3 we
develop a systematic strategy for combining multiple proxies, and in particular
describe how the pattern of missing data can be exploited to obtain coherent
statistical inference. We present the results of fitting the solar cycle model
to data that combines multiple proxies in Section 4. Finally, in Section 5 we
summarize our results and discuss directions of future research.

1.2 Modeling the Solar Cycle with Sunspot Numbers

Yu et al. (2012) propose a Bayesian multilevel model for fitting the solar cy-
cle using monthly average SSNs as a proxy for the solar activity level. The
solar cycle is parameterized with a set of cycle-specific parameters that to-
gether describe the total length, rising time, and amplitude for a given cycle.
In the first level of the multilevel model, the observed SSNs are related to
the parameterized solar cycle. The second level of the model incorporates a
Markov structure that links parameters of consecutive cycles and encapsulates
known features of the sunspot cycle in a series of sequential relations. These
two stages are combined into a coherent statistical model, which is fit using
Markov chain Monte Carlo methods. This structure allows for straightforward
prediction of the characteristics of current cycles, even with data only extend-
ing to the beginning of the cycle. This is an important facet of the predictive
capability of the Bayesian multilevel model.

1.2.1 Level One: Modeling the Cycles

Figure 1.2 illustrates our parameterized model for a single solar cycle. In it,

for cycle i, suppose t
(i)
0 is the starting time, t(i)max is the time of the cycle

maximum, t(i)1 is the end time, c(i) is the amplitude, and U [t] is the “average
solar activity level” at time t. Here t is recorded in units of months; although
the exact number varies, there are roughly 11 × 12 = 132 months per cycle.
Under this model, the rising phase of the cycle is described as
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FIGURE 1.2
Parameterized form of a solar cycle. We illustrate U [t] with c(i) = 10, t(i)0 =

0, t(i)max = 36, t(i)1 = 120, α1 = 1.9 and α2 = 1.1, where U [t] is specified by (1.1)
and (1.2).

0 20 40 60 80 100 120

t
(i)
0 t

(i)
max t

(i)
1

c(
i)

U
[t
]

t

U [t] = c(i)

(

1−

(

t
(i)
max − t

t
(i)
max − t

(i)
0

)α1
)

for t < t(i)max, (1.1)

and the declining phase as

U [t] = c(i)

(

1−

(

t− t
(i)
max

t
(i)
1 − t

(i)
max

)α2
)

for t > t(i)max, (1.2)

where α1,α2 > 1 are shape parameters assumed to be constant for all cycles.
Together, (1.1) and (1.2) parameterize the solar cycle, and the curve described
by (1.1) and (1.2) is the curve in Figure 1.2. An important feature of this

parameterization is that the starting point of the the next cycle, t(i+1)
0 , is

not necessarily identical to the end point of the current cycle, t(i)1 . When two

cycles overlap (i.e. when t
(i)
1 > t

(i+1)
0 ), the activity level, U [t], is given by the

sum of the contributions of the form (1.2) and (1.1) from the respective cycles;

when t
(i)
1 < t

(i+1)
0 , U [t] = 0 for t(i)1 < t < t

(i+1)
0 .

The observed SSNs span a total of 25 cycles that are designated cycle 0
through cycle 24. The parameters that are specific to cycle i are the set θ(i) =

(t(i)0 , t
(i)
max, t

(i)
1 , c(i)). The collection of cycle-specific parameters is contained in

the set Θ = (θ(0), . . . , θ(24)). Then, the full set of parameters that characterize
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the solar cycle is given by (Θ,α), where α = (α1,α2) does not vary from cycle
to cycle and is therefore not included in Θ. With this, the distribution of the
observed SSNs given θ is

√
y
[t]|(Θ,α,β,σ2)

ind∼ N(β + U [t], σ2), (1.3)

where y[t] is the monthly average SSN at time t, and the parameter β may
be regarded as a baseline. The SSNs are modeled after a square-root trans-
formation in order to stabilize the variance. The independence assumption
in (1.3) is valid since sunspots disappear or rotate over the edge of the solar
disk over timescales shorter than the observed monthly average SSNs. The
independence assumption is not valid when analyzing daily fluctuations since
the same sunspot or group of sunspots is counted every day until it vanishes.
The decision to use monthly averages was partly motivated to avoid complex
modeling of daily correlations.

