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Abstract
The 2012–2013 discovery of a Higgs boson appears to have filled the fi-
nal missing gap in the Standard Model of particle physics and was greeted
with fanfare by the scientific community and by the public at large. Particle
physicists have developed and rigorously tested a specialized statistical tool
kit that is designed for the search for new physics. This tool kit was put
to the test in a 40-year search that culminated in the discovery of a Higgs
boson. This article reviews these statistical methods, the controversies that
surround them, and how they led to this historic discovery.
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1. THE SEARCH FOR THE GOD PARTICLE
The recent empirical confirmation of a Higgs boson (ATLAS Collab. 2012a,c; CMS Collab.
2012a,b) appears to be “the culmination of the experimental verification of the Standard Model”
(Ellis et al. 2012, p. 2), which describes how the fundamental particles and forces between
them (the electromagnetic, weak nuclear, and strong nuclear forces) give rise to all matter in
the universe and most of its higher interactions. Within the Standard Model, the Higgs boson
imparts mass to some fundamental particles that would otherwise be massless. It was the last
of the fundamental particles predicted by the Standard Model to be experimentally verified.
First predicted theoretically in 1964 (Higgs 1964), the Higgs boson was incorporated into the
Standard Model in 1967 (Salam 1968, Weinberg 1967) in a unified theory for the weak and
electromagnetic interactions. The 2012 discovery was the capstone of a 40-year international
search and provided “closure on a half century of theoretical conjecture” (Ellis et al. 2012, p. 2).
In his 1993 book, The God Particle: If the Universe Is the Answer, What Is the Question? (p. 22),
Nobel Prize–winning physicist Leon M. Lederman explains that

[t]his boson is so central to the state of physics today, so crucial to our final understanding of the
structure of matter, yet so elusive, that I have given it a nickname: the God Particle.

Lederman goes on to say that the name “Goddamn Particle” might be a more appropriate name
for the Higgs boson, “given its villainous nature and the expense it is causing.”

The empirical discovery took place at the European Center for Nuclear Research (CERN) in
Geneva using the Large Hadron Collider (LHC). Situated on the Swiss-French border, the LHC
is housed in a circular tunnel that is 27 km in circumference and 100 m belowground. The LHC is
a large particle accelerator in which bundles of protons circulate in opposite directions and collide
within the LHC detectors, producing new particles by converting kinetic energy into mass. The
detectors track the trajectories of all these particles, determine their momentum, and provide clues
as to their identities. Each observed particle collision, perhaps subject to certain selection criteria
on the observables, is referred to as an event. The detectors involved are enormous. The ATLAS
detector at the LHC, for example, is as large as a seven-story building and is made up of 108

channels of electronics.
The particles produced in proton-proton collisions at the LHC may be unstable and may decay

further before they are detected. The final detectable set of particles resulting from the collision
is known as the final state. A Higgs boson is produced only very rarely and has numerous possible
decay paths, known as decay channels, each with different observed final states. The Standard
Model precisely predicts the probabilities of the various decay channels as a function of the mass
of the Higgs boson, and in principle, the relative frequency of the observed final states can be
used to estimate the Higgs boson’s mass. In practice, it is much more efficient to estimate the
mass directly: The mass of a particle that has decayed can be recovered (with uncertainty) from
the energies and momenta of the particles that it decays into via Einstein’s famous equation,

E2 = p2c2 + m2
0c4, 1.

where E, p, and m0 are energy, momentum, and rest mass, respectively, and c is the speed of light.
(Mass increases with momentum, so letting m be the mass with momentum p yields the more
familiar form of Einstein’s equation: E = mc2.)

Statistically, searches for new physics, that is, for new physical particles, typically take one of
two forms. In the first, we simply count the total number of events. These events comprise those
stemming from known physics, which are known as background events, and possibly additional
events from new physics. In the second form, we consider the distribution of the so-called invariant
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Figure 1
A subset of the 2011 and 2012 ATLAS event counts. (a) The observed event counts in the γ γ decay channel
in each invariant mass bin. (b) Residuals from the fitted background model. The excess counts with invariant
mass near 125 GeV are apparent. The background models are disused in Section 3, and the source model is
based on the Standard Model with Higgs mass (mH) of 126.5 GeV. The quantity

√
s is the energy of the

collider, and
∫

Ldt is the volume of data at each energy used in the plot. Copyright CERN.

mass of the particles formed in high-energy collisions. The invariant mass of the particles is the
sum of their energies in their joint center of mass. When compared with known background
physics, new physics is expected to result in excess events with invariant mass near that of the
new physical particle. Figure 1 illustrates this situation for the Higgs boson search. Either type
of search can be formalized statistically as a hypothesis test: in the first form as a contaminated
Poisson count and in the second as a search for a bump above a background distribution. In either
case, the statistical search may involve one of several outcomes:

1. The conclusion that the data are inconsistent with the null hypothesis of the known back-
ground physics but consistent with the hypothesized new physics, resulting in the sought-
after discovery of a new physical particle.

