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Outline of Presentation.

This talk has three components:

A. Working Parameters and Marginal Augmentation

e Improves the convergence of Gibbs Samplers (no details here).

e Show how this takes advantage of incompatible conditional distributions.
e T'wo joint distributions with the same margins, the target posterior
distribution and a joint distribution with less correlation.

B. Can we use this idea to do better than i.i.d. sampling?

C. Extension: Reduce conditioning is selected steps of a Gibbs Sampler.
e This improves convergence but may introduce incompatibility.

e Extended example from Astronomy.




Generalizing the Gibbs Sampler.

The standard two-step sampler iterates between

Y1 ~ p(Y1lh2) and g ~ p(1ha|thr),

to form a Markov chain with stationary distribution

p(wb ¢2)

Consider a more general form using incompatible conditional distributions:

Y1 ~ K(1]h2) and by ~ K(12|th1)

QQuestions:
1. Does the resulting Markov chain have a stationary distribution?
2. If so, what is it?

3. Why use such a chain?

I cannot fully answer these questions, but can offer tantalizing examples....




Working Parameters I

(Posterior) distribution of interest: p(v)).

Introducing a working parameter o

p(¥, ) = p(¥)p(a).

Using a transformation 1) = Dy (1)), we construct a sampler using conditional

distributions of

(¢, a).
Meng and van Dyk (Biometrika, 1999) showed that for two-step samplers with
Y = (¥1,1h2) and ¢ = (¢1,)2) the rate of convergence of {wéﬂ,t =1,2,...}:
STEP 1: (Y1, a) ~ p(1)1, afi)s)
STEP 2: (2, ) ~ p(1a, at|t)r)

is no worse than that of the standard two step sampler based on p(1,¥s).

“Marginal Augmentation” can be very fast in practice

(van Dyk and Meng,JCGS, 2001).




A Simple Gaussian Example'

Suppose 1 ~ Ny (j1, %).
Two Samplers:

1. We can construct a simple Gibbs sampler:

Y1~ p(Y1l2) and P2 ~ p(P2|th2).

e Lag-one autocorrelation for 1) is p2.

2. Introduce a working parameter: o ~ N(0,w?c?).

e Define 91 = 91 + a.

e A new (working parameter) sampler:

'&1 Np(lzl‘¢2aa) and (¢2705) Np(¢2705"§21)

e Lag-one autocorrelation: p?/(1 + w?)




Computational Gain'
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Why Include a Working Parameter?'

FAST algorithms that are EASY to Implement!

Now many examples: t-models, probit regression, mixed-effects models, Poisson
imaging, generalized linear mixed models, multinomial probit model, etc.

EM-type Algorithms: van Dyk and Meng (JRSS-B, 1997, 1998); van Dyk
(JCGS, 2000; Stat. Sinica, 2000); van Dyk and Tang (Comp. Statist., 2003).

Samplers: van Dyk and Meng (Biometrika, 1999; JCGS, 2001) Imai and
van Dyk (J of Econometrics, 2005), van Dyk, Meng, and Kang (in prep).

The choice of the working prior distribution:
e More diffuse prior distributions tends to be better.
e Improper working prior distribution? p(, ) = p(v)p(«)
e The resulting Markov chain in NOT positive recurrent.

e With careful choice of the working prior distribution:

1. {wét),t =1,...} is Markovian.
2. The stationary distribution of this chain is p(1)s).




The Transition Kernel for ¢2I

Gaussian Example with Improper Working Prior Distribution:

STEP 1: 1[4y, o ~ N(pihh + o', 1 — p?)

StEP 2: afthy ~ N(tp1, 1) and 12 |t1, o ~ N(—p(a—1)1), 1—p?)

Equivalently,
STEP 2% 1s|th1 ~ N(0, 1).

Since Step 2* doesn’t depend on o', we set o’ = 0 in Step 1.

Thus, by using a with w — oo, the Gibbs Sampler:
STEP 1: Y1 [ihy ~ N(pihy, 1 — p?)

STEP 2: tho|th1 ~ N(ptp1, 1 — p?)

evolves into:

STEP 1: 1[0y ~ N(pth, 1 — p?)
STEP 2*: o|th1 ~ N(0,1)




The Result: Incompatible Distributions.