1.2.2 Level Two: Relationships Between Consecutive Cycles

The evolution of the solar cycle is modeled via a Markov structure on the
cycle-specific parameters

{

θ(i), i = 0, . . . , 24
}

. In particular, we model

p(θ(0), . . . , θ(24)|η) = p(θ(0)|η)
24
∏

i=1

p(θ(i)|θ(i−1), η), (1.4)

where η is a set of hyper-parameters that we describe below. The distribution
p(θ(i)|θ(i−1), η) is further factored in that we model each of the components
in cycle i in their temporal order within the cycle. That is, we first model the

cycle’s start time, t(i)0 , given the parameters of the previous cycle, θ(i−1), then

model its amplitude, c(i), given t
(i)
0 and θ(i−1), then model the time at which

it reaches maximum, t(i)max, given t
(i)
0 , c(i) and θ(i−1), and finally model its end

time, t(i)1 , given t
(i)
0 , c(i), t(i)max and θ(i−1).

Beginning with the start time of cycle i, Yu et al. (2012) allowed the start

time, t(i)0 , to be different from, but dependent on, the end time of the previous

cycle, t(i−1)
1 . Given θ(i−1), t(i)0 is modeled as

t
(i)
0 | t(i−1)

1 ∼ t
(i−1)
1 +N(0, τ20 ), (1.5)

where the hyper-parameter τ20 regulates the time difference between t
(i)
0 and

t
(i−1)
1 . The conditional distribution of t

(i)
0 depends on θ(i−1) only through

t
(i−1)
1 .

To formulate p(c(i), t(i)max, t
(i)
1 |t(i)0 , θ(i−1), η), Yu et al. (2012) conducted an

exploratory analysis of the observed relationships among the parameters of
consecutive cycles. In particular, they fit the model described by (1.3) to each
of the 25 cycles individually and used the observed correlations among the
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cycle-specific fitted parameters to specify the parametric form of the distribu-
tion of θ(i) given θ(i−1). For example, there is a positive correlation between
consecutive amplitudes c(i) and c(i−1), and a negative correlation between

c(i) and t
(i)
0 − t

(i−1)
max . The predictive power of the positive correlation between

consecutive amplitudes can therefore be enhanced by combining it with the

negative correlation with t
(i)
0 − t

(i−1)
max . This means that given θ(i−1), the am-

plitude of cycle i, c(i), depends on both c(i−1) and t
(i)
0 − t

(i−1)
max . Therefore, the

distribution of c(i) given θ(i−1) and t
(i)
0 is modeled as

c(i) | (c(i−1), t
(i)
0 , t(i−1)

max ) ∼ δ1 + γ1
c(i−1)

t
(i)
0 − t

(i−1)
max

+N(0, τ21 ). (1.6)

Additional correlations are observed among the components of θ(i). For
example, Yu et al. (2012) observe a negative correlation between the rising

time of a cycle, t(i)max − t
(i)
0 , and the amplitude reached during the same cycle.

This negative correlation was first discovered by Waldmeier (1935) and is
hence known as the “Waldmeier effect.” This effect means that the time at
which cycle i reaches a peak, t(i)max, is dependent on the starting time and the

amplitude of that cycle. The distribution of t(i)max given θ(i−1), t(i)0 and c(i) is
thus modeled as

t(i)max | (t(i)0 , c(i)) ∼ t
(i)
0 + δ2 + γ2c

(i) +N(0, τ22 ). (1.7)

Notice that t(i)max is conditionally independent of θ(i−1).
Finally, Yu et al. (2012) observe and incorporate a correlation between the

amplitude, c(i), and the time-to-decline, t(i)1 − t
(i)
max, of that cycle. This means

that t(i)1 depends on c(i) and t
(i)
max. With this, the distribution of t(i)1 given t

(i)
max

and c(i) is modeled as

t
(i)
1 | (t(i)max, c

(i)) ∼ t(i)max + δ3 + γ3c
(i) +N(0, τ23 ), (1.8)

and t
(i)
1 is conditionally independent of θ(i−1).