2. The conclusion that the data are inconsistent with the hypothesized new physics.
3. An upper limit on a possible signal strength generated by the new physics.
4. A determination that the experiment is not sensitive enough to distinguish between new

physics and the background.
Outcome 4 involves experimental design and can be determined, to a certain extent, in advance
of data collection but may depend on nuisance parameters in the background that are estimated
from data. The upper limit in outcome 3 is the end point of an interval estimate for the signal
strength. Although interval estimates have been well studied in statistics, a rather exacting set of
requirements for the statistical properties of intervals and upper limits has led to a robust particle
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THE SEARCH FOR THE PENTAQUARK

In the mid-2000s, a controversy arose around a number of experiments that reported strong evidence either for
or against the discovery of the so-called pentaquark (e.g., Part. Data Group 2006, 2008). Strong evidence in favor
came from the CLAS Collaboration (2003), which reported a p-value of less than 1 in 17 million, reaching the high
threshold set by particle physicists for discovery. In the midst of both confirmatory and contradictory findings by
other experiments, the CLAS Collaboration (2006) replicated their earlier experiment but collected six times more
data. This time, the result was convincing evidence against the existence of the pentaquark. A follow-up Bayesian
analysis of the 2003 experiment reported a Bayes factor that slightly favored the model without the pentaquark, an
astonishing shift from the p-value of 1 in 17 million reported with the same data (CLAS Collab. 2008); a critical
comment on the choice of prior, however, appears in Cousins (2008). The pentaquark discovery has now been
completely discredited (Part. Data Group 2008), but the entire episode encouraged particle physicists (and their
publishers) to be extraordinarily wary of claims of discovery, even with exceptionally extreme p-values.

physics literature (see Section 4.2). Together, outcomes 1 and 2 constitute a generalization of
the standard statistical approach to hypothesis testing. Particle physicists are interested in the
possible conclusion that the background model is sufficient, not simply in the inability to reject
the background model. Evidence that there is no Higgs boson—or, more precisely, that should the
Higgs boson exist its mass would be outside the range under consideration—would have been of
direct scientific interest. As such, a statistical framework that allows not only for rejecting the null
model but also for “rejecting the alternative” model is necessary. Moreover, rejection of the null
model is not sufficient for discovery. It must also be shown that the alternative model adequately
explains the data.

This article reviews the specialized statistical methods used in the discovery of a Higgs boson
that were developed by particle physicists, sometimes in collaboration with statisticians. In some
cases, the same or similar methods have been used in other searches for new new physics, for
example, in the 1995 discovery of the top quark (e.g., Campagnari & Franklin 1997) and in the
2003 false discovery of the pentaquark (see sidebar, The Search for the Pentaquark). At the same
time, particle physicists have developed statistical methods that are not related to the search for
new physics such as the Higgs boson, for example, methods designed to study the lifetime of
particular particles. In this article, we focus exclusively on methods related to the search for a
Higgs boson. Although these methods are somewhat idiosyncratic to high-energy physics, they
have been adopted in related fields, such as particle astrophysics, in which they are used in the search
for dark matter (e.g., Weniger 2012). As in the search for a Higgs boson, the particle astrophysics
searches involve looking for a line above background in multibin Poisson data. Searches of this
type are also common in high-energy astrophysics (e.g., Kashyap et al. 2010, Park et al. 2008,
Protassov et al. 2002).

Our review begins in Section 2 with an overview of the data collection and the statistical philoso-
phy that underlies its analysis. In Section 3, we discuss the preprocessing of the data and the flexible
models used to describe events stemming from known physics that are used to constrain the ex-
pected background counts. The statistical methods used for assessing sensitivity, computing upper
limits, and declaring a detection are first discussed in Section 4 in the context of a single-bin anal-
ysis. These methods form the building blocks of the methods described in Section 5 that are used
for detection in a multibin, multichannel analysis and the ultimate estimation of the Higgs mass.
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2. DATA COLLECTION AND STATISTICAL PHILOSOPHY
There are seven particle detector experiments at the LHC. Two of them, ATLAS and CMS, were
involved in the discovery of a Higgs boson. Both ATLAS and CMS are capable of tracking the
trajectory of the final-state particles resulting from proton-proton collisions, determining their
momenta and/or energy, and establishing their identities. They identified this particle primarily
through two decay channels: a Higgs boson decay into two photons (H → γ γ ) and a Higgs
boson decay into two Z bosons (H → ZZ), each of which decays, in turn, into two leptons (either
electrons or muons). Both detectors have sufficient resolution to identify a narrow peak above
background in the distribution of the invariant masses of the decay particles (e.g., Della Negra
et al. 2012).

The current LHC experiments are following up on previous studies: the Large Electron
Positron collider, which operated at CERN from 1989 until 2000, and the Tevatron, which
operated at Fermi National Accelerator Laboratory, outside Chicago, between 1983 and 2011.
Although these studies did not experimentally confirm the existence of the Higgs boson, together
they excluded a range of masses and focused the search on a mass between 114 and 130 GeV (e.g.,
Della Negra et al. 2012). In 2012, the ATLAS and CMS experiments simultaneously announced
the discovery of a previously unknown boson. Combining data from the two primary decay
channels with other channels, both experiments found a mass near 125 GeV, with p-values of
less than one in three million (ATLAS Collab. 2012c, CMS Collab. 2012a). The behavior of this
particle broadly matches what is predicted by the Standard Model for the Higgs boson. It decays
into the predicted channels and at the predicted rates, at least up to the experimental uncertainties.
In an abundance of caution, however, the experiments refrained from calling the new particle “the
Higgs boson” and instead referred to it as “a Higgs boson” and continue to study its properties
and note their similarities with the Standard Model’s predictions for the Higgs boson (Del Rosso
2012).

