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Abstract. We prove a natural analogue of the Sato-Tate conjecture for mod-

ular forms of weight 2 or 3 whose associated automorphic representations are
a twist of the Steinberg representation at some finite place.
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1. Introduction

The Sato-Tate conjecture is a conjecture about the distribution of the number
of points on an elliptic curve over finite fields. Specifically, if E is an elliptic curve
over Q without CM, then for each prime l such that E has good reduction at l we
set

al := 1 + l −#E(Fl).
Then the Sato-Tate conjecture states that the quantities cos−1(al/2

√
l) are equidis-

tributed with respect to the measure

2

π
sin2 θdθ

on [0, π]. Alternatively, by the Weil bounds for E, the polynomial

X2 − alX + l = (X − αll1/2)(X − βll1/2)

satisfies |αl| = |βl| = 1, and there is a well-defined conjugacy class xE,l in SU(2),
the conjugacy class of the matrix (

αl 0
0 βl

)
.

The Sato-Tate conjecture is then equivalent to the statement that the classes xE,l
are equidistributed with respect to the Haar measure on SU(2).

The author was partially supported by NSF grant DMS-0841491.
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Tate observed that the conjecture would follow from properties of the symmetric
power L-functions of E, specifically that these L-functions (suitably normalised)
should have nonvanishing analytic continuation to the region <s ≥ 1. This would
follow (given the modularity of elliptic curves) from the Langlands conjectures
(specifically, it would be a consequence of the symmetric power functoriality from
GL2 to GLn for all n). Unfortunately, proving this functoriality appears to be
well beyond the reach of current techniques. However, Harris, Shepherd-Baron
and Taylor observed that the required analytic properties would follow from a
proof of the potential automorphy of the symmetric power L-functions (that is,
the automorphy of the L-functions after base change to some extension of Q), and
were able to use Taylor’s potential automorphy techniques to prove the Sato-Tate
conjecture for all elliptic curves E with non-integral j-invariant (see [HSBT09]).

There are various possible generalisations of the Sato-Tate conjecture; if one
wishes to be maximally ambitious, one could consider equidistribution results for
the Satake parameters of rather general automorphic representations (see for exam-
ple section 2 of [Lan79]). Again, such results appear to be well beyond the range
of current technology. There is, however, one special case that does seem to be
reasonable to attack, which is the case of Hilbert cuspidal eigenforms of regular
weight. In this paper, we prove a natural generalisation of the Sato-Tate conjecture
for modular newforms (over Q) of weight 2 or 3, subject to the natural analogue
of the condition that an elliptic curve has non-integral j-invariant. We note that
previously the only modular forms for which the conjecture was known were those
corresponding to elliptic curves; in particular, there were no examples of weight 3
modular forms for which the conjecture was known. After this paper was made
available, the conjecture was proved for all modular forms of weight at least 2 in
[BLGHT09], by rather different methods.

Our approach is similar to that of [HSBT09], and we are fortunate in being able
to quote many of their results. Indeed, it is straightforward to check that Tate’s
argument shows that the conjecture would follow from the potential automorphy of
the symmetric powers of the l-adic Galois representations associated to a modular
form. One might then hope to prove this potential automorphy in the style of
[HSBT09]; one would proceed by realising the symmetric powers of the mod l Galois
representation geometrically in such a way that their potential automorphy may be
established, and then deduce the potential automorphy of the l-adic representations
by means of the modularity lifting theorems of [CHT08] and [Tay08].

It turns out that this simple strategy encounters some significant obstacles. First
and foremost, it is an unavoidable limitation of the known potential automorphy
methods that they can only deduce that a mod l Galois representation is automor-
phic of minimal weight (which we refer to as “weight 0”). However, the symmetric
powers of the Galois representations corresponding to modular forms of weight
greater than 2 are never automorphic of minimal weight, so one has no hope of
directly proving their potential automorphy in the fashion outlined above without
some additional argument. If, for example, one knew the weight part of Serre’s
conjecture for GLn (or even for unitary groups) one would be able to deduce the
required results, but this appears to be an extremely difficult problem in general.
There is, however, one case in which the analysis of the Serre weights is rather
easier, which is the case that the l-adic Galois representations are ordinary. It is
this observation that we exploit in this paper.
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In general, it is anticipated that for a given newform f of weight k ≥ 2, there is a
density one set of primes l such that there is an ordinary l-adic Galois representation
corresponding to f . Unfortunately, if k > 3 then it is not even known that there
is an infinite set of such primes; this is the reason for our restriction to k = 2
or 3. In these cases, one may use the Ramanujan conjecture and Serre’s form of
the Cebotarev density theorem (see [Ser81]) to prove that the set of l which are
“ordinary” in this sense has density one, via an argument that is presumably well-
known to the experts (although we have not been able to find the precise argument
that we use in the literature). We note that it is important for us to be able to
choose l arbitrarily large in certain arguments (in order to satisfy the hypotheses
of the automorphy lifting theorems of [Tay08]), so it does not appear to be possible
to apply our methods to any modular forms of weight greater than 3. Similarly, we
cannot prove anything for Hilbert modular forms of parallel weight 3 over any field
other than Q.

We now outline our arguments in more detail, and explain exactly what we
prove. The early sections of the paper are devoted to proving the required poten-
tial automorphy results. In section 2 we recall some basic definitions and results
from [CHT08] on the existence of Galois representations attached to regular auto-
morphic representations of GLn over totally real and CM fields, subject to suitable
self-duality hypotheses and to the existence of finite places at which the represen-
tations are square integrable. Section 3 recalls some standard results on the Galois
representations attached to modular forms, and proves the result mentioned above
on the existence of a density one set of primes for which there is an ordinary Galois
representation.

In section 4 we prove the potential automorphy in weight 0 of the symmetric pow-
ers of the residual Galois representations associated to a modular form, under the
hypotheses that the residual Galois representation is ordinary and irreducible, and
the automorphic representation corresponding to the modular form is an unrami-
fied twist of the Steinberg representation at some finite place. The latter condition
arises because of restrictions of our knowledge as to when there are Galois repre-
sentations associated to automorphic representations on unitary groups, and it is
anticipated that it will be possible to remove it in the near future. That would
then allow us to prove our main theorems for any modular forms of weights 2 or 3
which are not of CM type. (Note added in proof: such results are now available, cf.
[Shi09], [CH09], [Gue09], and it is thus an easy exercise to deduce our main results
without any Steinberg assumption.)

One approach to proving the potential automorphy result in weight 0 would be
to mimic the proofs for elliptic curves in [HSBT09]. In fact we can do better than
this, and are able to directly utilise their results. We are reduced to proving that
after making a quadratic base change and twisting, the mod l representation at-
tached to our modular form is, after a further base change, congruent to a mod
l representation arising from a certain Hilbert-Blumenthal abelian variety. This
is essentially proved in [Tay02], and we only need to make minor changes to the
proofs in [Tay02] in order to deduce the properties we need. We can then directly
apply one of the main results of [HSBT09] to deduce the automorphy of the even-
dimensional symmetric powers of the Hilbert-Blumenthal abelian variety, and after
twisting back we deduce the required potential automorphy of our residual repre-
sentations. Note that apart from resulting in rather clean proofs, the advantage
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of making an initial congruence to a Galois representation attached to an abelian
variety and then using the potential automorphy of the symmetric powers of this
abelian variety is that we are able to obtain local-global compatibility at all finite
places (including those dividing the residue characteristic). This compatibility is
not yet available for automorphic representations on unitary groups in general, and
is needed in our subsequent arguments. In particular, it tells us that the auto-
morphic representations of weight 0 which correspond to the symmetric powers of
the l-adic representations coming from our Hilbert-Blumenthal abelian variety are
ordinary at l.

In section 5 we exploit this ordinarity to deduce that the even-dimensional sym-
metric powers of the mod l representations are potentially automorphic of the
“correct” weight. This is a basic consequence of Hida theory for unitary groups,
but we are not aware of any reference that proves the precise result we need. Ac-
cordingly, we provide a proof in the style of the arguments of [Tay88]. There is
nothing original in this section, and as the arguments are somewhat technical the
reader may wish to skip it on a first reading.

The results of the preceding sections are combined in section 6 to establish the
required potential automorphy results for l-adic (rather than mod l) representa-
tions. This essentially comes down to checking the hypotheses of the modularity
lifting theorem that we wish to apply from [Tay08], which follow from the analogous
arguments in [HSBT09] together with the conditions that we have imposed in our
potential automorphy arguments. It is here that we need the freedom to choose l
to be arbitrarily large, which results in our restriction to weights 2 and 3.

Finally, in section 7 we deduce the form of the Sato-Tate conjecture mentioned
above. As in [HSBT09] we have only proved the potential automorphy of the even-
dimensional symmetric powers of the l-adic representations associated to our mod-
ular form, and we deduce the required analytic properties for the L-functions at-
tached to odd-dimensional symmetric powers via an argument with Rankin-Selberg
convolutions exactly analogous to that of [HSBT09]. In fact, we need to prove the
same results for the L-functions of certain twists of our representations by finite-
order characters, but this is no more difficult.

