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ABSTRACT

The likelihood ratio test (LRT) and the related F-test, popularized in astrophysics by Eadie and coworkers
in 1971, Bevington in 1969, Lampton, Margon, & Bowyer, in 1976, Cash in 1979, and Avni in 1978, do not
(even asymptotically) adhere to their nominal �2 and F-distributions in many statistical tests common in
astrophysics, thereby casting many marginal line or source detections and nondetections into doubt.
Although the above authors illustrate the many legitimate uses of these statistics, in some important cases it
can be impossible to compute the correct false positive rate. For example, it has become common practice to
use the LRT or the F-test to detect a line in a spectral model or a source above background despite the lack of
certain required regularity conditions. (These applications were not originally suggested by Cash or by Bev-
ington.) In these and other settings that involve testing a hypothesis that is on the boundary of the parameter
space, contrary to common practice, the nominal �2 distribution for the LRT or the F-distribution for the F-test
should not be used. In this paper, we characterize an important class of problems in which the LRT and the F-
test fail and illustrate this nonstandard behavior. We briefly sketch several possible acceptable alternatives,
focusing on Bayesian posterior predictive probability values. We present this method in some detail since it is
a simple, robust, and intuitive approach. This alternative method is illustrated using the gamma-ray burst of
1997 May 8 (GRB 970508) to investigate the presence of an Fe K emission line during the initial phase of the
observation. There are many legitimate uses of the LRT and the F-test in astrophysics, and even when these
tests are inappropriate, there remain several statistical alternatives (e.g., judicious use of error bars and Bayes
factors). Nevertheless, there are numerous cases of the inappropriate use of the LRT and similar tests in the
literature, bringing substantive scientific results into question.

Subject heading:methods: statistical

1. INTRODUCTION

Distinguishing a faint spectral line or a new source from a
chance fluctuation in data, especially with low photon
counts, is a challenging statistical task. As described in x 2,
these are but two examples in a class of problems that can
be characterized in statistical terms as a test for the presence
of a component in a finite-mixture distribution. It is com-
mon practice to address such tests with a likelihood ratio
test (LRT) statistic or the related F-statistic1 and to appeal
to the nominal asymptotic distributions or reference distri-

bution2 of these statistics (Murakami et al. 1988; Fenimore
et al. 1988; Yoshida et al. 1992; Palmer et al. 1994; Band et
al. 1995, 1996, 1997; Freeman et al. 1999; Piro et al. 1999,
etc); see Band et al. (1997) for a discussion of the close rela-
tionship between the LRT and the F-test. The underlying
assumption is that in some asymptotic limit the statistic
being used to describe the data is distributed in an under-
standable way, and hence useful bounds may be placed on
the estimated parameters. Unfortunately, the standard
asymptotic theory does not always apply to goodness-of-fit
tests of this nature even with a large sample size or high

1 The F-statistic for testing for an additional term in a model, as defined
in Bevington (1969, pp. 208–209), is the ratio F� ¼ �2ðmÞ � �2ðmþ 1Þ½ �=
�2ðmÞ=ðN �m� 1Þ½ � ¼ D�2=�2

�; where �
2(m) and �2ðmþ 1Þ are the values

of the �2 statistic resulting from fittingm andmþ 1 free parameters, respec-
tively, and �2

� , in the notation of Bevington (1969), stands for a �2 random
variable with � degrees of freedom divided by the number of degrees of free-
dom �. In the remainder of this paper we use �2

� to denote a �
2 random vari-

able with � degrees of freedom since this notation is more standard. See
also Eadie et al. (1971) and Lampton,Margon, & Bower (1976).

2 As detailed below, the reference distribution is used to calibrate a test
statistic. When choosing between two models, we assume that the simpler
or more parsimonious model holds and look for evidence that this assump-
tion is faulty. Such evidence is calibrated via the reference distribution, the
known distribution of the test statistic under the simple model. If the
observed test statistic (e.g., LRT or F-test) is extreme according to the refer-
ence distribution (e.g., �2

1 > 10:83Þ, the simple model is rejected in favor of
the more complexmodel.
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counts per bin. Thus, use of these statistics may be mislead-
ing. For example, searches for cyclotron scattering and
atomic lines in �-ray bursts based on such uncalibrated sta-
tistics may be unreliable.

In nested3 significance tests such as the LRT or F-test, we
wish to choose between two models, where one model (the
null model) is a simple or more parsimonious version of the
other model (the alternative model). We seek evidence that
the null model does not suffice to explain the data by show-
ing that the observed data are very unlikely under the
assumption that the null model is correct. In particular, we
define a test statistic (e.g., the LRT statistic, F-statistic, or
D�2 values) with a distribution that is known at least
approximately, assuming that the null model is correct. We
then compute the test statistic for our data and compare the
result to the known null distribution. If the test statistic is
extreme (e.g., large), we conclude that the null model is very
unlikely to produce such a data set and choose the alterna-
tive model. A test statistic without a known reference distri-
bution is without standard justification and is of little direct
use; we can neither calibrate an observed value nor compute
the false positive rate. Such is the case for the LRT statistic
and the F-statistic for detecting a spectral emission line, an
absorption feature, or an addedmodel component.4 Because
this use is outside the bounds of the standard mathematical
theory, the reference distribution is generally uncalibrated,
unknown, and unpredictable. This problem is fundamental,
i.e., intrinsic to the definition of the LRT and the F-test. It is
not due to small sample size, low counts per bin, or faint sig-
nal-to-noise ratio. It persists even when Gauss-normal sta-
tistics hold and �2 fitting is appropriate.5 Several authors
(Mattox et al. 1996; Denison & Walden 1999; Freeman et
al. 1999) have recognized that the null distribution of the
LRT and F-statistics may vary from the nominal tabulated
values (e.g., the tables given in Bevington 1969 for the F-
test). Nonetheless, the inappropriate use of the F-test in the
astrophysics literature is endemic.

As a rule of thumb, there are two important conditions
that must be satisfied for the proper use of the LRT and F-
statistics. First, the two models that are being compared must
be nested. Second, the null values of the additional parameters
may not be on the boundary of the set of possible parameter
values. The second condition is violated when testing for an
emission line because the line flux must be nonnegative and
the null value of this parameter is zero, which is the boun-
dary of the nonnegative numbers.

Because of the first condition, it is, for example, inappro-
priate to use the F-test to compare a power law with a black-
body model or to compare a power-law model with a

Raymond-Smith thermal plasma model. This issue is dis-
cussed in Freeman et al. (1999) and is not the primary focus
of this paper. Instead, we focus on the second condition that
disallows, for example, testing for an emission line, an
absorption feature, or other added spectral components
(e.g., a power law, Compton reflection component, black-
body component, thermal component, etc.) or testing for a
quasi-periodic oscillation in timing data, an addedGaussian
in light curves, or an added image feature (e.g., an added
point source). We emphasize that there are many legitimate
uses of the LRT and F-test, e.g., testing for a broken power
law; comparing the variances of two samples; determining if
a spectrum is the same or different in two parts of an image,
at two difference times, or in two observations; or deciding
whether to allow nonsolar abundances. Generally, return-
ing to the two rule-of-thumb conditions should guide one as
to when the F-test and LRT are appropriate. (We note,
however, that the reference distributions of these tests are
only reliable with a sufficiently large data set, even when the
two conditions are met.)