Gaussian Example with Improper Working Prior Distribution:

Thus, by using a with w — oo, the Gibbs Sampler:

STEP 1: 91|15 ~ N(pyhy, 1 — p?)
STEP 2: 1a|t1 ~ N(ph1, 1 — p?)
evolves into:

STEP 1t 9]¢y ~ N(pyy, 1 — p?)
STEP 2*: s|tpy ~ N(0,1)

Notice:
e Conditional p(12|1h1) “mutated” into marginal p(1)2)!

e Worst choice for compatibility: Under Step 2%, 11 Lis.

t : : :
e Best for convergence: wé ) converges in one iteration!

e We are not usually this lucky...




The Simplest ExampleI

A simple 2-step sampler:

g 1: 0 ~ (t—1)
TEP 1: 9y p(Y1lvg )

StEP 2: ¥§) ~ p(i).

The Markov chain
M= {@ i t=0,1,..}

has stationary distribution
p(¥1)p(¥2)

e with target margins but

e without the correlation

of target distribution,

@) draws of

[

@)« ------ draws of

e 1teration t

LT

o o g iteration ¢ + %
ST R

We are mixing the conditional distribu-

tions form two different joint distributions

with the same marginals. These condi-

tional distributions are incompatible.

AND is “quick” to converge!

We regain the joint target distribution with a one-step shifted chain.
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Empirical
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Incompatible Gibbs Samplers.

A Markov chain constructed using Marginal DA with improper working prior
satisfies the conditions of

Theorem: If {wét),t = 0,1,...} has stationary distribution p(1)s),
K(1|v2) = p(¥1|1h2), but K(valih1) # p(wa|i)

(i) {¢§t>,t = 0,1,...} has stationary distribution p(11);

(ii) M = {( Y“) ét)), t =0,1,...} has the stationary distribution p(11, ¥2);

(iii) M has stationary distribution

p(1)K(Y2|91) # p(h1,2);
(iv) K(¥1]12) and K(2]1p1) are not compatible.

This fully describes the behavior of the marginal (two-step) Gibbs sampler:

1. Although M does not have p(11,1)2) as its stationary distribution, M does.

2. The conditional distributions used in the sampler are not compatible, at
least with two-step samplers.
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Outline of Presentation.

This talk has three components:

A. Working Parameters and Marginal Augmentation

e Improves the convergence of Gibbs Samplers (no details here).

e Show how this takes advantage of incompatible conditional distributions.
e T'wo joint distributions with the same margins, the target posterior
distribution and a joint distribution with less correlation.

B. Can we use this idea to do better than i.i.d. sampling?

C. Extension: Reduce conditioning is selected steps of a Gibbs Sampler.
e This improves convergence but may introduce incompatibility.

e Extended example from Astronomy.
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A Gaussian Dessert.

Consider sampling from N (0, 1), as a margin of either of

ol |1 p
N , Pl i=12

¢2 0 Pi 1

With standard Gibbs Sampler: Cor( gtﬂ), gt)) = p2.

An Incompatible Alternative:
Yils ~ N(pipz,1 - pi)

; — COI’( §t+1), %t)) = P1pP2.
althr ~ N(p2th1,1 — p3)

1. The two conditionals are incompatible when pi # po, and the joint chain
does not converge.

2. But the marginal chain {wgﬂ,t = 1,...} is positive recurrent with N(0,1) as

its limiting distribution.

3. Furthermore, if we take py = —po = p, then Cor( §t+1>, §t>) = —p? <0, not
possible with a compatible Gibbs sampler.
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Can Gibbs Sampling be Better than Perfect Simulation??

E[X]=0

Standard Gibbs (r=0.9) Incompatible Gibbs (r=0.9) Independent sampler
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It Depends on Your Objective!.

E[ cos(X) ] = 0.607

Standard Gibbs (r=0.9) Incompatible Gibbs (r=0.9) Independent sampler
o
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It Depends on Your Objective!.

E[sin(X)]=0

Standard Gibbs (r=0.9) Incompatible Gibbs (r=0.9) Independent sampler
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Outline of Presentation.

This talk has three components:

A. Working Parameters and Marginal Augmentation

e Improves the convergence of Gibbs Samplers (no details here).

e Show how this takes advantage of incompatible conditional distributions.
e T'wo joint distributions with the same margins, the target posterior
distribution and a joint distribution with less correlation.

B. Can we use this idea to do better than i.i.d. sampling?

C. Extension: Reduce conditioning is selected Gibbs steps.
e This improves convergence but may introduce incompatibility.

e Extended example from Astronomy.
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Complex Astronomical Sources.
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Images may exhibit Spectral, Temporal, and Spatial Characteristics.

18



Astrostatistics: Complex Data Collection.