Thousands of researchers from scores of institutions collaborate in these high-profile experi-
ments. Procedural decisions including the choice of statistical methods are made by committees
that face significant scrutiny, particularly given the expense involved with the experiments. They
are among the most costly in human history, and researchers are decidedly adverse to ambiguity
in their findings, including those stemming from their choice of statistical method. The result
is that high-energy physicists tend to be conservative in their choice of methods and demanding
in their search for mathematical and statistical rigor. Procedures must be well understood, well
defined, and fixed in advance. The subjective aspects of statistical analyses, such as the choice of
models and methods, are highly scrutinized in, for example, a long-running series of workshops on
statistical methods in particle physics known as PHYSTAT. The proceedings of these meetings
include thoughtful investigations into foundational issues on such topics as model selection and
the quantification of uncertainty (e.g., Lyons et al. 2004, 2008, Lyons & Unel 2005, Prosper &
Lyons 2011). Broadly speaking, particle physicists are adverse to Bayesian methods owing both to
the perception that they are subjective in nature and to an insistence on well-quantified frequency
properties (e.g., Cousins 1995, Mandelkern 2002), despite advocates for Bayesian model selec-
tions (e.g., Berger 2008) and the provocative Bayesian analysis in the search for the pentaquark
(see the sidebar). Bayesian procedures, however, are generally accepted for dealing with nuisance
parameters (Cousins & Highland 1992, Heinrich et al. 2004), and some physicists advocate for a
much more central role for Bayesian thinking in searches in high-energy physics (Anderson 1992).

As discussed below, strict adherence to frequency-based statistical properties in complex sci-
entific problems that involve a certain number of systematic errors and potential model mis-
specification leads to practical difficulties. Even when unusual outcomes occur more frequently
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than is plausible under a postulated model, particle physicists are loath to dismiss a model or
an expensive observation a posteriori for fear of biasing results. To avoid experimenter bias, an
unknown constant, known as a secret offset, is typically added to observations (e.g., to the masses)
and not revealed until analyses are complete (e.g., Mandelkern 2002). How to deal with manifest
disagreement between data and model without sacrificing data, reducing efficiency, or incurring
bias remains an important open question.

3. DATA PROCESSING AND BACKGROUND MODELS
The LHC produces millions of proton collisions per second, but most of these are uninteresting in
that they involve well-understood physics. Rather than storing all of these events, the experiments
have triggers that aim to make very fast decisions as to whether each event is interesting and save
only approximately 100 per second. Although this is a small fraction of the total events, it still
could result in 1010 saved events for each experiment over the expected 15-year life span of the
LHC (Lyons 2008). The experiments make further cuts to data within each decay channel before
they are formally analyzed. On the basis of the characteristics of the observed final states of the
events, these cuts aim to prune the data, reduce the background events, and focus the analysis
on a subset of the data wherein new physics is more likely to be observed. Indeed, the fraction
of stored events (that survive the trigger) that involve new physics can be as low as 10−8 (Lyons
2008). In the actual Higgs boson discovery, for example, there were only a few hundred events
in the two primary decay channels above the background rates near the estimated Higgs mass
(Figure 1). Data pruning may begin with simple cuts based on the values of individual variables,
such as the number of tracked particles associated with the event, and proceed with more formal
supervised learning algorithms (e.g., Friedman 2005, Roe et al. 2005). Simulated background and
signal events or manually classified real events are used to train the learning algorithms.

Once a subset of events in each detection channel is identified for analysis, it is stratified
into relatively homogeneous categories. In analogy to stratified sampling, the homogeneity of
the signal-to-background ratios (and invariant mass resolutions) within each category increases
the statistical power for identifying possible excess events above background that are due to new
physics (ATLAS Collab. 2008). Each of the five channels is split into a number of subchannels on
the basis of the directly observable characteristics of the decay, knows as tags. The subchannels are
then further divided into categories. In most cases, this classification is based on the type or flavor
of the final state. In the H → ZZ channel, for example, the categories are determined by the
decay path of each of the Z bosons into either electrons or muons. In a few cases, boosted decision
trees are used to stratify the subchannels into categories. Using simulated background and signal
events, physicists employ boosted decision trees to predict which simulated events involve a Higgs
boson decay on the basis of the characteristics of the momenta and energy of the observed particles
and the presence of particular particle types in the final state (e.g., ATLAS Collab. 2012b). Cut
points on the prediction of the fitted tree are then used to separate events into categories. The
number and location of the cuts are chosen to minimize the expected upper limit on the signal,
subject to constraints on the size of the categories.

Parametric background models are used to quantify the distribution of invariant masses due to
known physics (Figure 1). The primary goal is to search for excess events above this background
that can be attributed to new physics, such as a Higgs boson. Although the Standard Model pre-
dicts the shape of the background distribution, empirical models are preferred in part because
of the extreme and ad hoc nature of the cuts—only events deep in the tails of their distribution
are used in the data analysis. The cuts also mean that a different background distribution is ex-
pected in each category (stratum) of each channel. Thus, different functional forms as well as
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fitted parameters are used for the several category-channel combinations. In cases in which there
are relatively few observations, simpler background models are used. The functional forms are
typically determined by simulating large data sets under the model, applying the same cuts used
in the real data, and comparing the resulting fits. Various models are considered. For example,
the ATLAS Collaboration (2012b) examined single- and double-exponential functions, Bernstein
polynomials up to the seventh order, exponentials of second- and third-order polynomials, and ex-
ponentials with modified turn-on behavior. For low-count categories, the ATLAS Collaboration
found exponential functions to be sufficient, whereas for larger-count categories exponential func-
tions of second-order polynomials or fourth-order Bernstein polynomials were used (Figure 1).
The CMS Collaboration employed similar background models. Once the parametric models were
determined, they were fit to data, as described in Section 5.1.

The distribution of background events underlies the importance of the H → γ γ and H → ZZ
channels in the discovery of a Higgs boson. Together, they have a Higgs decay probability of less
than 1%, meaning that only approximately 1% of Higgs decay paths involve these channels.
Because of their advantageous signal-to-background rates, however, these rare events are much
easier to identify above background.