In the remainder of the paper we explain why these stand-
ard tests fail and offer alternatives that work. In x 2 we look
at the class of models known as finite-mixture models
(which allow for multiple model components). We discuss
the as of yet unresolved question of determining the number
of components in the mixture and show that testing for a
spectral line, a new source, or other added model compo-
nents are special cases of this problem. The LRT and the F-
test have often been proposed as simple solutions in these
cases. The LRT is specifically discussed in x 3 and is shown
to be invalid (i.e., uncalibrated) in this setting since, as we
discussed above, its basic criteria are not met. In x 4 we dis-
cuss a number of possible alternatives to the LRT and F-sta-
tistics including Bayes factors, the Bayesian information
criterion, and posterior predictive p-values.6 Complete rec-
ipes for all alternatives to the LRT and F-test are beyond
the scope of this paper. As discussed in x 4, we focus on pos-
terior predictive p-values because they are conceptually and
computationally simple and closely mimic the nested signifi-
cance tests described above; see the high-redshift quasar
example in xx 3 and 4. With this machinery in place, we
investigate a typical example in x 5; we investigate whether
the data support the presence of an Fe K emission line dur-
ing the initial phase of the GRB 970508. Here neither the
LRT nor the F-test are appropriate. On the basis of our
analysis, the model with a spectral line is clearly preferable.
In x 6 we conclude with several cautions regarding the inap-
propriate use of statistical methods, which are exemplified
by the misuse of the LRT.

Throughout the paper we use the LRT for a spectral line
as an example, but the discussion and results apply equally
to related tests (e.g., the F-test) and to other finite-mixture
models (e.g., how many sources are detected above back-
ground; Avni 1978) or, even more generally, to testing any
null models on the boundary of the parameter space.

4 We assume that when testing for the presence of an emission line,
model parameters are constrained so that the line intensity is greater than
zero; similar assumptions are made for absorption features and added
model components.

5 As pointed out by the referee, Wheaton et al. (1995) showed that least-
squares or �2 fitting can sometimes be equivalent to maximum likelihood
fitting even when Poisson statistics apply. However, their method is not uni-
versally applicable since it presumes that the weight matrix is independent
of (or only weakly dependent on) the Poisson means (see their eqs. [12],
[19], and [20]), whereas in the Poisson case the weights are the reciprocal of
the Poissonmeans—if the weights are known, there is nothing to estimate.

6 A probability value or p-value is the probability of observing a value of
the test statistic (such as �2) as extreme or more extreme than the value
actually observed given that the null model holds (e.g., �2

30 � 2:0). Small p-
values are taken as evidence against the null model; i.e., p-values are used to
calibrate tests. Posterior predictive p-values are a Bayesian analogue; see
x 4.2.

3 For example, the allowed parameter values of one model must be a
subset of those of the other model.
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2. FINITE-MIXTURE MODELS IN ASTROPHYSICS

We begin with an illustration using a simple spectral
model. Consider a source spectrum that is a mixture of two
components: a continuum modeled by a power law �E��

and an emission line modeled as a Gaussian profile with a
total flux ~FF.

The expected observed flux Fj from the source within an
energy bin Ej for a ‘‘ perfect ’’ instrument is given by

Fj ¼ dEj�E
��
j þ ~FFpj for j ¼ 1; . . . ; J ; ð1Þ

where dEj is the energy width of bin j, � is the normalization
constant for the power law with an index �, and pj is the pro-
portion of the Gaussian line that falls in bin j. For simplic-
ity, we parameterize the Gaussian line in terms of its
location l and assume that its width � is fixed.

To calculate the number of counts observed with a count-
ing detector that is predicted by this model, we need to take
into account several instrumental effects. The observed
spectrum is usually contaminated with background counts,
degraded by instrument response, and altered by the effec-
tive area of the instrument and interstellar absorption.
Thus, we model the observed counts in a detector channel l
as independent Poisson7 random variables with the
expectation

�l ¼
XJ
j¼1

RljAjFje
��=Ej þ bl ; l ¼ 1; . . . ;L ; ð2Þ

where Rlj is the photon redistribution matrix of size L� J
that summarizes the instrument energy response, Aj is the
effective area at energy Ej (normalized for convenience so
that maxj Aj ¼ 1), � is the parameter for simple exponential
absorption,8 and bl is the expected background counts
in channel l. We focus on the task of determining whether
the data support the presence of a Gaussian line as in
equation (1).

The form of the model specified by equation (1) is a spe-
cial case of what is known in the statistics literature as a
finite-mixture model. The simplest example of a finite-mix-
ture model is a population made up of K subpopulations
that differ in their distribution of some quantity of interest
x. The distribution of x in subpopulation k may have
unknown parameters and is represented by pk(x). The rela-
tive size of subpopulation k is !k � 0, with

P
k !k ¼ 1. If we

sample randomly from the larger population, the distribu-
tion of x is

f ðxÞ ¼
XK
k¼1

!kpkðxÞ : ð3Þ

Finite-mixture models are an important class of statistical

models with applications in the social, biological, engineer-
ing, and physical sciences. A general review of the topic can
be found in any of the several useful books describing these
models, their applications, and their statistical properties
(Everitt & Hand 1981; Titterington, Smith, & Makov 1985;
McLachlan & Badford 1988; Lindsay 1995).

As an example in high-energy spectral analysis, consider
again equation (1). We postulate that there are two ‘‘ types ’’
or ‘‘ subpopulations ’’ of photons, those originating from
the continuum and those originating from the Gaussian
line. The former have distribution in the shape of a power
law, the latter as a Gaussian distribution. The relative sizes
of the two populations are determined by � and ~FF.

There are many other statistical problems in astrophysics
that can be phrased in terms of determining K (i.e., the true
number of components or subpopulations) in a finite mix-
ture. For example, consider testing for the presence of a
point source in spatial data or a burst in time series data. In
both cases, p1(x) represents the background or steady state
model (i.e., model without a point source or without a
burst), and we wish to determine if the data support a sec-
ond component, p2(x), which represents the point source or
burst. Other examples include testing for the presence of a
second plasma component in coronal temperature models
of late-type stars (Schmitt et al. 1990; Kaastra et al. 1996;
Singh et al. 1999). In this case, pk(x) in equation (3) repre-
sents a plasma component for k ¼ 1, 2. Here the key is to
determine if a single plasma component (i.e., K ¼ 1) suffices
to explain the data.

Although the simplified form given in equation (1) is used
for illustration throughout the paper, the difficulty with the
LRT (or the F-test) that is described in the next section
applies equally to the above problems, as does the Bayesian
solution suggested in x 4. It is well known in the statistical
literature that determining the number of components K
(e.g., whether to include the Gaussian line in eq. [1]) is a
challenging problem that defies a standard analytical solu-
tion. Notice that a formal test of whether we should include
component k corresponds to testing whether !k ¼ 0, which
is the boundary of the set of possible values of !k. This issue
is discussed at length in the several texts referenced above.

3. THE FALLIBLE LIKELIHOOD RATIO TEST

3.1. Mathematical Background

As discussed in x 1, the LRT and the related F-test have
often been used to test for the presence of a spectral line. To
understand the difficulty with using these tests in this set-
ting, we begin with a formal statement of the asymptotic
result that underlies the LRT.

Suppose x ¼ ðx1; . . . ;xnÞ is an independent sample (e.g.,
measured counts per PHA [pulse height analyzer] channel
or counts per imaging pixel) from the probability distribu-
tion f ðxjhÞ, with parameters h ¼ ð�1; . . . ; �pÞ. We denote the
likelihood ratio statistic TLRTðxÞ ¼ �2 logRðxÞ, where

RðxÞ ¼
max

Yn

i¼1
f ðxij�T1 ; . . . ; �Tq ; �qþ1; . . . ; �pÞ

max
Yn

i¼1
f ðxij�1; . . . ; �pÞ

; ð4Þ

where the maxima are found by varying the parameters. In
the numerator, the hT terms represent parameters that are
not varied but held at their ‘‘ true ’’ values, i.e., the values
assumed under the null model. Under the regularity condi-

7 Recall that a random variableX is said to follow a Poisson distribution
with parameter or intensity F if PrðX ¼ xÞ ¼ e�FFx=x!. In this case
EðXÞ ¼ F, and we often write X �d PoissonðFÞ (read as X is distributed as
Poisson with intensity F). This representation conditions on the intensity
parameterF, which in turnmay vary.

