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ABSTRACT. We prove an automorphy lifting theorem for l-adic representations
where we impose a new condition at [, which we call ‘potential diagonalizabil-
ity’. This result allows for ‘change of weight’ and seems to be substantially
more flexible than previous theorems along the same lines. We derive several
applications. For instance we show that any irreducible, totally odd, essen-
tially self-dual, regular, weakly compatible system of [-adic representations of
the absolute Galois group of a totally real field is potentially automorphic, and
hence is pure and its L-function has meromorphic continuation to the whole
complex plane and satisfies the expected functional equation.

2000 Mathematics Subject Classification. 11F33.

The second author was partially supported by NSF grant DMS-0841491, the third author was
partially supported by NSF grant DMS-0635607 and the fourth author was partially supported
by NSF grants DMS-0600716 and DMS-1062759 and by the Oswald Veblen and Simonyi Funds
at the IAS.



2 THOMAS BARNET-LAMB, TOBY GEE, DAVID GERAGHTY, AND RICHARD TAYLOR

INTRODUCTION.

Suppose that F' and M are number fields, that S is a finite set of primes of F' and
that n is a positive integer. By a weakly compatible system of n-dimensional [-adic
representations of Gp defined over M and unramified outside S we shall mean a
family of continuous semi-simple representations

IS GF — GLH(M)\),

where A runs over the finite places of M, with the following properties.

e If v ¢ S is a finite place of F, then for all A not dividing the residue charac-
teristic of v, the representation r, is unramified at v and the characteristic
polynomial of 7y (Frob,) lies in M[X] and is independent of A.

e Each representation 7, is de Rham at all places above the residue charac-
teristic of A, and in fact crystalline at any place v ¢ S which divides the
residue characteristic of A.

e For each embedding 7 : F < M the 7-Hodge Tate numbers of ry are
independent of \.

In this paper we prove the following theorem (see Theorem [5.4.1)).

Theorem A. Let {r)} be a weakly compatible system of n-dimensional l-adic rep-
resentations of Gg defined over M and unramified outside S, where for simplicity
we assume that M contains the image of each embedding F — M. Suppose that
{rx} satisfies the following properties.

(1) (Irreducibility) Each ry is irreducible.

(2) (Regularity) For each embedding 7 : F — M the representation ry has n
distinct T-Hodge—Tate numbers.

(3) (Odd essential self-duality) F is totally real; and either each ry factors
through a map to GSp,, (M) with a totally odd multiplier character; or
each ry factors through a map to GO, (M) with a totally even multiplier
character. Moreover in either case the multiplier characters form a weakly
compatible system.

Then there is a finite, Galois, totally real extension of F over which all the
r)’s become automorphic. In particular for any embedding v : M — C the partial
L-function L°(1{ry},s) converges in some right half plane and has meromorphic
continuation to the whole complex plane.

This is not the first paper to prove potential automorphy results for compati-
ble systems of [-adic representations of dimension greater than 2, see for example
[HSBT10], [BLGHT11], [BLGGII]. However previous attempts only applied to
very specific, though well known, examples (e.g. symmetric powers of the Tate
modules of elliptic curves) and one had to exploit special properties of these exam-
ples. We believe this is the first general potential automorphy theorem in dimension
greater than 2, and we are hopeful that it can be applied to many examples. We
give an analogous theorem when F' is an imaginary CM field. Other than this we
do not see how to improve much on this theorem using current methods.

As one example application, suppose that /X is a finite set of positive integers such
that the 2#X possible partial sums of elements of C are all distinct. For each k € K
let fi be an elliptic modular newform of weight £+1 without complex multiplication.
Then the #/KC-fold tensor product of the l-adic representations associated to the
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fr is potentially automorphic and the #/-fold product L-function for the fj has
meromorphic continuation to the whole complex plane. (See Corollary )

The proof of Theorem [A] follows familiar lines. One works with r for one suit-
ably chosen A. One finds a motive X over some finite Galois totally real extension
F’/F which realizes the reduction 7y in its mod | cohomology and whose mod I’
cohomology is induced from a character. One tries to argue that by automorphic
induction the mod I’ cohomology is automorphic over F’, hence by an automorphy
lifting theorem the ’-adic cohomology is automorphic over F”, hence tautologically
the mod ! cohomology is automorphic over F’ and hence, finally, by another au-
tomorphy lifting theorem r) is automorphic over F’. To find X one uses a lemma
of Moret-Bailly [MB89], [GPRI5] and for this one needs a family of motives with
distinct Hodge numbers, which has large monodromy. Griffiths transversality tells
us that this will only be possible if the Hodge numbers of the motives are consecu-
tive (e.g 0,1,2,...,n — 1). Thus the l-adic cohomology of X may be automorphic
of a different weight (infinitesimal character) than r) and the second automorphy
lifting theorem needs to incorporate a ‘change of weight’. In addition it seems that
we can in general only expect to find X over an extension F'/F which is highly
ramified at [. Thus our second automorphy lifting theorem needs to work over a
base which is highly ramified at [. These two, related problems were the principal
difficulties we faced. The original higher dimensional automorphy lifting theorems
(see [CHTOS], [Tay08]) could handle neither of them. In the ordinary case one of
us (D.G.) proved an automorphy lifting theorem that uses Hida theory and some
new local calculations to handle both of these problems (see [Ger(9]). This has
had important applications, but its applicability is still severely limited because we
don’t know how to prove that many compatible systems of [-adic representations
are ordinary infinitely often.

The main innovation of this paper is a new automorphy lifting theorem that
handles both these problems in significant generality. One of our key ideas is to
introduce the notion of a potentially crystalline representation p of the absolute
Galois group of a local field K being potentially diagonalizable: p is potentially
diagonalizable if there is a finite extension K’/K such that p|g,, lies on the same
irreducible component of the universal crystalline lifting ring of p|g,., (with fixed
Hodge-Tate numbers) as a sum of characters lifting p|g,.,. (We remark that this
does not depend on the choice of integral model for p.) Ordinary crystalline rep-
resentations are potentially diagonalizable, as are crystalline representations in the
Fontaine—Laffaille range (i.e. over an absolutely unramified base and with Hodge—
Tate numbers in the range [0, — 2]). Potential diagonalizability is also preserved
under restriction to the absolute Galois group of a finite extension. In this sense
they behave better than ‘crystalline representations in the Fontaine-Laffaille range’
which require the ground field to be absolutely unramified. Finally ‘potentially
diagonalizable’ representations are perfectly suited to our method of proving auto-
morphy lifting theorems that allow for a change of weight. It seems to us to be a
very interesting question to clarify further the ubiquity of potential diagonalizabil-
ity. Could every crystalline representation be potentially diagonalizable? (We have
no reason to believe this, but we know of no counterexample.)

The following gives an indication of the sort of automorphy lifting theorems we
are able to prove. (See Theorem and also section for the definition of any
notation or terminology which may be unfamiliar.)
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Theorem B. Let F' be an imaginary CM field with maximal totally real subfield
F* and let ¢ denote the non-trivial element of Gal (F/F*). Let n denote a positive
integer. Suppose that I > 2(n + 1) is a prime such that F does not contain a
primitive I*" root of 1. Let

r:Gr — GL,(Q))

be a continuous irreducible representation and let T denote the semi-simplification
of the reduction of r. Also let
—X
w:Gp+r — Q
be a continuous character. Suppose that v and p enjoy the following properties:
(1) (Odd essential conjugate-self-duality) r¢ = rVu and p(c,) = —1 for
all v|oo.
(2) (Unramified almost everywhere) r ramifies at finitely many primes.
(3) (Potential diagonalizability and regularity) |, is potentially diag-
onalizable (and so in particular potentially crystalline) for all v|l and for
each embedding T : F — Q, it has n distinct 7-Hodge—Tate numbers.
(4) (Irreducibility) The restriction T\, is irreducible.
(5) (Residual ordinary automorphy) There is a regular algebraic, cuspidal,
polarized automorphic representation (m,x) of GL,(Ar) such that

(7. 1) = (Fra(m), T (07 ")
and 7 is 1-ordinary.

Then (r,u) is automorphic.

Theorem [B| implies the following potential automorphy theorem for a single I-
adic representation, from which Theorem |A| can be deduced. (See Corollary
and Theorem [5.5.1])

Theorem C. Suppose that F is a totally real field. Let n be a positive integer and
let 1 >2(n+1) be a prime. Let

T GF — GLn(@l)

be a continuous representation. We will write T for the semi-simplification of the
reduction of r. Suppose that the following conditions are satisfied.

(1) (Unramified almost everywhere) r is unramified at all but finitely many
primes.

(2) (Odd essential self-duality) FEither r maps to GSp,, with totally odd
multiplier or it maps to GO,, with totally even multiplier.

(3) (Potential diagonalizability and regularity) r is potentially diagonal-
izable (and hence potentially crystalline) at each prime v of F' above l and
for each 7 : F < Q, it has n distinct T-Hodge—Tate numbers.

(4) (Irreducibility) 7|, is irreducible.

Then we can find a finite Galois totally real extension F'/F such that r|g,, is
automorphic. Moreover r is part of a weakly compatible system of l-adic representa-
tions. (In fact, r is part of a strictly pure compatible system in the sense of section

F1)

This theorem has other applications besides Theorem[A] For instance we mention
the following irreducibility result (see Theorem [5.5.2)).
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Theorem D. Suppose that F is a CM field and that 7 is a regular, algebraic,
essentially conjugate self-dual, cuspidal automorphic representation of GL,(Ap).
If 7o has sufficiently reqular weight (‘extremely regular’ in the sense of section
, then for l in a set of rational primes of Dirichlet density 1 the n-dimensional
l-adic representations associated to w are irreducible.

To prove Theorem We employ Harris’ tensor product trick (see [Har09]), which
was first employed in connection with change of weight in [BLGG11]. However the
freedom that ‘potential diagonalizability’ gives us to make highly ramified base
changes in the non-ordinary case means that this method becomes more powerful.
More precisely, suppose that r is potentially diagonalizable, and that ry is a po-
tentially diagonalizable, automorphic lift of 7 (with possibly different Hodge—Tate
numbers to ). In fact making a finite soluble base change we can assume they are
diagonalizable, i.e. we can take K’ = K in the definition of potential diagonaliz-
ability. We choose a cyclic extension M/F of degree n in which each prime above
[ splits completely, and two l-adic characters 8 and 6y of Gj; such that

b é = 507

e the restriction of Ind g;@ to an inertia group at a prime |l realizes a
diagonal point on the same component of the universal crystalline lifting
ring of 7la,, as rlay,,

e and the restriction of Ind g; 6o to an inertia group at a prime v|l realizes
a diagonal point on the same component of the universal crystalline lifting
ring of 7|y, as rolay, -

Then r9 ® Ind gi{@ is automorphic and has the same reduction as r ® Ind g; Oo.
Moreover the restrictions of these two representations to the decomposition group
at a prime v|l lie on the same component of the universal crystalline lifting ring
of (T ® Ind gij?o)\g%. This is enough for the usual Taylor-Wiles-Kisin argument

to prove that r ® Ind gi; oy is also automorphic, from which we can deduce (as in
[BLGHT11]) the automorphy of r.

Things are a little more complicated than this because it seems to be hard to
combine this with the ‘level changing’ argument in [Tay08]. In addition a direct
argument imposes minor, but unwanted, conditions on the Hodge—Tate numbers of
ro and 7. So instead of going directly from the automorphy of ry to that of r we
create two ordinary lifts 71 and r5 of 7 (at least after a base change) where r1 has the
same local behavior away from [ as 7g; ro has the same local behavior away from [
as r; and where the Hodge-Tate numbers of r; and 79 are chosen suitably. Our new
arguments allow us to deduce the automorphy of r; from that of ro. D.G.’s results
in the ordinary case [Ger(9] allow us to deduce the automorphy of ry from that of
r1. Finally applying our new argument again allows us to deduce the automorphy
of r from the automorphy of ro. To construct 1 and ry we use the method of Khare
and Wintenberger [KW09] based on potential automorphy (in the ordinary case,
where it is already available: see for example [BLGHTTI]).

Along the way we also prove a general theorem about the existence of [-adic lifts
of a given mod | Galois representation with prescribed local behavior (see Theorem
. We deduce a rather general theorem about change of weight and level (see
Theorem of which a very particular instance is the following.

Theorem E. Let n be a positive integer and let | > 2(n + 1) be a prime. Fix
1:Q, = C. Let F be a CM field such that all primes of F above | are unramified
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over Q and split over the mazimal totally real subfield of F. Let m be a regular,
algebraic, polarizable, cuspidal automorphic representation of GL,(Ar) satisfying
the following conditions:

e T is unramified above l;

® Too has weight (ar;)r.resc, i=1,.;n Withl —n —1 > a;1 > arp > --+ >
arn >0 for all 7;

e and the restriction to G,y of the mod | Galois representation Ty ,(m) as-
sociated to m and v s irreducible.

Note that in this case ar; + Grepnt1—i = W 5 independent of T and . Suppose that
we are given a second weight (a’m)ﬂpqc, i=1,.n Withl—n—1> a’T,1 > a’T’2 >
e >al, >0 forall T, such that

e a ;+al. ., .1 ;=mwis also independent of T and i,
e and for all places v|l of F the restriction 71,(7)|q, has a lift which is
crystalline with 7-Hodge—Tate numbers {a;,, ; +mn —i}.

Then there is a second regular, algebraic, polarizable, cuspidal automorphic repre-
sentation 7' of GLy, (Ap) giving rise (via 1) to the same mod l Galois representation
(i.e. ‘congruent to m mod l’) such that 7' is also unramified above | and 7 has
weight (a’ ;).

We remark that combining the results of this paper with work of Caraiani, one
can deduce full local global compatibility of the I-adic representations associated to
regular algebraic, essentially conjugate self-dual, cuspidal automorphic representa-
tions of GL,, over a CM or totally real field. (See [BLGGTTI] and [Car12bh].)

We also remark that Stefan Patrikis and one of us (R.T.) recently combined the
methods and results of this paper with one further idea, originating in [Pat12], and
obtained variants of theorems [A] and [D] which are perhaps more useful in practice.
(See [PT12].) More specifically they proved a version of theorem |A| where the
irreducibility assumption is replaced by a purity assumption. This is useful because
for many compatible systems arising from geometry purity is known by Deligne’s
theorem, but irreducibility can be hard to check. In particular one can deduce the
meromorphic continuation and functional equation of the L-function of any regular,
pure, self-dual motive over a totally real field. They also prove a version of theorem
in which the hypothesis that 7., is ‘extremely regular’ is weakened to ‘regular’,
but the conclusion is also weakened to give irreducibility only above a set of rational
primes of positive Dirichlet density.

We now explain the structure of the paper. In section [I] we collect some results
about the deformation theory of Galois representations. These are mostly now fairly
standard results but we recall them to fix notations and in some cases to make slight
improvements. The main exception is the introduction of potential diagonalizability
in section [1.4] which is new and of key importance for us. In section [2] we fix
some notations and we recall the existing automorphy lifting theorems (or slight
generalizations of them). Very little in this section is novel. Between the writing of
the first and second versions of this paper, Jack Thorne [Thol2|] has found improved
versions of these theorems which allow one to remove the troublesome ‘bigness’
conditions from [CHTO8] and the papers that followed it. Moreover Ana Caraiani
[Carl2a], [Carl2b|] has proved local-global compatibility in all [ # p cases, as well
as proving temperedness of all regular algebraic, polarizable, cuspidal automorphic
representations, and the purity of all the Weil-Deligne representations associated to
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the l-adic representation associated to automorphic representations including the
I = p case. We have taken advantage of Caraiani’s and Thorne’s works to optimize
our own results. In section [3| we make use of the automorphy lifting theorems from
section [2] and the Dwork family to prove a potential automorphy theorem (in the
ordinary case) and a theorem about lifting mod [ Galois representations (again
in the ordinary case). These arguments follow those of [BLGHT11] and will not
surprise an expert.

In section [4] we prove our main new theorems. Section [4.1] contains our main
new argument. In section we combine this with the results of sections [2| and
to obtain our optimal automorphy lifting theorem. In section we use the
same ideas to deduce an improved result about the existence of [-adic lifts of mod
I Galois representations with specified local behavior. Combining the results of
sections (4.2 and we deduce in section 4.4] a general theorem about change of
weight and level for mod [ automorphic forms on GL,. Then in section we
use the automorphy lifting theorem of section and our potential automorphy
theorem from section to deduce our main new potential automorphy result for
a single [-adic representation.

In section [5] we turn to applications of our main results. In section [5.1] we recall
definitions connected to compatible systems of [-adic representations. In sections
and we prove some group theoretic lemmas about the images of compatible
systems of [-adic representations. Then in section [5.4] we deduce from the potential
automorphy theorem of section our main theorem — a potential automorphy
theorem for compatible systems of l-adic representations. Finally in section [5.5]
we give further applications of our main results — applications to fitting an [-adic
representation into a compatible system and to the irreducibility of some [-adic
representations associated to cusp forms on GL(n).

In the appendix we record some miscellaneous results which we use elsewhere
in the paper. Some of these are results we suspect are ‘well known’, but for which
we couldn’t find a reference. In these cases we give a proof. Others are results for
which we know a reference, but which we hope it may assist the reader to recall
here.

We would like to thank the anonymous referees for a thorough and intelligent
reading of our paper, and for the numerous helpful suggestions they made to im-
prove the exposition. We would also like to thank Kevin Buzzard, Florian Herzig,
Wansu Kim and James Newton for their comments on an earlier draft of the pa-
per. We are grateful to Ana Caraiani and Jack Thorne for sharing with us early
drafts of their papers [Carl2a], [Car12b] and [Thol2]; and to Brian Conrad and
Jiu-Kang Yu for answering our questions about commutative algebra and hyper-
special maximal compact subgroups, respectively. This paper was written at the
same time as [BLGGI2|] and there was considerable cross fertilization. Our paper
would have been impossible without Harris” tensor product trick and it is a pleasure
to acknowledge our debt to him.

Notation. We write all matrix transposes on the left; so ‘A is the transpose of A.
Let gl,, denote the space of n x n matrices with the adjoint action of GL,, and let
sl, denote the subspace of trace zero matrices. We will write O(n) (resp. U(n)) for
the group of matrices g € GL,,(R) (resp. GL,(C)) such that ‘g°g = 1,,.

If R is a local ring we write mp for the maximal ideal of R.
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If A is an abelian group we will let AT denote its maximal torsion subgroup
and A its maximal torsion free quotient. If T' is a profinite group then I'*P will
denote its maximal abelian quotient by a closed subgroup. If p : I' — GL,(Q,) is
a continuous homomorphism then we will let 5 : I' — GL,(FF;) denote the semi-
simplification of its reduction, which is well defined up to conjugacy.

If M is a field, we let M denote an algebraic closure of M and G, the absolute
Galois group Gal (M /M). We will use ¢, to denote a primitive n'"-root of 1. Let ¢
denote the [-adic cyclotomic character and €; its reduction modulo . We will also
let w; : Gar — -1 C Z;° denote the Teichmuller lift of &. If N/M is a separable
quadratic extension we will let d /s denote the non-trivial character of Gal (N/M).

If I' is a profinite group and M is a topological abelian group with a continuous
action of T, then by H'(I", M) we shall mean the continuous cohomology.

We will write Q;- for the unique unramified extension of QQ; of degree r and Z;-
for its ring of integers. We will write Q}'" for the maximal unramified extension of
Q; and Z;* for its ring of integers. We will also write Z?r for the [-adic completion
of Z;* and @}“ for its field of fractions.

If K is a finite extension of Q, for some p, we write K" for its maximal un-
ramified extension; Ik for the inertia subgroup of Gk; Frobx € Gk /Ik for the
geometric Frobenius; and W for the Weil group. If K'/K is a Galois exten-
sion we will write Ix/ /g for the inertia subgroup of Gal (K'/K). We will write

~

Art i+ KX 5 W2 for the Artin map normalized to send uniformizers to geomet-
ric Frobenius elements. We will let reck be the local Langlands correspondence of
[HTO1], so that if 7 is an irreducible complex admissible representation of GL,, (K),
then reck (m) is a Frobenius semi-simple Weil-Deligne representation of the Weil
group Wg. We will write rec for reck when the choice of K is clear. If (r, N)
is a Weil-Deligne representation of Wy we will write (r, N)¥'= for its Frobenius
semisimplification. If p is a continuous representation of Gx over Q; with [ # p
then we will write WD(p) for the corresponding Weil-Deligne representation of Wi .
(See for instance section 1 of [I'Y07].) By a Steinberg representation of GL,,(K)
we will mean a representation Sp,,(¢) (in the notation of section 1.3 of [HT01])
where 1 is an unramified character of K*. If m; is an irreducible smooth repre-
sentation of GL,,(K) for i = 1,2 we will write m B mo for the irreducible smooth
representation of GLy,, yn, (K) with rec(m B m3) = rec(m) @ rec(ms). If K'/K is
a finite extension and if 7 is an irreducible smooth representation of GL, (K) we
will write BC g/ () for the base change of 7 to K’ which is characterized by
reci/ (BC g /i (7)) = reck (7)|w,., -

If p is a continuous de Rham representation of G over Q, then we will write
WD(p) for the corresponding Weil-Deligne representation of Wi, and if 7 : K < Q,
is a continuous embedding of fields then we will write HT,(p) for the multiset of
Hodge-Tate numbers of p with respect to 7. Thus HT,(p) is a multiset of dim p
integers. In fact if W is a de Rham representation of G over Q; and if 7 : AK — Q
then the multiset HT (W) contains ¢ with multiplicity dimg (W ®r k K(i))Cx.
Thus for example HT,(¢;) = {—1}.

We will let ¢ denote complex conjugation on C. We will write Art g (resp. Art¢)
for the unique continuous surjection

R* —» Gal (C/R)
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(resp. C* — Gal (C/C)). We will write recc (resp. recg), or simply rec, for the local
Langlands correspondence from irreducible admissible (Lie GL,(R) ®@g C,O(n))-
modules (resp. (Lie GL,(C) ®g C,U(n))-modules) to continuous, semi-simple n-
dimensional representations of the Weil group Wg (resp. W¢). (See [Lang9].) If 7; is
an irreducible admissible (Lie GL,, (R) @ C, O(n;))-module (resp. (Lie GL,, (C) Qg
C,U(n;))-module) for i = 1,...,r and if n = ny + - -- + n,, then we define an irre-
ducible admissible (Lie GL,, (R)®rC, O(n))-module (resp. (Lie GL, (C)®QrC, U(n))-
module) 71 B --- B, by

rec(m B ---Hm,.) =rec(m) ® - - - D rec(m,.).

If 7 is an irreducible admissible (Lie GL,(R) ®r C, O(n))-module then we define
BC¢/r(7) to be the irreducible admissible (Lie GL,(C)®rC, U(n))-module defined
by

recc(BC ¢ r(m)) = recr(m)|w.

We will write || || for the continuous homomorphism
I =TI [ : A%/Q¢ — RZ,,
v

where each | |, has its usual normalization, i.e. [p|, = 1/p.
Now suppose that K/Q is a finite extension. We will write || ||x (or simply || ||)
for || || o Ng,q. We will also write

Art g = [JArt ke, s Aj /KX (KX)? 5 G

If v is a finite place of K we will write k(v) for its residue field, ¢, for #k(v),
and Frob, for Frobg, . If v is a real place of K then we will let [¢,] denote the
conjugacy class in Gk consisting of complex conjugations associated to v. If K'/K
is a quadratic extension of number fields we will denote by dx/,x the nontrivial
character of Ay /K*Ng/ /Ay, (We hope that this will cause no confusion with
the Galois character dg/ k. One equals the composition of the other with the
Artin map for K.) If K'/K is a soluble, finite Galois extension and if 7 is a
cuspidal automorphic representation of GL,,(Ax) we will write BC g,k () for its
base change to K', an (isobaric) automorphic representation of GL,, (Ak) satisfying

BC gk (m)y = BC KL /Ky (Tulx)

for all places v of K’. If m; is an automorphic representation of GL,,(Ak) for
i = 1,2 we will write m B 7y for the automorphic representation of GL,,, 41, (AK)
satisfying

(m1 B )y =m0 Bray

for all places v of K.