The relations described by (1.5) to (1.8) can be encapsulated with the
Markov structure illustrated in Figure 1.3. This structure allows for straight-
forward prediction of the characteristics of current cycles, even with data only
extending to the beginning of the cycle. This is an important facet of the pre-
dictive capability of the Bayesian multilevel model. Together, (1.5) to (1.8)
define the joint distribution of p(θ(i)|θ(i−1), η), where η = (τ20 , γj , δj, τ

2
j , j =

1, 2, 3) are the hyper-parameters. Yu et al. (2012) also examined correlations
between non-adjacent cycles (i.e., between cycle i and cycle i±2). However, no
evidence was found to suggest more than a lag-one dependence. This has im-
portant scientific implications since it suggests that the solar dynamo does not
retain memory beyond one cycle. Further evidence for this property has been
discovered by examining magnetic proxies of solar activity (Muñoz-Jaramillo
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FIGURE 1.3
Markov structure relating the cycle-specific parameters θ(i−1) and θ(i).

et al., 2013), and by computer simulation of the solar dynamo (Karak and
Nandy, 2012).

1.2.3 Prior Distiributions

In (1.3), both β and log σ are given independent uniform prior distributions.
To allow a wide range of cycle shapes, a uniform prior distribution on the
interval (1, 3) is used for both α1 and α2. The cycle-specific parameters for

cycle 0, i.e. t(0)0 , t(0)1 , t(0)max, and c(0) are assigned non-informative uniform prior
distributions, subject to physical constraints on their ranges. We consider
two prior distributions on the hyper-parameters, η, namely p(γj , δj , τ2j ) ∝ 1

τj
,

j = 1, 2, 3, and p(γj , δj , τ2j ) ∝ 1, j = 1, 2, 3. In our numerical analyses, results
are not sensitive to this choice and we therefore only report results obtained
using p(γj , δj , τ2j ) ∝ 1

τj
, j = 1, 2, 3.

1.3 Incorporating Multiple Proxies of Solar Activity

An inherent difficulty with combining multiple proxies to model the solar cycle
is the varying temporal coverages of the proxies. SSNs, for example, are avail-
able as monthly estimates extending back to January, 1749, with no missing
data. As technology improved, more proxies began to be observed and, like the
SSNs, have been recorded up to the present. For clarity here and in our numer-
ical illustrations, we consider three proxies: monthly average SSNs, monthly
average total sunspot areas, and monthly average 10.7cm flux. Estimates of
monthly average total sunspot areas extend back to May, 1874. Recordings of
the 10.7cm flux began more recently, and estimates of the monthly average
are available since February, 1947. It is important to note that, generally, once
a proxy comes online (i.e., once a proxy begins to be recorded) it stays online
and so there are no gaps in the data for individual proxies, resulting in a
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monotone missing data pattern (e.g., Little and Rubin, 2002). This pattern is
readily apparent by examining the time-series of the three proxies presented
in Figure 1.1, and is described in detail in Section 1.3.2. Before we discuss
our strategy for dealing with missing data, we describe how we would handle
multiple proxies that were all observed over the same time period.

1.3.1 Complete-Data Analysis

With no missing data, we observe Y [t] = (y[t]1 , y
[t]
2 , y

[t]
3 ) at each t, where y1 is

the monthly average SSN, y2 is the monthly average sunspot area, and y3 is
the monthly average 10.7cm flux. Since the observed data represent monthly
averages, t = 1, . . . , 3168 indexes month. With this scheme, t = 0 corresponds
to January, 1749, and t = 3168 corresponds to December, 2012.

The distribution of
√
y[t] in (1.3) can be used to model any proxy, perhaps

transformed, that follows the same underlying solar cycle. In this way, (1.3)
can be generalized to

G(Y [t]) | (Θ,α,β,σ2)
ind∼ N(β + U [t], σ2), (1.9)

where G(Y [t]) is a mapping from the multivariate Y [t] to a scalar value, and
the underlying parameters are modeled in the same way as in Sections 1.2.2
and 1.2.3. Yu et al. (2012) used G(Y [t]) =

√
y1

[t] to obtain (1.3), but we are
interested in finding a G(Y [t]) that incorporates information from all available
proxies.