8 For mathematical transparency, we use a simplified exponential
absorption throughout the paper except in the analysis of GRB 970508,
where standard interstellar absorption is used.
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tions9 discussed below, if (�1; . . . ; �q) actually equals
ð�T1 ; . . . ; �Tq Þ, the distribution of the likelihood ratio statistic
converges to a �2 distribution with q degrees of freedom as
the sample size n ! 1. Equation (4) can be written more
formally by defining � to be the set of possible parameter
values of h. We are interested in testing whether h is in some
subset of the parameter set �0 � �. We then denote the
likelihood ratio statistic, TLRTðxÞ ¼ �2 logRðxÞ, where

RðxÞ ¼
suph2�0

LðhjxÞ
suph2� LðhjxÞ ; ð5Þ

with LðhjxÞ denoting the likelihood function,
Qn

i¼1 f ðxijhÞ.
Again, under the regularity conditions, if h 2 �0, the distri-
bution of the likelihood ratio statistic converges to a �2 dis-
tribution as the sample size, n ! 1. The degrees of freedom
of the �2 distribution is the difference between the number
of free parameters specified by � and by �0. [In eq. (5) we
replace the ‘‘max,’’ i.e., maximum, in eq. (4) with ‘‘ sup,’’
i.e., supremum. This is a technicality that is mathematically
necessary when the maximum occurs on the boundary of
the parameters space; e.g., maxx>0 1=ðxþ 1Þ is not defined,
but supx>0 1=ðxþ 1Þ ¼ 1.]

Examples of the LRT are found widely in scientific appli-
cations; see e.g., the many citations in x 1. As a simple exam-
ple, suppose that one wishes to test whether the spectrum of
a source is the same in two spatially separated regions. For
simplicity, suppose a simple power law with two parameters
(normalization and power-law index) is used to model the
spectrum. In the denominator of equation (5), we fit the
power law independently in the two regions via maximum
likelihood and multiply the two likelihoods evaluated at
their respective maximum likelihood estimates. For the
numerator, we simply fit the combined data set via maxi-
mum likelihood. The resulting test statistic, �2 logRðxÞ, is
approximately �2

2, i.e., �
2 in distribution with 2 degrees of

freedom, the difference in the number of free parameters in
the twomodels.

As noted by Cash (1979), this is a remarkably general
result with very broad application. It must, however, be
used cautiously; it is not a universal solution and does not
apply in all settings (this was also noted by Freeman et al.
1999). In particular, the ‘‘ regularity conditions ’’ mentioned
above are concerned mainly with the existence and behavior
of derivatives of logLðhjxÞ with respect to h [e.g., logLðhjxÞ
must be 3 times differentiable], the topology of � and �0

(i.e.,�0 must be in the interior of� and both must be open),
and the support of the distribution f ðxjhÞ (i.e., the range of
possible values of x cannot depend on the value of h).
Details of these regularity conditions are given in Appendix
A. The difficulty with testing for a spectral line or, more gen-
erally, for the existence of a component in a finite-mixture
model lies in the topology of �. The standard theory
requires that � be an open set—the LRT cannot be used to
test whether the parameter lies on the boundary of the
parameter space. Consider the source model given in
equation (2). If we set h ¼ ð�; �; �; ~FFÞ and test ~FF ¼ 0, we

are examining the boundary of the parameter space, and the
LRT statistic is not (even asymptotically) �2 in distribution.

In Appendix B we show mathematically that the distribu-
tion of the LRT is not �2 when testing for a spectral line.
This is further illustrated via a simulation study in the next
section.

3.2. Computing the False Positive Rate for Fully
SpecifiedModels

Unfortunately, analytical results for the sampling distri-
bution of the LRT do not exist in many settings, such as
testing for a spectral line. Thus, we resort to two simulation
studies that illustrate the unpredictable behavior of the dis-
tribution of the LRT statistic.

Simulation 1: testing for an emission line.—The most com-
mon problem in spectral analysis of quasar X-ray data is the
detection of a fluorescent emission line, Fe K� at �6.4–6.8
keV. The iron line indicates the existence of cold material in
the nucleus, and its energy and width can constrain the ion-
ization state of the matter and its distance from the central
black hole. The line is strong and easily detected in some
low-redshift, low-luminosity sources. However, for high-
luminosity and high-redshift objects, its presence in the data
is not obvious, and the common statistical technique used to
support the detection of this line is the F-test.

Our first simulation is designed to mimic the ASCA/SIS
observation of the high redshift ðz ¼ 3:384Þ quasar S5
0014+81 (Elvis et al. 1994). We use standard ASCA
response matrices in the simulations.10 The effective area file
was created with FTOOLS (‘‘ ascaarf ’’, Version 2.67), and
the corresponding background file was extracted from the
ASCA background blank fields.11

We assume that the quasar emission in the observed
energy range is described by the model given in equation (1)
with a power-law continuum (� ¼ 1:93� 10�3 counts cm�2

keV�1 s�1, � ¼ 2:11) and exponential absorption parameter
(� ¼ 1:69). These parameter values correspond to fitted val-
ues for the quasar observation obtained by van Dyk (2000).

We simulated 200 data sets, {~xxðtÞ; t ¼ 1; . . . ; 200}, and
each was fitted 3 times via maximum likelihood using the
expectation maximization (EM) algorithm as described by
vanDyk (2000) using the following three models:

Model 1.—Continuum (i.e., power law plus exponential
absorption).
Model 2.—Continuum plus a narrow line with one free

parameter, ~FF, and a location fixed at 1.55 keV and width
fixed at zero.
Model 3.—Continuum plus a wide line with two free

parameters, ~FF and location, with the width fixed at
� ¼ 0:28 keV.

For each data set, we computed two LRT statistics,
T2ð~xxðtÞÞ ¼ �2 log½Lðĥh1j~xxðtÞÞ=Lðĥh2j~xxðtÞÞ� and T3ð~xxðtÞÞ ¼
�2 log½Lðĥh1j~xxðtÞÞ=Lðĥh3j~xxðtÞÞ�, where ĥh1, ĥh2, and ĥh3 are the
maximum likelihood estimate under models 1, 2, and 3,
respectively. Since the data were simulated under the null
model (i.e., model 1), the histograms of the computed LRT
statistics in the first two panels of Figure 1 represent the

10 Available at ftp://legacy.gsfc.nasa.gov/caldb/data/asca/sis/cpf/
94nov9.

11 See footnote 10.

9 The details of these regularity conditions are quite technical in nature
and are summarized in Appendix A. A mathematically rigorous statement
can be found in xx 4.2 and 4.4 of Serfling (1980).
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reference distribution of the LRT against these two alterna-
tive models. The nominal �2 distributions with 1 and 2
degrees of freedom are plotted on the histograms and clearly
do not suffice. The false positive rates are 2.6% and 1.5% in
the nominal 5% tests, respectively. In this case, we expect
the LRT to understate the evidence for an emission line.
Correcting the false positive rate should enable us to detect
weak lines that would be missed by blind application of the
LRT.

Simulation 2: testing for a simple absorption line.—
Although the LRT is conservative in both of the tests in sim-
ulation 1, this is not always the case. This can be seen in a
second simulation in which we consider a simplified absorp-
tion line. Although multiplicative model components such
as an absorption line do not correspond to testing for a com-
ponent in a finite mixture, the LRT still does not apply if the
null model is on the boundary of the parameter space; such
is the case with absorption lines. In this simulation we
ignore background contamination, instrument response,
and binning. We simulate 1000 data sets each with 100 pho-
tons from an exponential continuum, and fit the following
twomodels:

Model 1.—Exponential continuum.
Model 2.—Exponential continuum plus a two-parameter

absorption line, where the fitted absorption probability is
constant across the line that has a fixed width but a fitted
center.

Again, we computed the LRT statistic for each of the 1000
simulated data sets and plotted the results in the final panel
of Figure 1. Clearly, the LRT does not follow its nominal
reference distribution (�2 with 2 degrees of freedom) even
with this simplified absorption line model; the false positive
rate is 31.5% for the nominal 5% test. That is, use of the
nominal reference distribution would result in over 6 times
more false line detections than expected.