We will call a number field K a CM field if it has an automorphism ¢ such that
for all embeddings i : K < C one has coi =ioc. In this case either K is totally
real, or a totally imaginary quadratic extension of a totally real field. In either case
we will let KT denote the maximal totally real subfield of K.

Suppose that K is a number field and

x:AR/K* — C*
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is a continuous character. If there exists a € ZHo™ (5:C) such that
Xl (rxyo 0 T — H (rz)?r

T€Hom (K,C)
we will call x algebraic. In this case we can attach to x and a rational prime [ and
an isomorphism ¢ : Q; = C, a unique continuous character

—X
ria(x) : Ge — Q
such that for all v/l we have
1071, (X)|wi, © Att K, = Xo-

There is also an integer wt(x), the weight of x, such that

x| = | |07,

(See the discussion at the start of Section for more details.)
If F is a totally real field we call a continuous character

x:Ag/K* — C~
totally odd if x,(—1) = —1 for all v|oo. Similarly we call a continuous character
w:Gg — @lx
totally odd if u(e,) = —1 for all v|oc.
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1. DEFORMATIONS OF GALOIS REPRESENTATIONS.

1.1. The group G,.

We let G,, denote the semi-direct product of G = GL,, x GL; by the group {1, 7}

where

-1 1

Ng,a)y™' = (a'g™" a).
We let v : G, — GL; be the character which sends (g,a) to a and sends j to —1.
We will also let GSp,,, C GLg,, denote the symplectic similitude group defined by

the anti-symmetric matrix
_ 0o 1,
J2n — ( _]-n 0 ) )

and we will again let v : GSp,,, — GL; denote the multiplier character. Finally let
GO,, denote the orthogonal similitude group defined by the symmetric matrix 1,,.
There is a natural homomorphism

Gn X G — Gn /G2 X G /GO — {£1}

which sends both (j,1) and (1,3) to —1. Let (G, X Gn)T denote the kernel of this
map. There is a homomorphism

& : (gn X grn)Jr I gnm
(g,a) x (¢',a") +— (9®@¢' aa")
JX3 ]

There is also a homomorphism

I1:G, — GSp,y,
0
(gaa) — g 1 >

0 alg~
(0 L
J 1, 0 )

Suppose that I' is a group with a normal subgroup A of index 2 and that ~y €
I' — A. Suppose also that A is a ring and that r : T' = G,,(A) is a homomorphism
with A = r=1G%(A). Write # : A — GL,(A) for the composition of r|a with
projection to GL,,(A). Write r(y9) = (a,—(v o 7)(70))s. Then

(10875 )a'7(8) = (vor)(d)a
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for all § € A, and
(%) a = —(vor)(10)a.

If r : I' = GSp,,(A4) is a homomorphism with multiplier p, then it gives rise
to a homomorphism 7o : I' = G, (A) which sends 6 € A to (r(d),u(d)) and
yeT —Ato (r(y) 5!, —p(7)). Then A = 7,'GY, (A) and v o #a = p. Similarly
if r: T — GO, (A) is a homomorphism with multiplier u, then it gives rise to a
homomorphism #a : ' = G, (A) which sends § € A to (r(5),u(d)) and vy € T' — A
to (7(7), 1(7))7- Then A = #:*G9.(A) and v o#a equals the product of y with the
nontrivial character of I'/A.

Ifr: T — Gn(A) (resp. 7’ : T — G,,(A)) is a homomorphism with »~1G%(A4) = A
(resp. (r')71GY (A) = A) then we define

I(r)y=TIor:T — GSp,,(A)

and
r@r' =o(rxr):T — Gum(A).
Note that the multiplier of I(r) equals the multiplier of r and that the multiplier
of r @ r’ differs from the product of the multipliers of r and ' by the non-trivial
character of I'/A.
Ifxy:A— A% and p: T — A* satisfy

* XX = p|a, and

o x(73) = —n(v0):
(i.e. the composition of x with the transfer map I'*® — A" equals the product of
w and the non-trivial character of I'/A), then there is a homomorphism

(om0 — Gi(4)
6 — (x(0),p(6))
o= (X ) =),
for all 6 € A and vy € I' — A. We have v o (x, ) = p.

(At the referee’s suggestion we include a proof that (x, u) is indeed a homomor-
phism in an attempt to convince the reader that all the unsupported assertions of
this section can be checked in an entirely elementary way. Suppose that d1,d0 € A
and v1,v2 € I' = A. Then we have

(X 1) (0102) = (X, 1) (1) (x; 1) (92)

G (G172) = (X(617270 D) —1(6172))g
= (6m)(01) 06 ) ()

and

and

(x> 1) (7102) (715270 ), —(7102))7
(17 (00275 1)), —1(7162))g
1) (1) 3(x (00275 1), 1(82)) 7
1) (71) ((82)x 70 (62) F, 1(02))
1

1)) (X 1) (92)

(M7 X (v072), 1(71) (72))

; J ; M(’Yz))
(—n(r2)X (72 7)) 1(72))J
E X (v270) 1 (7) _M(W))

(x
(x
(x
(x
(x

and
G (nye) =

I
TEESES
=TEEE
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as desired.)

In the case that I' = Gp+ and A = G where F' is an imaginary CM field with
maximal totally real subfield F'*, we call r : Gp+ — G, (A) (resp. GSp,,, (A), resp.
GO,,(A)) totally odd if the multiplier character takes every complex conjugation to
—1 (resp. —1, resp. 1). Note that if r is totally odd so is I(r) (resp. #a, resp. #a).

Suppose now that A is a field, that r : A — GL,,(A) is absolutely irreducible,
and that p: ' — A is a character so that

7 2V @ pla.

More precisely if v € I' — A there is a b, € GL,(A4), unique up to scalar multiples,
such that

r(y0y™ )by r(8) = p(6)b,
for all 6 € A. Computing r(7?6v~2) in two ways and using the absolute ir-
reducibility of r, we deduce that r(y?) is a scalar multiple of b,b;'. (Write
F)rO)r(02) ™ = r(320772) = u0)byr(rdr )71yt = (by b3 )r(8) (b, b7)
and apply Schur’s lemma.) Substituting § = 42 in the last displayed equation, we
then deduce that

r(7%) by = £p(7)bs.

One can check that the sign in the above equation is independent of v € T' — A
and we will denote it —sgn (r, u). (To see this one uses the fact that one can take
bsy =r(0)by for § € A and v € I' — A.) Then we get a homomorphism

7y — G (A)
which sends ¢ € A to (r(d),u(d)) and sends vy to (b, —sgn (r, u)i(y0))s. In
particular if sgn (r, 1) = 1 then v o7, = y, while if sgn (r, u) = —1 then g~ (vo7,)
is the non-trivial character of I'/A. Moreover F=r.

1.2. Abstract deformation theory.

Fix a rational prime [ and let O denote the ring of integers of a finite extension
L of @ in Q. Let A denote the maximal ideal of O and let F = O/\. Let T
denote a topologically finitely generated profinite group and let p : I' — GL,,(F) be
a continuous homomorphism.

We will denote by

PP =p3:T = GLn(Raﬁ)
the universal lifting (or ‘framed deformation’) of p to a complete noetherian local
O-algebra with residue field F. (We impose no equivalence condition on lifts other
than equality.) We will write
RZ®Q

for ngﬁ ®e Q. The following lemma is presumably well known, but as we don’t
know a reference, we give a proof.

Lemma 1.2.1. Suppose that O is the ring of integers of a finite extension L'/L.
Then the map

Rg 5 — Ro5®0 O’
coming from the universal property of Rg/yﬁ and pg ® O’ is an isomorphism. In

particular, as the notation suggests, the ring R%' ®Q, does not depend on the choice
of L.
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Proof. Let R%,’Fﬁ denote the closed subring of R(Dg,ﬁ consisting of elements which
reduce to an element of IF modulo the maximal ideal. Then R%,’F’ﬁ is a complete,
noetherian local O-algebra with residue field F and p3, is defined over Rg/,IF,ﬁ' Thus
the universal property of R(Dj’ﬁ gives rise to a map R(Dg’ﬁ — R(%’JF,? under which p%
pushes forward to p&,. This map extends to a O’'-linear map Rg’ﬁ ®o O — R(Dg,,p.
We claim this is an inverse to our map RD,’ﬁ — Rg,p ®p O'.

Under the composite Rg,’ﬁ — R%,’ﬁ the representation pg, pushes forward to
itself, and so this map must be the identity. Consider the composite

O 0 O /
Ro’ﬁ — RO’,ﬁ — RO,ﬁ ®O O .

It factors through the subring (Rgﬁ ®o O C R%yﬁ ®o O’ consisting of elements
which reduce modulo the maximal ideal to an element of F. The representation pg
pushes forward to itself, and so this composite must equal the canonical inclusion,
and we have proved the lemma. O

The maximal ideals are dense in Spec R%’ﬁ[l/l] (see |Gro66, 10.5.7]). A prime
ideal p of Rg’ﬁ[l/l] is maximal if and only if the residue field k(p) = Rg’p[l/l]w/p
is (topologically isomorphic to) a finite extension of L. (For the ‘if’ part note that
the image of R(Dgﬁ in k(p) is a compact O-submodule of k(p) with field of fractions
k(p). Thus R%Vﬁ[l/l] — k(p). For the ‘only if’ part see for instance Lemma 2.6
of [Tay08].) We get a continuous representation p, : I' = GL,,(k(p)). The formal
completion R%E[l / l]g is the universal lifting ring for p,, i.e. if A is an Artinian
local k(p)-algebra with residue field k(p) and if p : T' — GL,(A) is a continuous
representation lifting p,, then there is a unique continuous map of k(p)-algebras
R%ﬁ[l/l]g — A so that p" pushes forward to p. (Let R denote the image of R%ﬁ
in A/my. Let A° denote the R-subalgebra of A generated by the matrix entries of
the image of p. Then A° is a complete noetherian local O-algebra with residue field
Fand p: ' — GL,(A%). The assertion follows easily.) The map which associates
a cocycle ¢ € Z*(T,adp,,) to the lift (1, + ce)p,, of p,, defines an isomorphism
between Z'(T,ad p,,) and the tangent space Hom k(KJ)(R(DQﬁ[l/Z]Q,k(p)[e]/ez). If
H?(T,ad p,) = (0) then R%E[l/l] is formally smooth at p (by the argument of
Proposition 2 of [Maz89], which can be easily adapted to our current situation) of
dimension

dimy(,) Z' (T, ad p,) = n” + dimy,(,) H' (T, ad p,,) — dimy(,) HO(T, ad py,),
where we use continuous cohomology. (We learned these observations from Mark
Kisin.)
Let H denote the subgroup of GLn(R(DQ’ﬁ) consisting of elements which reduce

modulo the maximal ideal to an element that centralizes the image of p. If h € H
then there is a unique continuous homomorphism

¢ R3 5 — Ro 5
such that p™ pushes forward to A~ pPh. We have that

$g © bn = Pyg, (h)-
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(We remark that after definition 2.2.1 of [CHTOS§]| this action is defined for elements
of 1,, + Mn(ng ), but it is incorrectly stated that this defines an action of the
N

group 1, + M, (ngﬁ) on Rg’ﬁ. This is not important in the rest of [CHTO0S].)

Lemma 1.2.2. Keep the notation of the previous paragraph. If h € H then ¢y
fizes each irreducible component of Spec R%’ﬁ[l/l].

Proof. Suppose that h € H and that O is the ring of integers of a finite extension
of I /L in Q;, with maximal ideal \'. Suppose that p : ' = GL, (O’) lifts p. Then
h=1ph also lifts p. (We are using h both for an element of GL,, (ngﬁ) and for its
image in GL,(O’) under the map R%’ﬁ — O induced by p.) Recall (from Lemma
that A = O'(s,t)/(sdet(t1,, + (1 — t)h) — 1) with the X-adic topology is a
complete topological domain. We have a continuous representation

p=(tl, + (1 —t)h) " p(tl, + (1 — t)h) : T — GL,(A).

Let A° denote the closed subalgebra of A generated by the matrix entries of
elements of the image of p and give it the subspace topology. Then

p:T — GL, (A%,

and pmod (AN A% = p, and p pushes forward to p (resp. h~1ph) under the
continuous homomorphism A° — O’ induced by t ~ 1 (resp. t — 0). We will
show that A° is a complete, noetherian local O-algebra with residue field F. It will
follow that there is a natural map R%,ﬁ — A® through which the maps R(Dg,ﬁ - O
corresponding to p and h~!ph both factor. As A° is a domain (being a sub-ring
of A) we conclude that the points corresponding to p and h~!ph lie on the same
irreducible component of Spec R%)ﬁ[l /l]. As any irreducible component contains
an (O’-point which lies on no other irreducible component for some O’ as above
(because such points are Zariski dense in Spec R%’p[l /1]), we see that the lemma
follows. (The referee remarks that it may be helpful to think of this argument as
an instance of homotopy.)

It remains to show that A® is a complete, noetherian, local O-algebra with
residue field F. Let 1, ...,, denote topological generators of I'. Write

p(vi) = ai + by,
where a; € GL,(O) lifts p(7;) and where b; € M, x, (N A). Then A° is the closure

of the O-subalgebra of A generated by the entries of the b;. As these entries are
topologically nilpotent in A we get a continuous O-algebra homomorphism

Ol Xijelli=t1,....rs jk=1,...0 — A

which sends X, to the (j, k)-entry of b;. Let J denote the kernel. As O[[X,;x]]/J is
compact (and A is Hausdorff) this map is a topological isomorphism of O[[X;;x]]/J
with its image in A4 and this image is closed. Thus the image is just A° and we have
Ol Xi;k]]/J = A®, so that A is indeed a complete, noetherian, local O-algebra with
residue field F. O

Now suppose that
7: ' — G, (F)

is a continuous homomorphism such that T' — G,,/GY. Let A denote the kernel of
I' - G,/G% and suppose that 7 : A — GL,(F) is absolutely irreducible. Then
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there is a universal deformation
Tuniv T gn( unlv)

to a complete noetherian local O-algebra with residue field IF, where now we consider
two liftings as equivalent deformations if they are conjugate. (See section 2.2 of
[CHT08].)

Lemma 1.2.3. (1) Suppose that ¥ C T' has finite indezx, that ¥ is not con-

tained in A and that %|Amg is absolutely irreducible. Then the natural map

R“On;‘iz — Run“’ induced by "™ |x makes R%‘f;" a finitely generated R%‘j%’z—

module.

(2) Suppose that s : T — G, (O) is a continuous homomorphism such that

A=51G%(0) and 5T is absolutely irreducible. Then the natural map

“Orfi%@& — R“m" induced by ™V ® s makes R‘”‘“’ a finitely generated
“O’fi?‘ég—module.

(3) Suppose I(T) is absolutely irreducible and that X is another open subgroup

of index two in T' which does not contain ker I(F). Then the natural map

R“@nil"(/r) — REY induced by I(r'iv)y, makes R‘“’“’ a finitely generated
LT ) » ’

unily i odule.
OJ(")z

Proof. This is essentially an abstraction of Lemma 3.2.1 of [BLGGI2).

Write R for Ruon;‘i resp. Riy'To< resp. R‘é)m]"( i and write m for the maximal

ideal of R. We first verify that the image of I in Qn(R“mV / mR‘m“’) is finite. In the
first case we use the inclusions
ker(r™Y mod m) D ker(r"™"|g mod m) = ker(7|x);
in the second we use the inclusions
ker(r™" mod m) D ker((r"™" @ s) mod m) N ker(s mod m) = ker(7 ® 5) N ker5;
and in the third case the inclusions
ker(r™Y mod m) D ker([(/r‘-lﬁ’)Z mod m) = ker I/(\F)Z.

Let m denote the order of the image of I' in gn(R“m" / mR”n“’) and let y1,...,vm

be elements of I" chosen so that their images in G, (R‘”‘“’ / mR‘m“’) exhaust the image
of T'. Let
£(T) = 11 (T — (G + - +¢a)) € FITY
(C1seesCn) Eptmn (F)™

and let A denote the maximal quotient of F[X; ;]; j=1,.n» over which the m
power of the matrix (X, ;) is 1,,. If p is a prime ideal of A then all the roots of
the characteristic polynomial of (X; ;) over A,,/p are m'" roots of unity and hence
ftr(X;;)) = 0in A/p C A,/p. Thus there is a positive integer a such that
f(tr (X;,;))* =0in A. Then we get a map

FTy, ..., Tn)/(f(T)% ..., f(Tn)*) — unlv/mRunlv
T, —— tr r‘”‘“’("yz).

th_

By Lemma 2.1.12 of [CHTO8] (which shows that R is topologically generated
as a O-algebra by the trr'"V(7;)) we see that this map has dense image. On the
other hand the source has finite cardinality. We conclude that the map is surjective
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and that RELY /mRELY is finite over F. Hence by Nakayama’s Lemma we conclude
that that 5";" is finite over R, as desired. O

1.3. Local theory: [ # p.

Continue to fix a rational prime [ and let O denote the ring of integers of a finite
extension L of Q; in Q;. Let \ denote the maximal ideal of O and let F = O/\.
However in this section we specialize our discussion to the case I' = Gk, where
K/Q, is a finite extension and p # {. Thus p : Gx — GL,,(F) is continuous. Write
q for the order of the residue field of K.

In this case the tangent space to R(Dgﬁ[l /l] at a maximal ideal p has dimension

n? 4 dimy,,) H (G, ad py,) — dimy(,) H° (G, ad py)
= n?+dimy,) H*(Gk,ad p,)
= n? —l—dlmk(p) HO(GK,(adpp)(l)),

by the local Euler characteristic formula for Q;-modules and local duality for Q;-
modules. (The proof of Lemma 9.7 of [Kis03] shows that the usual Euler charac-
teristic formula with finite coefficients implies the analogous statement in the case
where the coefficients are finite Q-modules. Theorem 1.4.1 of [Rub00] provides a
reference for local duality for @Q;-modules.) Moreover Rg’ﬁ[l /1] is formally smooth
at a maximal ideal p if H*(Gk, (ad py,)(1)) = (0).

We will call a continuous representation p : Gx — GL,(Q,) robustly smooth
(resp. smooth) if H*(Gk, (ad p,,)(1)) = (0) for all finite extensions K’/K (resp. for
K' = K). Our next aim is to show that the set of closed points of Spec R(Dgﬁ[l/l]
which are robustly smooth is Zariski dense, which will imply that all irreducible
components of Spec R(Dgﬁp[l /1] are generically formally smooth of dimension n?.
(The corresponding result for smooth points can be found in the proof of The-
orem 2.1.6 of [Geell] or in [Cho09], but our proof seems to be different even in this
special case. This case is already sufficient to deduce that all irreducible components
of Spec Rg’ﬁ[l /1] are generically formally smooth of dimension n?.)

Define a partial order on i by a > b if a equals o(b)(¢™ where o € Gal (L/L),
where ( is a root of unity and where m € Z>q. We will write a =~ b (a ‘equivalent’
to b) if a > b and b > a; and we will write a ~ b (a ‘comparable’ to b) if a > b or
b > a. These are both equivalence relations. Further we will write a > b for a > b
but a % b. Choose ¢ € Wi a lift of Frobg. If V is a finite dimensional L-vector

space with an action of Wi with open kernel and if a € L~ then we define V((a))
(resp. V(a)) to be the L-subspace of V such that V((a)) ®p L (resp. V(a) ®p L) is

the sum of the b-generalized eigenspaces of ¢ in V" as b runs over all elements of I
with a ~ b (resp. a ~ b). This is independent of the choice of ¢. (If ¢’ is another
choice then the actions of ¢ and (¢')™ on V are equal for some m € Z~.) Thus
V(a) and V((a)) are Wg-invariant. We have decompositions

V=P Va)

—X
where a runs over L~ / &, and

V=V()

where a runs over fx/ ~. We will say that V has type a if V =V ((a)).
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Lemma 1.3.1. Suppose that (r,N) is a Weil-Deligne representation of Wi on a
finite dimensional L-vector space V. Then we can write

u S
v=-DDv

i=1 j=1
where
o V;; is invariant under I ;
e N:V;; 5 Vij+1 unless j = s; in which case NV, ;, = (0);

o WigVi; CVij @@:;11 It Vir jrand so we get an induced action of Wi on
Viji | A

e the action of Wx on (Vi; & @, @D, Vi i) (D, D, Vi jr) is irre-
ducible;

e V; i has type a;q* =7 for some a; € @ZX ;

e and if i’ < i then a; # a;.
Proof. We may suppose that V' = V() for some b (because N must take any V' (b)
to itself). We will construct the V;; by recursion on 4. Suppose that we have
constructed V; ; for i < t. Choose a; € T such that

VI Vs | (@)% 0)

and such that if @ > a; then

VDBV | (@)= 0

Also choose an irreducible W -submodule

t—1
ViiC (VP Vi, | (ar)
i=1 j
and choose s; minimal such that N**V;; = (0). Lift V;1 to an Ix-submodule
VP € V((ar)). Then N>V C @f;i @D, Vij. For each i <t choose j; € Zss,
such that a;q=%* ~ a;q*~7i. (To see that j; > s; we are using the fact that for i <t
we have a; > a;.) Then
NStV;&(,Jl - @ Vvl)jz"
i<t
Thus if v € V,; we can write
Ny = Z N*# (%
i<t
for unique elements v; € V; j,—s,. Set V; 1 to be the set of
v — Z Vi
i<t
We see that V;1 C V((a;)) is a Q;-sub-vector space lifting V1, which is If-
invariant and satisfies N*tV; 1 = (0). Set V;; = N77'V; ;. It is not hard to see that
these V; ; have all the desired properties. [
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We remark that if we define an increasing filtration on V' by

Fil,V =P PV,

i<i
then
u
yEoss @griV.
i=1
Lemma 1.3.2. (1) Suppose p : Gx — GL,(Q,) is a continuous representa-

tion; that v : Q, = C and that  is an irreducible smooth representation
of GL,,(K) over C with tWWD(p)¥' =% = rec (7). If 7 is generic then p is
smooth.

(2) The closed points g in Spec R(Dgyﬁ[l/l] for which p, is robustly smooth are
Zariski dense.

Proof. For the first part write m = Sp, (1) 8- --BSp,, (7;) for some supercuspidal
representations 7; of GL,,(K) and positive integers s;,n; with > s;n; = n. (We
are using the notation of [HT01].) Then p has a filtration with graded pieces p;
satisfying WD (p;)* ™ = reck (Sp,, (;)), possibly after reordering the i’s. Thus
(ad p)(1) has a filtration with graded pieces Hom (p;, p;(1)). If this had non-zero
invariants, then m; = 7; ® |det|™ for some max{1,1+s; —s;} < m < s;. Thus
(mi,si) and (mj,s;) are linked, contradicting the assumption that 7 is generic (see
page 36 of [HTO1]).