The top row of Figure 1.4 displays scatterplots of the observed proxies
and illustrates their strong linear correlations. Most of the variability in the
data is in one linear dimension. Thus, it is appropriate to employ principal
component analysis (PCA) to project the multivariate data onto the one-
dimensional manifold defined by the direction of maximum variance.

Before deploying PCA, we transform the proxies to stabilize their vari-
ances, which all increase with their mean, see Figure 1.4. For the SSNs and

sunspot areas we use the transformation
√

y
[t]
j + 10 for j = 1, 2. For the

10.7cm flux, we apply the transformation

√

y
[t]
3 −min

t
(y[t]3 ). The constant off-

sets in the transformations were empirically chosen to improve linearity. We
also normalize each transformed proxy by subtracting off its mean and divid-
ing by its standard deviation. Subtracting off the mean is a necessary step in
performing PCA, and dividing by the standard deviation controls for the dif-
ferences in scale between the proxies. We denote the values of the transformed

and normalized proxies at time t by Ỹ [t] = (ỹ[t]1 , ỹ
[t]
2 , ỹ

[t]
3 ). Scatterplots of the

transformed proxy data, Ỹ , are displayed in the second row of Figure 1.4.
From these plots we note that the relationships remain linear, the correlations
remain strong, but the variances are more stable.

With ω denoting the weights associated with the first principal component
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FIGURE 1.4
Transforming the proxies. The top row displays the two-dimensional scat-
terplots of the observed proxy data, Y . The middle row displays the two-
dimensional scatterplots of the transformed proxy data, Ỹ . The bottom row
displays the computed value of G(Y ) = ωT Ỹ versus each of the transformed
proxies. Notice that G(Y ) is highly correlated with each of the transformed
proxies.
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of the Ỹ [t], we let G(Y [t]) = ωT Ỹ [t], where G(Y [t]) is a scalar value represent-
ing the “solar activity level” at time t. The bottom row of Figure 1.4 shows
that G(Y ) is highly correlated with each of the transformed proxies, which
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demonstrates its efficacy as a representation of the overall solar activity level.
The first principal component accounts for 98% of the total variability in the
proxies, so little information is lost in the PCA-based dimension reduction.

Once the G(Y [t]) are obtained they are treated as observed data with dis-
tribution given in (1.9). We use a Gibbs sampler to sample from the posterior
distribution, incorporating Metropolis-Hastings updates for each conditional
draw (see Yu et al., 2012). First, however, we must devise a scheme for han-
dling missing observations of sunspot areas and the 10.7cm flux.

1.3.2 Multiple Imputation Strategy for Missing Data

The monthly average SSNs contain no missing data and are observed for all

ỹ
[t]
1 , t = 1, . . . , 3168. Records for the monthly average sunspot areas begin at
month t = 1505 and contain 1664 observations, and records for the monthly
average 10.7cm flux begin at month t = 2378 and contain 791 observations.
Therefore, the SSNs are observed whenever the sunspot areas are observed,
and both the SSNs and sunspot areas are observed whenever the 10.7cm flux
is observed. This monotone missing data pattern (see Figure 1.5) allows the
development of a straightforward strategy to account for missing data.

Let Ỹmis be the missing data, Ỹmis = {ỹ[t]2 , t = 1, . . . , 1504; ỹ
[t]
3 , t =

1, . . . , 2377}, and Ỹobs be the observed data. A fully Bayesian strategy for
handling the missing data would base inference on p(Ỹmis,Θ,α,β,σ, η | Ỹobs).
This could be done by constructing a Gibbs sampler that at each iteration first
updates Ỹmis ∼ p(Ỹmis | Ỹobs,Θ,α,β,σ, η) and the updates (Θ,α,β,σ, η) ∼
p(Θ,α,β,σ, η | Ỹmis, Ỹobs) using existing computer code. This would, however,
require us to specify a model for the multivariate Ỹ rather than simply for
the univariate G(Y ).

