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Complex Astronomical Sources.
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Astrostatistics: Complex Data Collection.
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Astrostatistics: Complex Questions
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e What is the composition and temperature structure?




Scientific Context I

The Chandra X-Ray Observatory

e Chandra produces images at least thirty times sharper then any previous

X-ray telescope.

e X-rays are produced by multi-millions degree matter, e.g., by high magnetic

fields, extreme gravity, or explosive forces.

e Images provide understand into the hot and turbulent regions of the universe.

Unlocking this information requires subtle analysis:

The California Harvard AstroStatistics Collaboration (CHASC)
van Dyk, et al. (The Astrophysical Journal, 2001)
Protassov, et al. (The Astrophysical Journal, 2002)
van Dyk and Kang (Statistical Science, 2004)
Esch, Connors, van Dyk, and Karovska ( The Astrophysical Journal, 2004)
van Dyk et al. (Bayesian Analysis, 2006)
Park et al. (The Astrophysical Journal, 2006 & under review)




Data Collection I

Data is collected for each arriving photon:
e the (two-dimensional) sky coordinates,
e the energy, and
e the time of arrival.

All variables are discrete:

e High resolution — finer discretization.
e.g., 4096 x 4096 spatial and 1024 spectral bins

The four-way table of photon counts:
e Spectral analysis models the one-way energy table;
e Spatial analysis models the two-way table of sky coordinates; and

e Timing analysis models the one-way arrival time table

The Image: A moving ‘colored’ picture




Kepler’s Supernova Reminant.

Image Credits” NASA/CXC/NCSU/S.Reynolds et al.
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The Basic Spectral Models.

e Photon counts modeled with Poisson process.

e The Poisson parameter is a function of energy, with two basic components:
1. The continuum, a GLM for the baseline spectrum (e.g., aE~=9),

. Several emisston lines, a mixture of Gaussians added to the continuum.

2
3. Several absorption lines multiply by the continuum.
4

. The continuum indicates the temperature of the source while the emission
and absorption lines gives clues as to the relative abundances of elements
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Physics of a Hot Plasma.

e Many astronomical sources are made up of very hot plasma (> 10°K).
e Jons are in an excited state: The electrons populate higher energy states.

e An (inelastic) collision of two ions:
The ions slow down;
In order to preserve energy, electrons jump to higher energy states;
Ions spontaneously decay to a lower more stable energy state; and
The difference in energy between the two states is emitted in the form of
a photon.

e The energy difference is unique to the state transition of a particular ion.

e The frequency of a particular state transition is informative as to the

temperature and density of the source.

A line can be identified with a particular ion, and thus we obtain

information on the environment of the astronomical source.
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Highly Structured Models.

Modeling the Chandra data collection mechanism.
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Highly Structured Models.

Modeling the Chandra data collection mechanism.

e The method of Data
Augmentation: EM algo-
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We wish to directly model the sources and data collection mechanism and use
statistical procedures to fit the resulting highly-structured models and address the

substantive scientific questions.
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A Model-Based Statistical Paradigm.

1. Model Building

e Model source spectra, image,

and/or time series

e Model the data collection process
background contamination
instrument response
effective area and absorption
pile up

Results in a highly structured
hierarchical model

2. Model-Based Statistical Inference
e Bayesian posterior distribution

e Maximum likelihood estimation

What are Prior distributions?

1. Priors can be used

e to incorporate information

from outside the data, or
e to impose structure.
2. Priors offer a principled compro-

mise between “fixing” a param-
eter & letting it “float free”.

. Setting min and max limits in
XSPEC amounts to using a flat

prior over a specified range.

3. Sophisticated Statistical Computation Methods Are Required

e (Goals: computational stability and easy implementation

e Emphasize natural link with models: The Method of Data Augmentation
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Bayesian Inference Using Monte Carlo.