For the second part suppose that @ is a closed point of Spec R(Dg_ﬁ[l/l]. Set O’
equal to the image of Rg’ﬁ in L/ = R(Dg’p[l/l]/p and let A’ denote the maximal ideal
of 0. By Lemma we can find a decomposition (L')" = @, V; such that

e for each i the sub-space V; is invariant under Iy;
e for each ¢ the sub-space Fil;V = @;:1 Vi is invariant under Gg;
e and for each i we have WD(gr;V') = Sp . (W;), where W; has some type
a;.
(By Sp (W) we mean the Weil-Deligne representation of Wy whose underlying
representation of Wy is W@ W (1)@--- W (s—1) and where N : W (i) = W (i+1)
for i =0,...,8 —2.) Choose M € Z~ so that
@((O/)n N V;) > (lelo/)n'
i=1
Let
A € ker(GL, (O'[[ X1, ..., Xu]]) — GL,(F))
be the unique element which preserves each (V; N (O)") @ O'[[X1, ..., X,]] and
acts on it by multiplication by (1 + (™ X;). Note that A commutes with p,(If).
Then there is a unique continuous representation

p: Gg — GLTL(O/[[XI? v aX’U«]])

such that plr, = pplr, ®or O'[[X1,...,X,]] and such that for any lift ¢ of Frobg
to Wx we have p(¢) = po(¢)A. Then p is a lift of p. If z € (\)* write p, for
pmod (X —x1,...,Xy —x,). Note that py = p,. We will show that for (Zariski)
generic x that p, is robustly smooth and the second part of the lemma will follow.
(Note that if 0 # f € O'[[Xy,...,X,]] then f can not vanish on all of (\')*, by, for
instance, Lemma 3.1 of [BLGHTII].)
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Ifye (O)* let vy : Gx/Ix — (O')* be the unramified character taking Frobg
to y. Then (ad p,)(1) has a filtration with graded pieces

Hom (V;, Vi (V(141M4,) /g1 410 2,)))-
Note that if i = j then
Hom g, (Vi, Vi(v1/q)) = (0)

for any finite K’ /K, because
Hom Wger (Wla Wi(yl/qj)) = (O)

for j=1,...,5;+1 (because, in turn, W; and W;(ry,4;) will have different types).
So it remains to show that for general x we will also have

Hom g, ., (Vi, Vi(Va4ima,) jq141Ma,))) = (0)

for all ¢ # j and all finite K'/K. Let ¢ € Wk denote a Frobenius lift and let
L" denote the compositum of all extensions of L’ of degree less than or equal to
n. Then L”/L' is finite. It will do to choose (x;) € (N)™ so that if ¢ # j and if
a (resp. () is an eigenvalue of ¢ on V; (resp. V;) and if ¢ is a root of unity then
qa¢(1+1Ma;) # B(1+1Mx;). However if such an equality were to hold then ¢ € L”.
As L" contains only finitely many roots of unity, the x;’s need only satisfy finitely
many inequalities, as desired. O

Suppose that C is a set of irreducible components of Spec R%’ﬁ[l /1] and let R%,p,c
denote the maximal quotient of R(Dgﬁ, which is reduced, [-torsion free and has
Spec R(DQ@C[I /1] supported on the components in C. Also let D¢ denote the set of
liftings of p to complete local noetherian O-algebras R with residue field F such
that the induced map Rg,ﬁ — R factors through R%@C. By Lemma above
and Lemma 3.2 of [BLGHT1I] we see that D¢ is a deformation problem in the sense
of Definition 2.2.2 of [CHTOS].

If K'/K is finite and Galois we will let Rg@ K
of RO 5 over which pD(IK/) ={1,}.

denote the maximal quotient

—nr

Lemma 1.3.3. The ring R%)EK_m[l/l] is either the zero ring or is formally

smooth of dimension n?.

Proof. 1t suffices to show that for any maximal ideal g of R%,p, K

H?(Gal (K')™/K), ad pg) = (0)

[1/1] we have

—nr

and
ditny () H' (Gal ((K')™/K), ad p,) = dimy(y) HO(Gal (K')™/K), ad p,)-
However
Hi(Gal ((K/)nr/K)uadpp) = HZ(GK/IK, adp )I(K/)”/K)
(ad py) if i=0
= (adpp Jr/re fi=1
(0) otherwise.

The lemma follows. O
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Thus R%7ﬁ7K,_nr[1/l] = RSECK/_M [1/1] for some finite set of components Cg’_p,
of Spec Rg’ﬁ. Let Cp-ny denote the union of Cx_p, over all finite Galois extensions
K'/K and set Rg@p_m = Rg@cp_m. A Q;-point of R(Dg’p factors through R(Dg’pﬁp_m
if and only if it is potentially unramified. The ring R(%’ﬁ’p_m[l /1] is either the zero
ring or is formally smooth of dimension n?.

For:=1,2, let

Pi GK — GLn(O@l)

be a continuous representation. We say that p; connects to p2, which we denote
p1 ~ pa2, if and only if

e the reduction p; = p; mod mg, is equivalent to the reduction py = p2 mod
mg, and
e p; and ps define points on a common irreducible component of Spec (Rﬁ':l1 ®

Q).
We say that p1 strongly connects to ps, which we write p1 ~~ pa, if p1 ~ p2 and p;
lies on a unique irreducible component of Spec (RED1 Q).
We make the following remarks.

1) By Lemma [1.2.2| the relations p; ~ ps and p; ~ py do not depend on the
P P P P
equivalence chosen between the reductions p; and p,, nor on the GLn(O@I )-
conjugacy class of p; or pa.
) ‘Connects’ is a symmetric relationship, but ‘strongly connects’ may not be.
3) ‘Strongly connects’ is a transitive relationship, whereas ‘connects’ may not
g y
be.
If p1 ~ p2 and py ~» p3 then p; ~ ps.
If p1 ~ p2 and H°(Gx, (ad p1)(1)) = (0) then p; ~ po.
Write WD(p;) = (ri, N;). If p1 ~ po then 1|5, = ra|r.. If p1 ~ p2 and
P2~ P1 then (T1‘1K7N1) = (TQ‘IK7N2)'
7) If p1 and py are unramified and have the same reduction then p; ~ ps.
P P pL~p
(8) If K'/K is a finite extension and p; ~ po then pila,, ~ p2|a,. -
(9) If p1 ~ p2 and py ~ pj then p; © p| ~ pa @ ph and p; ® pj ~ p2 @ ph and
py ~ p3.
—X
(10) If p : Gk — Q; is a continuous character and if p; ~» ps then py ~ py
and p1 @ p ~ pa @ p.
(11) If g : Gg — @ZX is a continuous unramified character with 7 = 1 then
p1 A~ P1 & Y- ,
(12) Suppose that p, is semisimple and let Fil be an invariant decreasing fil-
tration on p; by O@l—direct summands, then p; ~ P, grp;.

W

NN N
D Ut
N N2

Two of these assertions @ and require proof, so we separate them out into
lemmas. The first was proved in [Cho09], but as this is not yet easily available we
give a proof here.

Lemma 1.3.4 (Choi). Suppose that p: Gxg — GL,,(F).

(1) If p1 and P2 are two mazimal ideals on the same connected component of
Spec R%' ® Q; then

SS v

(p™ mod p1)[5;, 2 (p” mod p2)[F, -
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(2) Suppose that g1 and po are two mazimal ideals lying on the same irreducible
component of Spec RﬁD ® Q;, and that neither o1 nor g lie on any other

irreducible component of Spec R%' ® Q. Then
(p” mod 1) 1, = (p" mod ©3)|1,c-

Proof. Let II(? denote the unique Sylow-pro-I-complement in Ix, which is a closed
normal subgroup of Gi. Let H = kerﬁ|l<z). Then H; is also a closed normal
K

subgroup of G, and p™ factors through Gy /H;. Then (kerp|s,)/H; = Z;. Let
¢ € Gk denote a lift of Frobx and let Hy denote the unique closed subgroup of
ker p|r, which contains H; and satisfies

Ho/H, = (o™ — 1)((kerpl1, )/ H1).-

We see that Hy is normal in G and that Hy/H; = Z; and that Ix/Hj is finite.
We will let o denote a generator of Hy/Hj.

We will first show that for any prime ideal p of R%’ ® Q, the restriction (p~ mod
©)(o) is unipotent. To see this first note that, because ker p|s, is normal in G,
the restriction (p~ mod ©)* |ker 5| 1, 18 semi-simple, and hence is the direct sum of
n characters, y1 ® - - - @ x,. Conjugation by ¢ must permute these characters and
hence each ; is invariant by ¢™. Thus x;(¢) = 1 for each i and so (p~ mod p)(0)
is unipotent.

Again using the fact that Hy is normal in i we deduce that for any prime ideal
p of RﬁD ® Q, the representation (p™ mod g) T, factors through the finite group
Ix/Hy. For each of the finitely many isomorphism classes [r] of n-dimensional rep-
resentations of I/ Hy over Q; consider the locus in Spec R%' ®Q, where tr "}, =
trr. This gives finitely many disjoint closed subsets of Spec RHD ® Q;, whose union
contains every prime of Spec R%' ® Q;. Thus our closed sets are also all open, and
hence a union of connected components of Spec RﬁD ® @l. The first part of the
lemma follows.

Now suppose that p is a maximal prime ideal of RﬁD ® Q; and let S denote the

2 variables over Q,. We will first exhibit a surjection

aﬁ:(RﬁD@@z)Q -8

formal power series ring in n

such that (p)|7,. pushes forward to a conjugate of (o~ mod p)|7,. Let e1,...,eq
denote a basis of the centralizer of (p- mod p) (/) in M, %n(Q;) and extend it to
a basis e1,...,eq, f1,--+, fnz—q of Mpxn(Q;). Because
ﬂ ker(ad (p" mod p)(r)"t — 1) = @ej
TelK J

we see that we can find 7, € I and p;, € Hom (M,,%,(Q;),Q;) such that for all
a€ M,x,(Q)and all i =1,...,n%—d,

> par(ad (p” mod ) (rix) ' — 1)a
k

is the coefficient of f; when a is written in terms of the basis ey, ..., €4, f1,- .-, fn2_q-
Consider the continuous representation
pZGK — GLn(@lHXh...,Xd,Yl,...,Ynz_d]]):GLn(S)
o > (1+XYf;)(p7 mod p)(a)(1 + 3 Xje;)" (L + X Yifi) ",
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where v : G /Ix = Z sends Frobg to 1. It is a lifting of p™ mod p, and so gives
rise to a map

o (RpD @Q)p — S
under which pU|;,. pushes forward to a conjugate of (p~ mod )|, . It just remains
to show that ¢ is surjective. Modulo m% we have

() = (07 mod )(0) { 1+ (ad (57 mod p)() ™! = 1) S Vit +0(0) 3 Xje

Looking at
>~ pik((p™ mod ) (i) ™' p(7ir) — 1)
k

we see that, for each i, the element Y; is in the image of p — mg/m%. Next looking
at

((p7 mod p)(0) () — 1)
we see that for each j the element X is in the image of

o —mg/(m%,Y1,...,Yp2_g).
We conclude that

¢:p—» mg/my
and hence that
¢: (R7 @ Q) — S,

as desired.

Write R for R%’ ® @Q; and let I denote the kernel of ¢|g. It is a prime ideal
contained in p. Let T denote the integral closure of R/I in its field of fractions,
which is finite over R/I and hence has the same Krull dimension as R/I. Then
Plr/r extends to a map ¢r : T < S. Let n denote the contraction to 7" of the
maximal ideal of S. We have nN R/I = p. Moreover T is a domain. The map ¢
gives a map

" — S
extending ¢. We have
n?=dimR > dim R/I = dim T > dim T}' > dim S = n?,
where dim denotes the Krull dimension. Thus the inequalities are equalities and
we deduce that [ is a minimal prime ideal of R and that 7' = S. Thus R/I — S
and so the residue field k(I) of I injects into the field of fractions of S. As (p7)|7,
and (p” mod g)|7,. are equivalent over S they are also equivalent over k(I).

We deduce that if p; and py are two maximal primes of RﬁD1 ®Q, each containing

a minimal prime I and each containing no other minimal prime, then

(a3

(ﬁllzI mod pl)lfx = (5‘1:I mod @2)|1K
over k(I) and hence over Q;. O

Lemma 1.3.5. Suppose that p, is semisimple and let Fil? be an invariant decreas-
ing filtration on p1 by O@l -direct summands, then p1 ~ @, gr'p.

Proof. We may suppose that L is chosen large enough that p; : Gk — GL,(0)
and that Fil® is defined over L. Then we may choose a basis {e; ;} of O™ such that

e for each i the set {ey j: i <4’} is a basis of Fil‘O™;
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e and for each ¢ the set {g; ;} (with only j varying) spans a Gx-submodule
of F™.
(Use reverse induction on 4.) Let O(t) denote the algebra of power series over O
with coefficients tending to 0, so that O(t) is complete in the l-adic topology. Let h
denote the element of M, ., (O(t)) such that he; ; = t'e; ; for all i and j. Consider
the continuous representation

p=nhpith™': Gxg — GL,(O(t)).

Let A° denote the closed subalgebra of O(t) generated by the matrix entries of the
image of p. As in the proof of Lemma we see that A° is a complete, noetherian
local O-algebra with residue field F and that there is a continuous homomorphism
RD’ﬁ1 — AY under which the universal lifting of p; pushes forward to p. Under the
map A° — O which sends ¢ to 1, we see that p pushes forward to p;. Under the
map A — O which sends ¢ to 0, we see that p pushes forward to P, grip;. As A°
is a domain, the claim follows. ([

Important convention: Suppose that F' is a global field and that r : Gp —
GL,(Q,) is a continuous representation with irreducible reduction 7. In this case
there is a model r° : Gp — GLn(O@l) of r, which is unique up to GLn(O@Z)-
conjugation. If v|p is a place of F' we write r|g,, ~ p2 (resp. r|gp ~» p2, resp.
p1 ~ Tlgp, ) to mean r°| g, ~ pa (resp. r°|qy, ~ p2, resp. p1 ~ %Gy, )

We end this section by recalling some facts about Weil-Deligne representations.
Recall (from the paragraph before Lemma 1.4 of [TYQT7]) that a Weil-Deligne rep-
resentation (r, N) of the Weil group W of a p-adic field K on a complex vector
space W is called pure of weight w if there is an exhaustive and separated ascending
filtration Fil; of W such that

e each Fil ;W is invariant under r;
o if o € Wk maps to Frob})((a) then all eigenvalues of r(c) on gr ,W are Weil
¢**(?)_numbers;
e and for all j we have N7 : gr
have NFil;W C Fil;_.W.)
The following Lemma is part of Lemma 1.4 of [TY0T].

wii W = gr,—;W. (Note that necessarily we

Lemma 1.3.6. (1) A Weil-Deligne representation is pure of weight w if and
only if its Frobenius semi-simplification is.
(2) Let K'/K be a finite extension. A Weil-Deligne representation of Wi is
pure of weight w if and only if its restriction to Wy is.
(3) Two pure, Frobenius semi-simple, Weil-Deligne representations (r1,N1)
and (rq, N2) are equivalent if and only if r1 and ro are equivalent.

1.4. Local theory: [ = p.

Continue to fix a rational prime [ and let O denote the ring of integers of a finite
extension L of Q; in Q;. Let \ denote the maximal ideal of O and let F = O/\.
However in this section we specialize our discussion to the case I' = G g, where
K/Qy is a finite extension. Thus p : G — GL, (F) is continuous. We will agssume
that the image of each continuous embedding K < L is contained in L. Let {H, } be
a collection of n element multisets of integers parametrized by T € Hom g, (K, Q;).
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We call a continuous representation p : Gx — GL,,(Q,) ordinary if the following
conditions are satisfied:

e there is a G-invariant decreasing filtration Fil® on @7 such that for i =
1,...,n the graded piece gr Z@Zn is one dimensional and G acts on it by a
character y;;

e and there are integers b, ; € Z for 7 € Hom g, (K, Q) andi=1,...,n and
an open subgroup U C K* such that

— (ie Art i) [u(e) =] ko, (rr)Prt

—and by <bra <--- < by forall 7.
We will call p ss-ordinary if we may take U = Oj; in the above definition. We
will call p cr-ordinary if it is ordinary and crystalline (in which case it is also ss-
ordinary). If p is ordinary (resp. ss-ordinary) then it is de Rham (resp. semi-stable)
and

HT,(p) = {-br1,...,—brn}.
If p is ss-ordinary and if for each 7 there exists a 7 such that b,; +1 < b, ;41 then
p is cr-ordinary. (See Propositions 1.24, 1.26 and 1.28 of [Nek93| or Lemma 3.1.4
of [GGI12].)

Let K'/K denote a finite extension. The universal lifting ring R%ﬁ has various
important quotients R(D9 5L Ho Yo which are uniquely characterized by requiring that
they are reduced without [-torsion and that a Q;-point of R(Dg’p factors through
R(D?_ﬁ, (H b if and only if it corresponds to a representation p : G — GL,(Q))

which is de Rham with Hodge Tate numbers HT, (p) = H,, for all 7 : K — Q; and
which has a further specified property P.. We will consider the following instances
of this construction:

e x = cris and P, is ‘crystalline’;

e x = gs and P, is ‘semi-stable’;

e x = K’ — cris and P, is ‘crystalline after restriction to Gg+’;

e x = K’ —ss and P, is ‘semi-stable after restriction to Gg’;

e x = cr-ord and P, is ‘cr-ordinary’;

e x = ss-ord and P, is ‘ss-ordinary’.
(The existence of R(DQ@ (H,},« 0 the case x = ss follows from Corollary 2.6.2 of
[Kis08]. In the case x = cris it follows from this using Theorem 2.5.5(2) of [Kis0§],
because Rgﬁ (H.},cris is the maximal reduced, [-torsion free quotient of R%yﬁ) (H. Y55
over which the N of Theorem 2.5.5(2) of [KisO8] becomes 0. Existence in the cases
x+ = K’ —cris and * = K’ — ss also follow as in the first paragraph of the proof
of Theorem 2.7.6 of [Kis0§]. In the cases * = cr-ord, ss-ord existence follows from
Lemma 3.3.3(1) of [Ger09].)

We will write R% (H,} ®Q, for R(Dg@ (H, }ox ®0Q,. This definition is independent
of the choice of O (using the same argument as in the proof of Lemma .
If H; has n distinct elements for each 7 then each ring R(':’Q@ (.}, 18 either zero

or equidimensional of dimension

1+n? +[K: Qn(n—1)/2.

(In the cases * = cris, ss this is a special case of Theorem 3.3.4 of [Kis08], and
the cases K’ — cris and K’ — ss are treated in the same way. The cases x =
cr-ord, ss-ord follow from this and from Lemma 3.3.3(2) of [Ger09].) We deduce
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that if K O K’ then Spec ]ifg@{m}7K/_Cris (resp. Spec R(DD,E,{HT},K’—SS) is a union
of irreducible components of Spec 1%(9’5’{1{7}7](,,%]ris (resp. Spec RO,p,{H,},K/uss)‘
Each of the schemes Spec R%,ﬁ,{HT},Cris[l/” and Spec R(DD7E,{HT}7K/_CriS[1/Z] and
Spec Rg’ﬁ’{HT}’Cr_Ord[l/l] are formally smooth. (The case * = cris is a special case
of Theorem 3.3.8 of [Kis08], the case * = K’ — cris is treated in the same way and
the case * = cr-ord follows from this and Lemma 3.3.3(2) of [Ger(09].) Finally if 5 is
trivial then the scheme Spec Rg’ﬁy (. }.cr-ora [1/1] is geometrically irreducible. (See
Lemma 3.4.3 of [Ger(9].)

Choose a finite set C of irreducible components of lim_, s Spec R(Do,ﬁ,{H,},Kuss‘

Let RE@C denote the maximal quotient of R%ﬁ (H,},K/—ss Which is reduced, I-

S
torsion free and has Spec R(DQ@C supported on the components in C, for K’ chosen
sufficiently large. This is independent of the choice of K’ (as long as K is sufficiently
large). Also let D¢ denote the set of liftings of p to complete local noetherian O-
algebras R with residue field F such that the induced map Rgﬁ — R factors through
R%,ﬁ,c- Again we see that D¢ is a deformation problem in the sense of Definition
2.2.2 of [CHTOS].

If p1 and py are continuous representations Gx — GL,(Og ), we say that p
connects to p2, which we denote p; ~ po, if and only if

e the reduction p; = p; mod mg, is equivalent to the reduction py = p2 mod
g,

e p; and po are both potentially crystalline;

e for each continuous 7 : K < Q; we have HT,(p1) = HT,(p2);

e and p; and py define points on the same irreducible component of the
scheme Spec (R%,{HTT (o)} K —cris ®Q,) for some (and hence all) sufficiently
large K’.

We make the following remarks.

(1) By the proof of Lemma we see that the relation p; ~ po does not
depend on the equivalence chosen between the reductions p; and p,, nor
on the GLn(O@)—Conjugacy class of p; or ps.

(2) ‘Connects’ is an equivalence relation. (Because each R%,E,{H,},K’fcris[l/”
is formally smooth.)

(3) If p1 ~ po then WD(p1)|1, = WD(p2)|1.- (See the proof of Theorem 2.7.6
of [Kis08].)

(4) If K'/K is a finite extension and p; ~ pz then pi|a,., ~ p2la,. -

(5) If p1 ~ p2 and py ~ pj then p1 & pi ~ p2 @ ph and p1 ® py ~ p2 @ ph and
py ~ p3.

(6) If u: Gg — @lx is a continuous unramified character with 7 = 1 and p; is
potentially crystalline then p; ~ p; ® p.

(7) Suppose that p; is potentially crystalline and that p; is semisimple. Let
Fil® be an invariant filtration on p; by O@l direct summands, then p; ~
P, grp1. (This is proved in the same way as Lemma of the previous
section.)

We will call a representation p : G — GLn(O@Z) diagonalizable if it is crystalline
and connects to some representation x1 ® - - @ x, with x; : Gg — (’)6 crystalline
l
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characters. We will call a representation p : Gg — GLn((’)@l) potentially diag-
onalizable if there is a finite extension K'/K such that p|g,., is diagonalizable.
Note that if K”/K is a finite extension and p is diagonalizable (resp. potentially
diagonalizable) then p|q, ., is diagonalizable (resp. potentially diagonalizable). It
seems to us an interesting, and important, question to determine which potentially
crystalline representations are potentially diagonalizable. We know no example of
a potentially crystalline representation, which is not potentially diagonalizable.

Lemma 1.4.1. If py and ps are conjugate in GL,(Q,) then py is potentially diag-
onalizable if and only if ps is potentially diagonalizable.

Thus we can speak of a representation p : Gx — GL,(Q;) being potentially
diagonalizable without needing to specify an invariant lattice.

Proof. If p; and ps are conjugate by an element of GLn(O@L) then after passing
to a finite extension over which p; = p, = 1 we see that p; ~ p3. Thus we may
suppose that p; = gpag~! where g = diag(ds,...,d,) with d; € @IX satisfying
dy|dn_1|...|d;. Choosing L C @, large enough we may assume that p; and po are
defined over O and that dy,...,d, € O. (If d,, is not integral multiply each d; by
a suitable element of L*.) Replacing K by a finite extension we may also assume
that po = 1 mod ldy /d,,, in which case we also have p; = 1.
Consider the complete topological domain

A=0(t1,51,t2,52,. .. s tn_1,5n-1)/(s1t1 — (d1/d2), ..., Sn—1tn—1 — (dn_1/dy)).