Luckily, multiple imputation (e.g., Little and Rubin, 2002) provides a prin-
cipled way to use the univariate model and existing computer code to infer
the solar cycle using multiple proxies. We first specify a separate simple local
missing data model p(Ỹmis|Ỹobs,φ, ζ) that incorporates the Markovian struc-
ture inherent in the data . In particular, we model

ỹ
[t]
2 | (ỹ[t]1 , ỹ

[t+1]
2 ) ∼ N(φ01 + φ11ỹ

[t]
1 + φ21ỹ

[t+1]
2 , ζ1) (1.10)

for t = 1, . . . , 1504, and

ỹ
[t]
3 | (ỹ[t]1 , ỹ

[t]
2 , ỹ

[t+1]
3 ) ∼ N(φ02 + φ12ỹ

[t]
1 + φ22ỹ

[t]
2 + φ32ỹ

[t+1]
3 , ζ2) (1.11)

for t = 1, . . . , 2377. Together, (1.10) and (1.11) define the distribution of
p(Ỹmis | Ỹobs,φ, ζ). We fit (1.10) using only the observations for which both
ỹ1 and ỹ2 are observed, and fit (1.11) using only the observations for which
all three quantities are observed. With the fitted models in place, Ỹmis can be
imputed by drawing values from p(Ỹmis | Ỹobs, φ̂, ζ̂).

Multiple imputation coherently accounts for two sources of uncertainty:
the uncertainty that would be present even if all proxies were observed for
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FIGURE 1.5
Illustration of the monotone missing data pattern. The solid gray bars in-
dicate the range of observation times t for each of the three solar activity
proxies: SSNs, sunspot areas, and 10.7cm flux. White bars indicate the range
for which observations are missing. The SSNs are fully observed for months
t = 1, . . . , 3168. The sunspot areas are missing for months t = 1, . . . , 1504.
The 10.7cm flux is missing for months t = 1, . . . , 2377. SSNs are observed
whenever sunspot areas are observed, and both SSNs and sunspot areas are
observed whenever the 10.7cm flux is observed. This is a monotone pattern of
missing data.
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the same time period (i.e., if there was no missing data), and the uncertainty
that arises from imputing missing data. With multiple imputation, we obtain

M imputations of the missing data, Ỹ (m)
mis ∼ p(Ỹmis | Ỹobs, φ̂, ζ̂) and apply

the complete-data analysis described in Section 1.3.1 to each of the imputed
data sets. Parameter estimates and uncertainties are based on the multiple
imputation combining rules (e.g., Harel and Zhou, 2007; Little and Rubin,
2002). Under this scheme, we obtainM estimates, ψ̂m, of any particular model
parameter, ψ, along with their associated variances, Vm. Since we sample from
the posterior distribution to fit the Bayesian multilevel model described in
Section 1.2, natural candidates for ψ̂m and Vm are the posterior means and
posterior variances of ψ, under each of the M imputed data sets. The multiple-
imputation estimate of ψ is ψ̂ = 1

M

∑M
m=1 ψ̂m. The estimate of the variance is

a combination of the average within-imputation variance, W = 1
M

∑M
m=1 Vm,

and the between imputation variance, B = 1
M−1

∑M
m=1(ψ̂m − ψ̂)2, and is
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TABLE 1.1
Examining the multiple imputation assumptions. The first column displays
the estimates of ζ1 and ζ2, along with their estimated standard errors (S.E.),
using the newest third of the observed data for the sunspot areas and 10.7cm
flux, respectively. The second column displays the same, but using the oldest
third of the observed data for the sunspot areas and 10.7cm flux, respectively.
We use an F-test of equality of variances with the null hypothesis that ζl for
the oldest time epoch is equal to ζl for the newest time epoch, l = 1, 2. The
resulting p-values are given in the third column.

Newest Third Oldest Third F-test
ζ̂1 (S.E.) ζ̂2 (S.E.) p-value

Imputing Sunspot Areas: ỹ2 3.88 (0.14) 3.17 (0.11) < 0.01
Imputing 10.7cm Flux: ỹ3 1.37 (0.07) 1.34 (0.07) 0.74

given by T = W + M+1
M B. Interval estimates are computed from a reference

t-distribution, (ψ − ψ̂)T−1/2 ∼ tν , where the degrees of freedom is given by

ν = (M − 1)
(

1 + M
M+1

W
B

)2
.