We now describe the form of the final result, which is slightly different from that
for elliptic curves, because our modular forms may have non-trivial nebentypus
(and indeed are required to do so if they have weight 3). Suppose that the newform
f has level N , nebentypus χf and weight k; then the image of χf is precisely the
m-th roots of unity for some m. Then if p - N is a prime, we know that if

X2 − apX + pk−1χf (p) = (X − αpp(k−1)/2)(X − βpp(k−1)/2)

where ap is the eigenvalue of f for the Hecke operator Tp, then the matrix(
αp 0
0 βp

)
defines a conjugacy class xf,p in U(2)m, the subgroup of U(2) of matrices with
determinant an m-th root of unity. Then our main result is

Theorem. If f has weight 2 or 3 and the associated automorphic representation is a
twist of the Steinberg representation at some finite place, then the conjugacy classes
xf,p are equidistributed with respect to the Haar measure on U(2)m (normalised so
that U(2)m has measure 1).
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One can make this more concrete by restricting to primes p such that χf (p) is a
specific m-th root of unity; see the remarks at the end of section 7.

We would like to thank Thomas Barnet-Lamb, David Geraghty and Richard
Taylor for various helpful discussions during the writing of this paper.

2. Notation and assumptions

We let ε denote the l-adic cyclotomic character, regarded as a character of the
absolute Galois group of a number field or of a completion of a number field at
a finite place. We sometimes use the same notation for the mod l cyclotomic
character; it will always be clear from the context which we are referring to. We
denote Tate twists in the usual way, i.e. ρ(n) := ρ⊗ εn. We write K̄ for a separable
closure of a field K. If x is a finite place of a number field F , we will write Ix for
the inertia subgroup of Gal(F x/Fx). We fix an algebraic closure Q of Q, and regard
all finite extensions of Q as being subfields of Q. We also fix algebraic closures Qp
of Qp for all primes p, and embeddings Q ↪→ Qp.

We need several incarnations of the local Langlands correspondence. Let K be
a finite extension of Qp, and l 6= p a prime. We have a canonical isomorphism

ArtK : K× →W ab
K

normalised so that geometric Frobenius elements correspond to uniformisers. Let
Irr(GLn(K)) denote the set of isomorphism classes of irreducible admissible repre-
sentations of GLn(K) over C, and let WDRepn(WK) denote the set of isomorphism
classes of n-dimensional Frobenius semi-simple complex Weil-Deligne representa-
tions of the Weil group WK of K. The main result of [HT01] is that there is a
family of bijections

recK : Irr(GLn(K))→WDRepn(WK)

satisfying a number of properties that specify them uniquely (see the introduction
to [HT01] for a complete list). Among these properties are:

• If π ∈ Irr(GL1(K)) then recK(π) = π ◦Art−1
K .

• recK(π∨) = recK(π)∨.
• If χ1, . . . , χn ∈ Irr(GL1(K)) are such that the normalised induction n-Ind(χ1, . . . , χn)

is irreducible, then

recK(n-Ind(χ1, . . . , χn)) = ⊕ni=1 recK(χi).

We will often just write rec for recK when the choice of K is clear from the context.
After choosing an isomorphism ι : Ql → C one obtains bijections recl from the set of
isomorphism classes of irreducible admissible representations of GLn(K) over Ql to
the set of isomorphism classes of n-dimensional Frobenius semi-simple Weil-Deligne
Ql-representations of WK . We then define rl(π) to be the l-adic representation of
Gal(K/K) associated to recl(π

∨⊗|·|(1−n)/2) whenever this exists (that is, whenever
the eigenvalues of recl(π

∨ ⊗ | · |(1−n)/2)(φ) are l-adic units, where φ is a Frobenius
element). We will, of course, only use this notation where it makes sense. It is
useful to note that

rl(π)∨(1− n) = rl(π
∨).

Let M denote a CM field with maximal totally real subfield F (by “CM field”
we always mean “imaginary CM field”). We denote the nontrivial element of
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Gal(M/F ) by c. Following [CHT08] we define a RACSDC (regular, algebraic, con-
jugate self dual, cuspidal) automorphic representation of GLn(AM ) to be a cuspidal
automorphic representation π such that

• π∨ ∼= πc, and
• π∞ has the same infinitesimal character as some irreducible algebraic rep-

resentation of ResM/Q GLn.

We say that a ∈ (Zn)Hom(M,C) is a weight if

• aτ,1 ≥ · · · ≥ aτ,n for all τ ∈ Hom(M,C), and
• aτc,i = −aτ,n+1−i.

For any weight a we may form an irreducible algebraic representationWa of GLHom(M,C)
n ,

the tensor product over τ of the irreducible algebraic representations of GLn with
highest weight aτ . We say that π has weight a if it has the same infinitesimal char-
acter as W∨a ; note that any RACSDC automorphic representation has some weight.
Let S be a non-empty finite set of finite places of M . For each v ∈ S, choose an
irreducible square integrable representation ρv of GLn(Mv) (in this paper, we will
in fact only need to consider the case where each ρv is the Steinberg representa-
tion). We say that an RACSDC automorphic representation π has type {ρv}v∈S
if for each v ∈ S, πv is an unramified twist of ρ∨v . There is a compatible family of
Galois representations associated to such a representation in the following fashion.

Proposition 2.1. Let ι : Ql
∼−→ C. Suppose that π is an RACSDC automorphic

representation of GLn(AM ) of type {ρv}v∈S for some nonempty set of finite places
S. Then there is a continuous semisimple representation

rl,ι(π) : Gal(M/M)→ GLn(Ql)
such that

(1) For each finite place v - l of M , we have

rl,ι(π)|ss
Gal(Mv/Mv)

= rl(ι
−1πv)

∨(1− n)ss.

(2) rl,ι(π)c = rl,ι(π)∨ε1−n.

Proof. This follows from Proposition 4.2.1 of [CHT08] (which in fact also gives
information on rl,ι|Gal(Mv/Mv) for places v|l). �

The representation rl,ι(π) may be conjugated to be valued in the ring of integers
of a finite extension of Ql, and we may reduce it modulo the maximal ideal of this
ring of integers and semisimplify to obtain a well-defined continuous representation

r̄l,ι(π) : Gal(M/M)→ GLn(Fl).

Let a ∈ (Zn)Hom(M,Ql), and let ι : Ql
∼−→ C. Define ι∗a ∈ (Zn)Hom(M,C) by

(ι∗a)ιτ,i = aτ,i. Now let ρv be a discrete series representation of GLn(Mv) over Ql
for each v ∈ S. If r : Gal(M/M)→ GLn(Ql), we say that r is automorphic of weight
a and type {ρv}v∈S if r ∼= rl,ι(π) for some RACSDC automorphic representation π

of weight ι∗a and type {ιρv}v∈S . Similarly, if r̄ : Gal(M/M) → GLn(Fl), we say
that r̄ is automorphic of weight a and type {ρv}v∈S if r̄ ∼= r̄l,ι(π) for some RACSDC
automorphic representation π with πl unramified, of weight ι∗a and type {ιρv}v∈S .

We now consider automorphic representations of GLn(AF ). We say that a cus-
pidal automorphic representation π of GLn(AF ) is RAESDC (regular, algebraic,
essentially self dual, cuspidal) if
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• π∨ ∼= χπ for some character χ : F×\A×F → C× with χv(−1) independent
of v|∞, and
• π∞ has the same infinitesimal character as some irreducible algebraic rep-

resentation of ResF/Q GLn.

We say that a ∈ (Zn)Hom(F,C) is a weight if

aτ,1 ≥ · · · ≥ aτ,n
for all τ ∈ Hom(F,C). For any weight a we may form an irreducible algebraic

representation Wa of GLHom(F,C)
n , the tensor product over τ of the irreducible al-

gebraic representations of GLn with highest weight aτ . We say that an RAESDC
automorphic representation π has weight a if it has the same infinitesimal character
as W∨a . In this case, by the classification of algebraic characters over a totally real
field, we must have aτ,i + aτ,n+1−i = wa for some wa independent of τ . Let S be
a non-empty finite set of finite places of F . For each v ∈ S, choose an irreducible
square integrable representation ρv of GLn(Mv). We say that an RAESDC auto-
morphic representation π has type {ρv}v∈S if for each v ∈ S, πv is an unramified
twist of ρ∨v . Again, there is a compatible family of Galois representations associated
to such a representation in the following fashion.

Proposition 2.2. Let ι : Ql
∼−→ C. Suppose that π is an RAESDC automorphic

representation of GLn(AF ), of type {ρv}v∈S for some nonempty set of finite places
S, with π∨ ∼= χπ. Then there is a continuous semisimple representation

rl,ι(π) : Gal(F/F )→ GLn(Ql)

such that

(1) For each finite place v - l of F , we have

rl,ι(π)|ss
Gal(Fv/Fv)

= rl(ι
−1πv)

∨(1− n)ss.

(2) rl,ι(π)∨ = rl,ι(χ)εn−1rl,ι(π).

Here rl,ι(χ) is the l-adic Galois representation associated to χ via ι (see Lemma
4.1.3 of [CHT08]).