4. BAYESIAN MODEL CHECKING

Although some theoretical progress on the asymptotic
distribution of TLRT(x) when �0 is on the boundary of �
has been made (e.g., by Chernoff 1954 and specifically for
finite mixtures by Lindsay 1995), extending such results to a
realistic highly structured spectral model would require
sophisticated mathematical analysis (see Lindsay 1995 for a
simple exception when only ! is fitted in eq. [3]). In this sec-
tion we pursue a mathematically simpler method based on
Bayesian model checking known as posterior predictive
p-values (Meng 1994; Gelman, Meng, & Stern 1996). As we
shall see, this Bayesian solution is simpler and far more gen-
erally applicable than the asymptotic arguments required
for satisfactory behavior of the LRT.

Posterior predictive p-values are but one of many meth-
ods for model checking and selection that may be useful in
astrophysics. Our aim here is not to provide a complete cat-
alog of such methods but rather to provide practical details
of one method that we believe is especially promising and
little known in astrophysics. In x 4.3 we provide a brief com-
parison with several other Bayesian methods.

4.1. The Posterior Predictive p-Value

The central difficulty with the LRT and the F-test in this
setting is that their reference distributions are unknown
even asymptotically. Moreover, the distributions likely
depend on such things as the particular shape of the contin-
uum, the number of lines, and their profiles and strengths.
Thus, it is difficult to obtain any general results regarding
such reference distributions even via simulation. The
method of posterior predictive p-values uses information
about the spectrum being analyzed to calibrate the LRT sta-
tistic (or any other test statistic) for each particular measure-
ment. In the simulations described in x 3.2, we simulated
data sets ~xxðtÞ using a fixed value of (�, �, �) and observed the
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31.5%

Fig. 1.—Null distribution of the LRT test statistic. The histograms illustrate the simulated null distribution of the LRT statistic in three scenarios and
should be compared with nominal �2 distributions, which are also plotted. As detailed in x 3.2, the histograms corresponds to (a) testing for a narrow emission
line with fixed location, (b) testing for a wide emission line with fitted location, and (c) testing for an absorption line. The vertical lines show the nominal cutoff
for a test with a 5% false positive rate; note that the actual false positive rates vary greatly at 2.6%, 1.5%, and 31.5%. The label on the y-axis stands for the prob-
ability density function.
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behavior of TLRTð~xxðtÞÞ. Instead of fixing the model parame-
ter at its fitted value under the null model, the method of
posterior predictive p-values uses values of the parameter
that are relatively likely given the observed counts. That is,
we run a Monte Carlo simulation to access the sampling dis-
tribution of the LRT (or other) statistic so that we can cali-
brate the value of the statistic computed on the data and
determine a p-value. The Monte Carlo simulation is run
using parameter values fitted to the data under the null
model and accounts for uncertainty (i.e., error bars) in these
fitted values.

To formalize this, we review Bayesian model fitting,
which we use to simulate values of the parameter via Monte
Carlo simulation. Bayesian model fitting involves the prob-
ability of the parameters, given the model pðhjx; IÞ, while
‘‘ classical ’’ or ‘‘ frequentist ’’ statistics deal with the con-
verse: pðxjh; IÞ. Interested readers are referred to the recent,
more detailed, treatments of Bayesianmethods given in Gel-
man et al. (1995), Carlin & Louis (1996), and, specifically
for astrophysics, van Dyk et al. (2001). One transforms
from pðxjh; IÞ to pðhjx; IÞ or vice versa using Bayes theo-
rem, which states

pðhjx; IÞ ¼ pðxjh; IÞpðhjIÞ
pðxjIÞ ; ð6Þ

where the posterior distribution pðhjx; IÞ is the distribution
of the parameter given the data and any available prior
information I, the likelihood pðxjh; IÞ is the model for the
distribution of the data x, the prior distribution pðhjIÞ con-
tains information about the parameter known prior to
observing x, and pðxjIÞ is a normalizing constant for
pðhjx; IÞ. Equation (6) allows us to combine information
from previous studies or expert knowledge through the
prior distribution with information contained in the data
via the likelihood. In the absence of prior information we
use a relatively noninformative prior distribution. Van Dyk
et al. (2001) describe how to useMarkov chainMonte Carlo
simulation and the Gibbs sampler to simulate from pðhjxÞ
using spectral models that generalize equation (1).

Our procedure is given for an arbitrary statistic T(x) [i.e.,
an arbitrary function T(x) of data x] but certainly is valid
for TLRT(x), i.e., the LRT statistic or the F-statistic. We cali-
brate T(x) using the distribution of Tð~xxðtÞÞ given the
observed data x, as the reference distribution, i.e.,

p½Tð~xxðtÞÞjx� ¼
Z

p½Tð~xxðtÞÞ; hjx�dh

¼
Z

p½Tð~xxðtÞÞjh�pðhjxÞdh ; ð7Þ

where the second equality follow because x and ~xxðtÞ are inde-
pendent given h. (Here and in what follows we suppress
explicit conditioning on the prior information I.) What is
important in equation (7) is that we do not fix h at some esti-
mated value in the reference distribution; rather, we inte-
grate over its uncertainty as calibrated by the posterior
distribution.

Although analytical results are typically not available,
calibration is easily accomplished via Monte Carlo simula-
tion. Specifically, we perform the following steps:

1. We simulate parameter values fhðtÞ; t ¼ 1; . . . ;Ng
from pðhjxÞ, e.g., using the method of vanDyk et al. (2001).
2. For t ¼ 1; . . . ;N, we simulate ~xxðtÞ �d pðxjhðtÞÞ, i.e.,

according to the model, we simulate N data sets, one for

each simulation of the parameters obtained in step 1. (This
is similar to the often used ‘‘ parametric bootstrapping,’’ but
now uncertainties in the parameters are accounted for.)
3. For t ¼ 1; . . . ;N, we compute the statistic Tð~xxðtÞÞ. For

TLRTð~xxðtÞÞ, this involves computing the maximum likeli-
hood estimates for the null and alternative models using
each of theN data sets; see equation (5).
4. We compute the posterior predictive p-value,

p ¼ 1

N

XN
t¼1

I½Tð~xxðtÞÞ > TðxÞ� ; ð8Þ

where I[statement] is an indicator function that is equal to
1 if the statement is true and 0 otherwise.

The posterior predictive p-value is the proportion of the
Monte Carlo simulations that results in a value of Tð~xxðtÞÞ
more extreme than the value computed with the observed
data T(x). If this is a very small number, we conclude that
our data is unlikely to have been generated under the poste-
rior predictive distribution. Since this distribution is com-
puted assuming the null model, we reject the null model and
investigate alternative models. That is, p is treated as a
p-value, with small values indicating evidence for the more
complex model, e.g., the model with an additional spectral
line.

4.2. An Example

Here we illustrate the method of posterior predictive
p-values by testing for a spectral line in data obtained from
a high-redshift quasar used in simulation 1 of x 3.2. In par-
ticular, we compare model 3 with model 1 as described in
x 3.2. Calculations proceed exactly as in x 3.2, except each
~xxðtÞ is simulated with a different hðtÞ as simulated from
pðhjxÞ. Five hundred simulations from the resulting poste-
rior predictive distribution of TLRT(x) are displayed in Fig-
ure 2 along with a vertical line that correspond to TLRT(x)
computed with the observed data. The resulting posterior
predictive p-value is 1.6%, showing strong evidence for the
presence of the spectral line.

4.3. General Advice onModel Checking andModel Selection

Posterior predictive p-values are by no means the only
statistical method available for model checking and model
selection; in this section we outline some important Baye-
sian alternatives and discuss our recommendation of using

Fig. 2.—Posterior predictive distribution of the LRT test statistic. This
histogram gives the expected variation under p½Tð~xxÞðtÞjx� for the quasar
image. Note the observed value, TðxÞ ¼ 7:24, giving evidence against the
null (no spectral line) model.
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posterior predictive p-values in this case. This material may
seem somewhat technical to some readers but may be
skipped since the remainder of the paper is independent.