4. DETECTION AND EXCLUSION IN A SINGLE-BIN ANALYSIS

4.1. A Simplified Model

Consider a single-bin analysis, a simplification of the actual detectors that have multiple bins
in each category of each channel. We introduce this simplification to focus attention on several
statistical issues and postpone the complexities of the full model until Section 5. The single-bin
detector records a number of background events and perhaps additional events above background.
We model the observed event count as

N ∼ Poisson(β + κµ), 2.

where β is the expected background count and κ is the expected Higgs boson count under the
Standard Model, so that µ = 0 corresponds to a background-only model and µ = 1 to the model
with a Higgs boson. For the moment, we assume that both β and κ are known. In Section 5, we
consider the situation in which neither is known and must be specified in terms of several fitted
nuisance parameters. Although we expect that µ is either zero or one, it is generally treated as a
continuous parameter as a hedge against minor systematic or unknown experimental errors and
to allow for the discovery of new physics that does not adhere to prior expectation.

Here we discuss the four possible search outcomes described in Section 1, which involves three
statistical tasks. First, the possible detection in outcome 1 is formulated in terms of a hypothesis
test that compares µ = 0 with either µ = 1 or, more generally, µ > 0. In the absence of a
detection, the upper limit, µUL, in outcome 3 is computed on µ. If µUL is small enough that any
possible deviation from background is too small to be consistent with what is predicted for new
physics, we can conclude that there is evidence to exclude new physics, as in outcome 2. This
outcome can also be formulated as a hypothesis test with the roles of the hypotheses reversed.
Finally, as described in outcome 4, we can analyze the power of the hypothesis test to distinguish
between new physics and background.

4.2. Intervals and Upper Limits
In a Statistical Science discussion paper, Mandelkern (2002) reviews several possible confidence
intervals and upper limits for µ, along with those for the related problem of estimating bounds
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on a Gaussian mean that is known to be nonnegative. Mandelkern focuses on the situation in
which the classical Neyman–Pearson confidence interval for µ may be very narrow or even empty
because the observed count, N, is smaller than the expected background. In this situation, there
may be few or no values of µ that are consistent with the small value of N, resulting in a small
or empty interval. Although relatively unlikely if Equation 2 is correctly specified, difficulties in
estimating and incorporating statistical and/or systematic uncertainties compound the problem.
The narrowness of such intervals falsely conveys a lack of experimental uncertainty when, in
actuality, the discrepancy between data and model suggests substantial uncertainty. Handling this
discrepancy from a frequency-based perspective poses significant challenges. Either altering the
model after observing the data or discarding data because of a lack of fit upsets frequency properties.
Bayesian methods tend to avoid empty intervals but can be quite narrow, and many particle
physicists find the reliance on prior distributions undesirable (e.g., Cousins 1995). The choice of
prior distribution is especially influential in the important case of upper limits for weak signals.
Mandelkern (2002) describes an understandable if somewhat unrealistic goal of obtaining robust
statistical methods that can be applied uniformly, that largely maintain the power obtained with a
correctly specified model, and that yield reasonable results even with slight model misspecification.

Particle physicists take these challenges quite seriously and, along with their statistical collab-
orators, have proposed several approaches to address them. Because these methods generally do
not alter the Poisson model formulated in Equation 2, they do not address the potential misspec-
ification that worried Mandelkern. Instead, they take advantage of flexibility in the construction
of confidence intervals and limits to obtain quantities with more desirable features. The most
important of these is the so-called unified approach of Feldman & Cousins (1998). These authors
note that the common procedure of deciding whether to report a one- or two-sided interval (i.e.,
an upper limit or a central confidence interval) based on the observed data destroys the frequency
properties of the intervals. One might, for example, provide an upper limit in the absence of a
detection and provide a central confidence interval if the source is detected, a practice Feldman
& Cousins call flip-flopping. To avoid the need for flip-flopping, they propose what they call a
unified approach that smoothly transitions from upper limits to confidence intervals as the source
becomes statistically significant. The method is based on inverting the likelihood-ratio test and,
unlike the classical construction, greatly reduces the troublesome occurrence of empty intervals
or upper limits equal to zero.

Mandelkern (2002) observes that empty or very short intervals arise when the observed data are
a priori unlikely, but the method for computing intervals or limits does not make use of this fact. If,
for example, we observe N = 0, we know that the background count, NB, is zero and that N equals
the source count. Thus, we can replace Equation 2 with N ∼ Poisson(κµ). More generally, Roe &
Woodroofe (1999) propose conditioning on N B ≤ N in the construction of intervals with condi-
tional frequency coverage. The resulting intervals are never empty and have the appealing property
that they do not depend on β when N = 0. Of course, from a Bayesian perspective it is sensible
to condition on the observed data, whether or not they are a priori unlikely. The beauty of Roe &
Woodroofe’s approach is that it delivers some of the advantages of a Bayesian procedure in a way
that is palatable to researchers unaccustomed to the use of prior distributions in scientific inference.

There are numerous other frequency, Bayesian, and hybrid approaches in the physics literature.
Mandelkern (2002) provides a good introduction.

4.3. Detection and Sensitivity
The likelihood-ratio test is the basis for formal detection and, under the unified approach, the
construction of upper limits and intervals. Consider the null hypothesis, H 0 : µ = µ0, where µ0
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is typically zero but other values may be used when inverting the test to construct intervals or
limits. As discussed above, we may be interested in either the sharp alternative, H A : µ = 1, or
the composite alternative, H A : µ > 0. In either case, however, the composite is typically used to
formulate the likelihood ratio test statistic:

T = −2 ln

(
L(µ0|N )

supµ≥0 L(µ|N )

)

. 3.