Proof. This is Proposition 4.3.1 of [CHT08] (which again obtains a stronger result,
giving information on rl,ι|Gal(Fv/Fv) for places v|l). �

Again, the representation rl,ι(π) may be conjugated to be valued in the ring
of integers of a finite extension of Ql, and we may reduce it modulo the maximal
ideal of this ring of integers and semisimplify to obtain a well-defined continuous
representation

r̄l,ι(π) : Gal(F/F )→ GLn(Fl).
Let a ∈ (Zn)Hom(F,Ql), and let ι : Ql

∼−→ C. Define ι∗a ∈ (Zn)Hom(F,C) by
(ι∗a)ιτ,i = aτ,i. Let ρv be a discrete series representation of GLn(Mv) over Ql for

each v ∈ S. If r : Gal(F/F )→ GLn(Ql), we say that r is automorphic of weight a
and type {ρv}v∈S if r ∼= rl,ι(π) for some RAESDC automorphic representation π of

weight ι∗a and type {ιρv}v∈S . Similarly, if r̄ : Gal(F/F ) → GLn(Fl), we say that
r̄ is automorphic of weight a and type {ρv}v∈S if r̄ ∼= r̄l,ι(π) for some RAESDC
automorphic representation π with πl unramified, of weight ι∗a and type {ιρv}v∈S .

As in [HSBT09] we denote the Steinberg representation of GLn(K), K a nonar-
chimedean local field, by Spn(1).
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3. Modular forms

3.1. Let f be a cuspidal newform of level Γ1(N), nebentypus χf , and weight k ≥ 2.
Suppose that for each prime p - N we have Tpf = apf . Then each ap is an algebraic
integer, and the set {ap} generates a number field Kf with ring of integers Of . We
will view Kf as a subfield of C. It is known that Kf contains the image of χf . For
each place λ|l of Of there is a continuous representation

ρf,λ : Gal(Q/Q)→ GL2(Kf,λ)

which is determined up to isomorphism by the property that for all p - Nl, ρf,λ|Gal(Qp/Qp)

is unramified, and the characteristic polynomial of ρf,λ(Frobp) is X2 − apX +
pk−1χf (p) (where Frobp is a choice of a geometric Frobenius element at p).

Assume from now on that f is not of CM type.

Definition 3.1. Let λ be a prime of Of lying over a rational prime l. Then we
say that f is ordinary at λ if λ - al. We say that f is ordinary at l if it is ordinary
at λ for some λ|l.

Lemma 3.2. If k = 2 or 3, then the set of primes l such that f is ordinary at l
has density one.

Proof. The proof is based on an argument of Wiles (see the final lemma of [Wil88]).
Let S be the finite set of primes which either divide N or which are ramified in
Of . Suppose that f is not ordinary at p /∈ S. By definition we have that λ|ap for
each prime λ of Of lying over p. Since p is unramified in Of , (p) =

∏
λ|p λ, so p|ap.

Write ap = pbp with bp ∈ Of .
Since p - N , the Weil bounds (that is, the Ramanujan-Petersson conjecture) tell

us that for each embedding ι : Kf ↪→ C we have |ι(ap)| ≤ 2p(k−1)/2. Since k ≤ 3,
this implies that |ι(bp)| ≤ 2 for all ι. Let T be the set of y ∈ Of such that |ι(y)| ≤ 2
for all ι. This is a finite set, because one can bound the absolute values of the
coefficients of the characteristic polynomial of such a y.

From the above analysis, it is sufficient to prove that for each y ∈ T , the set of
primes p for which ap = py has density zero. However, by Corollaire 1 to Théorème

15 of [Ser81], the number of primes p ≤ x for which ap = py is O(x/(log x)5/4−δ)
for any δ > 0, which immediately shows that the density of such primes is zero, as
required. �

The following result is well known, and follows from, for example, [Sch90] and
Theorem 2 of [Wil88].

Lemma 3.3. If f is ordinary at a place λ|l of Of , and l - N , then the Galois
representation ρf,λ is crystalline, and furthermore it is ordinary; that is,

ρf,λ|Gal(Ql/Ql)
∼=
(
ψ1 ∗
0 ψ2ε

1−k

)
where ψ1 and ψ2 are unramified characters of finite order. In addition, ψ1 takes
Frobl to the unit root of X2 − alX + χf (l)lk−1.

3.2. Let ρf,λ denote the semisimplification of the reduction mod λ of ρf,λ; this
makes sense because ρf,λ may be conjugated to take values in GL2(Of,λ), and it
is independent of the choice of lattice. It is valued in GL2(kf,λ), where kf,λ is the
residue field of Kf,λ.
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Definition 3.4. We say that ρf,λ has large image if

SL2(k) ⊂ ρf,λ(Gal(Q/Q)) ⊂ k×f,λ GL2(k)

for some subfield k of kf,λ.

We will need to know that the residual Galois representations ρf,λ frequently
have large image. The following result is essentially due to Ribet (see [Rib75], which
treats the case N = 1; for a concrete reference, which also proves the corresponding
result for Hilbert modular forms, see [Dim05]).

Lemma 3.5. For all but finitely many primes λ of Of , ρf,λ has large image.

3.3. We let π(f) be the automorphic representation of GL2(AQ) corresponding to
f , normalised so that π(f) is RAESDC of weight (k−2, 0) (it is essentially self dual
because

π(f)∨ ∼= χπ(f)

where χ = | · |k−2χ−1
f ). Let λ|l be a place of Of , and choose an isomorphism

ι : Ql
∼−→ C and a compatible embedding Kf,λ ↪→ Ql; that is, an embedding such

that the diagram

Kf
//

��

C

Kf,λ
// Ql

ι

OO

commutes. Assume that πf,v is square integrable for some finite place v. Then by
Proposition 2.2 there is a Galois representation

rl,ι(π(f)) : Gal(Q/Q)→ GL2(Ql)

associated to πf , and it follows from the definitions that

rl,ι(π(f)) ∼= ρf,λ ⊗Kf,λ Ql.

Definition 3.6. We say that f is Steinberg at a prime q if π(f)q is an unramified
twist of the Steinberg representation.

Definition 3.7. We say that f is potentially Steinberg at a prime q if π(f)q is a
(possibly ramified) twist of the Steinberg representation.

Note that if f is (potentially) Steinberg at q for some q then it is not CM. Note
also that if f is potentially Steinberg at q then there is a Dirichlet character θ such
that f ⊗ θ is Steinberg at q.

4. Potential automorphy in weight 0

4.1. Let l be an odd prime, and let f be a modular form of weight 2 ≤ k < l and
level N , l - N . Assume that f is Steinberg at q. Suppose that λ|l is a place of Of
such that f is ordinary at λ. Assume that ρf,λ is absolutely irreducible. By Lemma
3.3 we have

ρf,λ|Gal(Ql/Ql)
∼=
(
ψ1 ∗
0 ψ2ε

1−k

)
where ψ1 and ψ2 are unramified characters. We wish to prove that the symmetric
powers of ρf,λ are potentially automorphic of some weight. To do so, we use a
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potential modularity argument to realise ρf,λ geometrically, and then appeal to the
results of [HSBT09].

The potential modularity result that we need is almost proved in [Tay02]; the one
missing ingredient is that we wish to preserve the condition of being Steinberg at
q. This is, however, easily arranged, and rather than repeating all of the arguments
of [Tay02], we simply indicate the modifications required.

We begin by recalling some definitions from [Tay02]. Let N be a totally real
field. Then an N -HBAV over a field K is a triple (A, i, j) where

• A/K is an abelian variety of dimension [N : Q],
• i : ON ↪→ End(A/K), and

• j : O+
N
∼−→ P(A, i) is an isomorphism of ordered invertible ON -modules.

For the definitions of ordered invertible ON -modules and of O+
N and P(A, i), see

page 133 of [Tay02].
Choose a totally real quadratic field F in which l is inert and q is unramified

and which is linearly disjoint from Qker(ρf,λ)
over Q, a finite extension k/kf,λ and

a character θ : Gal(F/F )→ k× which is unramified at q such that

det ρf,λ|Gal(F/F ) = ε−1θ
−2

and (ρf,λ|Gal(F/F )⊗θ)(Frobw) has eigenvalues 1, #k(w), where w|q is a place of F .

This is possible as the obstruction to taking a square root of a character is in the
2-part of the Brauer group, and because any class in the Brauer group of a local
field splits over an unramified extension. Let ρ = ρf,λ|Gal(F/F ) ⊗ θ : Gal(F/F ) →
GL2(k), so that det ρ = ε−1. If x is the place of F lying over l, then we may write
(for some character χx of Gal(Fx/Fx))

ρ|Gal(Fx/Fx)
∼=
(
χ−1
x ∗
0 χxε

−1

)
with χ2

x|Ix = ε2−k.