(See Lemma ) Let g = diag(ty - tn_1,t2" " tn-1,.-.,tn-1,1) and let
F=Gmg
If j > i then the (i,7) entry of p(o) is t;...t;—1 times the (¢,) entry of pa(o).
If ¢ > j then the (4,j) entry of p(o) is s;...s;-1d;/d; times the (4,7) entry of
p2(0), which is in A by our assumption that po = 1 mod ld; /d,,. Thus we see that
p: Gk — GL,(A) is a continuous homomorphism. The specialization under ¢; — 1
for all i is ps. The specialization under s; +— 1 for all ¢ is p;. As in the proof of
Lemma [1.2.2| we conclude that p; ~ p2, and we are done. (]

We will establish some cases of (potential) diagonalizability below, but first we
must recall some results from the theory of Fontaine and Laffaille [FL82], normalized
as in Section 2.4.1 of [CHTO08]. Assume that K/Q; is unramified and denote its
ring of integers by Ok . Let MJF o denote the category of finite O ®z, O-modules
M together with

e a decreasing filtration Fil ‘M by Ok ®z, O-submodules which are Og-direct
summands with Fil®M = M and Fil'"'M = {0};
e and F‘rob;1 ® 1-linear maps ® : Fil*M — M with O pyiv1p = (DL and
S, @FiIM = M.
Let REP»(Gk) denote the category of finite O-modules with a continuous G-
action. There is an exact, fully faithful, covariant functor of O-linear categories
Gk : MFo — REP»(Gk). The essential image of G is closed under taking
sub-objects and quotients. If M is an object of MF o, then the length of M as an
O-module is [K : Q] times the length of Gx (M) as an O-module.

Let F denote the residue field of O and let MFy denote the full subcategory of

MF o consisting of objects killed by the maximal ideal A of O and let REPp(G)
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denote the category of finite F-modules with a continuous Gi-action. Then Gg
restricts to a functor MFr — REPr(Gk). If M is an object of MFp and 7 is
a continuous embedding K < Q;, we let FL. (M) denote the multiset of integers
i such that gr'M ®oyg, 0701 O # {0} and i is counted with multiplicity equal
to the F-dimension of this space. If M is an I-torsion free object of MJF o then
Gg (M) ®z, Q; is crystalline and for every continuous embedding 7 : K < Q; we
have

HT,(Gg(M) ®z, Q) =FL (M ®0 F).

Moreover, if A is a Gg-invariant lattice in a crystalline representation V of G
with all its Hodge—Tate numbers in the range [0, — 2] then A is in the image of
Gx. (See [FL82].)

Lemma 1.4.2. Let K/Q; be unramified. Let M denote an object of MFr together
with a filtration

M=My>M;> DM, 12>M,=(0)
by MFr-subobjects such that M;/M;y1 has F-rank [K : Q] fori =0,...,n — 1.
Then we can find an object M of MFp which is l-torsion free together with a
filtration by MJF o-subobjects

M:MoDMlj"'DMnleMn:(O)
and an isomorphism

M ®o F =M

under which M; @0 F maps isomorphically to M; for all .

Proof. M has an F basis ; » for i = 1,...,n and 7 € Hom (K, Q;) such that
o the residue field ki of K acts on €; » via T;
e M ; is spanned over F by the €; , for i > j;
e and for each j there is a subset ; C {1,...,n} x Hom (K, Q;) such that
Fil’ M is spanned over F by the e; , for (i,7) € €;.
Then we define M to be the free O-module with basis e; , for ¢ = 1,...,n and
7 € Hom (K, Q).
e We let Ok act on e; ; via 7;
o we define M; to the sub O-module generated by the e; , with ¢ > j;
o and we define Fil7 M to be the O-submodule spanned by the e; ; for (i,7) €
Q.
We define ®7 : Fil? M — M by reverse induction on j. If we have defined ®7*1 we
define ®7 as follows:
o If (i,7) € Q11 then ®le; , =PI He; ..
o If (i,7) € Q; — Q41 then @jei,T is chosen to be an O-linear combination
of the e/ roFvon, for i’ > i which lifts 6%,»77.
It follows from Nakayama’s lemma that M is an object of MJF @, and then it is
easy to verify that it has the desired properties. O

We can now state and prove our potential diagonalizability criteria.

Lemma 1.4.3. Keep the above notation, including the assumption | = p. Suppose
that p : Gx — GL,(Q;) is a potentially crystalline representation.
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(1) If p has a Gg-invariant filtration with one dimensional graded pieces, in
particular if it is ordinary, then p is potentially diagonalizable.

(2) If K/Q is unramified, if p is crystalline and if for each 7 : K < L the
Hodge—Tate numbers HT.(p) C [ar,ar + 1 — 2] for some integer a., then p
is potentially diagonalizable.

Proof. After passing to a finite extension so that p becomes trivial and each grip
becomes crystalline, the first part follows from item of the first numbered list
of this section.

For the second we may assume (by twisting) that a, = 0 for all 7. Note that every
irreducible subquotient of p|, is trivial on wild inertia and hence one dimensional.
Choose a finite unramified extension K'/K such that p(Gk+) = p(Ix). Then p|g,,
has a G- invariant filtration with 1-dimensional graded pieces. From Lemma|l.4.2
(and the discussion just proceeding it) we see that p|¢,., has a crystalline lift p with
the same Hodge-Tate numbers as p|q,, which also has a Gg/-invariant filtration
with one dimensional graded pieces. It follows from Lemma 2.4.1 of [CHTO08] that
pla,, ~ p2. (Note that in Section 2.4.1 of [CHTOS8] there is a running assumption
that the Hodge—Tate numbers are distinct. However this assumption is not used in
the proof of Lemma 2.4.1 of [CHT08].) From the first part of this lemma we see
that po is potentially diagonalizable. Hence p is also potentially diagonalizable. [

Important convention: Suppose that F is a global field and that » : Ggp —
GL,(Q,) is a continuous representation with irreducible reduction 7. In this case
there is model r° : Gp — GL,(Og,) of r, which is unique up to GL,(Og )-
conjugation. If v|l is a place of F' we write r|g,, ~ p2 to mean r°|g, ~ pa.
We will also say that 7|g,. is (potentially) diagonalizable to mean that r°|q,, is.

1.5. Global theory.

Fix an odd rational prime [ and let O denote the ring of integers of a finite
extension L of Q; in Q;. Let A denote the maximal ideal of O and let F = O/)\.
Let F denote an imaginary CM field with maximal totally real subfield F*. We
suppose that each prime of F'* above [ splits in F' and that L contains the image
of each embedding F' < L. Let S denote a finite set of places of FT which split
in F and suppose that S contains all places of F* above [. For each v € S choose
once and for all a prime v of F' above v, and let S denote the set of ¥ for v € S.

Let

T GF+ — gn (F)
be a continuous representation such that Gy = 7 'G2(F) and such that 7 is un-
ramified outside S. Let
JU GF+ — O
be a continuous character lifting v o7. We suppose that p is de Rham, so that there
is an integer w such that HT,(u) = {w} for all 7: F* — L. For 7: F < L let H,
denote a multiset of n integers such that

Hye={w—h: he H}.

For v € S with v}l choose a set C, of irreducible components of the scheme
Spec R(DQ fle [1/1], and let D,, denote the corresponding local deformation prob-
TG R

lem. For v € S with v|l choose a finite set C, of irreducible components of
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O
OF|Gp AHr}, K/ —ss’

formation problem.
Let

lim_, g Spec R and let D, denote the corresponding local de-

§= (F/F+> S> ga 07?7/% {Dv}vES)-
The following proposition is established in [CHTOS8] (see Proposition 2.2.9 and
Corollary 2.3.5 of that paper).

Proposition 1.5.1. Keep the notation and assumptions established in this section.
Suppose moreover that T is absolutely irreducible.

(1) There is a universal deformation
,rgniv . GF+ N gn(Rgniv)

of T of type S in the sense of Section 2.8 of [CHTOS].
(2) If u(cy) = —1 for all vloo and if each H, has n distinct elements then RE™MY
has Krull dimension at least 1.
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2. AUTOMORPHY LIFTING THEOREMS.

2.1. Terminology.

Continue to fix a rational prime [ and an isomorphism 2 : Q, = C.

Suppose that F is a CM (or totally real) field and that F'™ is the maximal totally
real subfield of F. By a polarized l-adic (resp. mod [) representation of Gr we will
mean a pair (r, ) (resp. (T,7)), where

r:Gr — GL,(Q))
(resp. T : G — GL,(F;)) and
I GF+ — @lx

(vesp. i : Gp+ — le ) are continuous homomorphisms, such that for some infinite
place v of F* there is ¢, € {#1} and a non-degenerate pairing ( , ), on Q; (resp.
F}') such that
(@, y)v = (Y, T)o

and

<T(U)$7 ’I“(CUO'CU)y>U = ,LL(O') <ZE, y>v
(resp.

(F(o)z,T(cvocy)y)e = B(o) (@, y)o)
for all z,y € @7 (resp. F?) and all 0 € Gg. In the case that F is imaginary we
further require that €, = —p(c,). (This last condition can always be achieved by
replacing p by pdp/p+.)

Note the following.

e If the condition is true for one place v|oco it will be true for all places
v]oo: take e, = p(cyCyr)ey and (X, y)y = (@, 7(CoCor )Y)wy (resp. (X, y)y =
(z,7(cocor)Y)v)-

o If F' is imaginary then (r, ) (resp. (7, 7)) is a polarized Il-adic (resp. mod
1) representation if and only if there is a continuous homomorphism 7 :
Gr+ — Gn(Q)) (resp. G (F,)) with ¥ = r (resp. 7) and with multiplier s
(resp. T).

e If F is totally real then (r, u) is a polarized [-adic representation if and only
if r factors through GSp,,(Q;) (if u(c,) = —&,) or GO, (Q;) (if pu(cy) = €y)
with multiplier . [Define the pairing on Q; by (z,4) = (z,7(cy)y)v.] A
similar assertion is true in the case of F; if I > 2.

We will call (r, u) (resp. (F,fr)) totally odd if €, = 1 for all v|oo. (Equivalently,
if u(cy) (resp. Ti(cy)) is independent of v]oo and &, = 1 for some v|co.) We call an
l-adic (resp. mod [) representation r (resp. T) polarizable if there exists a y (resp. ft)
such that (r, ) (resp. (7, 7)) is a polarized representation. We call an I-adic (resp.
mod [) representation r (resp. T) totally odd polarizable if there exists a u (resp. r)
such that (r,u) (resp. (T, 7)) is a totally odd polarized representation.

We will call (r,u) (resp. r) algebraic if r is unramified at all but finitely many
primes and if it is de Rham at all primes above [. We will call it regular algebraic if
it is algebraic and if for all 7 : F' < @, the multiset HT, (r) has n distinct elements.

We now recall from |[CHTO8] and [BLGHTII] the notions of RAESDC and
RAECSDC automorphic representations. In fact, it will be convenient for us to
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work with a slight variant of these definitions, where we keep track of the char-
acter which occurs in the essential (conjugate) self-duality. Moreover the referee
suggested we use a less cumbersome name. We have followed this advice with
some reservations. It is less cumbersome, but we have a slight worry it could be
misleading. We hope not.

If F is a number field and 7 is an automorphic representation of GL,, (Ar) we will
call m regular algebraic if ., has the same infinitesimal character as an irreducible
algebraic representation of the restriction of scalars from F' to Q of GL,,.

Let F be a CM (or totally real) field with maximal totally real subfield F*. By
a polarized automorphic representation of GL,(Ar) we mean a pair (m, x) where

e 7 is an automorphic representation of GL,,(Ar),
o x: A%, /(FT)* — C* is a continuous character such that y,(—1) is inde-
pendent of v|oo,

e and 7° = 1V ® (x 0 Np/p+ odet).
(Here 7¢ denotes the composition of = with complex conjugation on GL,,(Ag). If
F is totally real then ¢ = 7.) In the case that F' is imaginary we further suppose
that p,(—1) = (—=1)" for all v|oo. (This last condition can always be achieved by
replacing p by pdp/p+.)

We will call an automorphic representation © of GL,(Ar) polarizable if F is
CM (or totally real) and there is a character p such that (m,u) is a polarized
automorphic representation.

We will say that (m,x) is cuspidal if 7 is. We will say that (m,x) is regular
algebraic if 7 is, in which case x is also algebraic. We will say that (7, x) has level
prime to | (vesp. level potentially prime to 1) if for all v|l the representation m, is
unramified (resp. becomes unramified after a finite base change).

If Q is an algebraically closed field of characteristic 0 we will write (Z™)
for the set of a = (a,;) € (Z")Ho™ ('Y satisfying

Hom (F,Q),+

ar1 Z e Z Arm-

Let w € Z. If F' is totally real or CM (resp. if ! = C) we will write (Zn)ﬂ"m(F’Q)
for the subset of elements a € (Z")Ho™ (F:2) with

Qri + Groentl1—i =W
(resp.

Ari 4 Georpt1—i = W.)
(These definitions are consistent when F' is totally real or CM and Q = C.) If F'/F
is a finite extension we define ap: € (Z")Hom (F'.2).+ 1y

(ap)ri = Qripi-
We will call a extremely regular if for some 7 the a,; have the following property:
for any subsets H and H' of {a,; +n —i}}_; of the same cardinality, if }, _, h =
> hem b then H = H'.

If a € (z")Hom (F.O):+ et 2, denote the irreducible algebraic representation of
GLgom(F '©) which is the tensor product over 7 of the irreducible representations
of GL,, with highest weights a,. We will say that a regular algebraic polarized
(resp. regular algebraic) automorphic representation (m,x) (resp. ) of GL,(AF)
has weight a if mo has the same infinitesimal character as =Y. Note that in this
case a must lie in (Z”)E°m<F’C> for some w € Z.
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Suppose that 7 is a regular algebraic automorphic representation of GL,,(Ag) of
weight a € (Z")Hom (FC)+ et v be a place of F dividing | and w, a uniformizer
in Op,. For each integer b > 0, let Tw(v>?) denote the subgroup of GL,(OF,)
consisting of elements that reduce to upper triangular unipotent matrices modulo

vb. The space (L_lﬂ'v)lw(”b’b) carries commuting actions of the Hecke operators
U9 = Tw(v®?) @l 0 Iw(v>?) ] .
“u 0 1n7j
(See for instance Lemma 2.3.3 of [Ger09].) We define rescaled Hecke operators
) J
UL(*JI)I o = H H T(wv)—az,oﬂp,nﬂdrl Ug)
T:F,—Q, i=1
for j =1,...,n. We define the ordinary part (L_lﬂv)lw(”b’b)md of (L_lﬂ'v)lw(”b’b) to
be the maximal subspace which is invariant under each UL(f 37% and such that every

eigenvalue of each UL(j )

*a,wy

is an [-adic unit. This definition does not depend on the

choice of uniformizer w,. (If we choose another uniformizer w,,, then U, g;) = (u) ng
where (u) is an operator on ") that commutes with UY) and whose b-th power
is trivial.)

We say that 7 is t-ordinary if for each v|l there is an integer b > 0 such that
the space (L_lwv)lw(”b’b)’ord is non-zero. Note that if ¢ is an algebraic character of
A% /F* then 7 is t-ordinary if and only if 7 ® (4 o det) is s-ordinary. Also recall
(from Lemma 5.1.5 of [Ger09]) that if 7 has weight 0 and if 7, is Steinberg for all
v|l then 7 is +-ordinary.

We recall that thanks to the work of many people (we mention in particular
Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse, Shin and R.T\,
and the references [Kot92], [Clo90], [HTO01], [BCII], [Shill], [CHLNTI], [Clol0],
[Car12a] and [Carl2b]) we can associate l-adic representations to regular algebraic

cuspidal polarized automorphic representations:

Theorem 2.1.1. Suppose that (mw,x) is a regular algebraic, cuspidal, polarized
automorphic representation of GL,(AFp). Then there is a continuous semi-simple
representation

Tl’z(ﬂ') : GF — GLn(@l)
and an integer w with the following properties.

(1) (r1,.(7), €6, "r14(x)) is a totally odd, polarized I-adic representation.
(2) If v Ml is a place of F then

WD (7, ()|, VIS8 > rec(m, @ | det ‘1(}1777,)/2),

and these Weil-Deligne representations are pure of weight w.
(3) ri1,(m) is de Rham and if T : F — Q; then

HT, (r (7)) ={awr1+n—1,ar2+n—2,...,0,r 0}
Moreover

HTTOC(Tl,z(Tr)) = {w —h: he HTT(TZJ(W))}'
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(4) If v|ll and 7, has an Twahori fixed vector then
WD (ry, ()|, )77 2 rec(m, @ | det | 7/2).

In particular ry,(m) is semi-stable at v, and if m, is unramified then it is
crystalline.

(For most of this Theorem we refer to Theorems 1.1 and 1.2 of [BLGHTII],
strengthened by incorporating the main theorems of [Carl2a] and [Carl2b]. We
warn the reader that the main theorem of [Car12b] depends on the current paper,
however there is no circularity, because it does not do so in the case that II, has
an Iwahori fixed vector, which is the only case we are quoting here. The first part
follows from Theorem 1.2 and Corollary 1.3 of [BCII]. Note that Theorem 1.2 of
[BC11] can easily be extended to the case x non-trivial by a twisting argument. Also
note that irreducible factors r of () which do not satisfy 7¢ = rV @ €] ~"r;,(x)
occur in pairs 7 and (7)Y @€, "7, (), and it is straightforward to put a pairing of
the desired form on 7@ (7)Y ® ¢/ "7, (x). When F is CM, note that by definition
ellfnrm(x) takes every complex conjugation to —1.) We also have the following
remarks.

(6) If m is 2-ordinary and v|l then r1,(7)|G,, is ordinary. (This follows from
Lemma 5.2.1 of [Ger(9] using the same twisting argument as in section 1
of BLGHT11].)

(7) If ™ has level potentially prime to | and if r,(7) is ordinary then m is
1-ordinary. (See Lemmas 5.1.6 and 5.2.1 of [Ger09].)

We remark that it is presumably both true and provable that 7 is ¢-ordinary if and
only if 7, ,(m) is ordinary, but to work out the details here would take us too far
afield.

We will let 7 ,(7) denote the semisimplification of the reduction of r;, (7). If F'
is totally real and if x,(—1) = (—1)"~! for all v|oo then 7, ,(7) factors through a
map

Fia(m) s Gp — GO, (F})

with multiplier & "7, (x). If F is totally real and if x,(—1) = (—1)" for all v|oo
then n is even and 7 ,(m) factors through a map

F1a(m) : Gp — GSp,,(F))

with multiplier & ~"7;,(x). If F is imaginary CM then it extends to a continuous
homomorphism
7r.(m) : Gp+ — Go(Fr)

with multiplier € "7, ().
We will call (r, u) (vesp. (T, ), resp. r, resp. T) automorphic if there is a regular
algebraic, polarized cuspidal automorphic representation (7, x) such that

(ryp) =2 (ry (), TZ,Z(X)ell_n)
(resp.
(T, ;) = (Fl,l(ﬂ),Fl,z<X)E;7n)a
resp.
rET, (),
resp.
T2 7,(m)).



POTENTIAL AUTOMORPHY 35

We will say that (r,u) or (F,) or r or T is automorphic of level prime to | (resp.
automorphic of level potentially prime to [, resp. ordinarily automorphic, resp. po-
tentially diagonalizably automorphic) if (m, x) has level prime to [ (resp. has level
potentially prime to [, resp. is +-ordinary, resp. has level potentially prime to [ and
r1,(m) is potentially diagonalizable). By Theorem 3.13 of [Clo90] these definitions
do not depend on the choice of 1.

Finally recall the following definition from [Thol2]. We will call a subgroup
H C GL,(F;) adequate if the following conditions are satisfied.

e H'(H,F;) = (0) and H'(H,sl,(F;)) = (0).

e HO(H,sl,(F;)) = (0).

e The elements of H with order coprime to [ span Mnxn(Fl) over ;.
Note that this is not exactly the definition given in Definition 2.3 of [Thol2], how-
ever it is equivalent to it by Lemma 1 of [GHTTI10]. Note also that if H is adequate
then F, is an irreducible H-module (by the third condition) and I /n (by the sec-

ond condition, as when I|n we have F;1,, C sl,(F;)). The following proposition is
Theorem 9 of [GHTTTO].

Proposition 2.1.2. Suppose that H is a finite subgroup of GL,,(F;) such that the
tautological representation of H is irreducible. Let HY denote the subgroup of H
generated by all elements of l-power order and let d denote the maximal dimension
of an irreducible H°-submodule of ﬁ?. If 1 > 2(d+ 1) then H is adequate.

(R.T. would like to take this opportunity to make two corrections to [CHTOS].
Robert Guralnick points out that the assumption in Corollary 2.5.4 of [CHTOS]
should be | > 2n + 1 and not | > 2n — 1. The application of Lemma (2.7) ¢)
of [CPST5] in the penultimate sentence of the proof of Corollary 2.5.4 of [CHTOS]
requires [ > 2n + 1, not | > n + 1 as was stated there. The correct form of the
Corollary was used in [HSBT10].

Florian Herzig points out that in the proof of Corollary 4.4.4 of [CHTO8] we
should have written Sp,, (F;)/{£1} and not PSp, (F;). R.T. would like to thank
Guralnick and Herzig for these observations.)

2.2. Lemmas on Automorphy.

Our first lemma is elementary.

Lemma 2.2.1. Suppose that F is a CM (or totally real) field and that ¢ is an
algebraic character of Ggp. If F is imaginary let ¢ denote the composition of
with the transfer map G5, — G If F is totally real let ¢ = . Then (r,p) is
automorphic if and only if (r ® ¥, ud) is.

The next lemma is proven in the same way as Lemma 4.2.2 of [CHTO0S|]. (See
also Lemmas 4.3.2 and 4.3.3 of [CHT0S].)

Lemma 2.2.2. Suppose that M/F is a soluble Galois extension of fields and that
M is CM (or totally real). Suppose that (r, ) is a polarized l-adic representation of
Gr with r|g,, irreducible. Then (r, i) is automorphic if and only if (r|G,, tla
s automorphic.

M+)

The next lemma is a generalization of Lemma 7.1 of [BLGHTTI].
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Lemma 2.2.3. Suppose that © is an irreducible, unitary, admissible module for
((Lie GL,(R)) ®r C, O(n)) or ((Lie GL,(C)) @& C,U(n)) with half integral Harish-
Chandra parameter (i.e. this parameter lies in 1/2 the co-character group of a
mazimal torus in the complezified group). Then

¢~ -V

™ ™.

Proof. In the second case this is Lemma 7.1 of [BLGHT11]. However, we will give
here a uniform proof in both cases. From the classification of irreducible unitary
admissible ((Lie GL,,(R)) ®g C, O(n)) and ((Lie GL,(C)) ®r C, U(n))-modules, we
see that 7 is of the form

m BB,

where
mi = (0; @ | det |2~™)/2) B (0; @ | det |3~™)/2) B ... B (0; ® | det | ™ 1/2)

with m; € Z~o and o; an irreducible, unitary, discrete series, admissible module
for ((Lie GL,,(R)) ®& C,0(n;)) or ((Lie GL,,(C)) ®g C,U(n;)) with half-integral
Harish-Chandra parameter. (We are using the form of the classification proposed
by Tadic in 1985 and proved in [Tad09]. A similar classification was given earlier in
[Vog86]. [Clo88| indicates how the formulation we are using can be deduced from
the one given in [Vog86].)

The only possibilities for o; are

e the ((Lie GL;(R)) ®g C, O(1))-module associated to the trivial or sign rep-
resentation of R*;

o the unique discrete series ((Lie GL2(R)) ®g C, O(2))-module with the same
infinitesimal character as the representation Sym® ®|det |~%/2 of GLgy(R)
for some a € Zx>o;

o the ((Lie GL1(C)) ®r C, U(1))-module associated to one of the representa-
tions z — (z/|z])* of C* for some a € Z.

In each case we see that 0 = o¢. Thus 7V = ¢, as desired. (Note that, by known

properties of the Langlands local reciprocity map rec, we have (m Bmy)Y = 7y By
and (m B my)¢ = wf B 7§.) O
The next lemma formalizes and generalizes the argument of step 3 of the proof of

Theorem 7.5 of [BLGHTT1I]. Partial generalizations of this argument have already
been given in Proposition 5.2.1 of [BLGGI1] and Proposition 5.1.1 of [BLGG12].