We begin by emphasizing that detecting model features is
a challenging statistical problem indeed; there is no consen-
sus within the statistical community as how best to proceed.
Whenever possible, the issue should be avoided by, for
example, focusing on estimating the perhaps very weak
strength of a spectral line rather than deciding whether there
is a line. Practically speaking, however, we must decide
which and how many lines to include in the final analysis
and would like statistical tools that offer guidance.

Posterior predictive p-values aim to point out when the
null model is inadequate to describe the observed data;
more counts than expected under the null model in a narrow
energy range are evidence that the null model is missing a
spectral line. Since posterior predictive p-values approxi-
mate the reference distribution of the test statistic by simu-
lating data using the null model, they tend to favor the null
model. That is, posterior predictive p-values tend to be con-
servative, especially if the test statistic is poorly suited to
detecting the model feature in question (Meng 1994; Bayarri
& Berger 1999). Nonetheless, as illustrated in x 5, posterior
predictive p-values can be used to detect model features, and
their conservative nature adheres to the scientific standard
for burden of proof.

To elicit more power from the posterior predictive
p-value, Bayarri & Berger (1999) suggest concentrating on
the parameters of interest. (More specifically, this method
conditions on sufficient statistics for the nuisance parame-
ters when computing the p-value.) Although less conserva-
tive than posterior predictive p-values, this method is
mathematically and computationally more demanding.

Bayes factors are a popular method for Bayesian model
selection; here we briefly compare them with posterior pre-
dictive analysis to explain our preference for the latter, at
least when well specified prior information is not forthcom-
ing. (See Jeffery’s & Berger 1992 for a description of the nat-
ural ‘‘ Ockham’s Razor ’’ property of Bayes factors). The
primary difficulty with Bayes factors is that relative to poste-
rior predictive p-values, they are much more sensitive to the
prior distribution. Consider again testing for a spectral line
by selecting between the following twomodels:

Model 1.—A power law with no emission line.
Model 2.—A power law with an emission line.

Suppose that model 1 has two free parameters and that
model 2 has four free parameters, the line intensity and loca-
tion in addition to the power-law parameter and normaliza-
tion. The Bayes factor is defined as

B ¼
R
pðY jh1; model 1Þpðh1jmodel 1Þdh1R
pðY jh2; model 2Þpðh2jmodel 2Þdh2

; ð9Þ

where Y are the counts, h1 are the parameters for model 1,
and h2 are the parameters for model 2. The Bayes factor is
equivalent to the ratio of the posterior and prior odds for
model 1 versus model 2. Roughly speaking, large values of
B indicate that the data favor model 1 and small values that
the data favor model 2. Computing a Bayes factor involves
marginalizing over (or averaging over) all unknown param-
eters and thus can be computationally demanding; methods
appear elsewhere (Connors 1997; Freeman et al. 1999;
Gregory & Loredo 1992; Kass &Raftery 1995).

Bayes factors are strongly dependent on the prior distri-
butions for the parameters. This can be seen formally in
equation (9), where the numerator is the prior predictive dis-
tribution under model 1 and likewise for the denominator.
The prior predictive distribution also appears as the denom-
inator in Bayes theorem as a normalizing constant. This dis-
tribution quantifies the variability of the data with
uncertainty in the model parameters as described by the
prior distribution. Thus, if a highly diffuse prior distribution
is used, the prior predictive distribution will also be very dif-
fuse. If the prior distribution is improper,12 neither the prior
predictive distribution nor the Bayes factor are defined.
(There have been several attempts to define analogous
quantities in this situation; see Smith & Spiegelhalter 1980
and Kass & Raftery 1995.) As a result, Bayes factors are
very sensitive to the choice of prior distribution; the more
diffuse the prior distribution for the line parameters, the
more the Bayes factor will favor model 1. Thus, when using
Bayes factors, the prior distributions must be proper and
well specified. That is, the prior distribution must not be
chosen in an ad hoc fashion but rather must be a meaningful
summary of prior beliefs. We note that difficulties associ-
ated with Bayes factors evaporate when the models com-
pared are discrete with no obvious scientific models
between; see x 6.5 of Gelman et al. (1995) for examples and
discussion. Kass & Raftery (1995) offer a thoughtful review
of Bayes factors including numerous examples, computa-
tional methods, and methods for investigating sensitivity to
the prior distribution.

Another popular method for model selection is the Baye-
sian information criterion (BIC; Schwartz 1978). BIC aims
to select the model with the highest posterior probability
and choose the model that maximizes

	i

Z
pðYjhi; model iÞpðh1jmodel iÞdhi ; ð10Þ

where 	i is the prior probability of model i. Since computa-
tions of this posterior probability are generally complicated,
Schwartz suggested replacing it with BIC, which maximizes
the log likelihood with the penalty term �0:5qi log n, where
qi is the number of free parameters in model i and n is the
sample size. This penalty term favors models with fewer free
parameters. Schwartz went on to show that under certain
conditions BIC is asymptotically equivalent to using equa-
tion (10). Like the Bayes factor, the posterior probability in
equation (10) is highly sensitive to the choice of the prior
distribution, including the prior probabilities of the various
models. That the BIC is not at all sensitive to the choice of
prior distribution reflects the fact that it is a poor approxi-
mation of equation (10), at least for small samples.

5. AN Fe K LINE IN GRB 970508?

In this section we examine the X-ray spectrum of the
afterglow of GRB 970508, analyzed for Fe K line emission
by Piro et al. (1999). This is a difficult and extremely impor-
tant measurement; the detection of X-ray afterglows from

12 An improper distribution is a distribution that is not integrable and
thus is not technically a distribution. One should use improper prior distri-
butions only with great care since in some cases they lead to improper pos-
terior distributions that are uninterpretable.
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�-ray bursts relies on near–real-time satellite response to
unpredictable events and a great deal of luck in catching a
burst bright enough for a useful spectral analysis. The ulti-
mate physics of these events is still controversial, but they
are among the most distant observable objects in the sky.
Detecting a clear atomic (or cyclotron) line in the generally
smooth and featureless afterglow (or burst) emission not
only gives one of the few very specific keys to the physics
local to the emission region but also provides clues or confir-
mation of its distance (via redshift).

Piro et al. (1999) used the F-statistic to determine the sig-
nificance of the detected Fe K line, as is standard practice.
Regularity conditions for the F-statistic and the LRT statis-
tic are similar; neither can be used to test whether the true
parameter value is on the boundary of the parameter space.
Thus, when testing for a spectral line, the F-test is equally
inappropriate. We emphasize that we do not highlight any
errors particular to Piro et al. (1999) but rather illustrate that
the standard method for identifying spectral lines is not
trustworthy. In fact, our more rigorous analysis confirms
their detection but with higher significance.

This section is divided into two parts. First, we describe
the afterglow data, our models with and without an Fe K
emission line, and two model-fitting strategies, i.e., �2 fitting
in XSPEC and Bayesian posterior analysis. Second, we use
posterior predictive p-values to evaluate the strength of the
evidence for the Fe K emission line.

5.1. Data andModel Fitting

An X-ray pointlike emission associated with GRB
970508 was observed by BeppoSAX only 6 hr after the initial
�-ray burst onset. The exposure time of 28 ks was long
enough to monitor the evolving X-ray spectrum with an

average observed flux on the order of �10�12 ergs cm�2 s�1

in the combined low-energy concentrator spectrometer
(LECS) and medium-energy concentrator spectrometer
(MECS) instruments. The data are plotted in Figure 3. Piro
et al. (1999) divided the data into two time intervals ‘‘ 1a ’’
versus ‘‘ 1b ’’ and indicated that an emission line, a possible
redshifted Fe K line, can only be present during the initial
phase of the observation,13 i.e., in the data set 1a.

We extracted the data from the BeppoSAX archive14 in
order to investigate the significance of the line. We restrict
attention to data sets 1a LECS, 1aMECS, 1b LECS, and 1b
MECS and use the default instrument responses and back-
ground files provided for this observation. We fix the rela-
tive normalization of LECS versus MECS at 0.8 (see Piro et
al. 1999), extract the spectra from the original event files,
and fit the following twomodels:

Model 1.—A simple absorbed power law.
Model 2.—A simple absorbed power law and a Gaussian

line at 3.5 keV with a known width of 0.5 keV (see Piro et al.
1999).