Theorem 4.1. There is a finite totally real Galois extension E/F which is linearly

disjoint from Qker(ρf,λ)
over Q and in which the unique prime of F dividing l splits

completely, a totally real field N , a place λ′|l of N , a place vq|q of E, and an
N -HBAV (A, i, j)/E with potentially good reduction at all places dividing l such
that

• the representation of Gal(Ē/E) on A[λ′] is equivalent to (ρ|Gal(Ē/E))
∨,

• at each place x|l of E, the action of Gal(Ex/Ex) on Tλ′A ⊗ Ql is of the
form (

χ−1
x ε ∗
0 χx

)
with χx a tamely ramified lift of χx, and
• A has multiplicative reduction at vq.

Proof. As remarked above, this is essentially proved in [Tay02]. Indeed, if k > 2
then with the exception of the fact that E can be chosen to be linearly disjoint

from Qker(ρf,λ)
over Q, and the claim that A can be chosen to have multiplicative

reduction at some place over q, the result is obtained on page 136 of [Tay02] (the
existence of A with A[λ′] equivalent to (ρ|Gal(Ē/E))

∨ is established in the second
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paragraph on that page, and the form of the action of Gal(Ex/Ex) for x|l follows
from Lemma 1.5 of loc. cit. ).

We now indicate the modifications needed to the arguments of [Tay02] to obtain
the slight strengthening that we require. Suppose firstly that k > 2. Rather than
employing the theorem of Moret-Bailly stated as Theorem G of [Tay02], we use
the variant given in Proposition 2.1 of [HSBT09]. This immediately allows us

to assume that E is linearly disjoint from Qker(ρf,λ)
over Q, so we only need to

ensure that A has multiplicative reduction at some place dividing q. Let X be
the moduli space defined in the first paragraph of page 136 of [Tay02]. Let v be
a place of F lying over q. It is enough to check that there is a non-empty open
subset Ωv of X(Fv) such that for each point of Ωv, the corresponding N -HBAV has
multiplicative reduction. Let Ωv denote the set of all points of X(Fv) such that
the corresponding N -HBAV has multiplicative reduction; this is an open subset of
X(Fv), and it is non-empty (by the assumptions on θ̄ at places of F dividing q, and
the assumption that π(f) is an unramified twist of the Steinberg representation,
we see that ρ(Frobv) has eigenvalues 1 and #k(v), and is congruent to a Galois
representation attached to an unramified twist of a Steinberg representation, so
any N -HBAV with multiplicative reduction suffices), as required.

If k = 2, then the only additional argument needed is one to ensure that if
χ2
x = 1, then the abelian variety can be chosen to have good reduction rather

than multiplicative reduction. This follows easily from the fact that ρ|Gal(Fx/Fx) is

finite flat (cf. the proof of Theorem 2.1 of [KW08], which establishes a very similar
result). �

Let M be a totally real field, and let (A, i, j)/M be an N -HBAV. Fix an embed-
ding N ⊂ R. We recall some definitions from section 4 of [HSBT09]. For each finite
place v of M there is a two dimensional Weil-Deligne representation WDv(A, i)
defined over N such that if p is a place of N of residue characteristic p different
from the residue characteristic of v, we have

WD(H1(A×M,Qp)|Gal(Mv/Mv) ⊗Np Np) ∼= WDv(A, i)⊗N Np.

Definition 4.2. We say that SymmA is automorphic of type {ρv}v∈S if there is
an RAESDC representation π of GLm+1(AM ) of weight 0 and type {ρv}v∈S such
that for all finite places v of M ,

rec(πv)|Art−1
Mv
|−m/2 = Symm WDv(A, i).

Theorem 4.3. Let E, A be as in the statement of Theorem 4.1. Let N be a finite
set of even positive integers. Then there is a finite Galois totally real extension
F ′/E and a place wq|q of F ′ such that

• for any n ∈ N , Symn−1A is automorphic over F ′ of weight 0 and type
{Spn(1)}{wq},
• The primes of E dividing l are unramified in F ′, and

• F ′ is linearly disjoint from Qker(ρf,λ)
over Q.

Proof. This is essentially Theorem 4.1 of [HSBT09]. In particular, the proof in
[HSBT09] establishes that there is a Galois totally real extension F ′/E, and a
place wq of F ′ lying over q such that for any n ∈ N , Symn−1A is automorphic over
F ′ of weight 0 and type {Spn(1)}{wq}. Note that the l used in their argument is not
the l used here. To complete the proof, we need to establish that it is possible to
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obtain an F ′ in which l is unramified, and which is linearly disjoint from Qker(ρf,λ)

over Q. The latter point causes no difficulty, but the first point requires some
minor modifications of the arguments of [HSBT09]. We now outline the necessary
changes.

To aid comparison to [HSBT09], for the rest of this proof we will refer to our l as
s; all references to l will be to primes of that name in the proofs of various theorems
in [HSBT09]. We begin by choosing a finite solvable totally real extension L of E,

linearly disjoint from Qker(ρf,λ)
over Q, such that the base change of A to L has

good reduction at all places dividing s. Choose a prime l as in the proof of Theorem
4.1 of [HSBT09]. We then apply a slight modification of Theorem 4.2 of loc.cit.,
with the conclusion strengthened to include the hypothesis that s is unramified in
F ′. To prove this, in the proof of Theorem 4.2 of loc.cit., note that F1 = E. Choose
all auxiliary primes not to divide s. Rather than constructing a moduli space XW

over E, construct the analogous space over L, and consider the restriction of scalars
Y = ResL/E(XW ). Applying Proposition 2.1 of [HSBT09] to Y , rather than XW ,

we may find a finite totally real Galois extension F (1)/E in which s is unramified,
such that Y has an F (1)-point. Furthermore, we may assume that F (1) is linearly

disjoint from Qker(ρf,λ)
over Q. Note that an F (1)-point of Y corresponds to an

F (1)L-point of XW .
We now make a similar modification to the proof of Theorem 3.1 of [HSBT09],

replacing the schemes TWi
over F with ResLF/F TWi

. We conclude that there is a
finite Galois totally real extension F ′/E in which s is unramified, which is linearly

disjoint from Qker(ρf,λ)
over Q, such that for any n ∈ N , Symn−1A is automorphic

over F ′L of weight 0 and type {Spn(1)}{wq}. Since the extension F ′L/F ′ is solvable,
it follows from solvable base change (e.g. Lemma 1.3 of [BLGHT09]) that in fact for
any n ∈ N , Symn−1A is automorphic over F ′ of weight 0 and type {Spn(1)}{wq},
as required. �

We may now twist ρ by θ
−1

in order to deduce results about ρf,λ. Let N and λ

be as in the statement of Theorem 4.1. Fix an embedding Nλ′ ↪→ Ql. Let θ be the
Teichmüller lift of θ, and let ρn denote the action of Gal(Ē/E) on

Symn−1(H1(A× E,Ql)⊗Nl Nλ′ ⊗ θ−1)⊗N ′λ Ql.

By construction, ρn is a lift of Symn−1 ρf,λ|Gal(E/E)⊗kf,λ F̄l (where the embedding

kf,λ ↪→ Fl is determined by the embedding k ↪→ Fl induced by the embedding

Nλ′ ↪→ Ql). Note also that (again by construction) at each place x|l of E,

ρ2|Gal(Ex/Ex)
∼=
(
ψ1 ∗
0 ψ2ω

2−kε−1

)
with ψ1, ψ2 unramified lifts of ψ1|Gal(Ex/Ex) and ψ2|Gal(Ex/Ex) respectively, and ω

the Teichmüller lift of ε.

Corollary 4.4. Let N be a finite set of even positive integers. Then there is a
Galois totally real extension F ′/E and a place wq|q of F ′ such that

• for any n ∈ N , ρn|Gal(Q/F ′) is automorphic of weight 0 and type {Spn(1)}{wq},
• every prime of E dividing l is unramified in F ′ (so that l is unramified in
F ′), and
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• F ′ is linearly disjoint from Qker(ρf,λ)
over Q.

Let ι : Ql
∼−→ C, and for n ∈ N let πn be the RAESDC representation of GLn(AF ′)

with rl,ι(πn) ∼= ρn|Gal(Ql/F ′). If k = 2 then πn,x is unramified for each x|l, and

if k > 2 then for each place x|l of F ′, πn,x is a principal series representation

n-Ind
GLn(F ′x)

Bn(F ′x) (χ1, . . . , χn) with ι−1χi ◦ Art−1
F ′x
|Ix = ω(i−1)(2−k) and vl(ι

−1χi(l)) =

[F ′x : Ql]
(
i− 1 + 1−n

2

)
, where vl is the l-adic valuation on Ql with vl(l) = 1.

Proof. This is a straightforward consequence of Theorem 4.3. The only part that
needs to be checked is the assertion about the form of πn,x for x|l when k > 2.
Without loss of generality, we may assume that 2 ∈ N . Note firstly that any
principal series representation of the given form is irreducible, so that we need only
check that

ι−1 rec(πn,x) =
n⊕
i=1

ω(i−1)(2−k)αi,

where αi is an unramified character with vl(αi(l)) = [F ′x : Ql]
(
i− 1 + 1−n

2

)
. By

Definition 4.2 and Theorem 4.3 we see that rec(πn,x) = Symn−1 rec(π2,x), so it suf-
fices to establish the result in the case n = 2, or rather (because of the compatibility
of rec with twisting) it suffices to check the corresponding result for WDv(A, i) at
places v|l. This is now an immediate consequence of local-global compaitibility,
and follows at once from, for example, Lemma B.4.1 of [CDT99], together with
the computations of the Weil-Deligne representations associated to characters in
section B.2 of loc. cit.