Lemma 2.2.4. Let F' be a CM (or totally real) field and M/F a soluble Galois,
CM (or totally real) extension of degree m. Let v : Gy — GL,(Q)) be an irre-
ducible continuous representation and u : Gp+ — @lx a continuous character, such
that (Ind g;r, 1) is an automorphic polarized l-adic representation of Gg. Then
(r,pl,,, ) is also automorphic and polarized.

Proof. Inductively we may reduce to the case that m is prime.

Let o denote a generator of Gal(M/F), and k a generator of Gal(M/F)Y.
Let (II, x) be a regular algebraic, cuspidal polarized automorphic representation
of GLy, (Ap) such that 7 ,(IT) = Ind gff and p = ellfm"rlﬁz(x). Because

r,(II) @ k = 1y, (IT)

we deduce that
II® (ko Art podet) 11,
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and so from Theorems 3.4.2 and 3.5.1 of [AC89] there is a cuspidal automorphic
representation m of GL,,(Ajs) such that

rTET@B---Br

is a strong base change of II in the sense of definitions 1.6.1 and 3.1.2 and section
1.7 of [AC89]. Lemma VII.2.6 of [HTOI] then shows that

—1

BCy/p(M) = nBa° @ - B

Note that, because II is regular algebraic, 7 ® || det HK/}I_W)/ ? is regular algebraic

and that the representations 7% for i =0, 1,...,m—1 are pairwise non-isomorphic.
Because I1° = IIY @ (x o Np/p+ o det) we see that

2V g (x o Npg/p+ o det)
for some i =0,...,m — 1. If v denotes the central character of 7, which must also
be algebraic, then we see that
2wt () = nwt(x).

(See the discussion at the start of Section ) Thus the central character of

7@ || det ||l,_,Wt(X)/4 (i.e. || H;Wt(wvz) is unitary, and so 7 @ || det || "X is also
unitary.

Moreover wt() is even (as F'T is totally real) and so for all v|oo the representa-

tion 7, ® | det |, w0074 has half integral Harish-Chandra parameter. We conclude

from the previous lemma that for v|oo we have
7 =Y @ | det [V0O)/2,
Thus
()0 =m0 @ (7% 0 Nagyper 0 det),.

By the regularity of BC j;/p(II) we deduce that we must have i = 0, i.e.
T2V ®(xo Ny p+ o det).

In particular (7 ® || det |[*(=™)/2 (|| ||7;(+1_m)) o N+ /p+) is a regular algebraic,
cuspidal, polarized automorphic representation of GL,,(Ayr). Moreover

()G 2 7 (m @ || det [|"07/2) @y, (7 @ || et |[*07™2)7 @ -
@ry, (m @ || det [[P(A=m)/2)0™
On the other hand
(M) |ay = (A SF PGy Er@r’ & or
As r is irreducible we deduce that

r 2, (r @ || det ") 2y, (7 @ det |70 )

for some j. Moreover

1— _ _
(O] ™) o Nype s )el ™ = 11,06, 6™ = pla,, -

The lemma follows. O
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2.3. Automorphy lifting: the ‘minimal’ case.

In this section we present an automorphy lifting theorem which represents the
natural output of the Taylor—Wiles—Kisin method. We incorporate improvements
due to Thorne [Thol2] and Caraiani [Carl2a]. This result is essentially Theorem
7.1 of [Thol2].

Theorem 2.3.1. Suppose that F is an imaginary CM field with mazimal totally
real subfield F*, that | is an odd prime and that n € Z>y. Assume also that
G ¢ F. Let (r,p) be an n-dimensional, algebraic, polarized l-adic representation of
G satisfying the following properties:
(1) The reduction T is irreducible and 7(G p(¢,)) C GLy(F,) is adequate.
(2) (7,;n) is automorphic of level potentially prime to l, arising from a regu-
lar algebraic, cuspidal, polarized automorphic representation (mw,x) of level
potentially prime to l, such that

rl,l(ﬂ-) |GF,,J ~ T‘GF,J

for each finite place v of F. (In particular, r|a,, is potentially crystalline
for v|l, and r has the same Hodge—Tate numbers as r,,().)
Then (r, 1) is automorphic of level potentially prime to l.
If further w has level prime to | and if r is crystalline at all primes above [, then
(r, 1) is automorphic of level prime to [.

Proof. The result follows from Theorem 7.1 of [Thol2] on noting that for v/l
we have 71,(7)|ap, ~ rlap, (by Lemma because ‘WD (ry,, ()|, )F 755 =

rec(m, ® | det |1(,17n)/2) and 7, is generic). O

Theorem 2.3.2. Let F be an imaginary CM field with maximal totally real subfield
F*. Suppose that n € Z>1 and that | is an odd prime. Assume also that ¢; ¢ F.
Let S be a finite set of primes of F'* including all primes above l. Suppose moreover
that each prime in S splits in ' and choose a prime v of F' above each v € S. Write
S for the set of v withv € S.

Let (m,x) be a regular algebraic, cuspidal, polarized automorphic representation
of GL,,(Ag) which is unramified outside S and has level potentially prime to l. Let
a € (ZMHom (FOF be the weight of . Suppose that the image Ty, (m)(Gr,)) is
adequate.

Suppose, for each v|l, that C, is an irreducible component of

. D —
lim Spec By, (m)ja,, (lavritn—i}i}r K/ —cris @ Qi

containing r1,(m)|Gy_. Suppose also that for each v € S with v fl, Cy is the irre-

d sy .
R ()l ® Q; containing 11, ()| -

Let L denote a finite extension of Q; in Q, such that L contains the image of
each embedding F — Q;; and L contains the image of r1,(x); and ry,(r) is defined
over L; and each C, is defined over L. Forv € S let D, be the deformation problem
corresponding to C,. Also let

S= (F/F+7 57 ga OLv%l,l(,’T)v rlﬂ(X)ellinv {DU}UES)'
Then the ring RE™Y is a finitely generated Or-module.

ducible component of Spec R
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Proof. Note that r;,(7)|g,. lies on a unique component of Spec REZ (e ®Q, for
5 p .

each v € S with v /l. (Use Lemma and the fact that zWD(rlﬂ(W)|GF§)F_SS =

rec(my ® | det |E~)17n)/2).) Also by making a base change to a finite, soluble, Galois,

CM extension F’/F which is linearly disjoint from ka’”(”)(g) over F' we may

suppose that 7 is unramified above [ and that C, is a component of the spectrum
Spec REZ ()6 s {{aur itn—i}i}rcris & Qy for each v|l. (Use Lemma|1.2.3)). In partic-
2 Fg> 1T, i ifT

ular the character y is unramified above [ (as F//F™T is unramified above [). The
result now follows from Theorem 10.1 of [Thol2]. O

2.4. Automorphy lifting: the ordinary case.

One can combine the Taylor-Wiles—Kisin method with the level changing method
of [Tay08] and Hida theory, to derive a stronger theorem in the ordinary case. This
theorem allows for changes of level and weight. The first such theorem was obtained
by D.G. (see Theorem 5.3.2 of [Ger(9]). The ‘bigness’ condition in Theorem 5.3.2
of [Ger09] was relaxed by Thorne. The theorem we present below, in the case that
F is imaginary, is Theorem 9.1 of [Thol2]. The case that F' is totally real follows
immediately from the case that F' is imaginary by base change.

Theorem 2.4.1. Suppose that F is a CM (or totally real) field; that | is an odd
prime and that n € Z>1. Let (r, 1) be an n-dimensional, algebraic, polarized l-adic
representation of Gg satisfying the following properties:

(1) The reduction T is irreducible and 7(G p(¢,)) C GLy,(F,) is adequate.

(2) GgFr.

(3) r is ordinary at all primes above I.

(4) (7, ;) is ordinarily automorphic.

Then (r,p) is ordinarily automorphic. 1If r is also crystalline (resp. potentially
crystalline) then (r, p) is ordinarily automorphic of level prime to l (resp. potentially
level prime to l).

The next result is Theorem 10.2 of [Thol2], which generalizes Corollary 4.3.3 of
[GG12]. It provides a finiteness theorem for universal deformation rings.

Theorem 2.4.2. Let F' be an imaginary CM field with maximal totally real subfield
F*. Suppose that n € Z>1 and that | is an odd prime with { ¢ F. Let S be a
finite set of primes of FT including all primes above I. Suppose moreover that each
prime in S splits in F' and choose a prime v of F' above each v € S. Write S for
the set of v for v € S.

Let (m,x) be an 1-ordinary, regular algebraic, cuspidal, polarized automorphic
representation of GLy,(Ar) which is unramified outside S. Suppose that the image
T1.(7)(Gp(c,)) is adequate.

Let

I GF+ — @ZX
be an algebraic character satisfying & = 71,(x)e, ™. Note that HT (u) = {w} is
independent of T : F* < Q. For each 7 : F < Q, choose a multiset of n distinct
integers H. such that

Heoe={w—h: heH,)}.
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Let L denote a finite extension of Qq in Q, such that L contains the image of
each embedding F — Q;; and L contains the image of p; and ry,(m) is defined over
L. Forv e S withv [l let D, consist of all lifts of T1,(7)|G,. . If v|l let D, consist

of all lifts which factor through Rg,?z,z(fr)\cpa,{HT},ss—ord' Also let

S = (F/F",5,5,0p,714(r). 1, {Dy}ves).
Then the ring REY is a finitely generated Or-module.
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3. POTENTIAL AUTOMORPHY.

3.1. The Dwork family.

In this section we show that a suitable symplectic, mod [ representation is poten-
tially automorphic. The theorem and its proof are slight generalizations of section 6
of BLGHT11] The arguments are also simpler because of the stronger automorphy
lifting theorems that we now have available, particularly [Thol2]. (See in particular
step 2 of the proof of Theorem 6.3 of [BLGHTTI].) We start with another minor
variant of a result of Moret-Bailly [MB89] (see also [GPR95] and Proposition 6.2
of [BLGHTTI)).

Proposition 3.1.1. Let K®°d)/K/K, be number fields with K@ /K and
K/Ky Galois. Suppose also that S is a finite set of places of Ko and let S
denote the set of places of K above S. For v € SK let L' /K, be a finite Galois
extension with L' = oL! for o € GKo,u\KO' Suppose also that T/K is a smooth,

geometrically connected variety and that for each v € SK we are given a non-empty,
Gal (L / K, )-invariant, open subset Q, C T(L.).
Then there is a finite Galois extension L/K and a point P € T(L) such that

e L/Ky is Galois;

o L/K is linearly disjoint from K@v°id) /K,

o ifv € SE and w is a prime of L above v then L, /K, is isomorphic to
L /K, and P € Q, C T(L,) = T(Ly). (This makes sense as €, is
Gal (L] / K, )-invariant.)

Proof. Let KfaVOid),...,Kr(aVOid) denote the intermediate fields between K (avoid)

and K with Ki(aVOid) /K Galois with simple Galois group. Combining Hensel’s
lemma with the Weil bounds we see that T has a K,-rational point for all but
finitely many primes v of K. Thus enlarging S we may assume that for each
i=1,...,r there is v € S¥ with L/ = K, and v not split completely in KZ-(aVOid).
Then we may suppress the second condition on L.

Let K'/K be a finite extension such that

e K'/Kj is Galois;

e if v € S% and wlv is a place of K’ then K/ /K, is isomorphic to L) /K,.
(Apply Lemma with F of that lemma our K and S of that lemma our S¥.
This produces a soluble extension K" /K. Then we take K’ to be the normal closure
of K" over Ky.) Thus we may assume that L/ = K, for all v € SX.

Then Theorem 1.3 of [MB89] tells us that we can find a finite Galois extension
K'/K and a point P € T(K') such that every place v of S¥ splits completely in
K’ and if w is a prime of K’ above v then P € Q, C T(K,). Now take L to be the
normal closure of K’ over Kj. O

Theorem 3.1.2. Suppose that:
o F/Fy is a finite, Galois extension of totally real fields,
e T is a finite set,
e for each i € T, n; is a positive even integer, l; is an odd rational prime,
and 1; : @l 5 C,
o F@d) /E s g finite Galois extension, and
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e 7 : Gr — GSp,, (F1,) is a mod l; Galois representation with open kernel

and multiplier Elli_”" .

Then we can find a finite totally real extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (m;, x;) of GLy,, (Aps) such
that

(1) F'/Fy is Galois,

(2) F' is linearly disjoint from F®°9) gyer F,

(3) (Fliﬂi (’n—i)7?li,1i (Xl)gll:m) = (?i|GF/7€l1i_m) fO?” each i € I:'

(4) m; is v;-ordinary of weight 0 for each i € T.

Proof. The proof follows the proof of Theorem 6.3 of [BLGHTTI], although the
proof here is simpler.

First note that 7; is actually valued in GSp,, (F(*)) for some finite cardinality
subfield F( ¢ F;,. We choose a positive integer N such that
N is coprime to 2[], l;,

N > n; + 1 for all 4,

N is not divisible by any rational prime which ramifies in F(@void)

and for each i € Z there is a prime \; of Q({x)™ above I; and an embedding
FO < Z[CnIT /A

(Use Lemma 6.1 of [BLGHT11].) Note that in particular F®¥°id) is linearly disjoint
from Q({n) over Q.

We next choose an imaginary CM field M; for each i € Z such that M;/Q is
cyclic of degree n; and unramified at all rational primes which ramify in F(@veid),
For each i let 7; denote a generator of Gal (M;/Q). Choose a rational prime ¢ such
that

e ¢ splits completely in [, M,
e and ¢ is unramified in F((4n).

Also choose primes q; of M; above ¢ for each i. Choose M’ containing the composi-
tum of the M,’s and, for each i, a character ¢; : A;C[i — (M')* with open kernel
such that

e if @ € M then

n;/2—1
dio) = J[ @y (@
§=0

o it =11, foo | o™

e ¢; is unramified above all rational primes which ramify in F/Q;

e ¢; is unramified above NV,

e ¢; is unramified at all primes above g except q; and q¢, but Q\#@(Oﬁi,qi)
(Apply Lemma We take S to be the set of primes of M; above Nq or any
rational prime that ramifies in F. We also take v5 = [],cg %y, Where 1, is the
trivial character unless v|q;q5. Moreover we choose 14, to be wildly ramified and
take ¥qe = (45,)7" )

Next choose a rational prime !’ such that
e [’ splits completely in M’(¢x) (so that in particular I’ =1 mod N);
e [’ is unramified in F;

o ' f6qN TT,(lins).



POTENTIAL AUTOMORPHY 43

In particular ¢ ¢ F. Also choose primes X\, of M" and A of Q({x)" above I'.
For each ¢ let
0;: Gy, — O;\(/[l’/\ll\l’ =17}
be the algebraic character defined by
’ﬂi/271 )
0;(Art pr, ) = () H Tg(al,)—jﬁu/zﬂ (g )i T1=m,
j=0
Note that 6,05 = ¢, ™. Let r} = Ind gi_ 6; and note that
() @d
Choose a lifting 7; of 7; to ker ey C Gg. Then
0,(71") = 0T *)el e /?)) = (06°) (e7*/?) = ™ (e 1%) = ~L.

The module underlying r} has a Zy-basis eg, e1,. .., ep,—1 such that

J
e ri(0)e; =0, (0)e; for all o € Gyy;
o ri(Ti)e; =e;—y fori=1,...,n; — 1;
e and 7}(T;)eg = 6;(T]"" )en,—1 = —€n,—1.
If we define a perfect pairing on 7} by setting
L if jo=j1+ni/2
<ej1a€j2>: -1 if .71:.72+n7,/2
0 otherwise,

we see that this pairing is preserved by r, up to scalar multiplication by ellfni

Thus r; factors through GSp,,, (Z;/) with multiplier e "
Let 6, : G M, — le, denote the reduction of 6; and let 7, denote the reduction of
7. We have the following observations.

. 5;1 |G1\4i(<1/) # 5? |GM1‘(CZ/) for j # j' in the range 0,1,...,n; — 1. (Look at
the ramification above g.)
Tilo(¢, ) is irreducible.
U /Y#FQGQ
7i(Gg(c,)) is adequate. (By Proposition )
Q(¢w) is linearly disjoint over Q from F(veid) /Q. (Because no rational
prime ramifies in both fields.)
o 7(Goe,)) =Ti(Grcy,)) (Because 7 is only ramified at primes which are
unramified in F(Cy).)
Let Ty/Spec F/({x)" denote the scheme P* — ({oo} U ). For each i there are
o lisse Z[CN]j\“i (resp. Z[(n]Y,) sheaves Vi, x,((N—1—n;)/2) (resp. Vi, v ((N—
1 —mn;)/2)) over Tp;
o locally free etale sheaves Vi, [A]((N —n; — 1)/2) (resp. Vi, [N](N — n; —
1)/2)) of Z[¢{n]T /i (resp. Z[¢n]T/N) modules;
e a finite cover Ty« /(To x Spec F((n)™);
constructed as in section 4 of [BLGHT11] using N = N and n = n;. (We have
added the subscript n; to the notation of Section 4 of [BLGHT1I| as a reminder
that we are taking n = n; in the constructions of that Section. We would like to
point out that in the definition of Ty on page 54 of [BLGHTTI] we should have
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specified that it represents isomorphisms Wg = V[n]((N — 1 —n)/2)s compatible
with the symplectic structures. We would also like to point out that the fourth
occurrence of S in the statement of Proposition 6.2 of [BLGHTTI] should be an
M. We thank Kevin Buzzard for pointing out these corrections to [BLGHTTI].)

Let T denote the product of the 77, «7 over Spec F(¢{n)T and let t; denote the it"
projection to Ty. By Proposition 4.2 of [BLGHT11] we see that T is geometrically
irreducible. By Proposition we can find a finite extension of F'/F((x)* and
a point P € T(F') such that

e F'/Fy is Galois;

e [ is totally real;

e I is linearly disjoint from F(aveid)
v(t;(P)) < 0 for all places vl|l; of F’;
v(t;(P)) > 0 for all places v|l’ of F.
(The only thing we need to check is that Ty, . (F((n )y ) # 0 for each i and each
v|oo. However, because GSp,,, (Z/1;I'Z) has a unique conjugacy class of elements of
order 2 and multiplier —1, we see that every F/((y ). -point of Tp lifts to a F({n).F-
point of T, x7.)

Then we have the following observations.

=/
M; ker 7

(Cnwr) over F(¢n);

avoid)

e F’ is linearly disjoint from F( over F' (as F((x)" is linearly disjoint

from F®°id) over F).

Vi N (N =1 =n4) /2),p) = Tilay-

Vi (NN =1 = 14) /2)1,(p) = TilG -

7i(Gpr(¢,)) is adequate.

Cv & F' (as F is totally real and I’ > 2).

Vi ((N =1 —n4)/2)4,(py is ordinary at all primes above I’. (See Lemma

5.3(3) of [BLGHTTI].)

o HT, (Vo ¥ (N =1 —=1n4)/2)¢,p)) = {0,1,...,n; = 1} for all 7 : F' — Q.
(See Lemma 5.3(1) of [BLGHTTI].)

e If v is a place of F’ above [; then

WD (Vo a (N = 1= n3)/2)1,(p) |G,y ) = recr; (Sp,, (1))

for some unramified character ¢; (and for any isomorphism ' : Q, = C).
(See Lemma 5.1(2) of [BLGHTII].)

From Theorem 4.2 of [AC89] we see that (|, e, ™) is automorphic of level
potentially prime to I’, and hence ordinarily automorphic. By Theorem we
conclude that (Vi,, x (N =1 —n;)/2)s,(p)s ¢, ™) is automorphic over F’ of weight
0, arising from a regular algebraic, cuspidal, polarized automorphic representation
(m;, 1) with m; ,, Steinberg for all v|l;, and from an isomorphism ¢; : @li = C. Thus
m; is 2;-ordinary. The Theorem follows. O

3.2. Lifting Galois representations I.

We now use the method of Khare and Wintenberger [KW09] to show that certain
mod [ representations have ordinary lifts with prescribed local behavior. We will
later improve upon this by weakening the ordinary hypothesis (see Theorem ,
but we will need to use this special case before we are in a position to prove the
more general result.



POTENTIAL AUTOMORPHY 45

Let n be a positive integer and [ an odd prime. Suppose that F' is an imaginary
CM field not containing ¢; and with maximal totally real subfield F'*. Let S be
a finite set of finite places of '™ which split in I and suppose that S includes all
places above [. For each v € S choose a prime v of F' above v.

Let p : Gp+ — @lx be a continuous, crystalline character unramified outside
S such that p(c,) = —1 for all vjoo. Then there is a w € Z such that for each
7: Ft — Q; we have HT, (1) = {w}. For each 7 : F < Q, let H, be a set of n
distinct integers such that Hyoc = {w —h: he€ H.}.

Let

7:Gp+ — gn(Fl)

be a continuous representation unramified outside S with vo7 = 1 and 7 1G9 (F;) =
Gp. For v € S with v fl let p, : Gr, = GL,(Og,) denote a lift of %|GF1~,'

Proposition 3.2.1. Keep the notation and assumptions already stated in this sec-
tion. Also make the following additional assumptions:

(a) Suppose that ﬂGF(q) is irreducible. Also, writing d for the maximal di-
mension of an irreducible constituent of the restriction of T to the closed
subgroup of G+ generated by all Sylow pro-l-subgroups, suppose that | >
2(d+1).

(b) Suppose that for u|l a place of F the restriction ¥|q,, admits a lift p, :
Gp, — GLn((’)@l) which is ordinary and crystalline with Hodge—Tate num-
bers H, for each 7 : F,, — @l.

Then there is a lift

T GF+ — Qn((’)@l)
of ¥ such that
(1) vor = p;
(2) ifull is a place of F' then T|g,., is ordinary and crystalline with Hodge—Tate

numbers H, for each 7 : F, — Qy;
(3) ifve S and v fl then ¥lG, ~ po;
(4) r is unramified outside S.

Proof. Choose a place vg of I above an odd rational prime ¢ such that v, is split
over F'™ and v, does not divide any prime in S. Also choose integers b, for all
7 : F — Q; such that

® b +broe=2n—1—w for all 7,

e and |b; — broc| > |h — K| for all 7 and for all h € H. b/ € H.o..
Now choose a character ¢ : Gp — @lx such that

* Y|, is unramified if v € S but v [l;

e 1) is crystalline at all primes above [ with HT (1)) = {b,} forall 7 : F < Q;

o ql#/v°)IF,,); and

o Yy = " g
(To do this, apply Lemma with the set S of that Lemma equal to the primes
of F above our S, plus v, and vg. For v in this set take 1, as follows:

e if v € S but v/l then 17 = 1 and Yz = e}fQ”M_I\GFEC,

e 1y, is a wildly ramified character and ¢,c = ( 5q)’1,
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o if v|l then 1), is crystalline with HT(¢,) = {b,} for all continuous 7 :
F, = Q)

In the notation of Section we have a homomorphism (4, Ellf%ﬁ’ldF/FJr) :
Gp+ — G1(F)), and we can consider the representations 7 ® (¢,& >"m '0p/p+) :
Gp+ = Gu(F1) and I5(F) := I(T @ (0, & 2" "0p p+)) : Gp+ — GSpy,, (Fy). Note
that IE(F) has multiplier €l172". By the third condition on 1 the representation
L(P)la s o 18 irreducible. (As it is the induction of an irreducible representation
from the index 2 subgroup Gr(¢,), it suffices to check that the restriction to G,
is not the sum of two isomorphic representations, and this follows, as the two
representations differ when restricted to Ir, .) By Proposition L(P)(Gr+))
is adequate.