Both models were fitted via both �2 fitting and Bayesian
posterior analysis. For �2 fitting, we use XSPEC, Version
10, after binning the data so that there are at least 15 counts
(source+background) per bin; the results are summarized
in Table 115 and yield an F-statistic for comparing model 1
and model 2, i.e., D�2=�2

�, of 4.156673.
16 Because the neces-

sary regularity conditions are not met, it is impossible to cal-
ibrate this F-statistic using the nominal F-reference
distribution.

To simulate from the posterior distribution of the param-
eters of model 1, we use the Markov chain Monte Carlo
method of van Dyk et al. (2001); results appear in Figure 4.
The Bayesian analysis requires us to specify prior distribu-
tions on the model parameters (see van Dyk et al. 2001 for
details of Bayesian spectral analysis). As illustrated in Fig-
ure 5, we have tried to use relatively noninformative prior
distributions.17 Figure 5 compares the marginal posterior
distribution of the power-law and photon absorption

Fig. 3.—GRB 970508 observation. The four panels corresponding to the
four data sets: LECS 1a and 1b and MECS 1a and 1b. The posited spectral
line is at 3.5 keV with width of 0.5 keV in LECS 1a and MECS 1a; it is not
present in LECS 1b andMECS 1b.

13 Piro et al. (1999) were specifically interested in this hypothesis, which
they proposed after preliminary data analysis. See x 2 in Piro et al. (1999).

14 Available at http://www.sdc.asi.it.
15 The best-fitted values we report for the power-law fit (model 1) are

within the intervals defined by error bars in Table 1 (i.e., observation
1a+1b) in Piro et al. (1999). That the two fits are not identical is probably
due to differences in binning mechanisms used, to the fact that we fixed the
relative normalization LECS/MECS at 0.8 and thus did not fit it, and to
possible slight differences in background files used. We also note that the
best-fitted line intensity (see model 2) we obtained agrees with that reported
by Piro et al. (1999) (IFe ¼ ð5� 2Þ � 10�5 photons cm�2 s�1).

17 We imposed a flat prior on the normalization parameter, independent
Gaussian relatively diffuse priors on photon index and nH [Nð2; � ¼ 0:61Þ
and Nð6; � ¼ 2:1197Þ respectively] and for model 2 a gamma prior on ~FF,
pð ~FFÞ / expð�0:05 ~FFÞ.

16 The data sets 1a and 1b LECS and MECS are obtained by splitting
two event files (for LECS and MECS) that correspond to data sets 1 LECS
and 1 MECS into an initial and a later period. These split versions used by
Piro et al. (1999) were not available to us, so we did extractions from the
event files ourselves based on the information presented in Table 1 in Piro
et al. (1999). The event files were retrieved from the BeppoSAX archive (see
footnote 14). We call our extractions 1a and 1b LECS andMECS, but these
files may not be exactly the same as the split data sets analyzed by Piro et al.
(1999). More specifically, the exposure times for the four data sets we cre-
ated are as follows: 1a LECS: 7.885 ks; 1b LECS: 9.361 ks; 1a MECS:
10.369 ks; 1bMECS: 17.884 ks.
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TABLE 1

Minimal �2
Fits from XSPEC for Data Sets 1a+1b

Model Parameters Norm Photon Index

nH
(�1022) GaussianNorm

Model 1....... No emission line;

�2 = 25.74467, � = 14

3.6424E�04 1.928 0.6397 N/A

Model 2....... Emission line is present

at 3.5 keV (width 0.5 keV);

�2 = 19.50732, � = 13

4.3427E�04 2.186 0.70393 4.7633E�05

Fig. 4.—Posterior analysis of GRB 970508. The dots correspond to the counts registered in the PHA channels. There are four data sets: LECS 1a and 1b
andMECS 1a and 1b. Model 1 stands for a simple power law with photon absorption andmodel 2 for a simple power law with photon absorption and aGaus-
sian line at 3.5 keV with fixed width 0.5 keV. Model 2 assumes further that the line is only present in LECS 1a andMECS 1a but not in LECS 1b orMECS 1b.
The posterior distribution of the parameters for each model was studied separately using the method of van Dyk et al. (2001). The curves in the plots represent
the fitted expected counts and were computed by fixing parameters in eachmodel at their posterior means.



parameters18 with their marginal likelihood19 and illustrates
the similarity between the two, i.e., the noninformative
nature of the prior distribution.

The treatment of background in our Bayesian posterior
analysis differs from that of XSPEC. Instead of subtracting
the background, we fit a power law to the background
counts and model the observed counts as Poisson with
intensity equal to the sum of the source and fitted back-
ground intensities (see van Dyk et al. 2001). To simulate
from the posterior predictive distribution, we ran a Markov
chain Monte Carlo algorithm, discarding the first 100 simu-
lations and using every 15th simulation thereafter to obtain
a total of 2000 simulations. Convergence was judged by
comparing the simulations to contours of the posterior dis-
tribution; see Figure 5. We do not advocate this as a general
strategy because of the computational effort required to
obtain the contours of the posterior distribution. A more
general method based on multiple chains in described in
Gelman &Rubin (1992); see also vanDyk et al. (2001).

5.2. Calibrating the LRT Accounting for
Parameter Uncertainty

To evaluate the reference distribution of a test statistic,
posterior predictive analysis accounts for uncertainty in the
parameter values in the null model by sampling the parame-
ters from their Bayesian posterior distribution. Thus, fol-
lowing the four-step procedure described in x 4.1, we first
simulate the parameters from their posterior distribution as
described in x 5.1 (step 1). For each simulation of the param-
eter, the 1a LECS and MECS and 1b LECS and MECS are
then simulated (step 2), and the LRT statistic is computed
(step 3). The necessary maximum likelihood estimates are
computed with the EM algorithm as described by van Dyk
(2000). The resulting reference distribution is compared
with the observed value of the LRT statistic in Figure 6a,
yielding a posterior predictive p-value of 0.75% (step 4).
Thus, the observed LRT statistic is very unusual in the
absence of the Fe K line, and we conclude that there is evi-
dence for the FeK line, which is calibrated by themagnitude
of the posterior predictive p-values.

We can repeat this procedure using the posterior distribu-
tion under model 2 to simulate the parameters in step 1.
That is, we can treat the model with the emission line as the
null model. The resulting p-value (65.71%) indicates no evi-
dence against model 2. In this simulation, the data are gen-
erated with a spectral line that is exactly the best-fit line for
the observed data. Thus, since the LRT statistic is designed
to detect this very spectral line as discussed in x 4.3, it is no
surprise that the model is found to agree with the data. As
we shall see, this situation persists; test statistics that are not
well designed to detect discrepancies between the model and
the data will never result in p-values that make us question
the null model.

The LRT statistic and F-statistic are not the only quanti-
ties that can be used in posterior predictive checking. In fact,

Fig. 5.—Contours of the marginal likelihood and marginal posterior distribution. The contours corresponds to 50%, 90%, and 99% of the area under each
surface; in the case of the marginal posterior distribution, these corresponds to posterior probabilities. Comparing the two plots illustrates that the prior distri-
bution is relatively uninformative. In the plot of the marginal posterior distribution we compare the numerically computed contours with 1500 Monte Carlo
simulations generated with the Gibbs sampler; theMonte Carlo simulations are displayed as points and follow the contours well.

19 Themarginal likelihood of the photon index � and the photon absorp-
tion �ph is obtained from the likelihood function pðxj�, �, �ph, no line is pre-
sentÞ by integrating out the normalization parameter � over a large, but
finite, interval containing the range of physically meaningful values of �.