�

5. Changing weight

5.1. We now explain how to deduce from the results of the previous section that
Symn ρf,λ is potentially automorphic of the correct weight (that is, the weight of the
conjectural automorphic representation corresponding to Symn ρf,λ), rather than
potentially automorphic of weight 0. We accomplish this as a basic consequence of
Hida theory; note that we simply need a congruence, rather than a result about
families, and the result follows from a straightforward combinatorial argument.
This result is certainly known to the experts, but as we have been unable to find a
reference which provides the precise result we need, we present a proof in the spirit
of the arguments of [Tay88].

5.2. For each n-tuple of integers a = (a1, . . . , an) with a1 ≥ · · · ≥ an there is an
irreducible representation of the algebraic group GLn defined over Ql, with highest
weight (with respect to the Borel subgroup of upper-triangular matrices) given by

diag(t1, . . . , tn) 7→
n∏
i=1

taii .

We will need an explicit model of this representation, for which we follow section 2
of [Che04].

Let K be an algebraic extension of Ql, N the subgroup of GLn(K) consist-
ing of upper triangular unipotent matrices, N the subgroup of lower triangular
unipotent matrices, and T the subgroup of diagonal matrices. Let R := K[GLn] =
K[{Xi,j}1≤i,j≤n,det(Xi,j)

−1]. We have commuting natural actions of GLn(K) onR
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by left and right multiplication. For an element g ∈ GLn(K) we denote these actions
by gl and gr respectively, so that if we let M denote the matrix (Xi,j)i,j ∈Mn(R),
we have

(gl.X)i,j = g−1M

and
(gr.X)i,j = Mg.

If (t1, . . . , tn) ∈ Zn, we say that an element f ∈ R is of left weight t (respectively
of right weight t) if for all d ∈ T we have dlf = t−1(d)f (respectively drf = t(d)f)
where

t(diag(x1, . . . , xn)) =

n∏
i=1

xtii .

For each 1 ≤ i ≤ n and each i-tuple j = (j1, . . . , ji), 1 ≤ j1 < · · · < ji ≤ n, we
let Yi,j be the minor of order i of M obtained by taking the entries from the first

i rows and columns j1,. . . ,ji. Let RN denote the subalgebra of R of elements fixed

by the gl-action of N ; it is easy to check that Yi,j ∈ RN . Because T normalises N

it acts on RN on the left, and we let RNt be the sub K-vector space of elements of
left weight t; this has a natural action of GLn(K) induced by gr.

Proposition 5.1. Suppose that t1 ≥ · · · ≥ tn. Then RNt is a model of the ir-
reducible algebraic representation of GLn(K) of highest weight t. Furthermore, it
is generated as a K-vector space by the monomials in Yi,j of left weight t, and a
highest weight vector is given by the unique monomial in Yi,j of left and right weight
t.

Proof. This follows from Proposition 2.2.1 of [Che04]. �

Assume that in fact t1 ≥ · · · ≥ tn ≥ 0, and let Xt denote the free OK-module
with basis the monomials in Yi,j of left weight t. By Proposition 5.1, Xt is a

GLn(OK)-stable lattice inRNt . Let T+ be the submonoid of T consisting of elements
of the form

diag(lb1 , . . . , lbn)

with b1 ≥ · · · ≥ bn ≥ 0; then Xt is certainly also stable under the action of T+.
Let α = diag(lb1 , . . . , lbn) ∈ T+. We wish to determine the action of α on Xt.

Lemma 5.2. If Y ∈ Xt is a monomial in the Yi,j, then α(Y ) ⊂ l
∑n
i=1 bitn+1−iXt. If

in fact b1 > · · · > bn then α(Y ) ⊂ l1+
∑n
i=1 bitn+1−iXt unless Y is the unique lowest

weight vector.

Proof. If Y has (right) weight (v1, . . . , vn), then α(Y ) = l
∑n
i=1 biviY . The unique

lowest weight vector has weight (tn, . . . , t1), so it suffices to prove that for any other

Y of weight (v1, . . . , vn) which occurs in RNt , the quantity
∑n
i=1 bivi is at least as

large, and is strictly greater if b1 > · · · > bn. However, by standard weight theory
we know that we may obtain (v1, . . . , vn) from (tn, . . . , t1) by successively adding
vectors of the form (0, . . . , 1, 0 . . . , 0,−1, 0, . . . , 0), and it is clear that the addition
of such a vector does not decrease the sum, and in fact increases it if b1 > · · · > bn,
as required. �

We define a new action of T+ onXt, which we denote by ·twist, by multiplying the
natural action of diag(lb1 , . . . , lbn) by l−

∑n
i=1 bitn+1−i ; this is legitimate by Lemma

5.2.
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5.3. Fix for the rest of this section a choice of isomorphism ι : Ql
∼−→ C. Assume for

the rest of this section that F ′ is a totally real field in which each l is unramified, and
π′ is an RAESDC representation of GLn(AF ′) of weight 0 and type {Spn(1)}{wq}
for some place wq|q of F ′, with (π′)∨ = χπ′. Suppose furthermore that there is an
integer k > 2 such that

• for each place x|l, π′x is a principal series n-Ind
GLn(Fx)
Bn(Fx) (χ1, . . . , χn) with

vl(ι
−1χi(l)) = [F ′x : Ql]

(
i− 1 + 1−n

2

)
and ι−1χi ◦Art−1

Fx
|Ix = ω(i−1)(2−k).

(See Corollary 4.4 for an example of such a representation.) We transfer to a
unitary group, following section 3.3 of [CHT08]. Firstly, we make a quartic totally

real Galois extension F/F ′, linearly disjoint from Qker rl,ι(π)
over Q, such that wq

and all primes dividing l split in F . Let S(B) be the set of places of F lying over
wq. Let E be a imaginary quadratic field in which l and q split, such that E is

linearly disjoint from Qker rl,ι(π)
over Q. Let M = FE. Let c denote the nontrivial

element of Gal(M/F ). Let Sl denote the places of F dividing l, and let S̃l denote

a set of places of M dividing l such that the natural map S̃l → Sl is a bijection. If
v|l is a place of F then we write ṽ for the corresponding place in S̃l.

Lemma 5.3. There is a finite order character φ : M×\A×M → C× such that

• φ ◦NM/F = χ ◦NM/F , and

• φ is unramified at all places lying over S(B) and at all places in S̃l.

Proof. By Lemma 4.1.1 of [CHT08] (or more properly its proof, which shows that
the character produced may be arranged to have finite order) there is a finite
order character ψ : M×\A×M → C× such that for each v ∈ Sl, ψ|Mṽ

× = 1 and
ψ|Mcṽ

× = χ|F×v , and such that ψ is unramified at each place in S(B). It now

suffices to prove the result for the character χ(ψ|A×F )−1, which is unramified at

S(B) ∪ Sl, and the result now follows from Lemma 4.1.4 of [CHT08]. �

Now let π = π′M ⊗φ, which is an RACSDC representation of GLn(AM ), satisfy-
ing:

• π has weight 0.
• π has type {Spn(1)}w|wq .
• for each place x ∈ S̃l, πx is a principal series n-Ind

GLn(Mx)
Bn(Mx) (χ1, . . . , χn) with

vl(ι
−1χi(l)) = [F ′x : Ql]

(
i− 1 + 1−n

2

)
and ι−1χi ◦ Art−1

Mx
|Ix = ω(i−1)(2−k)

with k > 2.

5.4. Choose a division algebra B with centre M such that

• B splits at all places not dividing a place in S(B).
• If w is a place of M lying over a place in S(B), then Bw is a division algebra.
• dimM B = n2.
• Bop ∼= B ⊗M,cM .

For any involution ‡ on B with ‡|M = c, we may define a reductive algebraic
group G‡/F by

G‡(R) = {g ∈ B ⊗F R : g‡⊗1g = 1}
for any F -algebra R. Because [F : Q] is divisible by 4 and #S(B) is even, we may
(by the argument used to prove Lemma 1.7.1 of [HT01]) choose ‡ such that

• If v /∈ S(B) is a finite place of F then G‡(Fv) is quasi-split, and
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• If v|∞, G‡(Fv) ∼= U(n).

Fix such a choice of ‡, and write G for G‡. We wish to work with algebraic modular
forms on G; in order to do so, we need an integral model for G. We obtain such

a model by fixing an order OB in B such that O‡B = OB and OB,w is a maximal
order for all primes w which are split over M (see section 3.3 of [CHT08] for a proof
that such an order exists). We now regard G as an algebraic group over OF , by
defining

G(R) = {g ∈ OB ⊗OF R : g‡⊗1g = 1}
for all OF -algebras R.

We may identify G with GLn at places not in S(B) which split in M in the
following way. Let v /∈ S(B) be a place of F which splits in M . Choose an

isomorphism iv : OB,v
∼−→ Mn(OMv ) such that iv(x

‡) = tiv(x)c (where t denotes
matrix transposition). Choosing a prime w|v of M gives an isomorphism

iw : G(Fv)
∼−→ GLn(Mw)

i−1
v (x, tx−c) 7→ x.