Let Fy/FT be a totally imaginary quadratic extension linearly disjoint from
—ker I(T) . . .
F () over FT. By Theoremthere is a Galois totally real field extension
F/"/F* and a regular algebraic, cuspidal, polarized automorphic representation
(m1,1) of GLQn(AFlﬁ—) such that

e F is linearly disjoint from 7 IJ(F)FO(Q) over F'T;
o T.(m) = L(T)le, .

1
e and 7 is s-ordinary.

Set Fy = FyFyf. Tt is linearly disjoint from I3 IJ(F)Ff (¢;) over Fy". Set (again,

in the notation of Section
T = (IE(F)|GF1+)/C\¥F1 : GF1+ — QQn(Fl)

Then %1(GF1(Q)) is adequate and (; & F;.
Let 77 O S denote a finite set of primes of F* including all those above which ),
mp or Fy is ramified. Let F2Jr /F* be a finite soluble Galois totally real extension,

linearly disjoint from Fll(eﬁl (¢;) over F* such that all primes of Fy" = F/"Fy
above T” split in F3 = F F2+ (We have introduced F; in order to be able to apply
Theorem The primes of F;™ above 7" may not split in F;.) Set

T3 =Tl :Gpr — Gon (Fy)
3

so that 73 1G9, (F;) = G'F,. Then 73(Gr,((;)) is adequate and {; ¢ Fs. Let T denote
the set of places of Fy lying over 7" and for each u € T choose a prime 4 of F3
above u and let T’ denote the set of 4 for u € 7.

For v € S with v/l let C, denote a component of R:

5 ® Q, containing p,,.
T|GF§
Choose a finite extension L of Q; in Q, with integers O and residue field F such

that

L contains the image of each embedding Fy < Q;
for v € S the component C, is defined over L;

7 and ¢ are defined over T;

and p is defined over L.

For v € S with v /I let D,, denote the deformation problem for 7|g, corresponding
to Cy. For v € S with v|l let D, consist of all lifts of ﬂGFa which factor through
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O
R e A1, Yiormora” S

§= (F/F+757 §,(’),F,u, {DTJ}UES)'

For w € T with ufl let D3, consist of all lifts of %3|GF3 . For u € T with ull
" pO

O’%3‘GF3 . ,{Hgﬁ},ss—ord’

let D3 ,, consist of all lifts of %3|GF3_17 which factor through R

where
HB,T = {h+b71 : he HT1} U {h+bT2 : he HT2}7

and 71 and 75 denote the two embeddings of F' — Q; lying above 7|p+. Set
83 - (FS/F‘;La Ta Ta 07?37 61172na {D3,u}u€T)~

According to Theorem the ring Rgg‘i" is a finitely generated O-module. Hence
by (all three parts of) Lemma m the ring R4™Y is also a finitely generated O-
module. On the other hand by Proposition RYMY has Krull dimension at least
1 and so there is a continuous ring homomorphism Rg“i" — @;. The push forward
of the universal deformation of 7 by this homomorphism is our desired lift . [

3.3. Potential ordinary automorphy.

In this section we improve Theorem [3.1.2] to show that a suitable mod [ repre-
sentation is potentially ordinarily automorphic with prescribed “weight and level”.
The proof will combine Theorem [3.1.2] and Proposition [3.2.1 We will improve
further on this result in Corollary

Proposition 3.3.1. Suppose that we are in the following situation.

(a) Let F/Fy be a finite, Galois extension of imaginary CM fields, and let
F* and FO+ denote their maximal totally real subfields. Choose a complex
conjugation ¢ € Gp+.

(b) Let T be a finite set.

(¢) For each i € T let n; be a positive integer and l; be an odd rational prime
with ¢, ¢ F. Also choose v; : Q;, = C for each i € T.

(d) For eachi € T let p; : Gp+ — @ZX be a continuous, totally odd, de Rham
character. Then there is a w; € 7 such that for each T : FT — @l we have
HT: (1) = {wi}. _

(e) For eachi € T letT; : Gp — GLy, (Fy,) be an irreducible continuous repre-
sentation such that (7;,@;) is a totally odd polarized mod I representation.
Let d; denote the maximal dimension of an irreducible subrepresentation of
the restriction of T; to the subgroup of G generated by all Sylow pro-l;-
subgroups. Suppose that T; is irreducible and that l; > 2(d; +1).

(f) For eachi € T and each 7 : F — @li let H; » be a set of n; distinct integers
such that H; roc ={w; —h: h € H;}.

(g) Let S denote a finite Gal (F/F™T)-invariant set of primes of F including all
those dividing [],l; and all those at which some T; ramifies.

(h) for each i € T and v € S with v fl; let pi,p : Gr, — GLy,(Og, ) denote a

Ui
lift OfFi|GFU such that pf,cv = /’[’i‘GFv p;/,v'
(i) Let F@vid) /F be q finite Galois extension.

|GF(<H>
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Then we can find a finite CM extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (m;, x;) of GLy,, (Apr) such
that

(1) F'/Fy is Galois,

(2) F' is linearly disjoint from F®°9) gper F,

(3) (Fros (73), Fries ()&, ™) = (Tl il G gy )i

(4) m; is unramified above l; and outside S;

(5) m; is v-ordinary;

(6) if 7: F' — Q, then HT(ry, ,, (7)) = H; 7|,

(7) if ufl; is a prime of F' lying above an element v € S then ry, ,, (71'1‘>|GF{‘ ~

pi,v|GF{L .

Proof. Note that (7;, ;| ¢, ) extends to a continuous homomorphism 7z, : Gp+ —
G, (F,) with v o %i@: = T1; (see section .
Choose a finite totally real extension F;"/F* so that
o I["/Fy is Galois;
e F is linearly disjoint from Tk ”(Cni 1, ) F@veid) over Ft;
e all places of [} = FF;" above S are split over F};
e and for all i € Z and all places ull; of F; the restriction Fi|GF1 _ admits
a lift piu © Gr, — GLy,(Og, ) which is ordinary and crystalline with
Hodge-Tate numbers H; |, for each 7 : Fy,, < Q.

(For all v a prime of F™ below an element of S there is a finite Galois extension
E,/F,} with the following property: The last two bullet points will be satisfied
as long as, for all primes w of Fj" above a prime v of F* below an element of
S, we have (F;"), D E,. So we may replace the last two bullet points by this
condition. Now the existence of F;" follows from Lemma ) Replacing F' by
F; (and Flavoid) 1,y oy F(a""id)) we may reduce the theorem to the special case that
all elements of S are split over F© and that for all i € Z and all places ul|l; of F
the restriction 7;|g,, admits a lift p; ., : Gr, — GLy, (O@li) which is ordinary and
crystalline with Hodge-Tate numbers H; ; for each 7 : F,, — Q;- (Note that if
F'/Fy is finite and linearly disjoint from F(@vid) Fy over Fy and if F’/Fy is Galois,
then F'/F is linearly disjoint from F(@avoid) gyer . thus replacing F' by F; does
not affect the condition that F” is linearly disjoint from F®v°id) over F'.)
In this case, using Proposition we see that for each i € T there is a lift

i GF* — g7l1 (O@l )

of ﬁ'@ such that

o voT; = LI

e if u|l; is a place of F' then 7|, is ordinary and crystalline with Hodge-

Tate numbers H; . for each 7: F,, — @li?

e if v € S and v fl; then 7i|g,, ~ piv;

e 7; is unramified outside S.
(Note that if we write S = S 1I ¢S then we only need check the penultimate assertion
for v € S and it will follow also for v € ¢S.)
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Choose a place vy of F' which is split over F* and which lies above an odd
rational prime ¢, which in turn does not lie under any prime in S. Also choose
integers b; ; foralli € Z and all 7: F' — @l such that

® b +biroc=2n; —1—w; for all 7,
o and |bj; — biroc| > |h — K| for all 7 and for all h € H; -,/ € H; ;o.
Now choose a character ¢; : Gp — @lx for i € 7 such that
e 1, is unramified at places in S which do not divide I;;
e ; is crystalline at all places above [; and HT;(¢;) = {b; ,} for all 7: F' —
@lﬁ
o q|#Wi/¥5)(Ip,,); and
R
(To do this apply Lemma with the set S of that Lemma equal to the union
of our S and the set of primes of F' above g. For v in this set take v, as follows:
o if {v,v°} C S but v fl; then put ¥, = 1 and ,c = ¢ "G, . (or the
other way round), ’
® 1y, is a wildly ramified character and ¢,c = ( 5q)’1,
e if v|l; then 1, is crystalline with HT(¢,) = {b; .} for all continuous 7 :
F, = Q.)
Consider

I (Tig,) = I(Tim, © (03§ 2" Ymyp+)) : G — GSpay, (FL),
which has multiplier Elli_%i. As in the proof of Proposition we see that
Iy, (%i,ﬁ,i)(GF‘*'((li)) is adequate. Theorem tells us that there is a finite to-
tally real field extension F,"/F7T such that
e I["/Fy is Galois;
e F; is linearly disjoint from ket (%Wi)(gni 1, ) F@void) over Fty
e cach ((Ind gfﬂ ® ;) gl

|GF .+, ") is ordinarily automorphic of weight 0.
1

By Theorem [2.4.1|we conclude that each ((Ind g’; TR @) [ e}£72"i) is ordinarily
1

automorphic of level prime to I;.

Let F/ = FF;". By Lemma|2.2.4] we see that each ((7; ® ¢;)|a,., elli_"f‘) is auto-
morphic of level prime to [;. Hence each (7i|a,,, ,Uz'|G(F,> . ) is automorphic of level
prime to ;. As these representations are also ordinary, they are ordinarily auto-
morphic of level prime to I. The theorem follows (using local-global compatibility).

O
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4. THE MAIN THEOREMS.

4.1. A preliminary automorphy lifting result.

The proof of the next proposition is our main innovation. The last two parts of
assumption are rather restrictive and mean that the proposition is not directly
terribly useful. However in the next section we will see how we can combine this
result with Theorem to get a genuinely useful result. Our main tool will be
Harris’ tensor product trick (see [Har09] and [BLGHTTI]).

Proposition 4.1.1. Let F' be an imaginary CM field with mazimal totally real
subfield F* and let ¢ denote the non-trivial element of Gal (F/F1). Suppose that
! is an odd prime and let n € Z>y. Assume that ¢, ¢ F. Let (r,u) be a regular
algebraic, irreducible, n-dimensional, polarized l-adic representation of Gp. Let T
denote the semi-simplification of the reduction of v, and let d denote the maximal
dimension of an irreducible subrepresentation of the restriction of T to the closed
subgroup of Gp generated by all Sylow pro-l-subgroups. Suppose that (r,u) enjoys
the following properties:

(1) 7|lgp, is potentially diagonalizable (and so in particular potentially crys-
talline) for all vll.
(2) The restriction T|G ., is irreducible and | > 2(d + 1).
(3) (7, 1) is automorphic of level prime to | arising from a reqular algebraic,
cuspidal, polarized automorphic representation (w,x) such that
e 71,(7)|G, is potentially diagonalizable for all vll;
o for all 7: F < Q the set {h+ K : h € HT.(r), b’ € HT,(r,.(7))}
has n? distinct elements;
o if v fl then ry,(7)|ap, ~ Tlap, -
Then (r, ) is potentially diagonalizably automorphic (of level potentially prime
tol).

Proof. Note that tWD(ry,, ()|, )™ = rec(m,| |1(}17n)/2) for all v /I. Moreover as
T, is generic we have 1y ,(7)|gy, ~ 7|y, for all v fl.
Also note that by Proposition F(G F(¢)) 1s adequate and so (by the remark
in the paragraph before the statement of Proposition we see that [ Jn.
Using Lemma we see that it is enough to prove the theorem after replacing

F by a soluble CM extension which is linearly disjoint from erﬁ(g) over F'. Thus
(using Lemma [A.2.1]) we may suppose that

e F/FT is unramified at all finite primes;

e all primes dividing [ and all primes at which 7w or r ramify are split over
F:

e if u is a place of F' above a rational prime which equals [ or above which 7
ramifies, then 7|g,. is trivial;

e if u is a place of F' above [ then r|g,, and r;,(7)|g,, are diagonalizable,
and m, is unramified.

For each prime v of F™ which splits in F, choose once and for all a prime v of I
above v.
For u a prime of F' above [ suppose that

T‘GFM ~ 1/)%10 DD 'l)ZJ,Slu),
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and
1 (Mlas, ~ ¢ & - @ ¢,

for crystalline characters wi(u) and gbz(»u) :Gp, — O% . We can, and shall, assume
1

that the characters g[}fu) and (bz(u) satisfy z/;fcu) wgu))c = plgy,, and ¢§cu)(¢£u))c =
(r, (et ™Gy, - For 7: F, < Q; write HT, (")) = {h.;} and HT, (¢\")) =
{h-;}. There are integers w and w’ such that for each 7 : F* — Q; we have
HT,(p) = {w'} and HT-(r,(x)) = {w + 1 — n}. Then
R+ h. ;=
and
hei=+ hrei=w
for all 7 and 1.
Using Corollary we may choose a CM extension M/F such that
e M/F is cyclic of degree n;
e M is linearly disjoint from erﬁ(cl) over F
e and all primes of F' above [ or at which 7 ramifies split completely in M.
Choose a prime uq of F' above a rational prime g such that
e ¢ # [ and ¢ splits completely in M;
e 7 u, mand x are unramified above gq.

If v|ql is a prime of F' we label the primes of M above v as var1, ..., V6., SO that
(cv) i = c(vars). Choose continuous characters

0.6 : Gy — Q,
such that

the reductions @ and 8 are equal;

00° =11, (x)e; ™ and 0'(0')¢ = p;

¢ and ¢’ are de Rham;

if 7: M < @ lies above a place v |l of M then HT,(0) = {h,|,.;} and
HT(0) = {1, .}

6 and ¢’ are unramified at g ar,; for ¢ > 1, but ¢ divides #6(I
#0' (I, ., )-

(First use the first part of Lemma to choose (say) 6 and then use the second
part of Lemma to choose #'.) Note that if u|l is a place of F' and if K/F, is a

finite extension over which 6 and 6’ become crystalline and & = 8 become trivial,
then

) and

Yq,M,1

(I & Olow ~ 61" e - © 6o
and
(nd s 0)law ~ 91" low © - © U -
(To see this, note that both sides are residually trivial by the choice of K, and both
sides are sums of crystalline characters with the same Hodge-Tate numbers. The
result then follows from points (5) and (6) of Section [1.4])
Now let F/F be a solvable CM extension such that
® 0|Gy,\ and 0|, ,, are unramified away from [ and crystalline at all primes
above [;
. é‘Gpl o 1s trivial at all primes above [;
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—ker(7r®In Crg
e [ is linearly disjoint from et dGMa)M(Q) over F

e MFy/F; is unramified at all finite places.
(Use Lemma [A.2.1}) Note that MFy/F} is split completely above all places of F

at which 7 is ramified.
Put

R:=(re® (Indgf/fﬁ)ﬂgﬁ,

R = (r,(m) @ (Ind & 0)) g, -
Note that we have the following facts.

e R>FR.

e RC2 (rV ®Ind g;ﬁc @y =RV ® (url,l(x)ell_"cSFl/F;rﬂGFl.

o (R)=(R)Y @ (nria()e " 0p, i, -

e R is irreducible and R(Gp, (,)) is adequate.

[As 7|y, is irreducible, we see that the restriction to Gas(¢,) of any
. _ Gr 7

constituent of (7 ® Ind &7 0)|cp,
over some subset of Gal(M/F). Looking at ramification above u, we
see that the F|GM<<7,)§T|GM(Q) are permuted transitively by Gal (M/F') and
hence (7 ® Ind g; 0)
chr(?@lndg

. — =T
is a sum of T|ay, )0 |Gy, as 7 runs

G o 18 irreducible. Since F7 is linearly disjoint from

LG)M(Q) over F', we see that E|Gp1<<” is irreducible. As [ fn,
every Sylow pro-/ subgroup of G'p(¢,) is a subgroup of G (¢,). By Proposi-
tion we see that R(Gp, (¢,)) is adequate.]

o (R, ,umﬂ(x)ellfnéFI/Fﬁ) is automorphic of level prime to [, say

—n ~ —n?
(R/,,LLTZ,Z(X)Ell 5F1/F1+) = (rl,l(ﬂ-l)vrl,z(Xl)Ell )

Moreover m; only ramifies at places of F; where BC p, /p(7) is ramified.
(m is constructed as the automorphic induction of

BC gy pyp(m) @ (8] "7 D/% 0 det)
to Iy, where r1,(¢") = 0'|gs - Note that if o € Gal(F1M/F1) then
_ b _ —/
rl,z(ﬂ-)‘GFlMa |GF1M e rl,l(ﬂ-)|GF1A40 |GF1M’ so that (BC F1M/F(7T) ® (¢/ °
det))” 22 BC g, pr/p(m) @ (¢ o det) and 7 is cuspidal.)
e For all places u|l of Fy,

Rl , ~ @ e-oyplMe, @' e o),
~ Rlgg, -

e Tor all places u { [ of 'y we have R'|g,, ~~ Rg, . [Because we know that

G G
’I’l,z(BC F1/F(7T))|GF1,u ~ T|GF1,u and (Ind G;IGINGFLu ~ (Ind Gifo)lGFLu’
the latter because they are both unramified.]
We now apply Theorem with
F the present F},
[ as in the present setting,
n the present n?,
r the present R,
1 the present url)l(x)elk”(SFl/F;r,



POTENTIAL AUTOMORPHY 53

e (m,x) the present (7, x1).

We conclude that (R, (NTZ,Z(X)ﬁll_n‘SFl/Fj a is automorphic of level prime to

(rrrer+)
1— . .
[. By Lemma (716G oy 1t @01G oy e > (B2 ()€ n‘SFl/Fi)‘G(pl uy+ ) 18 automorphic
of level prime to [. Using Lemma we deduce that (7"|Gp1MvM|G<F1M)+) is
automorphic of level prime to [. Finally by Lemma [2.2.2] r is automorphic of level
potentially prime to [, and hence potentially diagonalizably automorphic. ([

4.2. Automorphy lifting: the potentially diagonalizable case.

In this section we will prove our main automorphy lifting theorem. It generalizes
Theorem from the ordinary case to the potentially diagonalizable case. It is
proved by combining Theorem [2.4.1] and Propositions and

Theorem 4.2.1. Let F be an imaginary CM field with maximal totally real subfield
F* and let ¢ denote the non-trivial element of Gal (F/F¥). Suppose that that I
is an odd prime, and that (r,p) is a regular algebraic, irreducible, n-dimensional,
polarized representation of Gg. LetT denote the semi-simplification of the reduction
of r, and let d denote the maximal dimension of an irreducible subrepresentation
of the restriction of T to the closed subgroup of G generated by all Sylow pro-l-
subgroups. Suppose that (r, u) enjoys the following properties:
(1) 7|lgp, is potentially diagonalizable (and so in particular potentially crys-
talline) for all vll.
(2) The restriction T|G ., is irreducible, | > 2(d+1), and ¢ & F.
(3) (7, ) is either ordinarily automorphic or potentially diagonalizably auto-
morphic.
Then (r,u) is potentially diagonalizably automorphic (of level potentially prime
tol).

We remark that condition of the theorem will be satisfied if, in particular, [ is
unramified in F' and r is crystalline at all primes above I, and HT(r) is contained
in an interval of the form [a,,a, + 1 — 2] for all 7 (the “Fontaine-Laffaille” case).
We also remark that the reason we can not immediately apply Proposition
to deduce this theorem is the last two parts of assumption [3] in Proposition
(i.e. roughly speaking r and r;,(w) may have different level or r ® r;,(7) may
have repeated Hodge—Tate weights). To get round this problem we use Proposition
to create two ordinary intermediate lifts of 7, one r; with similar behavior
(‘level’) to r, and one 7y with similar behavior to r,(7). We also ensure that
1 ®r and o @ ry,(m) are Hodge-Tate regular. Theorem tells us that if ro is
automorphic so is r1. On the other hand Proposition [{.1.1] allows us to show that
ro is automorphic and that if r; is automorphic then so is 7.

Proof. Using Lemma [2.2.2] it is enough to prove the theorem after replacing F' by

a soluble CM extension which is linearly disjoint from erﬁ(g) over F. Thus we
may suppose that

e F/FT is unramified at all finite primes;

e all primes dividing ! and all primes at which 7w or r ramify are split over
F:

e if u is a place of F' above [ then F,, contains a primitive
and 7|g,., and 71,(7)|g,, are trivial.

I*" root of unity,
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Let S denote the set of primes of F'™ which divide [ or above which 7 or 7 ramifies.
For each prime v € S choose once and for all a prime v of F' above v.

Note that p(c) = —1 for all complex conjugations ¢ and that we may extend
7= 7;,(m) to a homomorphism

%ﬁl GF+ — gn(Fl)

with multiplier f.
Choose an integer m strictly greater than |h — h/| for all A and k', Hodge-Tate
numbers for r or r;,(mw). If 7: F — C set

H,={0,m,...,(n—1)m}.

Note that if u|l then both 7|g, and 7;,(7)|q,, have ordinary and crystalline lifts
1o m®--- @ el(l_n)m with 7-Hodge-Tate numbers H|,. for each 7 : F}, — Q. (It
is here that we use the assumption that F, contains a primitive [*” root of unity,
and 7|g,, and 7,(7)|qy, are trivial.) Applying Proposition we see that there

is a continuous homomorphism
r1: Gpr — Go(Q))

lifting %ﬁ and such that

vory = el(lfn)mwl(nfl)mﬁ where [ denotes the Teichmuller lift of fi;

if u|l then 7|g., is ordinary and crystalline with Hodge Tate numbers
H;, for each 7: F, — Q;

e 71 is unramified outside S;

and if v € S and v fl then 7|, ~ il -

First we treat the case that (7, ) is ordinarily automorphic. In this case Theorem

tells us that (7, el(l_")mwl("_l)mﬁ) is automorphic of level prime to I. Then
Proposition tells us that (r, ) is potentially diagonalizably automorphic, and
we have completed the proof of the theorem in this case.

Secondly we treat the case that (7, i) is potentially diagonalizably automorphic,
say (7,71) = (r,(m),r,(x)). In doing so we are free to make use of the first
case, which we have already proved. Again applying Proposition we find a
continuous homomorphism

To : GF+ — Qn(@l)

lifting 77 and such that

® vory = el(lfn)mwl(nfl)(mfl))z where X denotes the Teichmuller lift of 7, ,(x);

e if u|l then 73|g,, is ordinary and crystalline with Hodge-Tate numbers
H;, for each 7: F,, — Q;

e 1o is unramified outside S;

e and if v € S and v fl then ry,(7)|G. ~ 72|y, -

By Proposition (ra, el(lfn)mwl(nfl)(mfl)i) is automorphic of level potentially
prime to I, say ro = 7,(m2). As ro is ordinary and m has level potentially prime
to [ we can conclude that my is ¢-ordinary. The second case of our theorem now
follows from the first case. O
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4.3. Lifting Galois representations II.

We now use the same idea that we used to prove Theorem to prove a
strengthening of Proposition [3.2.1

Let n be a positive integer and [ an odd prime. Suppose that F' is an imaginary
CM field not containing ¢; and with maximal totally real subfield F*. Let S be
a finite set of finite places of '™ which split in F and suppose that S includes all
places above [. For each v € S choose a prime v of F' above v.

Let p : Gp+ — @IX be an algebraic character unramified outside S such that
w(ey) = —1 for all v]oo.

