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High-Energy Astrophysics

Produced by multi-million
degree matter, e.g., magnetic
fields, extreme gravity, or
explosive forces.
Provide understanding into
the hot turbulent regions of
the universe.
X-ray and γ-ray detectors
typically count a small
number of photons in each of
a large number of pixels.

EGERT γ-ray counts >1GeV
(entire sky and mission life).

Dispersion grating spectrum of an Active Galactic
Nucleus; emission from matter accreting onto a

massive Black Hole.
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The Basic Statistical Model

Aim to formulate models in terms of specific questions of
scientific interest.
Embed complex physics-based models into multi-level
statistical models.
Must account for complexities of data generaration.
State of the art data and computational techniques enable
us to fit the resulting complex model.
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Calibration Products

Analysis is highly dependent on Calibration Products:
Effective area records sensitivity as a function of energy
Energy redistribution matrix can vary with energy/location
Point Spread Functions can vary with energy and location
Exposure Map shows how effective area varies in an image

In this talk we focus on uncertainty in the effective area.
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Derivation of Calibration Products

Prelaunch ground-based and
post-launch space-based
empirical assessments.
Aim to capture deterioration of
detectors over time.
Complex computer models of
subassembly components.
Calibration scientists provide a
sample representing uncertainty
Use PCA to formulation a
degenerate Gaussian
approximate prior on A.
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Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: π0(A, θ) = p(A)p(θ|A,Y ).
THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y )?
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The Partially Collapsed Gibbs Sampler

A Gibbs sampler:
STEP 1: ψ1 ∼ p(ψ1|ψ2)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

A Partially Collapsed Gibbs (PCG) Sampler:
STEP 1: ψ1 ∼ p(ψ1|g(ψ2))

STEP 2: ψ2 ∼ p(ψ2|h(ψ1))

g and/or h are non-invertible functions.
Generalizes blocking & collapsing, involves incompatibility.
Step order can effect stationary distribution.
Improves convergence rate (van Dyk & Park, 2008, JASA).
Spectral analysis, time series, and multiple imputation
(van Dyk & Park in press; 2009 JCGS; 2008 ApJ).
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Metropolis-Hastings within Gibbs & PCG Sampling

An MH within Gibbs sampler:
STEP 1: ψ1 ∼ K(ψ1|ψ) via MH with limiting dist. p(ψ1|ψ2)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

Using MH within the Partially Collapsed Gibbs Sampler:
STEP 1: ψ1 ∼ K(ψ1|ψ) via MH with limiting dist. p(ψ1)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

Need only evaluate p(ψ1) = p(ψ1, ψ2)/p(ψ2|ψ1).
If MH were unnecessary, obtain i.i.d. draws from p(ψ1, ψ2).
Improved convergence if ψ1 and ψ2 are highly correlated.
With MH we must verify the stationary distribution.
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But... Be Careful!

Another MH within Gibbs Sampler:
STEP 1: ψ1 ∼ p(ψ1|ψ2)

STEP 2: ψ2 ∼ K(ψ2|ψ1) via MH with limiting dist. p(ψ2|ψ1)

A naive Sampler:
STEP 1: ψ1 ∼ p(ψ1)

STEP 2: ψ2 ∼ K(ψ2|ψ1) via MH with limiting dist. p(ψ2|ψ1)

Simulation Study:

Suppose
(
ψ1
ψ2

)
∼ N2

[(0
0

)
,
(

1 0.9
0.9 1

)]
MH: a Gaussian jumping rule centered at previous draw.

David A. van Dyk Metropolis Hastings within Partially Collapsed Gibbs Samplers



Calibration in High-Energy Astrophysics
Statistical Computation

Back to Calibration Uncertainty
Empirical Illustrations

Partially Collapsed Gibbs Samplers
MH within Partially Collapsed Gibbs Samplers

Be Careful When Combining MH and PCG Sampling

MH within Gibbs Sampler The naive Sampler
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What Goes Wrong

The naive Sampler:

STEP 1: ψ(t)
1 ∼ p(ψ1)

STEP 2: ψ(t)
2 ∼ K(ψ2|ψ(t)

1 , ψ
(t−1)
2 ) via Metropolis Hastings

The update of ψ2 depends on both ψ(t)
1 and ψ(t−1)

2 :

The limiting distribution of the MH step is p(ψ2|ψ(t)
1 ).

If the proposal is rejected, ψ2 is set to ψ(t−1)
2 .

BUT: ψ(t)
1 ∼ p(ψ1)—independent of ψ(t−1)

2 at every iteration.

STEP 2 will never produce samples from p(ψ2|ψ1).
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Constructing a Legitimate MH within PCG Sampler
The General Strategy

1. Marginalzing

p(ψ1|ψ′
2)

K(ψ2|ψ′) w/

limit p(ψ2|ψ1)

−→
p(ψ1|ψ′

2)

K(ψ1, ψ2|ψ′) w/

limit p(ψ1, ψ2)

2. Permuting

−→
K(ψ1, ψ2|ψ′) w/

limit p(ψ1, ψ2)

p(ψ1|ψ′
2)

3. Trimming

−→
K(ψ2|ψ′) w/

limit p(ψ2)

p(ψ1|ψ′
2)

Move quantities from the right to the

left of the conditioning sign. This

does not alter the stationary dist’n,

but improves the rate of convergence.

Permute the order of the steps. This

can have minor effects on the rate of

convergence, but does not affect the

stationary distribution.