This identification satisfies iwG(OF,v) = GLn(OM,w). Similarly, if v ∈ S(B) then
v splits in M , and if w|v then we obtain an isomorphism

iw : G(Fv)
∼−→ B×w

with iwG(OF,v) = O×B,w.

Now let K = Ql. Write O for the ring of integers of K, and k for the residue
field Fl.

Let Il = Hom(F,K), and let Ĩl be the subset of elements of Hom(M,K) such

that the induced place of M is in S̃l. Let a ∈ (Zn)Hom(M,K); we assume that

• aτ,1 ≥ · · · ≥ aτ,n ≥ 0 if τ ∈ Ĩl, and
• aτc,i = −aτ,n+1−i.

Consider the constructions of section 5.2 applied to our choice of K. Then we have
an O-module

Ya = ⊗τ∈ĨlXaτ

which has a natural action of G(OF,l), where g ∈ G(OF,l) acts on Xaτ by τ(iτgτ ).
From now on, if v|l is a place of F , we will identify G(OFv ) with GLn(OMṽ ) via
the map iṽ without comment.

We say that an open compact subgroup U ⊂ G(A∞F ) is sufficiently small if for
some place v of F the projection of U to G(Fv) contains no nontrivial elements of
finite order. Assume from now on that U is sufficiently small, and in addition that
we may write U =

∏
v Uv, Uv ⊂ G(OFv ), such that

• if v ∈ S(B) and w|v is a place of M , then iw(Uv) = O×B,w, and

• if v|l then Uv is the Iwahori subgroup of matrices which are upper-triangular
mod l.

If v|l, let U ′v denote the pro-l subgroup of Uv corresponding to the group of matrices
which are (upper-triangular) unipotent mod l, and let

χv : Uv/U
′
v → O×

be a character. Let χ = ⊗χv :
∏
v|l Uv → O×, and write

Ya,χ = Ya ⊗O χ,
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a
∏
v|l Uv-module.

Let A be an O-algebra. Then we define the space of algebraic modular forms

Sa,χ(U,A)

to be the space of functions

f : G(F )\G(A∞F )→ A⊗O Ya,χ
satisfying

f(gu) = u−1f(g)

for all u ∈ U , g ∈ G(A∞F ), where the action of U on A ⊗O Ya,χ is inherited from
the action of

∏
v|l Uv on Ya,χ. Note that because U is sufficiently small we have

Sa,χ(U,A) = Sa,χ(U,O)⊗O A.

More generally, if V is any U ′′-module with U ′′ a sufficiently small compact open
subgroup, we define the space of algebraic modular forms

S(U ′′, V )

to be the space of functions

f : G(F )\G(A∞F )→ V

satisfying

f(gu) = u−1f(g)

for all u ∈ U ′′, g ∈ G(A∞F ).
Let T+

l denote the monoid of elements of G(A∞F ) which are trivial outside of

places dividing l, and at places dividing l correspond to matrices diag(lb1 , . . . , lbn)
with b1 ≥ · · · ≥ bn ≥ 0. In addition to the action of U on Ya,χ, we can also allow
T+
l to act. We define the action of T+

l via the action ·twist on Xt defined above.

This gives us an action of the monoid 〈U, T+
l 〉 on Ya,χ. Now suppose that g is an

element of G(A∞F ) with either gl ∈ G(OF,l) or g ∈ T+
l ; then we write

UgU =
∐
i

giU,

a finite union of cosets, and define a linear map

[UgU ] : Sa,χ(U,A)→ Sa,χ(U,A)

by

([UgU ]f)(h) =
∑
i

gif(hgi).

We now introduce some notation for Hecke algebras. Let v be a place of F
which splits in M , and suppose that v /∈ S(B) and that Uv = G(OFv ) (so, in
particular v - l). Suppose that w|v is a place of M , so that we may regard G(OFv )

as GLn(OMw) via iw. Then we let T
(j)
w , 1 ≤ j ≤ n denote the Hecke operator given

by

[U diag($w, . . . , $w, 1, . . . , 1)U ]

where $w is a uniformiser of Mw, and there are j occurrences of it in this matrix.
We let Ta,χ(U,A) denote the commutative A-subalgebra of End(Sa,χ(U,A)) gener-

ated by the operators T
(j)
w and (T

(n)
w )−1 for all w, j as above. Note that Ta,χ(U,A)
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commutes with [UgU ] for all g ∈ T+
l . More generally, let T(U) denote the polyno-

mial ring over O in the formal variables T
(j)
w and (Tnw)−1, which we may think of

as acting on Sa,χ(U,A) via the obvious map T(U)→ Ta,χ(U,A).
We also wish to consider the Hecke operator Ul = [UuU ], where u ∈ T+

l has
uv = diag(ln−1, . . . , l, 1) for each v|l. As usual, we can define a Hida idempotent

el = lim
n→∞

Un!
l ,

which has the property that Ul is invertible on elSa,χ(U,O) and is topologically
nilpotent on (1− el)Sa,χ(U,O). We write

Sorda,χ (U,A) := elSa,χ(U,A).

Let a ∈ (Zn)Hom(M,K) be a weight, and let χa = ⊗v|lχa,v, where χa,v : Uv/U
′
v
∼=

((OMv
/mMv

)×)n → O× is given by the character (x1, . . . , xn) 7→
∏
τ

∏
i τ(x̃i)

aṽ,n+1−i ,

where x̃i is the Teichmüller lift of xi, and the product is over the embeddings τ ∈ Ĩl
which give rise to v.

The main lemma we require is the following.

Lemma 5.4. Let a be a weight. Then there is a T(U)-equivariant isomorphism

Sorda,χ (U, k)→ Sord0,χχa(U, k).

Proof. Note firstly that there is a natural projection map j from Ya,χ to the O-
module given by the tensor product Za,χ of the lowest weight vectors. This is a
map of

∏
v|l Uv-modules, and by Lemma 5.2 we see that j induces an isomorphism

u · twistYa,χ ⊗O k → u · twistZa,χ ⊗O k.

Note also that by definition we have an isomorphism of 〈U, T+
l 〉-modules Za,χ →

Y0,χχa . It thus suffices to prove that the induced map

j : Sorda,χ (U, k)→ Sord(U,Za,χ ⊗O k) (= Sord0,χχa(U, k))

is an isomorphism.
We claim that there is a diagram

Sa,χ(U, k)
j
// S(U,Za,χ ⊗O k)

u·twist // S(U ∩ uUu−1, u · twistZa,χ ⊗O k)

j−1

��

Sa,χ(U ∩ uUu−1, k)

cor

hh

S(U ∩ uUu−1, u ·twist Ya,χ ⊗O k)
ioo

such that the maps

cor ◦i ◦ j−1 ◦ u · twist ◦ j : Sa,χ(U, k)→ Sa,χ(U, k)

and

j ◦ cor ◦i ◦ j−1 ◦ u · twist : S(U,Za,χ ⊗O k)→ S(U,Za,χ ⊗O k)

are both given by Ul. Since Ul is an isomorphism on Sorda,χ (U, k), the result will
follow.

In fact, the construction of the diagram is rather straightforward. The maps
j, j−1 are just the natural maps on the coefficients (note that both are maps of
U -modules). The map u · twist is given by

(u · twistf)(h) = u ·twist f(hu).
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The map i is given by the inclusion of U -modules u · twistYa,χ ⊗O k ↪→ Ya,χ ⊗O k.
Finally, the map cor is defined in the following fashion. We may write

U =
∐

ui(U ∩ uUu−1),

and we define

(cor f)(h) =
∑

uif(hui).

The claims regarding the compositions of these maps follow immediately from
the observation that

UuU =
∐

uiuU.

�

5.5. We now recall some results on tamely ramified principal series representations
of GLn from [Roc98]. Let L be a finite extension of Qp for some p, and let πL
be an irreducible smooth complex representation of GLn(L). Let I denote the
Iwahori subgroup of GLn(OL) consisting of matrices which are upper-triangular
mod mL, and let I1 denote its Sylow pro-l subgroup. Let l be the residue field
of L, and let $L denote a uniformiser of L. Then there is a natural isomorphism
I/I1 ∼= (l×)n. If χ = (χ1, . . . , χn) : (l×)n → C× is a character, then we let

πI,χL denote the space of vectors in πL which are fixed by I1 and transform by χ

under the action of I/I1. The space πI,χL has a natural action of the Hecke algebra
H(I, χ) of compactly supported χ−1-spherical functions on GLn(L). We consider
the commutative subalgebra T(I, χ) of H(I, χ) generated by double cosets [IαI]

where α = diag($b1
L , . . . , $

bn
L ) with b1 ≥ · · · ≥ bn ≥ 0.

If χ : (O×L )n → C× is tamely ramified, then we let πI,χL denote πI,χ̄L , where χ̄ is
the character (l×)n → C× determined by χ. Let δ denote the modulus character
of GLn(L), so that

δ(diag(a1, . . . , an)) = |a1|n−1|a2|n−3 . . . |an|1−n

where | · | denotes the usual norm on L.