Also let

T GF+ — Qn(Fl)

be a continuous representation unramified outside S with voF = g and 7 *G%(F;) =
Gp. Forv e S, let p, : G, — GLn((’)@l) denote a lift of %|GF5'

Theorem 4.3.1. Keep the notation and assumptions already stated in this section.
Also make the following assumptions:

e Suppose that %|GF(<I) is irreducible. Also, writing d for the maximal di-
mension of an irreducible subrepresentation of the restriction of T to the
closed subgroup of Gr generated by all Sylow pro-l-subgroups, suppose that
1>2(d+1).

o Ifull we suppose that p, is potentially diagonalizable and that, for all T :
F; — Q, the multiset HT(p,) consists of n distinct integers.

Then there is a lift
T GF+ — gn(0@1>
of T such that
(1) vor=p;
(2) if v €S then Flgp ~ po;
(3) r is unramified outside S.

Proof. We may suppose that for v € S with v /I the representation p,, is robustly
smooth (see Lemma|1.3.2)) and hence lies on a unique component C, of REIG ®Qy.
5

If v|l is a place of F'™ then choose a finite extension K, /Fy over which p, becomes

crystalline, and let C,, denote the unique component of R?D‘GF {HT (o), vacris(g)(@l

on which p,, lies. Let 1z denote the Teichmuller lift of 7i. Choose a positive integer
m which is greater than one plus the difference of any two Hodge—Tate numbers of

pv for every vl|l.
Choose (using Lemma[A.2.1)) a finite, soluble, Galois, CM extension F;/F which

is linearly disjoint from F' er?(Q) over F such that

for all u lying above S we have 7(Gr, ) = {1};
for all u|l we have {; € Fy ;
. M|GF . is crystalline above I;

1

if u[v|l with v € S then pv|GF1 , is crystalline and polGr, L w§“)@- . ~@¢7(lu)

with each 1/)1(“) a crystalline character.
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If w|v|l with v € S, then for i = 1,...,n, we define wl(cu) : Gpy,, — @lx by
W)™ = plag, -

By Proposition there is a finite, Galois, CM extension Fy/F}; linearly dis-
joint from Flfke”(g“l) over F; and a regular algebraic, cuspidal, polarized auto-
morphic representation (mg, x2) of GL,(AF,) such that

° ?l,z(ﬂ?) = %|Gp2;
I
2

e 7 is r-ordinary and unramified above [;
o if 7: Fy < Qy, then HT (1 ,(m2)) = {0,m,2m, ..., (n — 1)m};
e 75 is unramified outside S
e and if v/l is in S and if u is a prime of Fy above v then 7"171(71'2)|GF2 L~
P |GF2,u .
In particular if u|l is a place of Fy then
ra(m)lar,, ~1Oq " O dg
Choose (using Corollary [A.2.3]) a CM extension M /F; such that
e M/F; is cyclic of degree n;
e M is linearly disjoint from er”(g) over I
e and all primes of F; above [ split completely in M.
Choose a prime u, of F» above a rational prime g such that
e ¢ # [ and ¢ splits completely in M;
e 7 is unramified above q.
If v|ql is a prime of F, we label the primes of M above v as vas1,. .., U,y SO that

(cv) i = c(vam,i). Choose continuous characters
0,0 : Grr — Q)
such that
the reductions @ and 8 are equal;
00° =11, (x2)e; " and 0'(0)° = p;
¢ and ¢’ are de Rham;
if 7: M — Q lies above a place vys;|l of M then HT,(0) = {(i — 1)m}
and HT, (¢') = HT.,, (w(vm,ilFl));

K2

¢ and 0 are unramified at ug ar,; for ¢ > 1, but ¢ divides #60(Ips
#6' (I, )-

(First choose (say) 6 using the first part of Lemma then choose 0’ using the
second part of Lemma )

Note the following;:

) and

Ugq,M,1

o If u|l is a place of F» and if K/F»,, is a finite extension over which 6 and
6’ become crystalline and 6 = ' become trivial, then

mdS20) o, ~ 1@ g™ @ @ 1™

and
G u u
(IndGifG')|GK ~ wi |F1)|GK SRR ¢r(L ‘F1)|GK'
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[To see this, note that both sides are residually trivial by the choice of K,
and both sides are sums of crystalline characters with the same Hodge—Tate

numbers. The result then follows from points (5) and (6) of Section [1.4]]
o (Indg™0)° = (Ind 5"20)" @ry,(x2)el " and (Ind ¢"20')° = (Ind 9')

b

e The representation
~ Gryp ~ — Gr, 7!
T|GF2(C[) ® (Ind Gifz 0)|GF2(41) = rlvl(ﬂ-2)|GF2(Cz) ® (Ind Gifze )‘GF2(CL)

is irreducible, and hence by Proposition [2.1.2

= Gsz
(Flor, ® (Ind 6,7 0)(Gry ()

is adequate.
[As 7|y, is irreducible, we see that the restriction to Gas(¢,) of any

constituent of (¥|g,, ® Ind GF2 )Gy,
runs over some subset of Gal (M/F»). Looking at ramification above u, we
see that the %|GM<< >§T|GM<¢,> are permuted transitively by Gal (M/Fy) and

. fi gT
is a sum of 7|ay, 0 |G, 88 T

hence (r|GF ® Ind Gi? )| ry(, is irreducible.]

Let F3/F; be a finite, soluble, Galois, CM extension linearly disjoint from

GF.
—kerTnd ;20— 7
cmr B e”(g“l) over Fy such that

® 0Gp,, and o’ |Giryar are crystalline above [ and unramified away from /;
e MF;/F;3 is unramified everywhere.

(Use Lemma [A.2.1])

Then there is a regular algebraic, cuspidal, polarized automorphic representation
(73, x3) of GL,2(Ap,) such that

G
o 11,(m3) = (ri,(m2) ® Ind v 9/)|GF3§

b Tl,z(XS) = HTl,z(XQ)el nin 71)5F3/F3+;

e 73 is unramified above [ and outside S.
[The representation 3 is the automorphic induction of (ma) prr, @(¢'] |~ 1/20det)
to Iy, where 1,,(¢') = 0'|gy,, . The first two properties are clear. The third
property follows by the choice of F3 and the fact that 79 is unramified above ! and
outside S.]

Let S denote the set of ¥ as v runs over S, let S5 denote the primes of Fy + above

S and 53 the primes of F3 above S. Ifve S3, let v denote the element of 53 lying
above it. For v € S5 with v )(l (resp. v|l) let C3, denote the unique component

of Be) (o, , ® @ @D R (r)io, (BT, (i ()l ,ohcris ® Q1) containing
rl71(7r3)|GFM. Choose a finite extension L/Ql in Q; such that

L contains the image of each embedding F3 — Q;

L contains the image of u and of 6,

ry,(m3) is defined over L;

each of the components C, for v € S and Cs, for v € S3 is defined over L.

Set
GF+ Gryria(x2)e "

s = Ind M+,GM (earl,z(X2)€ll_n) : GF;r — gn(OL)
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in the notation of section 1.1 of this paper and section 2.1 of [CHTOS8]. Thus
vos = 1,(x2)e " Forv € S (resp. v € S3) let D, (resp. Ds,,) denote the
deformation problem for 7|, (resp. Ti,(m3)|Gp, ) over O corresponding to C,
(resp. Cs.). Also let
S =(F/F*,5,5,0.,7,1,{D,})
and B
S3 = (FS/F:;F? S3, 53, OLﬂﬂﬂ(WS)a MTZ,Z(X2)ellin6F;/F37 {D?»,v})‘

We next check that if u € S3 then 7“’5“”|GFM ® (Ind g}\pj 0)\GF3717 € D3 4. To this

O
OL7F|GFE Co”

It suffices to show that pECU‘GFg _ ® (Ind gif 0)lGr, . € Ds,u. For this, it suffices
to show if p : Gp, — GL,(Og,) is a lift of T|g, lying on Cy, then plg,, = ®

end, let v = u|p+ and let PECU denote the universal lift of 7|, to R

G : G
(Ind 0)|GF3,a lies on Cs . If u|l, then we have P|GF3,H ~ (Ind ;' 0/)|GF3,;L and

G
(Ind ij 0)|GF3’ﬁ ~ Tl.,z(7T2)|GFM and hence

c e N
pler, . © (Ind G 20)|ap, . ~ (ri,(m2) @ Ind 6320 )| Gr, - = 11(73) G, -

If u /i, note that P|GFM ~ 7‘l)l(7rg)|GFM (since p, is robustly smooth, we have
pv|GF3’ﬁ ~ P|Gp3yﬁ and PU|GFM ~ rlyl(7r2)|(;p3ﬁ). By the choice of F3 we have

G e
(Ind ;2 0)lcn, , ~ (Ind o 0y, - Hence

G G
pler, . ® d &7 0)lcr, . ~ (riu(m) @ Ind 670", . = ri(7ms)lonp,

and we are done.
We deduce that there is a natural map

R:%;llv H R“énlv
induced by rgni"|GF . ®slg, .. It follows from Lemma that this map makes
3 3

RV a finite Rg‘;i"—module. By Theorem Rgg‘i" is a finite Op-module, and
hence R is a finite Or-module. On the other hand by Proposition RYMv

has Krull dimension at least 1. Hence Spec RE"" has a @Q,-point. This point gives
rise to the desired lifting of 7. |

4.4. Change of weight and level.

In this section we combine Theorems and [£.3.1] to obtain a general “change
of weight and level” result in the potentially diagonalizable case.

Theorem 4.4.1. Let F be an imaginary CM field with mazximal totally real subfield
F*. Let n € Z>1 be an integer, and let | > 2(n + 1) be an odd prime, such that
¢ € F and all primes of F* above | split in F'. Let S be a finite set of finite places
of FT, including all places above 1, such that each place in S splits in F'. For each
place v € S choose a place v of F' lying over v.
Let  be an algebraic character of Gpy and let7 : Gp — GL,(F;) be a continuous
representation such that
e (T, 1) is a polarized mod 1 representation unramified outside S, which either
we suppose is ordinarily automorphic or we suppose is potentially diagonal-
1zably automorphic;
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® Tlap,, i irreducible.
Forv € Slet py : Gr, = GLn(Og,) be alift of 714 (7)|Gy, - Ifv|l, assume further
that p, is potentially diagonalizable, and that for all T : Fy — Q;, HT(p,) consists
of n distinct integers.

Then there is a reqular algebraic, cuspidal, polarized automorphic representation
(m,x) of GL, (A ) such that

(1) Tua(m) =7
) ra(X)e " =

) 7 has level potentially prime to l;
) 7 is unramified outside S;

)

2
3
4
5) forv € S we have p, ~ 1, (7 )|GF5'

(

(

(

(

Proof. By Theorem there is a continuous homomorphism
T GF+ — Qn(O@l)

such that

o~

=3¢

T

r is unramified outside S;

vor =y

if v|l then 7|, is potentially diagonalizable;
if v € S then 7[G,_ ~ po.

By Theorem (7, ) is automorphic of level potentially prime to [ and our
present theorem follows (using local-global compatibility to establish point (4)). O

4.5. Potential automorphy II.

We can now turn to our main potential automorphy theorem for (finite collections
of) single l-adic representations. We will treat the case of compatible systems in
the next section.

Theorem 4.5.1. Suppose that we are in the following situation.

(a) Let F/Fy be a finite, Galois extension of imaginary CM fields; and let F+
and FOJr denote their mazimal totally real subfields.

(b) Let Z be a finite set.

(c) For each i € T let n; and d; be positive integers and l; be an odd rational
prime such that l; > 2(d; + 1) and (, € F. Also choose 1; : @li = C for
eachi e l.

(d) For each i € T let (ri,p;) be a totally odd, regular algebraic, n;-
dimensional, polarized [;-adic representation of Gp such that d; is the
mazximum dimension of an irreducible constituent of the restriction of 7; to
the closed subgroup of Gr generated by all Sylow pro-l;-subgroups.

(e) Let F(avoid) /F be q finite Galois extension.

Suppose moreover that the following conditions are satisfied for every i € T.
(1) (Potential diagonalizability at primes above l;) r; is potentially diag-
onalizable (and hence potentially crystalline) at each prime v of FT above
l;.
(2) (Irreducibility) 7|, , is irreducible.
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Then we can find a finite CM extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (m;, x;) of GLy,, (Apr) such
that
(i) F'/Fy is Galois,

(ii) F' is linearly disjoint from F@o) oper F,
(iil) m; is unramified above l;, and
(IV) (Tli,h‘, (ﬂ-i)? Tl (Xz)elll_nL) = (ri |GF/ ) :u’i|G(F/)+ )

We remark that by Lemmal[T.4.2) the hypothesis of potential diagonalizability will
hold if /; is unramified in F'*, and r; is crystalline at all primes v|l;, and HT,(r;) is
contained in an interval of the form [a,, a, +1—2] for all 7 (the “Fontaine—Laffaille”
case).

Proof. By Proposition there is a finite CM extension F’/F and regular alge-
braic, cuspidal, polarized automorphic representations (7}, x;) of GL,,(Ag/) such
that

F'/F, is Galois;
F’ is linearly disjoint from

_ N o~ o )
Tl (71'2) = Ti|Gp/7

N l-ng _ .
Tl (Xi)eli t= /LZ|G(F/)+7
7} is unramified above ;
e 7} is 1;-ordinary.

Then the current theorem follows from Theorem {.2.11 O

okl ker?iF(avoid)(CHi 1) over F

We can immediately deduce a version over totally real fields. For instance we
have the following.

Corollary 4.5.2. Suppose FT is a totally real field and n € Z>1. Suppose that
[ >2(n+1) is a rational prime.

Suppose also that (r,u) is a totally odd, regular algebraic, n-dimensional,
polarized [-adic representation of Gpy. Let T denote the semi-simplification of
the reduction of r and suppose that the following conditions hold:

(1) (Potential diagonalizability and regularity at primes above [) r is
potentially diagonalizable (and hence potentially crystalline) at each prime
v of T above l.

(2) (Irreducibility) f|GF+<<z> is irreducible.

Then there is a Galois totally real extension F*'/F* such that (rla,, . plc,, )
is automorphic of level prime to [.

Proof. Choose F/F* a totally imaginary quadratic extension in which all the places
lying over [ split completely, and which is linearly disjoint from (FJr)k"r ad7(¢) over
F*. The representation r|g, satisfies the hypotheses of Theorem so that
there is a finite Galois CM extension F'/F' such that (r|c,,, it|c,, , ) is automorphic
of level prime to [. By Lemma (rla,, s #lG,, ) is also automorphic of level
prime to [, as required. U

Combining Theorem with Theorem we get a potential automorphy
theorem for mod ! Galois representations which strengthens Proposition

Corollary 4.5.3. Suppose that we are in the following situation.
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(a) Let F/Fy be a finite, Galois extension of imaginary CM fields, and let
F* and F denote their mazimal totally real subfields. Choose a complex
conjugation ¢ € Gp+.

(b) Let T be a finite set.

(¢) For eachi € T let n; and d; be positive integers and l; > 2(d; +1) be an odd
rational prime such that ;, ¢ F. Also choose 1; : @li 5 C for each i € T.

(d) For eachi € T let p; : Gp+ — @IXL be a continuous, totally odd, de Rham
character.

(e) For eachi € T letT; : Gp — GL,,(Fy,) be an irreducible continuous repre-
sentation so that d; is the mazimal dimension of an irreducible constituent
of the restriction of T; to the closed subgroup of Gr generated by all Sylow
pro-l;-subgroups. Suppose also that (T3, T;) is a polarized mod l; represen-

tation and that ?i|GF(<L') is irreducible.

(f) Let S denote a finite Gal (F/F™)-invariant set of primes of F including all
those dividing [],1; and all those at which some T; ramifies.
(g) for eachi €L andv € S let p;p : Gr, = GLy,(Og, ) denote a lift of Ti| G,

U
such that pg ., = ilGp, pl\-fv. If v|l; further assume that p; ., is potentially
diagonalizable and that for each T : F, — @li the set HT,(py,i) has n
distinct elements.

(h) Let F@d) /F be a finite Galois extension.

Then we can find a finite CM extension F'/F and for each i € T a regular
algebraic, cuspidal, polarized automorphic representation (m;, x;) of GLy,, (Aps) such
that
1
2

F'/Fy is Galois,
F' is linearly disjoint from F@vo) oyer F,

w

)
)
) Tl (TFZ) = Fi|Gp/ ;

) Tl (Xi)ell:ni = Mi|G(F/)+ ’
)

)

)

N

m; has level potentially prime to l;;
if u is a prime of F' not lying above a prime in S then m; ., is unramified;
if u is a prime of F' lying above an element v € S then 1y, ,,(7)|a,, ~

(
(
(
(
(
(
(

pv|GF1/A~

Proof. Note that (7;, [z;) corresponds to a continuous homomorphism %i’ﬁi :Gp+y —
G, (Fy,) with v o7; = T, (see Section [1.1). As in the proof of Proposition [3.3.1 we
may reduce to the case where all elements of S are split over F'T. Then by Theorem
[4:373] we see that for each i € Z there exists a lift
T GF — GLRL(O@I)

of 7; such that

o 18 = pil s

e if v € 8, then rilg,, ~ piw;

e 7; is unramified outside S.
The result now follows from Theorem 5.1 O



62 THOMAS BARNET-LAMB, TOBY GEE, DAVID GERAGHTY, AND RICHARD TAYLOR

5. COMPATIBLE SYSTEMS.

5.1. Compatible systems: definitions.

Let F denote a number field. By a rank n weakly compatible system of l-adic
representations R of G defined over M we shall mean a 5-tuple

(M, S, {QU(X)}’ {7"/\}7 {HT})
where

(1

2
(3
(4

M is a number field;

S is a finite set of primes of F’;

for each prime v € S of F, Q,(X) is a monic degree n polynomial in M [X];
for each prime A of M (with residue characteristic ! say)

) GF — GLR(M)\)

— N —

is a continuous, semi-simple, representation such that
o if v ¢ S and v/l is a prime of F then ry is unramified at v and
rx(Frob,) has characteristic polynomial @, (X),
e while if v|l then r)|g,, is de Rham and in the case v ¢ S crystalline;
(5) for 7: F < M, H, is a multiset of n integers such that for any M < My
over M we have HT(r)) = H,.

We will refer to a rank 1 weakly compatible system of representations as a weakly
compatible system of characters.

We make the following subsidiary definitions:

We define the usual linear algebra and group theoretic operations on weakly
compatible systems by applying the corresponding operation to each ry. For in-
stance

RY = (M, 8,{X"Qu(0) " Qu(X ™)} {rx}. {—H:}),
where —H, ={—-h:h € H,}.

We will call R regular if for each 7 : F < M every element of H, has multiplicity
1.

We will call R extremely regular if it is regular and for some 7 : F < M the
multiset H, has the following property: if H and H’ are subsets of H, of the same
cardinality and if ), ., h =3,y h then H = H'.

If F is totally real and if n = 1 then we will call R totally odd (resp. totally even)
if for some place A of M we have ry(c,) = —1 (resp. 1) for all infinite places v of
F'. In this case this will also be true for all places A of M.

If Fis CM and if M = (M, Sp+,{X — o}, {ur},{w}) is a weakly compatible
system of characters of G+ then we will call (R, M) a polarized (resp. totally odd,
polarized) weakly compatible system if for all primes A of M the pair (ry,uy) is
a polarized (resp. totally odd polarized) I-adic representation. (Here Sp+ denotes
the set of places of F'™ lying below an element of S.) We will call R polarizable
(resp. totally odd, polarizable) if there exists a M such that (R, M) is a polarized
(resp. totally odd polarized) weakly compatible system.

We will call R irreducible if there is a set L of rational primes of Dirichlet density
1 such that for M|l € £ the representation ry is irreducible.

We will call R strictly compatible if for each finite place v of F' there is a Weil-
Deligne representation WD,,(R) of W, over M such that for each place A of M not



POTENTIAL AUTOMORPHY 63

dividing the residue characteristic of v and every M-linear embedding ¢ : M — My
the push forward (WD, (R) = WD(rx|a,, )F .
We will call R pure of weight w if
e for each v ¢ S, each root a of Q,(X) in M and each 2: M — C we have

ol = q';
e and for each 7 : F — M and each complex conjugation ¢ in Gal (M /Q) we
have
He,={w—h: heH.}.
We will call R strictly pure of weight w if
e R is strictly compatible and for each prime v of F' the Weil-Deligne repre-
sentation WD, (R) is pure of weight w;
e and for each 7 : F < M and each complex conjugation ¢ in Gal (M /Q) we
have
H,={w—-h: heH}.
If » : M — C we define the partial L-function

LS(ZR’ s) = H (90" /1Qu(gy))-
vgS
This may or may not converge. If R is pure of weight w then it will converge to an
analytic function in Res > 1+ w/2. If M|l and every place of F above [ lies in S,
then LS(ZR, s) depends only on 7y so, if 7: My = C extends 7, we will sometimes
write L°(iry,s) instead of L9(+R,s). This makes sense even for ry not part of
a weakly compatible system, provided that S contains all primes above [ and all
primes at which r) ramifies.
If R is strictly compatible then we can define the L-function

L(R,s) = [[ LGWD,(R),s)
v /rOO
which differs from L%(+R, s) only by the addition of finitely many Euler factors.
Suppose that R is strictly compatible, pure of weight w and regular. Also let
=], ¥v : Ap/F — C* be the non-trivial additive character such that if v is real
then v, (x) = €2>™*; if v is complex then v, (z) = €27+ while if v is p-adic
then ¢, (z) = ¥p(tr r, g, (z)) where ¢, |z, =1 and ¥,(1/p) = e~2m/P We wish to
define the completed L-function and e-factors of R. (See [Tat79].)
o Write I'r(s) = 77%/2T'(s/2) and I'c(s) = 2(27)~*I'(s) = ['r(s)[r(s + 1).
e Suppose that v is a complex infinite place of F and that 7,7’ € Hom (F, M)

are the two distinct elements such that 207 and 207’ extend to continuous
isomorphisms F, = C. Then we set

L,(R,s) = Tcls —w/" ® [[hepy, pewp(Tels —h)/Te(s —w/2))
HhEHT/, h<w/2(PC(s = h)/Te(s —w/2))
and
(1R, 1y, §) = j2onen, [h=w/2+3cn , Ih—w/2]
e Suppose that v is a real infinite place of F and that 7 : F — M is such
that 207 extends to a continuous isomorphism F,, = R C C. As {detr,} is

a weakly compatible system of characters, detry(c,) = %1 is independent
of \. We set det R(c,) = detry(c,) € {£1}.
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If dim R is even set d+ = dim R /2, while, if dim R is odd (in which case
w/2 € H, so that w is even) set

de = (dim R £ (—=1)*/?(det R)(cy))/2.

— (1)
(The reader might like to think of di as dim rf\'”_i( D" Because we

didn’t make a compatibility assumption between the r) at the infinite place
v this doesn’t make sense directly. However we make use of our regularity
assumption to give this alternate definition, which does make sense and
suffices for our purposes.)

Now define

L,(1R,s) = Tr(s —w/2)Tr(s+1—w/2)% H (Te(s—h)/Te(s—w/2)),
heH,, h<w/2

and
€y (2R7 w’m S) = id7+zh€H" lh—w/2| .

e Finally we define the completed L-function

A(R,s) = LR, s) H L,(tR,s)
v|oo

and the epsilon factor

(R, s) = | [I ceWDu(R), b, ) | | T €0 (R0, 9)
v Xoo v|oo
The latter does not depend on the choice of .

We will call R automorphic if there is a regular algebraic, cuspidal automorphic
representation 7w of GL,(Ar) and an embedding ¢ : M — C, such that if v € S
then m, is unramified and rec(m,| det |5,17")/ %)(Frob,) has characteristic polynomial
1(Qy(X)). Note that if R is polarizable then so is 7. It follows from Theorem 3.13
of [Clo90] that, when R is automorphic, for any embedding ¢ : M < C there is a
regular, algebraic, cuspidal automorphic representation 7’ of GL, (AF), such that
if v € S then 7} is unramified and rec(n|det |§,1_")/2)(Frobv) has characteristic
polynomial ¢/ (Q,(X)). [It would be more natural not to include the assumption
that 7 is regular. However for the purposes of this paper our definition will be more
convenient,.]