Remove quantities that are not part

of the transition kernel. This does

not effect the stochastic mapping or

the rate of convergence.
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Back to Calibration Uncertainty

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: π0(A, θ) = p(A)p(θ|A,Y ).
THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Sampling either π0(A|θ) or π(A|θ) is complicated.
We only have a computer model generated sample of p(A).
π(A|θ) = p(A|θ,Y ) can easily be evaluated.
π0(A|θ) ∝ p(A, θ|Y )p(Y )/p(Y |A) is difficult to evaluate.

Have a sample of π0(A) = p(A), suggesting PCG sampler.
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A Pragmatic Bayesian Solution

A simple Markov Chain Monte Carlo Procedure
Sample effective area uniformly from calibration sample:
A ∼ p(A).
Sample model parameters in the usual way, conditioning
on the current sample of the effective area:
θ ∼ p(θ|A,Y ).

To obtain independent draws from π0(A, θ).

This strategy in effect replaces a posterior draw with a prior
draw when updating the effective area.

David A. van Dyk Metropolis Hastings within Partially Collapsed Gibbs Samplers



Calibration in High-Energy Astrophysics
Statistical Computation

Back to Calibration Uncertainty
Empirical Illustrations

A Pragmatic Bayesian Solution
The Fully Bayesian Solution

A Pragmatic Bayesian Solution

Unfortunately, update of θ uses MH (pyBLoCXS in Sherpa) with
limiting distribution p(θ|A,Y ).

The naive Sampler Revisited:
STEP 1: A(t) ∼ p(A)

STEP 2: θ(t) ∼ K(θ|A(t), θ(t−1)) via Metropolis Hastings.

A simple solution is a PCG (Simple Collapsed) Gibbs Sampler:
STEP 1: A(t) ∼ p(A)

STEP 2: Iteratively sample θ(t−1+k/K ) ∼ K(θ|A(t), θ(t−1))
via MH to obtain θ(t) ∼ p(θ|A(t)).

In practice a moderate value of K (<10) is sufficient.

David A. van Dyk Metropolis Hastings within Partially Collapsed Gibbs Samplers
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Sampling the Full Posterior Distribution

THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Sampling π(A, θ) = p(A, θ|Y ) is complicated because we
only have a computer-model generated sample of p(A)
rather than an analytic form.
But PCA gives a degenerate normal approximation,
representing A (high dimensional) as deterministic function
of e (low dimensional).
We can construct an MCMC sampler of p(e, θ|Y ).
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A Prototype Fully Bayesian Sampler

An MH within Gibbs Sampler:
STEP 1: e ∼ K(e|e′, θ′) via MH with limiting dist’n p(e|θ,Y )

STEP 2: θ ∼ K(θ|e′, θ′) via MH with limiting dist’n p(θ|e,Y )

STEP 1: Gaussian Metropolis jumping rule centered at e′.
STEP 2: Simplified pyBLoCXS (no rmf or background).

A Simulation.
Sampled 105 counts from a power law spectrum: e−2E .
Atrue is 1.5σ from the center of the calibration sample.

David A. van Dyk Metropolis Hastings within Partially Collapsed Gibbs Samplers
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Sampling From the Full Posterior
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Pragmatic Bayes is clearly better than current practice,
but a Fully Bayesian Method is the ultimate goal.
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The Simulation Studies

Simulated Spectra
Spectra were sampled using an absorbed power law,

f (Ej) = αe−NHx(Ej )E−Γ
j ,

accounting for instrumental effects; Ej is the energy of bin j .
Parameters (Γ and NH ) and sample size/exposure times:

Effective Area Nominal Counts Spectal Model
Default Extreme 105 104 Hard† Soft‡

SIM 1 X X X
SIM 2 X X X
SIM 3 X X X
†An absorbed powerlaw with Γ = 2, NH = 1023/cm2

‡An absorbed powerlaw with Γ = 1, NH = 1021/cm2
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30 Most Extreme Effective Areas in Calibration Sample
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The Effect of Calibration Uncertainty
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Columns represent
two simulated spectra.
True parameters are
horizontal lines.

Posterior under
default calibration is
plotted in black.
The posterior is highly
sensitive to the choice
of effective area!
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The Effect of Sample Size
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The effect of Calibration Uncertainty is more pronounced
with larger sample sizes.
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Use of Default May Underestimate Errors
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Use of Default May Bias Results

David A. van Dyk Metropolis Hastings within Partially Collapsed Gibbs Samplers



Calibration in High-Energy Astrophysics
Statistical Computation

Back to Calibration Uncertainty
Empirical Illustrations

Simulation Study
Radio Loud Quasar Spectra

The Effect of Sample Size Redux

A Set of Radio Loud Quasar Spectra
MI and the pragmatic Bayesian Method with PCA
approximation to the calibration sample was applied to a
set of Quasars.
Quasars are among the most distant distinguishable
astronomical objects.
The sixteen Quasar observations varied is size from 20 to
over 10,000 photon counts.
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Results

For large spectra calibration uncertainty swamps statistical error.
Eventually there is no gain for increased exposure time.
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Simple Summaries of Complex Variability

We use Principal Component Analysis to represent uncertainly:

A ∼ A0 + δ̄ +
m∑

j=1

ej rjv j ,

A0: default effective area,
δ̄: mean deviation from A0,

rj and v j : first m principle component eigenvalues & vectors,
ej : independent standard normal deviations.

Capture 95% of variability with m = 6− 9.
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