Proposition 5.5. (1) If πIL 6= 0 then π is a subquotient of an unramified prin-
cipal series representation.

(2) If πI1L 6= 0 then π is a subquotient of a tamely ramified principal series

representation. More precisely, if πI,χL 6= 0 then πL is a subquotient of

a tamely ramified principal series representation n-Ind
GLn(L)
Bn(L) (χ′1, . . . , χ

′
n)

with χ′i extending χi for each i.

(3) If πL = n-Ind
GLn(L)
Bn(L) (χ) with χ tamely ramified, then

πI,χL
∼= ⊕wχδ−1/2

as a T(I, χ)-module, where the sum is over the elements w of the Weyl group
of GLn with χw = χ; that is, the double coset [IαI] acts via (χδ−1/2)(α)

on πI,χL .

Proof. The first two parts follow from Lemma 3.1.6 of [CHT08] and its proof. All
three parts follow at once from Theorem 7.7 and Remark 7.8 of [Roc98] (which
are valid for GLn without any restrictions on L - see the proof of Lemma 3.1.6
of [CHT08]), together with the standard calculation of the Jacquet module of a
principal series representation, for which see for example Theorem 6.3.5 of [Cas95]
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(although note that there is a missing factor of δ1/2 (or rather δ
1/2
Ω in the notation

of loc. cit.) in the formula given there). �

5.6. Keep our running assumptions on π. Suppose that U =
∏
v Uv is a sufficiently

small subgroup of G(AF ). Assume further that U has been chosen such that if
v /∈ S(B), v = wwc splits completely in M , and Uv is a maximal compact subgroup
of G(Fv), then πw is unramified. Recall that we have fixed an isomorphism ι :

Ql
∼−→ C. There is a maximal ideal mι,π of T(U) determined by π in the following

fashion. For each place v = wwc as above the Hecke operators T
(i)
w act via scalars

αw,i on (πw)GLn(OMw ). The αw,i are all algebraic integers, so that ι−1(αw,i) ∈ O.

Then mι,π is the maximal ideal of T(U) containing all the T
(i)
w − ι−1(αw,i). Let

σk ∈ (Zn)Hom(M,K) be the weight determined by (σk)τ,i = (k − 2)(n − i) for each

τ ∈ Ĩl.

Lemma 5.6. Suppose that π is a RACSDC representation of GLn(AM ) of weight

0 and type {Spn(1)}S(B). Suppose that for each place x ∈ S̃l, πx is a principal

series n-Ind
GLn(Mx)
Bn(Mx) (χx,1, . . . , χx,n) with ι−1χx,i ◦ Art−1

Fx
|Ix = ω(i−1)(2−k). Then

there is a sufficiently small compact open subgroup U of G(AF ) such that U sat-
isfies the requirements above (in particular, U =

∏
v Uv where Uv is an Iwahori

subgroup of GLn(Fv) for each v|l) and S0,χσk
(U,O)mι,π 6= 0. If we assume further-

more that vl(ι
−1χx,i(l)) = [Mx : Ql]

(
i− 1 + 1−n

2

)
for all i (and all x ∈ S̃l) then

Sord0,χσk
(U,O)mι,π 6= 0.

Proof. This is a consequence of Proposition 3.3.2 of [CHT08]. The only issues are
at places dividing l and places in S(B). For the latter, it is enough to note that
under the Jacquet-Langlands correspondence, Spn(1) corresponds to the trivial

representation. For the first part, we also need to check that at each place x ∈ S̃l,
πIx,χxx 6= 0, where Ix is the standard Iwahori subgroup of GLn(Mx), and χx =
(χx,1, . . . , χx,n). This follows at once from Proposition 5.5.

For the second part, we must check in addition that if the Hecke operator [IxuxIx]
(where ux = diag(ln−1, . . . , 1)) acts via the scalar αx on πIx,χxx , then ι−1(αx) is an
l-adic unit. This is straightforward; by Proposition 5.5(3), αx = χx(u)δ−1/2(u).
Thus

vl(ι
−1(αx)) = vl(ι

−1(χx(u)δ−1/2(u)))

=

n∑
i=1

(n− i)vl(ι−1χx,i(l)) +

n∑
i=1

(n− i)vl((l−[Mx:Ql])−(n+1−2i)/2))

=

n∑
i=1

(n− i)([Mx : Ql]
(
i− 1 +

1− n
2

)
) +

n∑
i=1

[Mx : Ql](n− i)(n+ 1− 2i)/2

=
[Mx : Ql]

2

n∑
i=1

(n− i)((2i− 1− n) + (n+ 1− 2i))

= 0,

as required. �

Lemma 5.7. Keep (all) the assumptions of Lemma 5.6. Then there is an RACSDC
representation π′′ of GLn(AM ) of weight ι∗σk, type {Spn(1)}{S(B)} and with π′′l
unramified such that rl,ι(π

′′) ∼= r̄l,ι(π).
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Proof. This is essentially a consequence of Lemma 5.6, Lemma 5.4, and Proposition
5.5, together with Proposition 3.3.2 of [CHT08]. Indeed, Lemma 5.4 and Lemma
5.6 show that Sordσk,1

(U,O)mι,π 6= 0, which by Proposition 5.5(1) and Proposition
3.3.2 of [CHT08] gives us a π′′ satisfying all the properties we claim, except that we
only know that for each x|l, π′′x is a subquotient of an unramified principal series
representation. We claim that this unramified principal series is irreducible, so that
π′′x is unramified. To see this, note that the fact that we know that Sordσk,1

(U,O)mι,π 6=
0 (rather than merely Sσk,1(U,O)mι,π 6= 0) means that we can choose π′′ so that

for each x ∈ S̃l, π′′x is a subquotient of an unramified principal series representation

n-Ind
GLn(Mx)
Bn(Mx) (χx,1, . . . , χx,n) with

vl(ι
−1χx,i(l)) = [Mx : Ql] ((i− 1)(k − 1) + (1− n)/2)

(this follows from the comparison of the Hecke actions on (π′′x)Ix and Sσk,1(U,O),
noting that the latter action is defined in terms of ·twist). Now, if the principal series

n-Ind
GLn(Mx)
Bn(Mx) (χx,1, . . . , χx,n) were reducible, there would be i, j with χx,i = χx,j | · |,

so that χx,i(l)l
[Mx:Ql] = χx,j(l), which is a contradiction because k > 2. The result

follows. �

Combining Corollary 4.4 with Lemma 5.7, we obtain

Proposition 5.8. Let l be an odd prime, and let f be a modular form of weight
2 ≤ k < l and level coprime to l. Assume that f is Steinberg at q, and that for
some place λ|l of Of , f is ordinary at λ and ρf,λ is absolutely irreducible. Fix an

embedding Kf,λ ↪→ Ql. Let N be a finite set of even positive integers. Then there is
a Galois totally real extension F/Q and a quadratic imaginary field E, together with

a place wq|q of M = FE such that if we choose a set S̃l of places of M consisting

of one place above each place of F dividing l, and define σk ∈ (Zn)Hom(M,K) by
(σk)τ,i = (k − 2)(n− i), then

• for each n ∈ N , there is a character φ̄n : Gal(M/M) → F×l which is

unramified at all places in S̃l, which satisfies

φ̄nφ̄
c
n = (εdet ρf,λ ⊗ Fl)1−n|Gal(M/M)

and (Symn−1 ρf,λ⊗Fl)|Gal(M/M)⊗ φ̄n is automorphic of weight σk and type

{Spn(1)}{wq}.
• l is unramified in M .

• M is linearly disjoint from Qker(ρf,λ)
over Q.

6. Potential automorphy

6.1. Assume as before that f is a cuspidal newform of level Γ1(N), weight k ≥ 2,
and nebentypus χf . Let π(f) be the RAESDC representation of GL2(AQ) corre-
sponding to f . We will think of χf as an automorphic representation of GL1(AQ),
and write χf = ⊗pχf,p. We now define what we mean by the claim that the sym-
metric powers of f are potentially automorphic. If F is a totally real field and v|p is
a place of F , we write rec(πf,p)|Fv for the restriction of the Weil-Deligne represen-

tation rec(πf,p) to the Weil group of Fv. Then we say that Symn−1 f is potentially
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automorphic over F if there is an RAESDC representation πn of GLn(AF ) such
that for all primes p and all places v|p of F we have

rec(πn,v) = Symn−1(rec(πf,p)|Fv ).

By a standard argument (see for example section 4 of [HSBT09]) this is equivalent
to asking that Symn−1 ρf,λ|Gal(F/F ) be automorphic for some place (equivalently

for all places) λ of Kf .

Similarly, we may speak of Symn−1 f being potentially automorphic of a specific
weight and type. We then define (for each n ≥ 1 and each integer a) the L-series

L(χaf ⊗ Symn−1 f, s) =
∏
p

L((χaf,p ◦Art−1
Qp )⊗ Symn−1 rec(πf,p), s+ (1− n)/2).