NASA'S Great Observatovries

INFT;TT:E'.I:II study areas of infrared A Very Small Sample Of
t; ts Light parts
The fi

mnstruments

Earth-based, survey,

WISIBLE

s (o Ny interferometry, etc.

X-ray alone: at least

four planned missions

Instruments have dif-
ferent data-collection

mechanism

neutron stars.
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Astrostatistics: Complex Questions
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e What is the composition and temperature structure?
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Astrostatistics: Complex Questions'

e Are the loops of hot gas real?
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Scientific Context I

The Chandra X-Ray Observatory

e Chandra produces images at least thirty times sharper then any previous

X-ray telescope.

e X-rays are produced by multi-millions degree matter, e.g., by high magnetic

fields, extreme gravity, or explosive forces.

e Images provide understand into the hot and turbulent regions of the universe.

Unlocking this information requires subtle analysis:

The California Harvard AstroStatistics Collaboration (CHASC)
van Dyk, et al. (The Astrophysical Journal, 2001)
Protassov, et al. (The Astrophysical Journal, 2002)
van Dyk and Kang (Statistical Science, 2004)
Esch, Connors, van Dyk, and Karovska ( The Astrophysical Journal, 2004)
van Dyk et al. (Bayesian Analysis, 2006)
Park et al. (The Astrophysical Journal, 2006)
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Data Collection I

Data is collected for each arriving photon:
e the (two-dimensional) sky coordinates,
e the energy, and
e the time of arrival.

All variables are discrete:

e High resolution — finer discretization.
e.g., 4096 x 4096 spatial and 1024 spectral bins

The four-way table of photon counts:
e Spectral analysis models the one-way energy table;
e Spatial analysis models the two-way table of sky coordinates; and

e Timing analysis models the one-way arrival time table

The Image: A moving ‘colored’ picture
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NGC 6240 '

HuBeLE OPTICAL CHAMDRA X-RAY

Image Credits.
X-ray: NASA/CXC/MPE/, Komossa et al. (2003, ApJL, 582, L.15);
Optical: NASA /STScl/R.P.van der Marel & J.Gerssen.
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The Basic Spectral Models.

e Photon counts modeled with Poisson process.

e The Poisson parameter is a function of energy, with two basic components:
1. The continuum, a GLM for the baseline spectrum,

. Several emisston lines, a mixture of Gaussians added to the continuum.

2
3. Several absorption lines multiply by the continuum.
4

. The continuum indicates the temperature of the source while the emission
and absorption lines gives clues as to the relative abundances of elements

LAMBDA

2 3

ENERGY
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Highly Structured Models.

Modelling the Chandra data collection mechanism.

e The method of Data
Augmentation: EM algo-

absorbtion and

submaximal effective
N
5 6

rithms and Gibbs sam-
instrument

response - ' plers
YTt 1 2 3 4 5 6
energy (keV)
pile-up
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‘W i quence of problems, each
* Obs 1 2 3 4 5 6 . .
.Y energy (keV) of which is easy to solve.
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+
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I
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We wish to directly model the sources and data collection mechanism and use
statistical procedures to fit the resulting highly-structured models and address the

substantive scientific questions.
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Searching for Narrow Lines'

e A simplified latent Poisson Process for the scientific model,

X; ~ Poisson (Ai = ozE,é_ﬁ + )\Lpi) .

We sometimes construct a delta function emission line model so that
1. the emission line is contained entirely in one pixel, but
2. we do not know which pixel.

i.e., {p;} can be parameterized in terms of a single unknown parameter,

0" = the location of the emission line.

Using Data Augmentation to fit this finite mixture model:
indicator that photon [ in cell 3
Ziy = L
corresponds to the emission line
1. Given Z = {Z;;} we can sample 0 = {«, 5, \L, 0%}

. . AL
2. Given 0 we can sample Z. via Z,; ~ Ber Di
G p ’ il aEi_ﬁ—i-)\Lpz'

In This Case Data Augmentation Fails.
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)
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Why Data Augmentation Fails'

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

10

Continuum Counts(Z=0)

10

Line Counts (Z=1)

o)

Given 7, what is the location of the emission line?
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The Standard Gibbs Sampler'

Recall we do not observe the latent Poisson Process,

X; ~ Poisson (AZ- = ozEZ-_B + ALPi) ;

Rather we observe, Y; ~ Poisson (ozj Z M;;iN; + 9?)