The Building Block of Bayesian Analysis
1. The sampling distribution: p(Y|v).
2. The prior distribution: p(1)).
3. Bayes theorem and the posterior distribution: p(|Y) o< p(Y|y)p(¥)

Inference Using a Monte Carlo Sample:

prior posterior joint posterior
with flat prior

0 2 4 6 8 10
lamS lamS lamS

We use MCMC (e.g., the Gibbs Sampler) to obtain the Monte Carlo sample.
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Bayesian Deconvolution'

e The Data Collection Mechanism
{ Blurring Matrix

* known from
calibration

N
A=PAp+¢,
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( Non—HomogeneoJ ( Background
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Censoring * often fit using
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The observed counts are modeled as independent Poisson
variables with means given by \.
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Parameterized finite mixture models

(source models w/ several components)

The Source Models'

Smoothing prior distributions Compound deconvolution models

(Multiscale models for diffuse emission) (simultancous instrumental & physical

“deconvolution” of complex sources)

0 200 400 6?0 800 1000
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A Simulation Study.

To illustrate the statistical properties of our fitted spectra, we ran a simulation.

e We generated 10 data sets
(1500 cnts) from 6 spectra.

We use a typical continuum,

spectrum
spectrum
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effective area, & instrument

2
response function. Energy (keV) Energy (keV)
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There were 0, 1, or 2 lines.

Each line was either narrow

spectrum

spectrum
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We used both Gaussian lines
(fit location, width, and
height) and delta functions
(fit location and height). Energy (keV) Energy (keV)

spectrum

spectrum
0.0 05 10 15
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Results: Highly Multi-Modal Likelihoods.

We ran MCMC samplers
for model fitting.

Results with one delta
function line in the fitted

model.

The marginal posterior
density is estimated using

Gaussian Kernel Smooth-
ing (band width=0.02).

The likelihood
function is highly
multimodal.

Log posterior probability Log posterior probability

Log posterior probability

density function density function

density function

Line location (keV)
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Line location (keV)

; Case 5
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Fitting Two Emission Lines'

The joint posterior distribution of two line locations with data generated under
Case 2 (one narrow weak line at 2.85 keV).
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Exploratory Data Analysis'

Modes are caused by excess emission in a (narrow) range of energies

relative to what we expect from the (fitted) continuum alone.

Searching for Excess Emission:

Delta functions can identify excess emission in a very narrow energy range.
We consider using delta functions for Exploratory Data Analysis.
In this stage we are simply looking for candidate line locations.

The Profile Posterior Distribution is a quick to compute summary of the

posterior distribution that is well suited to this purpose.
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A Data Examplel
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Posterior Regions I

Highly multimodal posterior distributions cannot be summarized in standard

ways familiar to astronomers (e.g., 5 + 2 or, for asymmetric intervals, 51“;’)

We use a transformation of the Posterior Density Function to visualize the HPD

regions of varying probability.
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Coverage and Interval Length'

Consider a simple Gaussian model with know variance:

Y ~ N(p,0°)
A 95% CI for  is given by

Y +£1.96 x o.

Misspecification of o with ¢ < ¢ results in a shorter interval, with lower coverage.

Misspecification of width of a spectral line

e Might there be an advantage of using a delta function rather than a

Gaussian line (with fitted width) if we know the spectral line is not too wide?

e The tradeoff is not as simple as in the simple Gaussian model, so we return

to the simulation study.
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The Simulation Study
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More Precise Inference?

Delta Function
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Could Model Misspecification lead to more precise Inference?
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A Closer Look.

Delta Function Line Gaussian Line

Line Type' Coverage* Mean Width Coverage®* Mean Width

no lines NA 3.30 NA 3.07
one narrow 90% 1.56 100% 2.38

one wide 60% 0.19 100% 0.34
one narrow 100% 0.10 100% 0.21
two narrow 100% 0.10 100% 0.22
two narrow 90% 0.16 100% 3.01

total for narrow 95% 100%

I Narrow lines are 17 bins wide (four SDs); wide lines are 85 bins wide.
* Coverage: % of ten 95% HPD regions containing at least one true line location.

Misspecification appears to give better width in all cases and better
coverage for narrow lines.
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Proceed With Caution.

e Exhaustive simulations are difficult. Fitting involves MCMC sampling,

which is slow and requires some supervision.

e Results may depend on the line location, line strength, line width,

characteristics of the continuum, sample size, etc.

Delta functions emission lines are useful for exploratory data
analysis, for inference when the true line is believed to be narrow,
and show promise for use for inference with moderately wide lines.
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Principled P-values to Test for a Model Component.