Our multiple imputation procedure relies upon the assumption that ζ1 and
ζ2 do not vary over time. To test this assumption, we fit the local missing data
model for different time periods of data separately and compared the results.
We first fit (1.10) using the most recent third of the available ỹ2 data and
obtain an estimate and standard error of ζ1. We then fit (1.10) again using
the oldest third of the available ỹ2 data and obtain a second estimate and
standard error of ζ1. We then perform an F -test for the hypothesis that ζ21 for
the older time epoch is equal to ζ21 for the newer time epoch. We repeat this
procedure for (1.11) using the oldest and most recent third of the ỹ3 data. The
results are summarized in Table 1.1. We find that ζ1 appears to change over
time, but that it is larger for the newer data. Since most of ỹ2 is observed,
not imputed, we are not particularly worried about overestimating ζ1 for the
older data. In addition, ζ2 does not appear to vary over time, and this is more
important since, unlike ỹ2, the majority of the values of ỹ3 that go into our
final analysis are imputed.

1.4 Results

We now discuss the fit of the Bayesian multilevel model for the solar cycle.
To allow for comparison we obtain model fits using both G(Y [t]) =

√
y1

[t]
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(i.e., the SSN model) and G(Y [t]) = ωT Ỹ [t] (i.e., the multiple-proxy model).

When G(Y [t]) =
√
y1

[t], we do not need to perform multiple imputation since
there are no missing SSNs. In this case, the fitted values of all quantities are
given by their posterior means and credible intervals are given by their 2.5%
and 97.5% posterior quantiles. When G(Y [t]) = ωT Ỹ [t], we use the multiple
imputation strategy described in Section 1.3.2, with M = 5 imputations.
The estimates for all quantities are computed by setting ψ̂m and Vm equal
to their posterior mean and posterior variances, respectively, and following
the multiple imputation combining rules. In particular, the estimate for the
solar activity level at time t is computed by setting ψ̂m and Vm equal to the
posterior mean and posterior variance of U [t]+β. The fitted values of U [t]+β
are given by the average value of the M within-imputation posterior means
and a 95% interval at time t is computed from the reference t-distribution as
described in Section 1.3.2.

The fitted values of U [t]+β and associated 95% intervals for the multiple-
proxy model are plotted in the top panel of Figure 1.6, for the time interval
with all three proxies observed (i.e., t = 2378, . . . , 3168). The data presented
in this panel are the ωT Ỹ values for the given time interval. The bottom
panel of Figure 1.6 shows the fitted values of U [t] + β and associated 95%
intervals under the SSN model for the same time interval; the data are the
observed

√
y1

[t] values. The solid vertical lines in both panels are the fitted

values for t(i)max for cycles i = 18, . . . , 23, and the dashed vertical lines are their

95% intervals. The estimates of t(i)max under the multiple-proxy model are later
than the estimates under the SSN model, although in some cases their 95%
intervals overlap. We discuss further comparisons of the timing of the fitted
cycles below.

To evaluate the quality of the model fits we plotted the residuals versus
time and versus the fitted values, but did not observe any patterns that might
call the models into question. The plot of the residuals versus time for the SSN
model did not show any significant patterns or evidence of heteroscedasticity
that would lead us to question the reliability of the historical sunspot numbers.
We also simulate the full time series from the posterior predictive distribution
5000 times. Figure 1.7 displays the 95% posterior predictive intervals from the
simulated series along with the ωT Ỹ values for the time period when all three
proxies are observed. The simulated series are consistent with the observed
data.

Since solar physicists are concerned with predicting the timing of solar
cycles, we can obtain fitted values and 95% intervals for the rising time of

each cycle, t(i)max − t
(i)
0 , i = 0, . . . , 24, under both the SSN and multiple-proxy

models. These are presented in Figure 1.8. The left panel displays the fitted
values and 95% intervals for both model fits over time, and the right panel
displays a scatterplot of the fitted values under the two models along with
their associated 95% intervals. We do not include results for cycle 0 since this
initial cycle is incomplete and has relatively large 95% intervals. The 95%
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FIGURE 1.6
The fitted solar cycle. The two panels compare the fitted models and data
for the multi-proxy (top) and SSN (bottom) models. They include U [t] + β
(solid curves) and their 95% intervals (dashed curves), along with fitted values

for t
(i)
max (solid vertical lines) and their 95% intervals (dashed vertical lines).