18 The marginal posterior distribution of the photon index � and photon
absorption �ph is obtained from model 1 by integrating out the normaliza-
tion parameter �, i.e.,. pð�; �phjx; no line is presentÞ ¼

R
pðhjx, no line is

presentÞd�. Computing the marginal posterior distribution requires
numerical integration of the joint posterior distribution and is a computa-
tionally expensive task. On a dual-processor 200MhzUltra-2 Sun worksta-
tion with 256M RAM it took the program 183,994.27 CPU time (in
seconds) to run. We do not advocate such computation in general but
rather use the marginal posterior distribution to verify the method in this
specific case.
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Fig. 6.—Analysis of GRB 970508; 2000 simulations from (a) pðTLRTð~xxÞjx; no line is presentÞ and (b) pðTLRTð~xxÞjx; line is presentÞ were used to produce
these probability histograms of the posterior predictive distributions for the LRT statistic. The percentages indicate the mass of the corresponding distribution
to the right of the vertical line at 5.3, the observed value of the LRT statistic. The observed value of the maximum likelihood estimate for ~FF at 0.0007 against
probability histograms of 2000 simulations from the posterior predictive distribution of this quantity is shown under two models: (c) without a spectral line
and (d ) with a spectral line.We give percentages of the mass of the distribution to the right of the vertical line at 0.0007. The histogram in (c) illustrates that the
model with a spectral line is clearly preferable. Observed value of the F-statistic (vertical line at 4.2) plotted against probability histograms of 1000 simulations
obtained from null distributions under two fully specified models: (e) model 1 with parameters as they appear in Table 1 and ( f ) model 2 with parameters as
they appear in Table 1. The percentages indicate the mass of the corresponding distribution to the right of 4.2.



posterior predictive p-values can be used to access how well
a particular important feature of the data is explained by a
model. For example, another measure of the strength the Fe
K line is the maximum likelihood estimate of its intensity
~FF.20 Having already simulated from the posterior distribu-
tion of the model parameters and the corresponding simu-
lated data sets, we need only compute the maximum
likelihood estimate of ~FF for each data set to construct the
reference distribution for ~FF. The results for both the model
with and without the Fe K line appear in Figures 6c and 6d,
respectively. Qualitatively, the conclusion drawn from Fig-
ure 6c is the same as with the LRT statistic; the data is
explained better by the model with the Fe K line.

If the continuum parameters (or, more generally, the
parameters of the null model) are very well constrained, we
can perform an approximate calibration of a test statistic by
fixing the parameters of the null model at their fitted values
rather than simulating them from their posterior distribu-
tion. That is, we can mimic the simulations described in
x 3.2 using the parametric bootstrap. We illustrate this pro-
cedure by calibrating the F-statistic calculated in x 5.1. Spe-
cifically, we use a simulated reference distribution that we
obtain by simulating N data sets under a fully specified null
model (i.e., model 1), with parameters fixed at the best-fitted
values in Table 1. The simulations have the following steps:

1. SimulateN data sets (‘‘ fakeit ’’ in XSPEC, Version 10)
according to the null model with parameters fixed at their
best-fit values, with the same effective area, instrument
response, and background files as well as the exposure time
as the initial analysis [i.e., simulate ~xxðtÞ �d pðxjhÞ for
t ¼ 1; . . . ;N]. Each simulated data set is appropriately
binned, using the same binning algorithm as that used to bin
the real data.
2. Fit the null and alternative model (i.e., models 1 and 2)

to each of the N data sets and compute the F-statistic,
D�2=�2

�, for t ¼ 1; . . . ;N.
3. Compute the approximate p-value,

p ¼ 1

N

XN
t¼1

I½TF ð~xxðtÞÞ > TF ðxÞ� ;

where TF(x) represents the F-statistic.

We emphasize that the simulation results rely on the
assumption that the data were actually generated under the
null model with parameters fixed at their best-fit values. A
probability histogram of the simulated F-statistics can be
used to calibrate the F-statistic and compute a p-value; see
Figure 6e. The value of the F-statistic is the 93.77th percen-
tile of the F(1, 13) distribution [i.e., F-distribution with
degrees of freedom 1 and 13: Fð1; 13Þ ¼ �2

1=ð�2
13=13Þ].

Thus, the nominal p-value is 6.23%. The simulation, how-
ever, gives somewhat stronger evidence against the null
model reporting a p-value of 3.8%. Unfortunately, this cali-
bration is contingent on the accuracy of the model used to
simulate data in step 1.

6. STATISTICS: HANDLE WITH CARE

Although the LRT is a valuable statistical tool with many
astrophysical applications, it is not a universal solution for

model selection. In particular, when testing a model on the
boundary of the parameter space (e.g., testing for a spectral
line), the (asymptotic) distribution of the LRT statistic is
unknown. Using this LRT and its nominal �2 distribution
can lead to unpredictable results (e.g., false positive rates
varying from 1.5% to 31.5% in the nominal 5% false positive
rate test in Monte Carlo studies). Thus, the LRT should not
be used for such model selection tasks.

The lesson to be learned from misapplication of the LRT
is that there is no replacement for an appreciation of the
subtleties involved in any statistical method. Practitioners
of statistical methods are forever searching for statistical
‘‘ black boxes ’’: put the data in and out pops a p-value or a
fitted model. When working with the sophisticated models
that are common in spectral, spatial, or temporal analysis as
well as other applications in astrophysics, such black boxes
simply do not exist. The highly hierarchical structures inher-
ent in the data must be, at some level, reflected in the statisti-
cal model. Stochastic aspects of instrument response,
background counts, absorption, pile-up, and the relation-
ship between spectral, temporal, and spatial data must be
accounted for. With such structured models, oversimplified,
off-the-shelf methods such as assuming Gaussian errors
(e.g., �2 fitting) lead to unpredictable results. Standard tests,
such as the LRT, Cash, or F-statistics, sometimes are appro-
priate (e.g., testing whether a mean parameter is equal to a
specified value) and sometimes are not (e.g., testing for the
presence of a spectral line) and are never appropriate with
small data sets.

Even more sophisticated methods can have pitfalls. Fre-
quentist methods (e.g., maximum likelihood with asymp-
totic frequentist error bars), for example, typically rely on
large sample sizes that may not be justifiable in practice
(e.g., for mixture models). Nonparametric methods require
fewer parametric assumptions but often grossly simplify the
structure of the underlying model, discarding scientific
information. Sometimes even these methods require strong
assumptions such as knowing the underlying model com-
pletely (e.g., Kolmogorov-Smirnov goodness-of-fit tests).
Bayesian methods easily accommodate the hierarchical
structure in the data and do not require asymptotic (large
data set or many measurements) approximations. The com-
putational tools required for highly structural models, how-
ever, require careful implementation and monitoring;
determining convergence of Markov chain Monte Carlo
methods is rarely automatic. Moreover, although Bayesian
statistical summaries (e.g., error bars) are mathematically
consistent summaries of information, they may not exhibit
the frequentist properties (e.g., coverage rates) that might
be expected. Nevertheless, the computational difficulties
that sometimes exist with Bayesian analysis are much easier
to overcome than the conceptual difficulties that may arise
in other frameworks (e.g., unknown sampling distributions
of test statistics). Thus, Bayesian methods are best equipped
to handle highly structured models, but we emphasize that
like any statistical method, they must be used with knowl-
edge, sophistication, and care.

The authors gratefully acknowledge funding for this proj-
ect partially provided by NSF grants DMS 97-05157 and
DMS 01-04129 and by NASA contract NAS 8-39073
(CXC).