Other forms have also been also considered, however, and an extensive review is provided by
Cowan et al. (2011a). In more complex models involving nuisance parameters (see Section 5),
both the numerator and the denominator of Equation 3 are profiled over the nuisance parameters.

In the spirt of a power calculation, it is desirable to quantify the sensitivity of the test without
reference to the observed data. Particle physicists typically summarize sensitivity by using the
median value of the sampling distribution of µUL under H0 (Lyons 2008). As an alternative, Punzi
(2004) suggests the smallest value of µ that obtains a given statistical power for an α-level test.
That is, Punzi’s sensitivity, which we denote µsen, is the smallest value of µ that results in an α-level
detection at least a given percentage, γ crit, of the time. Confusingly, high-energy astrophysicists
refer to µsen as the upper limit (Kashyap et al. 2010).

4.4. Treating the Standard Model as the Null Hypothesis
Because the Standard Model predicts µ = 1, we are especially interested in whether µUL and/or
µsen is greater than or less than one. Thus, particle physicists have designed a set of tools that
aim to investigate both the possibility of excluding µ = 1 and the sensitivity of the test to this
specific alternative value. Consider the hypothesis test that compares the two precise hypotheses,
namely H 0 : µ = 0 versus H A : µ = 1. Noting that larger values of T in Equation 3 are more
significant under H0, we conventionally compute the p-value, p0 = Pr(T ≥ tobs|H 0), where tobs

is the observed valued of T, and reject H0 if p0 is sufficiently small—that is, if p0 ≤ α. Less
conventionally, particle physicists also interchange the roles of the null and alternative hypotheses
and compute the corresponding p-value, namely pA = Pr(T ≥ tobs|H A) (Figure 2b). [Sometimes
pA is defined as one minus this tail probability (e.g., Lyons 2008).] Because large values of T are
more significant under H0, smaller values of T are more significant under HA, and a small value of
1 − pA is potential evidence for “rejecting” HA in favor of H0, that is, excluding the hypothesized
new physics. Particle physicists are more concerned about false discovery than with missing a
signal and use a much more stringent threshold for “rejecting” H0 than for “rejecting” HA; we
label these thresholds α0 and αA, respectively.

Table 1 describes four possible cases based on the values of p0 and 1 − pA. For example, the
standard procedure is to reject H0 in favor of detection if p0 ≤ α0. However, if we find that
1 − pA is also small, we are in the awkward position of being suspicious of both the models under
consideration. This problem is illustrated with tobs = tIII in Figure 2c, which shows why declaring
a detection in this case would raise questions: The data are unlikely with or without the Higgs
boson. (We use subscripted Roman numbers to refer to the four cases in Table 1.) If neither p0

nor 1 − pA is small, the data are consistent with both models, and again we can neither exclude
new physics nor declare a detection (tII in Figure 2a). The more straightforward cases arise when
one of p0 and 1− pA is small and the other is large and we can either declare a detection or exclude
the possibility of new physics.

Figure 2 also illustrates how the distribution of T may differ under H0 and HA. The ideal
case appears in Figure 2c, where the distributions are well separated. In principle, the observed
value of T should easily distinguish between the hypotheses leading to either a detection or an
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Figure 2
The distribution of T under H0 and HA. The definitions of p0 and pA are illustrated in panel b. The test
shown in panel a is insensitive: Although tI∗ results in a small p0, it is also unlikely under HA, drawing a
“detection” into question. The CLS criterion aims to address the similarly problematic exclusion illustrated
with tIV∗ (see Section 4.5). In panel b, the test is more sensitive and the distributions of T differ under the two
models. In this case, there is a range of values of tobs that are likely under HA, but unlikely under H0, which
correspond to clear detections. Similarly clear exclusions occur when tobs is likely only under H0. Finally, in
panel c the distributions are still more separated, which corresponds to a very sensitive test but permits
intermediate values of tobs that are unlikely under both models. The values tI, tII, tIII, and tIV correspond to
the four cases listed in Table 1. These plots are based on figure 2 of Lyons (2008).

Table 1 The four actions in a simple versus simple hypothesis test

p0 ≤ α0 p0 > α0

1 − pA > αA Case I: detection Case II: both models consistent with data
1 − pA ≤ αA Case III: neither model consistent with

data
Case IV: exclusion
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exclusion, as with the illustrated values of tobs = tI and tobs = tIV, respectively. If an intermediate
value, tobs = tIII, is observed in which p0 ≤ α0 and 1 − pA ≤ αA, we can make no decision but
might look for systematic errors or problems in the model or data. The other extreme appears in
Figure 2a, where the distribution of T is hardly distinguishable under the two hypotheses; we say
such a test is insensitive to the hypotheses.

Two important special cases of those listed in Table 1 occur with an insensitive test. Although
a small value of p0 formally leads to a detection, a value such as tobs = tI∗ in Figure 2a is nearly as
unlikely under HA as it is under H0. We refer to this special instance of case 1 as case 1∗. It occurs
when there are excess counts beyond what is predicted by the Standard Model with the Higgs
boson. Although this means that neither hypothesis may be satisfactory, it points to problems
beyond the formal choice between H0 and HA. Case I∗ is quite unlikely because particle physicists
tend to use very stringent detection thresholds. Of more concern is case IV∗, which is illustrated by
tobs = tIV∗ . Although this scenario leads to a small value of 1− pA, exclusion is questionable because
tobs = tIV∗ is nearly as unlikely under H0. In case IV∗, there are fewer counts than expected even
without the Higgs boson. This situation may arise if there is a significant downward fluctuation in
the background, and this case is considered in detail in Section 4.5. The most likely outcome is a
value of tobs = tII that is not extreme under either hypothesis. The real problem in Figure 2a is the
insensitivity of the distribution of T to the choice between H0 and HA. The sensitivity, µsen, is the
minimum alternative value of µ that, in some measure, avoids this problem. Thus, ideally µsen < 1.