Fallible F-tests

The F-test commonly used by Astronomers to test for spectral lines is a special
case (under a (Gaussian assumption!) of the Likelihood Ratio Test.

e The LRT is not properly calibrated for this use, since the null model in on
the boundary of the parameter space.

e Even more troubling, some line parameter are not defined in the null model.

e We conducted a survey of papers in ApJ, ApJL, and ApJS (1995-2001)

Type of Test Number of Papers

Null Space on Boundary 106
Comparing Non-Nested Models 17
Other Questionable Cases 4

Seemingly Appropriate Use of Test 56

Protassov et al. develops a method based on posterior predictive p-values to
properly calibrate a test. This is a parameterized bootstrap that accounts for
posterior uncertainty in parameters. This paper has been cited 103 times.
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Generalizing the Gibbs Sampler.

e The standard two-step sampler iterates between

Y1 ~ p(1lh2) and o ~ p(1halihr),

to form a Markov chain with stationary distribution

p(wb ¢2)

e Consider a more general form using incompatible conditional distributions:

Y1~ K(¢1|1h2) and ha ~ K(tha|)1)

e Questions:

1. Does the resulting Markov chain have a stationary distribution?

2. If so, what is it?

3. Why use such a chain?

e I cannot fully answer these questions, but can offer tantalizing examples....

Partially Collapsed Gibbs Sampler, van Dyk & Park, JASA to appear
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The Simplest ExampleI

A simple 2-step sampler:

g 1: 0 ~ (t—1)
TEP 1: 9y p(Y1lvg )

StEP 2: ¥§) ~ p(i).

The Markov chain
M= {@ i t=0,1,..}

has stationary distribution
p(¥1)p(¥2)

e with target margins but

e without the correlation

of target distribution,

@) draws of

[

@)« --—--- draws of

e 1teration t

LT

o o g iteration ¢ + %
ST R

We are mixing the conditional distribu-

tions from two different joint distributions

with the same marginals. These condi-

tional distributions are incompatible.

AND is “quick” to converge!

We regain the joint target distribution with a one-step shifted chain.
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Searching for Narrow Lines'

e A simplified latent Poisson Process for the scientific model,

X; ~ Poisson (Ai = oin_B + )\Lm) .

We sometimes construct a delta function emission line model so that
1. the point source is contained entirely in one pixel, but
2. we do not know which pixel.

i.e., {m;} can be parameterized in terms of a single unknown parameter,

0% = the location of the emission line.

Using Data Augmentation to fit this finite mixture model:
indicator that photon [ in bin 3
Ziy = L
corresponds to the emission line
1. Given Z = {Z;;} we can sample 0 = {«, 5, \F, 0}

L
2. GGiven @ we can sample 7. via Z;; ~ Ber A
G p ’ o IORLEDUrS

In This Case the Gibbs Sampler Fails.
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Why the Gibbs Sampler Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Extend Src Counts(Z=0)

Point Src Counts (Z=1)
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Why the Gibbs Sampler Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)
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Why the Gibbs Sampler Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts| 10

Continuum Counts(Zz=0), 10

Line Counts (Z=1) 0]

Given 7, what is the location of the emission line?
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The Standard Gibbs Sampler'

Recall we do not observe the latent Poisson Process,

X; ~ Poisson (Ai = oin_ﬁ + )\Lm> :

Rather we observe, Y; ~ Poisson (aj Z PiiA; + fj)

{Yj} = obs cell cnts The standard Gibbs sampler simulates:
{X;} = latent cell cnts 1. p(X, Z|0)

emission line indicators 2. p(d|X, Z) = p(90|X, Z)p(HL\X, 7)

location of emission line We tacitly condition on Y. throughout.

other model parameters

With a delta function point source model, this sampler fails.
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An Incompatible Gibbs Sampler.

e Recall the “Simplest Example”:

p(Y1]12) . p(11]12) . p()2)
p(h2|v1) p(12) p(1]v2)

e Following this we construct:

— P(%a%)

Sampler 1: (A Blocked Version of the Original Sampler.)