Gray circles represent ωT Ỹ (top panel) and
√
y1

[t] (bottom panel). The time
interval displayed covers the period when all three proxies are observed. Using
multiple proxies consistently results in later fitted times for the solar maxima.
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intervals for cycle 24 are also larger than those of other cycles since the cycle
is ongoing. That cycle 0 and 24 have fewer observed neighboring cycles than
the other cycles also contributes to their larger 95% intervals.

Overall, the rising times do not appear to differ significantly between the
two model fits. This is not the case when examining the falling times of each

cycle, t(i)1 − t
(i)
max, which are displayed in Figure 1.9. They are significantly

shorter for the model fit with multiple proxies since the 95% intervals rarely
intersect the 45◦ line plotted in the right panel. Taken together, these results
suggest that fitting multiple proxies instead of only using the SSNs yields
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FIGURE 1.7
Posterior predictive check. The full time series is simulated from the posterior
predictive distribution 5000 times, and 95% pointwise posterior predictive
intervals are given by the dashed lines. Gray circles represent the observed
G(Y ) = ωT Ỹ . The observed data are consistent with the posterior predictive
distribution.
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shorter overall cycle lengths, t
(i)
1 − t

(i)
0 . We display fitted values and 95%

intervals for the total cycle lengths in Figure 1.10, and confirm that the model
fit with multiple proxies generally has significantly shorter total cycle lengths.

There has been speculation that recent solar cycles represent a period
of relatively high activity. Temmer (2010) and Shapoval et al. (2013), for
example, suggested that the Sun was in a “low-activity” phase from around
1850 to 1915, while the Sun was in a “high-activity” phase from 1915 to
the most recent solar minimum. We can evaluate this claim by obtaining an
estimate and 95% interval for the mean amplitude during the high-activity
phase, cycles 15 though 23, and the low-activity phase, cycles 10 through
14. Let c̄(j:k) represent the mean amplitude from cycles j to k. Then, under
the multiple-proxy model, the estimate of c̄(15:23) is 5.01, with 95% interval
(4.86, 5.17), and the estimate of c̄(10:14) is 3.86, with 95% interval (3.70, 4.02).
Thus, there is evidence that cycles 15 through 23 exhibit higher average solar
activity than do cycles 10 through 14. Temmer (2010) and Shapoval et al.
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FIGURE 1.8
Fitted values and 95% intervals for the cycle rising times under the multiple-
proxy and SSN models. There does not appear to be a significant difference
in the rising times between the two model fits.
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(2013) also hypothesized that cycle 24 represents a shift back to a low-activity
phase. Our Bayesian approach allows for straightforward calculation of the
probability that the amplitude for cycle 24 will be below c̄(15:23): Pr(c(24) <
c̄(15:23)) = 1. Futhermore Pr(c(24) < c̄(10:14)) = 0.88, which suggests that the
amplitude for cycle 24 may be unusually low, even when compared to the
low-activity regime.

The Markov structure of our model allows for straightforward prediction of
the current cycle even when little data for this cycle is observed. In Figure 1.11,
we show the prediction for cycle 24, using data extending up to May 2010 (left
panel) and up to December 2012 (right panel). When less data is available from
the current cycle, predictions rely more on the Markov structure of the model
and are thus more uncertain. As data become available, the predictions are
increasingly driven by the current cycle and the uncertainties diminish. The
fitted solar cycle is similar in both cases, but the 95% intervals are noticeably
narrower with more data. This shows that the cycle-to-cycle relationships we
learn in the second stage of the model are consistent with the most recent
data and we can make reasonable predictions of cycle characteristics at the
start of the cycle, albeit with considerable uncertainty.
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FIGURE 1.9
Fitted values and 95% intervals for the cycle falling times under the multiple-
proxy and SSN models. Unlike the cycle rising times, the falling times do
appear to differ between the two model fits. Specifically, the falling times are
significantly shorter under the model fit with multiple proxies.
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1.5 Summary and Discussion