Lyons (2013) introduces a plot designed to illustrate the sensitivity of a test when comparing
two simple hypotheses. Because larger values of T are more significant under H0, both p0 and pA

are monotone decreasing functions of tobs; thus, as tobs increases, p0 decreases and 1− pA increases.
If we vary tobs over the support of T, the ordered pair {p0, 1 − pA} forms a curve in the unit
square. Figure 3 shows how the shape of the curve describes the sensitivity of the test. As p0

increases from zero to one, 1 − pA falls more quickly for a more sensitive test, passing through
the “neither model consistent with data” region near the origin for a test as sensitive as the one
in Figure 2b. (The test in Figure 2c is too sensitive to meaningfully plot in Figure 3.) At the
other extreme, the test in Figure 2a passes quickly into the “both models consistent with data”
region.

4.5. Avoiding Exclusion Under an Insensitive Test (Case IV∗)
High-energy physicists are concerned that unwarranted exclusion may occur if the distribution of T
is similar under H 0 : µ = 0 and H A : µ = 1, that is, if the test is relatively insensitive. As illustrated
by tobs = tIV∗ in Figure 2a, an extreme value of 1− pA may be attributed to a downward fluctuation
in the background rather than to inadequacy of HA relative to H0. Unlikely background counts
are less of a concern for discovery than for exclusion because a much more stringent criterion is
used for detection: α0 ( αA. We can avoid unwarranted exclusion by refraining from excluding
µ = 1 even in 1 − pA ≤ αA if 1 − p0 is also small. In particular, Read (2000) proposes computing

CLS = 1 − pA

1 − p0
4.

and excluding µA only if CLS ≤ αA (also see Junk 1999 and Read 2002). This criterion is more
conservative in terms of exclusion because CLS ≥ 1 − pA (Figure 3). Figure 3b uses the CLS

criterion, which reduces the size of the yellow exclusion region and (nearly) eliminates the purple-
shaded region that corresponds to unwarranted exclusions (case IV%). A more direct approach
would be to exclude µ = 1 only if 1 − pA ≤ αA and 1 − p0 is larger than some threshold. The
drawback of the direct approach is that it requires an additional explicit threshold. Of course, CLS

defines this threshold implicitly.
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Figure 3
A comparison of the sensitivity of various tests. The curves marked i in each panel plot {p0, 1 − pA} for the test described in Figure 2a.
The other curves correspond to cases in which the distributions of the statistic are increasingly separated under H0 and HA, culminating
in the curve in each panel marked ii, which corresponds to the case illustrated in Figure 2b. The colored regions correspond to the four
cases listed in Table 1, plotted with α0 = αA = 0.05; panel b uses the CLS criterion described in Section 4.5. Case I, the detection
region, is colored green; case II, in which both models are consistent with the data, is gray; case III, in which neither model is consistent
with the data, is red; and case IV, the exclusion region, is yellow. Curve ii enters the troublesome red region. Special cases I∗ and IV∗

are shaded in blue and purple, respectively. They also indicate that the data are inconsistent with both models in that there are either
more (case I∗, shaded blue) or fewer (case IV∗, shaded purple) counts than can be explained under either model. The latter case may be
explained by a downward fluctuation in the background and does not justify exclusion. As shown in panel b, this region is (nearly)
eliminated by the CLS criterion.

The primary use of CLS is in the computation of upper limits by inverting the exclusion test.
Consider the test that compares H 0 : µ = 0 with H A : µ = µ0, where we are interested in
whether or not we can exclude µ0. Applying the CLS criterion, we exclude µ0 if

Pr(T < tobs|µ = µ0)
Pr(T < tobs|µ = 0)

≤ αA, 5.

where T is the likelihood-ratio test statistic based on Equation 3. That is, we exclude values of
µ0 that make extreme values of T significantly less likely than they are under H0. (Recall that for
exclusion the roles of the hypotheses are interchanged and smaller values of T are more extreme.)
Figure 4 depicts the CLS upper limits for ATLAS.

Another method that aims to reduce unwarranted exclusion is the power constrained limit,
which reports the larger of µUL and µsen (Cowan et al. 2011b). This method precludes the exclusion
of any value of µ that is lower than the sensitivity of the test. In the interest of full disclosure, van
Dyk (2011) proposed that both µUL and µsen be reported.

4.6. The 5σ Detection Threshold
Particle physicists generally transform p-values into the number of standard deviations a test
statistics would be from zero if its null distribution were standard normal under a one-sided
test. For example, a p-value of 0.025 would be referred to as a 1.96σ result. The 2012 detection
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Figure 4
CLS upper limits as a function of the Higgs mass, mH, for ATLAS. The CLS upper limits are compared with
experimental sensitivity that is quantified by the distribution of µUL under H0. The upper limits depart from
their null distribution and are greater than one near mH ≈ 125 GeV. The plot is based on preliminary data
but is similar to published results (figure 10 of ATLAS Collab. 2012c). Copyright CERN.

of “a previously unknown boson” with a p-values less than one in three million (quoted in
Section 2) corresponded, more precisely, to 6.0σ and 5.0σ detections for ATLAS and CMS,
respectively (ATLAS Collab. 2012c, CMS Collab. 2012a).