20 We define ~FF as the rate per second of counts due to the Fe K line for
theMECS instrument before absorption with the maximum effective area.
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APPENDIX A

REGULARITY CONDITIONS FOR THE LRT

Here we state the regularity conditions required for the standard asymptotic behavior of the LRT. (Our presentation fol-
lows Serfling 1980, pp. 138–160, which should be consulted for details.) Let X1; . . . ;Xn be independent identically distributed
random variables with distribution Fðx; hÞ belonging to a family fFðx; hÞ; h 2 �g, where � � Rk is open and
h ¼ ð�1; . . . ; �kÞ. Fðx; hÞ are assumed to possess densities or mass functions f ðx; hÞ that satisfy the following conditions:
1. For each h 2 �, each i ¼ 1; . . . ; k, each j ¼ 1; . . . ; k, and each l ¼ 1; . . . ; k, the derivatives

@ log f ðx; hÞ
@�i

;
@2 log f ðx; hÞ

@�i@�j
;

@3 log f ðx; hÞ
@�i@�j@�l

ðA1Þ

exist, all x.21

2. For each h� 2 �, there exist functions h1(x), h2(x), and h3(x) (possibly depending on h�) such that for h in a neighborhood
Nðh�Þ � �, the relations

@f ðx; hÞ
@�i

����
���� 	 h1ðxÞ;

@2f ðx; hÞ
@�i@�j

����
���� 	 h2ðxÞ;

@3 log f ðx; hÞ
@�i@�j@�l

����
���� 	 h3ðxÞ ðA2Þ

hold, for all x and all 1 	 i; j; l 	 k, withZ
h1ðxÞdx < 1;

Z
h2ðxÞdx < 1;

Z
h3ðxÞf ðx; hÞdx < 1 for h 2 Nðh�Þ : ðA3Þ

3. For each h 2 �, the information matrix

IðhÞ ¼ E
@ log f ðx; hÞ

@�i

@ log f ðx; hÞ
@�j

���h
� �� �

k�k

ðA4Þ

exists and is positive definite.

Consider�0 � � such that the specification of�0 may be equivalently given as a transformation

�1 ¼ g1ð�1; . . . ; �k�rÞ; . . . ; �k ¼ gkð�1; . . . ; �k�rÞ ; ðA5Þ

where � ¼ ð�1; . . . ; �k�rÞ ranges through an open set N � Rk�r. For example, if k ¼ 3 and �0 ¼ fh : �1 ¼ ��1 g, we then may
takeN ¼ fð�1; �2Þ : ð��1 ; �1; �2Þ 2 �0g and the functions g1, g2, g3 to be

g1ð�1; �2Þ ¼ ��1 ; g2ð�1; �2Þ ¼ �1; g3ð�1; �2Þ ¼ �2 :

Assume further that gi possess continuous first-order partial derivatives and that the matrix

D� ¼
@gi
@�j

� �
k�ðk�rÞ

is of rank k � r. Alternatively, if�0 is defined by a set of r (r 	 k) restrictions given by equations

~ggiðhÞ ¼ 0; 1 	 i 	 r

[e.g., in the case of a simple hypothesis �0 ¼ fð�01; �02; �03Þg, we have ~ggiðhÞ ¼ �i � �0i , i ¼ 1, 2, 3], we require that ~ggiðhÞ possess
continuous first-order derivatives and that the matrix

Ch ¼
@~ggi
@�j

� �
r�k

is of rank r. Let h� 2 � denote the true unknown value of the parameter h. Define the null hypothesis to beH0 : h
� 2 �0. Then

ifH0 is true, the LRT statistic (see eq. [4]) is asymptotically distributed as �2 with r degrees of freedom.

APPENDIX B

TESTING FOR LINES: A MISAPPLICATION OF THE LRT

Under the required regularity conditions, the asymptotic �2 distribution of the LRT is based on the asymptotic normality of
the maximum likelihood estimate22 with mean equal to the true parameter value. If the true value is on the boundary of the

21 Implicit here is the requirement that the support of the distribution be independent of h; otherwise, there would be a h and an x for which the derivatives
in eq. (A1) would not exist.

22 Themaximum likelihood estimate is a statistic with a sampling distribution. A theorem in mathematical statistics establishes that under the same regular-
ity conditions required for the LRT to be asymptotically �2 the distribution of the maximum likelihood estimate becomesGaussian (i.e., normal) as the sample
size increases; see Serfling (1980).
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parameter space, however, the mean of the maximum likelihood estimate cannot possibly be the true value of the parameter
since maximum likelihood estimates are always in the parameter space. [Clearly, EðĥhjhÞ cannot be h if ĥh is, for example, always
greater than h.] Thus, one of the regularity conditions required for the LRT is that�, the parameter space, be an open set. This
is not the case when we test for the presence of a component in a finite-mixture model. Consider the source model given in
equation (1). If we set h ¼ ð�; �; �; ~FFÞ and test ~FF ¼ 0, we are examining the boundary of the parameter space, and the LRT
statistic is not (even asymptotically) �2 in distribution.

We illustrate this point again using the model specified by equation (1). For simplicity, we assume in this example that there
is no background or instrument response, effective area and absorption are constant, and (�, �, �) are fixed. Thus, the only
unknown parameter in equation (1) is the intensity ~FF. Our goal is to test whether the data are consistent with the null model,
i.e., ~FF 2 �0 ¼ f ~FF ¼ 0g or if there is evidence for the more general alternative model, i.e., ~FF 2 � ¼ f ~FF � 0g. Let Yj denote
the counts in channel j and let 
 be the exposure time, then PðYjjFj
Þ ¼ expð�Fj
Þ

� 	
ðFj
ÞYj=ðYj!Þ, or Yj � PoissonðFj
Þ and

the log likelihood is given by

lð ~FFjYÞ ¼
XJ
j¼1

Yj logðFj
Þ �Fj

� 	

; ðB1Þ

whereFj is given in equation (1). The first derivative with respect to ~FF is given by

l0ð ~FFjYÞ ¼
XJ
j¼1

Yj
pj
Fj

� pj


� �
; ðB2Þ

whereY ¼ ðY1; . . . ;YJÞ and pj is as in equation (1). Since

l00ð ~FFjYÞ ¼ �
XJ
j¼1

Yj

p2j

F2
j

; ðB3Þ

l00ð ~FFjYÞ 	 0, and l0ð ~FFjYÞ is a decreasing function of ~FF. If

l0ð ~FF ¼ 0jYÞ 	 0 ðB4Þ

(i.e., the data happen to fluctuate so that the first derivative	0) the maximum likelihood estimate for ~FFmust be 0 (see Fig. 7).
In this case the LRT statistic,�2 logRðYÞ, must be 0 since the maximum likelihood estimate under the null and the alternative
models are both 0 and thus RðYÞ ¼ 1. To compute the false positive rate of the LRT, we assume that there is no spectral line
(i.e., ~FF ¼ 0 as in the null model) and compute the probability that we reject the null model in favor of the alternative model.
According to the central limit theorem, the distribution ofYj converges to Gaussian as 
 increases. Since the expectation of the
first term of the summand in equation (B2) is equal to the second term, l0ð ~FFjYÞ converges to a Gaussian with mean 0 as 

increases. Therefore, asymptotically the LRT statistic equals zero 50% of the time, whence the reference distribution of the
LRT statistic cannot be a �2 distribution with any number of degrees of freedom. Examples of this kind are well known to sta-
tisticians, and in this case it can be shown that the distribution of the LRT statistic is itself amixture distribution taking on the
value zero with probability 50% and follows a �2

1 with probability 50% (see, e.g., x 5.4 in Titterington et al. 1985). Mattox et al.

Fig. 7.—If l 0ð ~FF ¼ 0jYÞ 	 0, then l0ð ~FFjYÞ 	 0 for any ~FF � 0 since l0ð ~FFjYÞ is a monotonically decreasing function of ~FF; recall that l00ð ~FFjYÞ 	 0 for all ~FF
andY, but this implies that lð ~FFjYÞ is maximized at ~FF ¼ 0 whenever l0ð ~FF ¼ 0jYÞ 	 0. This figure is a qualitative illustration.
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(1996) notice this same behavior in aMonte Carlo evaluation of the null distribution of the LRT statistics for testing for point
source in EGRET data. This mixture distribution should be used to calibrate the LRT statistic when testing for a single line
when all other parameters are fixed.

In practice, this may mean that in cases where the continuum is extremely well constrained by the data and the width and
position of the possible line are known, the LRT or F-test could underestimate the true significance by about a factor of 2, but
there is no guarantee that this will occur in real data; particularly when the continuum is not well constrained, the true signifi-
cance can be underestimated or overestimated.
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