We now normalise the L-functions of RAESDC automorphic representations to
agree with those of their corresponding Galois representations. Specifically, if π is
an RAESDC representation of GLn(AF ), we define

L(π, s) =
∏
v-∞

L(πv, s+ (1− n)/2).

If π is square integrable at some finite place, then for each isomorphism ι : Ql
∼−→ C

there is a Galois representation rl,ι(π), and by definition we have

L(π, s) =
∏
v-∞

L(πv ⊗ (| · | ◦ det)(1−n)/2, s)

=
∏
v-∞

L(rec(πv ⊗ (| · | ◦ det)(1−n)/2), s)

=
∏
v-∞

L(rl(ι
−1πv)

∨(1− n), s)

= L(rl,ι(π), s).

Theorem 6.1. Suppose that f is a cuspidal newform of level Γ1(N) and weight
k = 2 or 3. Suppose that f is Steinberg at q. Let N be a finite set of even positive
integers. Then there is a Galois totally real field F such that for any n ∈ N and
any subfield F ′ ⊂ F with F/F ′ soluble, Symn−1 f is automorphic over F ′.

Proof. By Lemma 3.2 and Lemma 3.5 we may choose a prime l > 3 and a place λ
of Of lying over l such that

• l - N .
• f is ordinary at λ.
• l > max(2n+ 1)n∈N .
• ρf,λ has large image.

By Corollary 5.8 there is an embedding Kf,λ ↪→ Ql, a Galois totally real extension
F/Q and a quadratic imaginary field E, together with a place wq|q of M = FE

such that if we choose a set S̃l of places of M consisting of one place above each
place of F dividing l, and define σk ∈ (Zn)Hom(M,K) by (σk)τ,i = (k − 2)(n − i),
then

• for each n ∈ N , there is a character φ̄n : Gal(M/M) → F×l which is

unramified at all places in S̃l and satisfies

φ̄nφ̄
c
n = (εdet ρf,λ ⊗ Fl)1−n|Gal(M/M),



THE SATO-TATE CONJECTURE FOR MODULAR FORMS OF WEIGHT 3 23

and (Symn−1 ρf,λ⊗Fl)|Gal(M/M)⊗ φ̄n is automorphic of weight σk and type

{Spn(1)}{wq}.
• l is unramified in M .

• M is linearly disjoint from Qker(ρf,λ)
over Q.

Fix n ∈ N , and let ρ := Symn−1 ρf,λ|Gal(F/F )⊗Ql. There is a crystalline character

χ : Gal(F/F )→ O×Ql which is unramified above q such that

ρ∨ ∼= ρχεn−1;

in fact,

χ = (ε det ρf,λ ⊗OQl)
1−n|Gal(F/F ).

By Lemma 4.1.6 of [CHT08] we can choose an algebraic character

ψ : Gal(M/M)→ O×Ql
such that

• χ|Gal(M/M) = ψψc,

• ψ is crystalline,
• ψ is unramified at each place in S̃l.
• ψ is unramified above q,
• ψ̄ = φ̄n.

Then ρ′ = ρ|Gal(M/M)ψ satisfies

(ρ′)c ∼= (ρ′)∨ε1−n.

We claim that ρ′ is automorphic of weight σk, level prime to l and type {Spn(1)}{wq}.
This follows from Theorem 5.2 of [Tay08]; we now check the hypotheses of that the-
orem. Certainly ρ̄′ ∼= (Symn−1 ρf,λ ⊗ Fl)|Gal(M/M) ⊗ φ̄n is automorphic of weight

σk, level prime to l and type {Spn(1)}{wq}. The only non-trivial conditions to check
are that:

• Mker ad ρ′

does not contain M(ζl), and
• The image ρ′(Gal(M/M(ζl))) is big in the sense of Definition 2.5.1 of

[CHT08].

These both follow from the assumption that ρf,λ has large image, the fact that M

is linearly disjoint from Qker(ρf,λ)
over Q, Corollary 2.5.4 of [CHT08], and the fact

that PSL2(k) is simple if k is a finite field of cardinality greater than 3.
It follows from Lemma 4.3.3 of [CHT08] that ρ is automorphic. Then from

Lemma 4.3.2 of [CHT08] we see that for each F ′ with F/F ′ soluble, Symn−1 ρf,λ|Gal(F/F ′)

is automorphic, as required. �

Corollary 6.2. Suppose that f is a cuspidal newform of level Γ1(N) and weight
k = 2 or 3. Suppose that f is potentially Steinberg at q. Let N be a finite set of
even positive integers. Then there is a Galois totally real field F such that for any
n ∈ N and any subfield F ′ ⊂ F with F/F ′ soluble, Symn−1 f is automorphic over
F ′.

Proof. Let θ be a Dirichlet character such that f ′ = f ⊗ θ is Steinberg at q. The
result then follows from Theorem 6.1 applied to f ′. �
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7. The Sato-Tate Conjecture

7.1. Let f be a cuspidal newform of level Γ1(N), nebentypus χf , and weight k ≥ 2.
Suppose that χf has order m, so that the image of χf is precisely the group µm
of m-th roots of unity. Let U(2)m be the subgroup of U(2) consisting of matrices
with determinant in µm. For each prime l - N , if we write

X2 − alX + lk−1χf (l) = (X − αll(k−1)/2)(X − βll(k−1)/2)

then (by the Ramanujan conjecture) the matrix(
αl 0
0 βl

)
defines a conjugacy class xf,l in U(2)m. A natural generalisation of the Sato-Tate
conjecture is

Conjecture 7.1. If f is not of CM type, then the conjugacy classes xf,l are equidis-
tributed with respect to the Haar measure on U(2)m (normalised so that U(2)m has
measure 1).

The group U(2)m is compact, and its irreducible representations are given by

deta⊗SymbC2 for 0 ≤ a < m and b ≥ 0. By the corollary to Theorem 2 of
section I.A.2 of [Ser68] (noting the different normalisations of L-functions in force
there), Conjecture 7.1 follows if one knows that for each b ≥ 1, the functions

L(χaf ⊗ Symb f, s) are holomorphic and non-zero for <s ≥ 1 + b(k − 1)/2 (the

required results for b = 0 are classical).

Theorem 7.2. Suppose that f is a cuspidal newform of level Γ1(N), character
χf , and weight k = 2 or 3. Suppose that χf has order m. Suppose also that f is
potentially Steinberg at q for some prime q. Then for all integers 0 ≤ a < m, b ≥ 1
the function L(χaf ⊗Symb f, s) has meromorphic continuation to the whole complex
plane, satisfies the expected functional equation, and is holomorphic and nonzero
in <s ≥ 1 + b(k − 1)/2.

Proof. The argument is very similar to the proof of Theorem 4.2 of [HSBT09]. We
argue by induction on b; suppose that b is odd, and the result is known for all
1 ≤ b′ < b. We will deduce the result for b and for b + 1 simultaneously. Apply
Corollary 6.2 with N = {2, b+ 1}. Let F be as in the conclusion of Corollary 6.2.
By Brauer’s theorem, we may write

1 = Σjaj Ind
Gal(F/Q)
Gal(F/Fj)

χj

where F ⊃ Fj with F/Fj soluble, χj a character Gal(F/Fj) → C×, and aj ∈ Z.

Then for each j, Symb f is automorphic over Fj , corresponding to an RAESDC rep-
resentation πj of GLb+1(AFj ). In addition, f is automorphic over Fj , corresponding
to an RAESDC representation σj of GL2(AFj ).

Then we have

L(χaf ⊗ Symb f, s) =
∏
j

L(πj ⊗ (χj ◦ArtFj )⊗ (χaf ◦NFj/Q), s)aj ,

L(χaf ⊗ Sym2 f, s) =
∏
j

L((Sym2 σj)⊗ (χj ◦ArtFj )⊗ (χaf ◦NFj/Q), s)aj ,
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and

L(χaf⊗Symb+1 f, s)L(χa+1
f ⊗Symb−1 f, s−k+1) =

∏
j

L((πj⊗(χj◦ArtFj )⊗(χaf◦NFj/Q))×σj , s+b(k−1)/2)aj .

The result then follows from the main results of [CPS04] and [GJ78] (in the case
b = 1) together with Theorem 5.1 of [Sha81]. �

Corollary 7.3. Suppose that f is a cuspidal newform of level Γ1(N) and weight
k = 2 or 3. Suppose also that f is potentially Steinberg at q for some prime q.
Then Conjecture 7.1 holds for f .

Finally, we note that one can make this result more concrete, as one can eas-
ily explicitly determine the Haar measure on U(2)m from that of its finite index
subgroup SU(2). One finds that (as already follows from Dirchlet’s theorem) the
classes xf,l are equidistributed by determinant, and that furthermore the classes
with fixed determinant are equidistributed with respect to the natural analogue of
the usual Sato-Tate measure. That is, suppose that ζ ∈ µm, and fix a square root
ζ1/2 of ζ. Then any conjugacy class xf,l in U(2)m with determinant ζ contains a
representative of the form (

ζ1/2eiθl 0
0 ζ1/2e−iθl

)
with θl ∈ [0, π], and the θl are equidistributed with respect to the measure 2

π sin2 θdθ.
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