At face value, these values seem to be highly significant results, and editors of particle physics
journals generally require significance levels of 5σ to claim a detection. This requirement is in part
a response to high-profile false discoveries that predate even the pentaquark snafu described in
the sidebar. These nominal significance levels, however, are computed under several assumptions
that tend to attenuate the actual significance. For example, they are computed assuming the
Higgs mass is known, when in fact it is not. Particle physicists refer to these as local significance
levels, and these levels ignore the multiple testing that is conducted at multiple masses in the
analysis. It is common, in fact, to plot the local significance as a function of the Higgs mass, mH,
as in Figure 5 (also see figure 7 of Della Negra et al. 2012).

Particle physicists are well aware of the effect of multiple testing but lack a consensus on how to
best handle it largely because it is not clear what constitutes a test. Because previous experiments
excluded Higgs masses outside the range from 114 to 130 GeV and because ATLAS and CMS
focused their searches on this mass range, it may seem that the scope of the multiple-testing
problem is well defined. But suppose that in a formal search between 114 and 130 GeV, the
experimenters noticed a strong Higgs boson–like signature at 113 GeV. There is no doubt that if
the signal were strong enough a detection would be declared. Thus, correcting for multiple testing
between 114 and 130 GeV is not sufficient. A troublesome feature of frequency-based methods
is that they require a fully specified protocol of what one would do if one had different data than
what was actually observed, and strict compliance to this protocol. To avoid these issues, physicists
typically report local significances, but with the stringent 5σ threshold for detection.
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Figure 5
Local significance as a function of the Higgs mass, mH. Values are based on preliminary results from ATLAS
and are compared with the expected local significance under the µ = 1 hypothesis. Notice the peak in
significance at mH ≈ 125 GeV. Published ATLAS and CMS results appear in figure 7 of Della Negra et al.
(2012). Copyright CERN.

In its review of the 2012 CMS and ATLAS discoveries, the journal Science included a glossary
that described the 5σ threshold. It noted (Am. Assoc. Adv. Sci. 2012, p. 1559) that “in particle
physics, this criterion has become a convention to claim discovery but should not be interpreted
literally.” Indeed, the motivation of the 5σ detection threshold is not to keep the false detection
rate below 1 in 3.4 million tests. Rather it is an attempt to account for concerns associated with
multiple testing, calibration, and/or systematic errors, and statistical error rates that are not well
calibrated due to general model misspecification (Cox 2011; Lyons 2008, 2012). Unfortunately,
reducing α0 does not adequately address these concerns. Model misspecification and systematic
errors probably induce both increased bias and variance. Unfortunately, a more stringent threshold
for detection does not address bias and is a uncalibrated response to variance. Of course, statistical
practice always involves compromises of this sort. The irony here is that the strict adherence to
frequency-based procedures that prevents postdata model checking does not, in the final analysis,
deliver a well-calibrated frequentist procedure.

5. DETECTION AND EXCLUSION WITH UNKNOWN MASS

5.1. Mass-by-Mass Analysis

Generalizing from the single-bin analysis described in the model in Equation 2, the observed
counts in a Higgs boson detection experiment can be written as Nmsc, where c indexes the decay
channels, s indexes the categories (strata) within each channel, and m indexes the recorded invariant
masses of events within each channel-category pair. Recall that the number of categories varies
among the several channels and that invariant masses are binned.
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The search for the Higgs boson is conducted separately for each potential Higgs mass on a
fine grid of values of mH. The primary reason is a concern that an integrated search may overlook
potential Higgs masses to which the experiment is relatively insensitive. A mass-by-mass analysis
allows the sensitivity to be computed separately for each mass on the grid. A secondary advantage
of this strategy is that the null distribution of the likelihood-ratio test statistic is simpler to derive
for fixed mH. The standard asymptotic results do not apply, because H0 is on the boundary of the
parameter space. In the spirit of Chernoff (1954), Cowan et al. (2011a) derive the null distribution
for several variants of the likelihood-ratio test, including Equation 3.

Even when searching for a Higgs boson with a given mass, mH, there is a range of possible
recorded Higgs masses because the invariant mass of each candidate Higgs boson is computed
using Einstein’s equation (Equation 1). This computation involves a certain amount of stochastic
error that blurs the recorded invariant masses of both Higgs and background events. There is
also a small intrinsic variance in mH, as described by Heisenberg’s uncertainty principle. Although
these two effects result in a relatively narrow mass spread (Figure 1), we must look at events
counts over a wide range of masses to fit the background, as described in Section 3. Thus, all of
the counts, Nmsc, are used for each mass-specific search.

Returning to the model in Equation 2, both the background and source terms must be estimated
using the multibin data. Doing so introduces both numerous nuisance parameters and sensitivity of
results to the choice of parameterization. The model specification for the background is discussed
in Section 3. Formally, we let βs c (φs c , m) be the expected background count in invariant mass bin
m of category (stratum) s of channel c, which depends on the unknown parameter, φsc, and the
mass, m, associated with the bin. The subscripts on β and φ emphasize that the choice of both the
background models and their parameters is different for each category-channel pair. In particular,
the dimensions of the φsc are not all the same. However, they are fixed in advance along with the
functional forms of the β sc.

The source models describe the expected Higgs count under the Standard Model in each mass
bin. This count depends weakly on physical parameters that are not precisely determined and,
more importantly, on instrumental effects such as the inexact assignment of events to mass bins.
In addition, the ATLAS Collaboration includes a term that allows for a spurious signal that in
effect reduces the significance of any potential discovery. External data are available for some of
the source-model parameters, and evidence-based prior distributions are used to incorporate this
information. We write the source model as κs c (φs c , m), where φsc is a category-channel-specific
nuisance parameter. Finally, the multibin data model used in the search for a Higgs boson of a
particular mass can be written as

N ms c ∼ Poisson[βs c (θs c , m) + κs c (φs c , m)µ]. 6.