{Yj} = obs cell cnts The standard Gibbs sampler simulates:
{X;} = latent cell cnts 1. p(X, Z|0)

emission line indicators 2. p(d|X, Z) = p(90|X, Z)p(HL\X, 7)

location of emission line We tacitly condition on Y. throughout.

other model parameters

With a delta function point source model, this sampler fails.
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An Incompatible Gibbs Sampler.

e Recall the “Simplest Example”:

p(Y1]12) . p(11]12) . p()2)
p(h2|v1) p(12) p(1]v2)

e Following this we construct:

— P(%a%)

Sampler 1: (A Blocked Version of the Original Sampler.)

X, 7|0 X, Z|0 o9
p( | ) p( ‘ ) p( ‘ ) p(@L,X,Z‘QO)

T p(6°)et, X, Z)

p(0°10%, X, Z) — p(0°10%, X, Z) — p(X, Z|6)
p(0"10°, X, Z) p(6"]6°) p(6°10%, X, Z)

Sampler 2: (Cannot be Blocked: An Incompatible Gibbs Sampler.)
p(X, Z16) p(X, Z|0) p(8"]6°, X)
p(0°10", X, Z) — p(6°10", X, Z) — p(X,Z|0)
p(0t10°, X, 2) p(6]0°, X) p(6°10F, X, 2)
It can be shown that both samplers have the correct stationary
distribution and are faster to converge than the standard sampler.
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Computational Gains I

Compare Standard Sampler, Sampler 1, and Sampler 2 in a spectral analysis.

Standard sampler doesn’t move from its starting value.

Sampler 1 has much better convergence characteristics than Sampler 2.

However, each iteration of Sampler 1 is more expensive.
Sampler 1 Sampler 1

0 2000 6000 10000 1 2 3 4 5 6
Iterations Lag Energy (keV)

Sampler 1

Autocorrelation

Posterior density function

Sampler 2 Sampler 2

i J

T T T T T T T
0 2000 6000 10000 1 2 3 4
Iterations Energy (keV)

Sampler 2

Autocorrelation

Posterior density function
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e Six observations were inde-

pendently observed.

e Under a flat prior distribution

on i, we have

6
p(AHy)a/---/prL,eﬂyi)de?m
=1
6
_ H/pr,e?m)de?
7=1

= [1»(6"1v0).




Posterior Distribution of the Line Location (Cont’d)'

e Given all six observations, the posterior mode of the line location is
identified at 2.865 keV.

e The nominal 95% posterior region consists of (2.83 keV, 2.92 keV) with
94.8% and (0.50 keV, 0.51 keV) with 2.2%.

e The detected line is red-shifted to 6.69 keV in the quasar rest frame, which

indicates the ionization state of iron.

20
|
20

15
|
15

10
I
10
I

5
|

Posterior probability
density function
5
|

Posterior probability
density function

]
0
|

I I I I I I I I I
2 3 4 2.75 2.80 2.85 2.90 2.95 3.00
Energy (keV) Energy (keV)

35



Verifying the Stationary Distribution of Sampler 2.

p(X, Z|0) (X, Z|0) We move Z to the left of the condition-
p(eowL X Z) N p(@O\QL X Z) ing sign in Step 3. This does not al-

p(@L\QO, X, Z) p(@L, Z|90, X) ter the stationary distribution, but im-
proves the rate of convergence.

p(@L, Z\QO, X) We permute the order of the steps. This

can have minor effects on the rate of

p(X, Z|0)
p(6°10%, X, Z)

convergence, but does not affect the sta-

tionary distribution.

We remove Z from the draw in Step 1,

p(6-16°, X)
p(X, Z|0)
p(6°16%, X, Z)

since the transition kernel does not de-

pend on this quantitity.

We refer to these three steps tools as Marginalizing, Permuting, and
Trimming. They form a general strategy for constructing
incompatible Gibbs samplers.
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The Advantage of Partial Marginalization'

An Outline of the a proof:

e The dependence of consecutive iterations of the Gibbs Sampler flows through

what is conditioned upon in the first step of each iteration.
e The maximal autocorrelation can only decrease if we reduce this
conditioning.
e The Spectral Radius of the Chain
— generally governs convergence,
— is bounded above by the maximal autocorrelation, and

— does not depend on which step begins the iteration, as long as the order

of steps is not altered.

By reducing conditioning in any step (i.e., partial marginalization)
we reduce both a bound on the spectral radius of the chain and the
maximal autocorrelation for the chain that starts with that step.
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Summary I

I hope I have given you a taste of how incompatible
conditional distributions can be used in a Gibbs Sampler
to improve convergence, and, how this technique can be

used to fit Highly Structured Statistical Models and solve

outstanding substantive scientific questions

in High-Energy Astrophysics.
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