We have carried out a fully Bayesian analysis of the solar cycle using multiple
proxy variables by generalizing the model of Yu et al. (2012). After suit-
ably transforming the data to stabilize the variance and increase linearity, we
multiply-imputed missing data by specifying a simple local missing data model
that incorporates the Markovian structure of the data. The dimensionality of
each imputed data set is reduced using PCA to project the multivariate proxy
observations onto a one-dimensional subspace along the direction of highest
variance. In this way, we obtain a univariate summary of solar activity at
each time point, allowing us to utilize the existing univariate model to infer
properties of the solar cycle using multiple proxies. This approach is based on
the current understanding that there is a single underlying solar cycle, and
the several proxies all provide information about the cycle.

It is necessary to use the long history of the SSNs and sunspot area obser-
vations in order to learn the patterns among consecutive solar cycles. Multiple
imputation is used in order to easily derive estimates based on the posterior
distribution of the model parameters given all of the data. If only complete
observations are used, meaning only the data with all three proxies observed,
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FIGURE 1.10
Fitted values and 95% intervals for the total cycle lengths under the multiple-
proxy and SSN models. Following from the results displayed in Figures 1.8
and 1.9, the multiple-proxy model generally has significantly shorter cycle
lengths than the SSN model has.
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the model is overfit. This problem would be compounded in future analyses
that may also include other proxies that do not extend back for more than a
couple of cycles. One of our primary aims is to allow additional proxies, even
if they are largely missing, so that all available data can be used in a coherent
statistical framework.

We compare fits of the Bayesianmultilevel model of the solar cycle based on
(ii) multiple proxies and (ii) the SSNs alone. We observe significant differences
in the inferred cycle properties. In particular, we find that the model fit with
multiple proxies has shorter falling times than the model fit with the SSNs.
Since we do not find significant differences in the rising times, the shorter
falling times from the multiple-proxy model also imply shorter total cycle
lengths, which we also observe. Shorter cycle lengths is turn imply longer
solar minima. It has been observed elsewhere that the Sun can remain in
a prolonged state of minimum activity, and there is evidence that the most
recent solar minimum was unusual in its depth and duration (Basu, 2013).
During the most recent solar minimum the 10.7cm flux was the lowest ever
recorded, and physical characteristics of the solar surface and interior were
unusual when compared to previous solar minima (Basu, 2013). It is clear
from Figure 1.6 that the most recent minimum of the fitted solar cycle has a
longer duration under the multiple-proxy model. In this regard the multiple-
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FIGURE 1.11
Prediction for cycle 24, using data up to May 2010 (left) and up to Decem-
ber 2012 (right). The solid curve is the fitted U [t] + β, and 95% posterior
(predictive) intervals are given by the dotted lines. Gray circles represent the
observedG(Y ) = ωT Ỹ . As more data for the cycle is obtained, the uncertainty
in the predictions is reduced.
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proxy fit captures an important feature in the solar cycle that is missed by the
SSN model. The use of additional proxies may further illuminate this effect.

Future work will also consider additional functional forms for the solar
cycle. Recent studies have presented evidence that many solar cycles have
double maxima (e.g., Georgieva, 2011; Kilcik and Ozguc, 2014), which our
current parameterization does not capture. Gnevyshev (1967) suggests that
complex physical processes produce double peaks in all cycles, but often the
gap between them is too short for the two within-cycle maxima to be distin-
guished. One possible explanation for double maxima that we can explore is
the existence of separate cycles acting on each hemisphere of the Sun. Under
this scenario the separate northern-hemisphere and southern-hemisphere cy-
cles are parameterized by (1.1) and (1.2), with total activity being the sum
over the two hemispheres and double maxima appearing when the two hemi-
spheres reach peak activity at different times.

Our multiple-proxy Bayesian multilevel model of the solar cycle provides
the flexibility needed to dynamically describe the complex structure of cy-
cles and their varying shapes, duration, and amplitudes, while capturing the
predictable way in which these features evolve over time. The effective combi-
nation of multiple imputation and PCA-based dimension reduction makes it
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straightforward to incorporate additional proxies, all the while taking advan-
tage of the long history of SSN observations.
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