Taken together, the parameters (θ sc, φsc) for each category-channel pair form a large dimensional
nuisance parameter that complicates both the detection problem and the setting of upper limits.
Physicists have considered a wide range of methods to deal with nuisance parameters and have come
across many of the same roadblocks known to statisticians for both limits (Cousins & Highland
1992, Heinrich et al. 2004, Rolke et al. 2005) and testing (e.g., Demortier 2008). In the search
for a Higgs boson, a pragmatic approach is taken. The likelihood-ratio test statistic is used both
in setting limits and in detection (Cowan et al. 2011a). Because it is asymptotically ancillary, its
distribution should be relatively free of nuisance parameters for large data sets.

5.2. The Look-Elsewhere Effect
The strategy of conducting separate detection tests on a fine grid of mH leads to multiple dependent
tests that complicate the interpretation of the multiple p-values. (The dependency of the tests can
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be observed in how p0 varies smoothly with mH in Figure 5.) Physicists refer to this multiple-testing
problem as the look-elsewhere effect (Demortier 2008, Lyons 2008) and the mH-specific p-values
as the local p-values. The dependency of the mH-specific tests means that simple corrections such
as the Bonferroni correction are overly conservative. Because mH is unidentified under H0, the
asymptotic distribution of the global likelihood-ratio test statistics is unknown. In principle, its
null distribution could be simulated, perhaps with nuisance parameters fixed at their fitted values,
but doing so is infeasible given the stringent detection criteria used in the Higgs boson search.
However, it has been attempted by, for instance, the CMS Collaboration (2007).

Formally, let T(mH) be the value of the likelihood-ratio test statistic for an mH-specific test and
assume that its null distribution is χ2

s . Davies (1987) shows that

Pr
(

max
mH

T (mH) > c
)

≤ Pr(χ2
s > c ) + E(M (c ) | H 0), 7.

where M(c) is the number of upcrossings, that is, the number of times T(mH) increases from below
to above c as mH increases. Because such stringent detection criteria are used in the Higgs boson
search, we are interested in large c, where the bound in Equation 7 becomes exact. Although a
direct Monte Carlo evaluation of the expected number of upcrossings is infeasible for such large
c, Gross & Vitells (2010) propose an elegant solution by noting that

E(M (c )|H 0) = E(M (c 0) | H 0)
(

c
c 0

)(s −1)/2

exp
(

− (c − c 0)
2

)
, 8.

where c 0 ( c and E(M (c 0) | H 0) can be computed efficiently via Monte Carlo (also see Vitells
2011). Evaluating Equation 7 at c = maxmH tobs(mH) yields the global p-value. Despite the ease
with which Gross & Vitells’s solution allows local p-values to be converted into global p-values,
detection results still are typically quoted as local p-values (e.g., Della Negra et al. 2012). The
assumption is that the stringent detection criterion guards against false detections, even when the
look-elsewhere effect and other systematic errors in the analysis are ignored. The local significances
of 6.0σ and 5.0σ for the ATLAS and CMS Higgs boson detections described above correspond to
global significances of 5.1σ and 4.6σ , respectively (ATLAS Collab. 2012c, CMS Collab. 2012a).

5.3. Estimating the Higgs Mass
Once a Higgs boson is discovered, its mass is estimated by incorporating mH into Equation 6 and
conducting a unified analysis, rather than a mass-by-mass analysis. In particular, the source model,
κ(φs c , m) in Equation 6, depends on the posited Higgs mass. Accounting for this dependence
explicitly, the full model is

N ms c ∼ Poisson[βs c (θs c , m) + κs c (φs c , m, mH)µ]. 9.

Fitting Equation 9 leads to the reported estimates and statistical errors for mH.

6. SUMMARY
The search for the Higgs boson illustrates a generalization of the standard hypothesis-testing
framework. The goal is to determine which—if either—of the two hypotheses is consistent with
the data, rather than to simply accept or reject the null model. This goal is achieved while main-
taining an a priori preference for the null model: Much stronger evidence is required to reject the
null hypothesis than to reject the alternative. To a statistician, a decision theoretic framework may
seem better suited to this choice (van Dyk 2011) and more able to avoid seemingly ad hoc decision
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criterion such as CLS. Employing a Bayesian framework, however, would avoid the well-known
bias of the p-value toward false discovery with a sharp null, but would also introduce the challenge
of prior specification (Berger & Delampady 1987). Particle physicists (or their publishers) have
instead chosen to stick with tail probabilities, with the hope that they can guard against model mis-
specification, systematic errors, and other possible biases by using an ultraconservative detection
threshold. Although statisticians—and many particle physicists—find this solution unsatisfactory,
hoping for a more principled approach may be unrealistic. Any methodological shift away from tail
probabilities would require a corresponding cultural shift that is unlikely in a scientific endeavor
as costly and high profile as the search for a Higgs boson.

Although this article focuses on the statistical challenges involved in the search for the Higgs
boson, it is important to remember that the compromises and ad hoc solutions involved in the
search are not unique. All real data analyses involve trade-offs. The Higgs boson search is simply
a high-profile problem, and the researchers have insisted on much higher standards for their
analyses than are typically encountered in practice. Overall, they should be commended for the
caliber of their methods, and their discovery should be recognized as an excellent example of the
dynamic interplay between modern statistical methods and a complex real-world applied problem.
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