X, 7|0 X, Z|0 o9
p( | ) p( ‘ ) p( ‘ ) p(@L,X,Z‘QO)

T p(6°)et, X, Z)

p(0°10%, X, Z) — p(0°10%, X, Z) — p(X, Z|6)
p(0"10°, X, Z) p(6"]6°) p(6°10%, X, Z)

Sampler 2: (Cannot be Blocked: An Incompatible Gibbs Sampler.)
p(X, Z16) p(X, Z|0) p(8"]6°, X)
p(0°10", X, Z) — p(6°10", X, Z) — p(X, Z|0)
p(0t10°, X, 2) p(610°, X) p(6°10F, X, 2)
It can be shown that both samplers have the correct stationary
distribution and are faster to converge than the standard sampler.
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Computational Gains I

Compare Standard Sampler, Sampler 1, and Sampler 2 in a spectral analysis.
Standard sampler doesn’t move from its starting value.
Sampler 1 has much better convergence characteristics than Sampler 2.

However, each iteration of Sampler 1 is more expensive.
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Results '

Under the delta function emission line model:

e Given all six observations, the posterior mode of the line location is
identified at 2.865 keV.

e The nominal 95% posterior region consists of (2.83 keV, 2.92 keV) with
94.8% and (0.50 keV, 0.51 keV) with 2.2%.

e The detected line is red-shifted to 6.69 keV in the quasar rest frame, which
indicates the ionization state of iron.
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Verifying the Stationary Distribution of Sampler 2.

p(X, Z|0) (X, Z|0) We move Z to the left of the condition-
p(eowL X Z) N p(@O\QL X Z) ing sign in Step 3. This does not al-

p(@L\QO, X, Z) p(@L, Z|90, X) ter the stationary distribution, but im-
proves the rate of convergence.

p(@L, Z\QO, X) We permute the order of the steps. This

can have minor effects on the rate of

p(X, Z|0)
p(6°10%, X, Z)

convergence, but does not affect the sta-

tionary distribution.

We remove Z from the draw in Step 1,

p(6-16°, X)
p(X, Z|0)
p(6°16%, X, Z)

since the transition kernel does not de-

pend on this quantitity.

We refer to these three steps tools as Marginalizing, Permuting, and
Trimming. They form a general strategy for constructing
incompatible Gibbs samplers.
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Reducing the Conditioning'

The primary computational advantage stems from the Marginalization step:
We reduce the correlation in the chain by reducing the conditioning in the draws.

An Analogy with the EM algorithm

e The EM algorithm has two steps:

1. The complete data (sufficient statistics) are updated given the parameters
in the E-step.

2. The parameters are updated given the complete data via the M-step
0" = argmax E [£(60'|Yeom )]0, Yobs]

e The ECM algorithm replace the M-step by a series of K CM-steps:

0), = argmax E [£(0'|Ycom)|0, Yos] subject to 0 = 0; for j # k.

Two and K + 1 step Gibbs samplers can be constructed that are analogous to
the EM and ECM algorithms.
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The ECME and AECM Algorithms'

e To improve the rate of convergence of the ECM algorithm, Liu and Rubin
(1995) suggested replacing one or more of the CM steps

0), = argmax E [£(0'|Ycom)|0, Yons] subject to 0 = 0; for j # k.

with

0), = argmax £(6'|Yops) subject to 65 = 6 for j # k.

e AECM generalizes this with
0, = argmax E [((0'|Y5,)10, Yobs] subject to 0 = 0; for j # k,

where Yops CYE  C Yeom-

com

Meng and van Dyk (1997) showed that the order of the steps can effect the
celebrated monotone convergence of EM-type algorithms. We show that in the
Gibbs sampler analogy, the order of the steps can effect the stationary

distribution of the chain.

Reducing the Conditioning Improves the Computation.
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The Advantage of Partial Collapse.

An Outline of a proof:

e The dependence of consecutive iterations of the Gibbs Sampler flows through

what is conditioned upon in the first step of each iteration.
e The maximal autocorrelation can only decrease if we reduce this
conditioning.
e The Spectral Radius of the Chain
— generally governs convergence,
— is bounded above by the maximal autocorrelation, and

— does not depend on which step begins the iteration, as long as the order

of steps is not altered.

By reducing conditioning in any step (i.e., partial marginalization)
we reduce both a bound on the spectral radius of the chain and the
maximal autocorrelation for the chain that starts with that step.
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Summary I

I hope I have given you a taste of my strategy of utilizing
Highly Structured Statistical Models and
Sophisticated Statistical Computation

to solve outstanding substantive scientific questions

in High-Energy Astrophysics.
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