We will call an n-dimensional polarized weakly compatible system (R, M) au-
tomorphic if there is a regular algebraic, cuspidal, polarized automorphic represen-
tation (m, x) of GL,(Ar) and an embedding ¢ : M — C such that

e if v & S then 7, is unramified and rec(m,| det \S}*”)/ *)(Frob,) has charac-
teristic polynomial equal to the image under ¢ of the polynomial @, (X) for
R,
e and if v ¢ Sp+ then x, is unramified and rec(x,| |1~")(Frob,) has char-
acteristic polynomial equal to the image under ¢ of the polynomial @, (X)
for M.
If F'/F is a finite extension we define R|g,., to be the weakly compatible system
of representations of Gp::

(M, ST Q) (X))}, {rala, }, {HIY),
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where
o S is the set of primes of F’ above S;
. HgF/) =H,
. Qq(,F/)(X) is the monic polynomial in M[X] of degree n with roots the
alk@)k@IF] a5 o runs over roots of Qo[ (X).

Irs

We remark that if (7, x) is a regular algebraic, cuspidal, polarized automorphic
representation of GL,(Ap) then {r;,(x)} is a strictly pure compatible system of
some necessarily even weight (because F'T is totally real), which we will write
2(w + 1 —n). Moreover {r;,(m)} is a strictly pure compatible system of weight w.

(See Theorem [2.1.1])

5.2. Rational compatible systems.

In this section we present a formulation of the results of Larsen from [Lar95].

We will consider a weakly compatible system R = (Q, S, {Q.,(X)}, {r:}, {H:}),
where for each | we have

T GF — GLn(Ql)
We are going to make a number of definitions which depend on R, but for simplicity
we won’t put R in the notation. We hope this will cause no confusion.

We will write V; for the Q;-vector space underlying r;. We will also write G;
for the Zariski closure of the image of r; in GL,, /Q;, and G? for the connected
component of the identity in G;. Thus GY is a reductive group over Q. Let I
denote the image of Gr in G;(Q;) and set IV = I, N GY(Q;). There is a finite
Galois extension F°/F such that Gal (F/F) = I';/T'? for all I (Proposition 6.14
of [LP92]). Since r; is Hodge-Tate, the Lie algebra of I'; is algebraic (as defined in
Section I1.7 of [Bor91]) and the group I'; is open in G;(Q;) ([Bog80]).

Let Z; (vesp. G¢") denote the centre (resp. derived subgroup) of GY. Let G4 =
G?/Z; and let C; = GY/G8r. Also let G5¢ denote the simply connected cover of
G?d. We have surjective maps with finite kernels

Gy — G — G}9.

Because the dimension of G?d is bounded only depending on n, we see that there
is a positive constant A(n) depending only on n (and not on R or [) such that

#ker(G3° — G2)|A(n).

The natural map Z; — C is surjective with finite kernel of order dividing A(n). We
will write I'Z for I'? N Z,(Q;) and I'{ for the image of I') in C;(Q;). As the cokernel
of the map G?(Q;) — C;(Q,) is finite (because it is a quotient of C;(Q;)/Z;,(Q;) C
HY(Gg,,ker(Z; — C}))), we see that T'¢ is open in C;(Q)).

Set H; = G}° x Z;. Then there is a natural surjection of algebraic groups H; —»
GY, with a finite, central kernel with order dividing A(n) (as it equals the kernel
of G5¢ — G#). Using Galois cohomology we see that the cokernel of the map
Hy(Q) — GY(Q) is a finite abelian group of order dividing A(n)3 and exponent
dividing A(n). (The cokernel embeds in H!(Gg,, ker(H; — GY?)), which by the local
Euler characteristic formula has order dividing (# ker(H;, — G?))3.) We will write
% =190 Im (H;(Q;) — G?(Q;)) and TH for the pre-image of T'° in H;(Q;). Thus
the kernels of

rf —ry



66 THOMAS BARNET-LAMB, TOBY GEE, DAVID GERAGHTY, AND RICHARD TAYLOR

and

rZ —rf
are both finite abelian groups of order dividing A(n), while the cokernels are both
finite abelian groups of order dividing A(n)? and exponent dividing A(n). It will
often be convenient to work with I‘ZH in place of Flo, because it is easier to control.

As G acts by conjugation on GY it also acts on Z;, Gier, G| ), G5° and H;.
Thus I'; does as well. Moreover, 1"?0 is a normal subgroup of I'; and the conjugation
action of I'; on F?O lifts to an action on F{{.

Let T; denote a maximal torus in G? which we assume to be chosen unramified
whenever GY is unramified. Let T2d = T;/Z;, let TP = ker(T} — C))°, let T5¢
equal the connected preimage of TlaLd in Gj¢, and let TlH = 17° x Z;. We have
natural embeddings

XH(IP) € XH(TF) € XH(T7°) € (1/A(m) X (1)
and
Am)X*(T/") € X*(Th) € X*(T}7)
and
An)X*(Z;) C X*(Cy) C X*(Zy).
Let A C X*(T4) € X*(T;) denote a basis for the root system of GY.

The dimensions of V; and Gj}° are bounded only in terms of n. Hence, if
(1/A(n)) D scamsd is a weight of G7° on Vi, then the |m;| can be bounded by
a constant B(n) depending only on n (and not on R or I).

If p € X*(Z)) is a Z;-weight of V; then we can find m, s € Z for § € A such that
(1/A(n)) > sen mypu,s6 is a weight of T/ on V). Thus

((1//1(”)) > s, M) € X* (1)
dEA
is a weight of V; and |m, s| < B(n) for all § € A.

Let S o ; denote the restriction of scalars from Opo ; to Z; of G, and let Spo; =
S;FOJ x Q;. Note that Hom (F°,Q;) gives a natural basis of X*(Spo,;). There is a
homomorphism

0,:5 FO | — C
such that 0, agrees with (r; mod G&¢*(Q;)) o Art go on an open subgroup of O;O’l.
(See Sections 111.1.2 and II1.2.1 of [Ser68]. To aid comparison with [Ser68] we
remark that ¢ of Section II.1.1 of [Ser68] is the inverse of our Art po. Thus 6; is

constructed from 7, mod G (Q;) in just the same way as r is constructed from p
in Section II.1.1 of [Ser68].)

Lemma 5.2.1. Keep the notation and assumptions established earlier in this sec-
tion.
(1) 6;: Spoy — Cy is surjective.
(2) If1 ¢ S then 0, = (r, mod G (Q;)) o Art go on all of (9;071.
(3) There is a constant C(R) depending only on R (and not on 1) such that, if
w € X*(Zy) is a weight of Z; on'V, then

(A(n)p) o 0, = Z My,o0

o€Hom (F9,Q,)
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with |my, | < C(R).
(4) There is a constant D(R) depending only on R (and not on 1) such that

#(X"(Spo,)/0; X™(C1))"" < D(R).

Proof. For the first part let U denote the open subgroup of O;OJ where 6; and
(1, mod G (Q;)) o Art go agree. As C;(Q;) has an open subgroup which is pro-/,
we see that
((r; mod G8*(Qy)) o Art o )(U) = 6,(U)
is open, and hence of finite index, in
((ry mod G (Qy)) o Art o) (A%o) = (r; mod G{*")(G o).

As the image of Go in C;(Qy) is Zariski dense and Cj is connected we deduce that
0,(U) is Zariski dense in C;/Q; and the result follows.

For the second part, if I ¢ S, then 7, : Gp — G;(Q) is crystalline at each
prime above [, and hence so is r; mod G?er((@z) : Gp — C;(Q). Proposition
6.3 of [CCOQ9], then implies that for each p € X*(C}), the characters p o 6; and
po(r; mod G (Q;))oArt o agree on all of O;lo. Since this holds for all 4 € X*(C),

it follows immediately that 6; and (r; mod G§*(Q;)) o Art po agree on all of 0.

For the third part note that —m,, , is the o-Hodge-Tate number of (A(n)ul) o
(r; mod GY(Qy)). If v|l is a prime of F then there is an element vyr, € X.(1})
such that for any algebraic representation p of GY defined over Q;, the Hodge-
Tate numbers (with respect to any continuous o : FO — Q) of po mla,, are
the (i, vuTr,), where p runs over the weights of p in X*(T;). (See section 1.2 of
[Win86].) Thus what we have to show is that if 4 € X*(Z;) is a weight of Z; on V],
then

[(A(n)p, var )|
is bounded independently of I, u and v. (Here we think of A(n)u € A(n)X*(Z;) C
X*(C)) Cc X*(T1).) However

(1/A(M)) S mysd, ) € X*(T) € X* (1)
dEA
is a weight of T; on V; and so
(D M6, Aln)n), virr,o))|
dEA

is bounded independently of I, u and v (because the Hodge-Tate numbers of r; are
independent of [). As the m, s are also bounded independently of [ and p, we see
that it suffices to show that each

(6, virr )|
is bounded independently of I, § € A and v. But LieGY C Hom g, (V;,V}) so that
each 0 € A is the difference of two weights of T; on V. It follows that

|<57 VHT,v>|

is bounded independently of I, § € A and v, as desired. (Again because the Hodge-
Tate numbers of r; are independent of 1.)
The fourth part follows from the third. O
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Proposition 5.2.2. Keep the notation and assumptions established earlier in this
section. There is a Dirichlet density 1 set L of rational primes with the following
properties.
(1) Ifl € L then GY, and hence also Z;, Cy, G5¢ and H;, are unramified. Write
Z (resp. (NZ'Z) for the torus over Z; with generic fibre Z; (resp. Cy).
(2) Ifl € L then there is a semi-simple group scheme éfc/Zl with generic fibre
G5 such that TH = G5¢(Z;) x TZ. Write H; = G5° x Z.
(3) The index [Z(Z) : I'7] is bounded independently of | € L.
(4) If 1 € L then the conjugation action of T'; on H; extends (uniquely) to an
action on ﬁl. This makes V; into an ﬁl x I'j-module.
(5) Ifl € L then V; contains an H, x T} invariant Z;-lattice.
(6) Suppose thatl € L. There is a finite unramified extension My /Q; (of degree
bounded independently of | € L) such that all Gi°-irreducible subguotients
of Vi ® Q, can be defined over My. Choose such a field My and let

W@M,\Z@Vx,i

be the decomposition of Vi @ M)y into maximal Gj°-isotypical submodules.
Suppose also that A C V; @ My is a Hj-invariant Oy, -lattice. Then

A=EPAnvii).

Moreover all irreducible élSC(Zl)—subquotients of ANV ; are absolutely irre-
ducible and isomorphic, say to p;. Moreover dimyy) p; equals the dimension
(over My ) of an irreducible constituent of Vy ;. If p; = p; then i = j.

Proof. Proposition 8.9 of [LP92] tells us that we can find a Dirichlet density 1
set £ of rational primes such that for I € £ the group G? is unramified. As the
dimension of T; is bounded independently of [ we see that the order of any finite
order element of Aut (X*(7})) is independent of I. Hence for I € £ the group splits
over an unramified extension M) /Q; of degree bounded independently of .

Theorem 3.17 of [Lar95)] tells us that we can replace £ by a possibly smaller set
of Dirichlet density 1, which we will also denote £, such that for I € £ there is a
semi-simple group scheme G5°/Z; with generic fibre G5° such that

I NG Q) = Gi(Zy).

As G5¢(Z;) is a maximal compact subgroup of G5¢(Q;) we see that G5¢(Z;) is also
the projection of T to G5¢(Q;) and so TF = G¢(Z;) x T'Z for some compact
subgroup I'Z C Z,(Q;). As Z(Zl) is the unique maximal compact subgroup of Z;
we see that TZ C Z;(Z;). As the image of I'Z in T'C has finite index we see that ['Z
is open in Zl(ZZ), and we have verified the first two parts of the Proposition.

Removing finitely many primes from £ we may suppose that for all [ € £ the
representation r; is crystalline at [ and [ is unramified in F°. Then for [ € £ we
have

Tf 2 0,(Spo(Z1)).
The final part of Lemma together with Lemma [A.T.6] shows that the index of
I'¢ in Cy(Z;) is bounded by D(R) (independently of I € £). However the index of
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I'Z in Z;(Z;) is bounded by the product
#ker(Z; — C) x [[F : T x [C1(Z) : TF] < A(n)*D(R),

and so the third part of the Proposition follows.
Suppose that v € I';, then we have seen that v acts on G}°. We will consider the
reductive group scheme

"G = Spee (7)1 0,0 (GF))

where (7*)710576(6;0) C Og;<(Gy) is the pre-image of oéfc(éfc) C O (G°)

under v*. By Proposition 5.1.40 of [BT84] we see that éfc and Véic must be
the group schemes (with connected fibres) attached to special points z and a’ in
the building of G5¢ in [BT84]. (The group schemes &% and 62’3 in the notation
of [BT84].) The sets {z} and {z'} are facets for the building of G5° (as G5° is
semi-simple). As
(CG(Zy) ="(Gi(Z)) = GilZa)

we deduce from the proof of Proposition 5.2.8 of [BT84] that {z} = {z'}, and
hence 'Vé?c = é?c Thus the action of I'; on Gj¢ extends to one on é?c (We thank
Jiu-Kang Yu for valuable help with this argument.) As z is the unique torus with
generic fibre Z; we also see that the action of I'; on Z; extends to an action on
Zl. Thus the action of I'; on H; extends to one on ﬁl, and the fourth part of the
Proposition follows.

As in the fourth paragraph of Section 1.12 of [Lar95] we can find a Z;-lattice
A C V; such that A ® Z}" is ﬁl(Z?r)—invariant. Replacing A by the sum of its
I';-translates, which is again a lattice because I'; is compact, we see that we may
suppose A to also be I';-invariant. Again as in the fourth paragraph of Section 1.12
of [Lar95] we see that the natural map H; — GL(V}) extends to a map H; — GL(A).
This establishes the fifth part of the Proposition.

Let {u;} be the set of highest weights (with respect to A) of irreducible Gj°-
submodules of V; ® Q. Let pu; be the corresponding irreducible representations of
Gj°. As in the third paragraph of section 1.12 of [Lar95] we see that each p,, can
be defined over M. The first assertion of part six follows. Moreover p,, extends
to a representation p,, of CNT'lSC over Oy, . (By the argument of paragraph four of
Section 1.12 of [Lar95].) Let p,,, denote the reduction of p,, modulo A, and let 5},
denote the unique absolutely irreducible subquotient of p,,, which contains p;. (See
paragraph five of section 1.12 of [Lar95].)

If 6 € Alet v5 € X*(I7°) denote the fundamental weight corresponding to 6,
so that {vs} is the basis of X*(77¢) dual to the basis of X, (7}¢) consisting of the
coroots corresponding to 6 € A. If u; = ZéeA m; svs then the m; s are bounded
independently of I. (As dim G§° is bounded independently of I, there are only finitely
many possibilities for the change of basis matrix between A and {vs : § € A}.)
Thus after removing a finite number of elements from £ we may assume that for
all { € £ and all ¢ we have 0 < m; s < [. As in the first paragraph of section 1.13
of [Lar95] we see that 5. is an absolutely irreducible representation of Gs¢(F,) and
that p;, = ﬁ;fj implies ¢ = j. Again removing a finite number of primes from £
we can further assure, as in the second paragraph of Section 1.13 of [Lar95], that
Py =p,, (forallle L and all 7).
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Now suppose that A is as in part 6 of the Proposition. (We no longer use A to
denote the lattice constructed in the proof of the fifth part.) We see that ﬁ;[ is the
only irreducible subquotient of A NV} ;. Suppose that

A#EPAnVas).

Choose a é?c—invariant lattice A’ with

ADA D @(A N Vi)
i

with A" /(B,(ANVy,)) simple and non-trivial. Then

A’/(Q?(Arﬂ&,ﬁ)

must be equivalent to ﬁj{j for some j. Suppose i # j. Then we have a commutative
diagram
N N /@ANTA))
\ \:
i = WVai/(AN Vi),
and we see that the right hand vertical arrow must be zero. Thus the image of A’
under projection to Vy ; is ANV ;. We conclude that

N = [EPAnVa: | +[)ker(A = Vi),

i#] i#]
However

[Vker(A' — Vi) =ANVa,

i#]
and so

AN =PAnva),
K3

a contradiction. This completes the proof of the Proposition. ([

We remark that we won’t need part (3) of the Proposition, but we thought it was
worth recording it anyway. We also remark that using part (3) of the Proposition
one can prove a version of part (6) in which H; replaces G5¢ and T'f replaces

é?C(ZZ). However, as we won’t need it, we chose not to present the details.

5.3. Compatible systems: lemmas.

We now return to more general compatible systems.

Lemma 5.3.1. Suppose that R is a weakly compatible system of l-adic represen-
tations of Gr of dimension n. Let Gy denote the Zariski closure of ry(Gr) in
GL,, /M and let GE{ denote its connected component. Then:
(1) There is a finite Galois extension F'/F such that for all X the map Gp —
GA(My) induces an isomorphism Gal (F1/F) = G,/GY.
(2) If R is reqular and H is an open subgroup of G then any irreducible H -
subrepresentation of ry has multiplicity one.
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(3) If R is regular, then after replacing M by a finite extension we may suppose
that for any open subgroup H C G and any A and any H -subrepresentation
s of rx, the representation s is defined over Oy x.

Proof. The proof of the first part is the same as the proof of Proposition 6.14 of
[LP92]. (One must replace G by G, and p; by 7y, and GY by GY; and Q; by M,
and Q by M in section 6 of [LP92]. These arguments are due to Serre.)

As r) is semi-simple we see that G‘/)\ is reductive. As trr) is continuous on Gg
and M)y is closed in My, we see that trry is valued in M.

Now assume that R is regular. By Theorem 1 of [Sen73] there is an element of

—

(Lie G3) ® M, with n distinct eigenvalues. Thus if T is a maximal torus in GY it
has n distinct weights under 7). In particular all irreducible G?\—subrepresentations
of r\ have multiplicity one. If H is any open subgroup of G then its Zariski closure
in G, contains GY. Thus any irreducible H-subrepresentation of r) has multiplicity
one, and the second part of the Lemma is proved. (We note that the second part
follows immediatetly from a consideration of the Hodge-Tate weights but we shall
need the facts deduced in this paragraph below.)

Moreover the set of elements of G§ with n distinct eigenvalues under ry is a
non-empty Zariski open subset. As the images of Frobenius elements at primes
which split completely in F'' /F are Zariski dense in G§ we conclude that infinitely
many Q,(X), for v splitting completely in F'!/F, have n distinct roots. Replace
M by the splitting field over M of the product Q,(X)Q, (X) for two such v, v’
with distinct residue characteristic. Then for all A the image r\(Gp1) contains an
element with n distinct My-rational eigenvalues.

Let H be any open subgroup of Gr. We must show that any H-subrepresentation
of 7y is defined over O 5. As H is compact it suffices to show that it is defined
over M. As the Zariski closure of H in G, contains GY, it equals the Zariski
closure of HGpi1. Thus if s is an H-subrepresentation of r) it is also a HG g1~
subrepresentation. So we are reduced to the case H D G 1. In this case the result
follows from Lemma [A.T.5 O

Proposition 5.3.2. Suppose that R is a regular, weakly compatible system of [-
adic representations of Gg defined over M. If s is a subrepresentation of ry then
we will write s for the semi-simplification of the reduction of s. Also write | for
the rational prime below A\. Then there is a set of rational primes L of Dirichlet
density 1 (depending only on R), such that if s is any irreducible subrepresentation
of rx for any \ dividing any element of L then §|GF(<Z> is irreducible.

Proof. If need be replace M by a finite extension so that
e M/Q is Galois,
e and for every A and every open subgroup H C G any H-subrepresentation
s of ry is defined over Opx (Lemma .
For a rational prime [ define
T =€® @U : Gp — GL1 g (Q).
Y1

Let
[M:F

]
HQ:{_]-}H H H H;,

TFM =1
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and, for v a prime of F' not in S, let

Qo) =X - J[ ‘Qux).

oc€Gal (M/Q)

We are going to apply the results of section [5.2] to
Rq = (@7 S, {QQW}’ {rl}’ {HQ})7

and we will use the notation established there without comment. If need be, we
replace M by a finite extension so that M contains the image of every embedding
FO <5 M. Also choose a set £ of rational primes of Dirichlet density one as in
Proposition Removing a finite number of primes from £ we may further
assume that

(1) if I € £ then [ is unramified in F°/Q;

(2) if l € £ then > 4A(1+ [M : Q|n)C(Rq) + 2;

(3) I ¢ Sg, where Sgp denotes the set of rational primes which lie below an

element of S.
Let A; be a ﬁl x I'j-invariant lattice in V; (Proposition .
The character ¢; of I'; extends to an algebraic character

e : G — G,
(It is surjective because ¢, (Gp) is infinite.) We will write Z}, C}' and H} for the

kernel of €_on 7, Cl and H;. The character ¢; extends to a character of 51. We
will write C’l (resp Zl ) for the unique torus over Z; with generic fibre C} (resp.

zl, and set H} = G5° x Z}. Set /' =17 nZHQ) and T =T¢ N CHQ)), so
that /! is the pre-image of I'C"" under I‘Z — I'¢". Also set FH V= Gz x TP
The conjugation action of I'; on Zl, C’l and Hl preserves Zz , C and H1

We will next prove the following claim:

Suppose that I € L, that Ml is a prime of M, and that W1 and Ws are two
irreducible M [I'9]-sub-modules of V, @ My. Then (by Zariski density) W; is GY-
mwvariant. Write s; for the representation of H; X F? on W;, and further assume
that the semi-simplified reductions s; of s; are isomorphic as FlH’l-modules. Then
$1 2 sy ® €l (as representations of I'V) for some a € Z.

Proof. Set s; denote the action of H ; on the intersection of A;® Oy, with the space
underlying s; and let §; denote its reduction modulo A\. From Proposition we
see that 5] Goe (1) is absolutely irreducible and that s; Gy = S2|ase-

Let Wi : Zl — G,,, denote the action of Z; on s;, and let ; denote the extension
of u; to Z, and 1; the reduction of fi; modulo A. Then

(A +[M : Qn)p) 00 =Y myq0
with |m; »| < C(Rq). We have

Hy |1‘lZ’1 = ﬁ2|rlz=1 :

Hence
(AL + [M : Q)7 = (AQL+ [M : Qln)*7) e,
and for some (1 —1)/2 < b < (I —1)/2 we have

(AL +[M : QIn)*Hy)Ire = (AL + [M = QJn)?fiy + ber)pe-
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A(L+[M:Qln)

%

[[ oA+ —mao) I

o€Hom (F°,Qp™) o€Hom (FO,Qrr)

By assumption on L we know that p
Thus

is a crystalline character of G po.

on (Opo/l)*. If v|l is a prime of F°, choose an embedding oy @ FO < QM above
v. Then the embeddings of F into Qp* are Frob; o o, for i = 0,..., f, — 1 with
fo =[k(v) : F{]. Then

fo—1

S AQL+[M : Q) pranfon, — Mo prabjon, )l = b1 —1)/(1— 1) mod (1 —1).
i=0

As (1-10)/2< A1+ [M : QIn)(m1,, — ma,) < (I —1)/2 for all o (by assumption
on L), both sides lie in the range ((1 — 14v)/2, (I¥* — 1)/2) and so

Z A(l + [M : Q]n) (ml,Frobfoav - mQ,FYobfoo1,)li = b(lfv - 1)/(1 - 1)

Then we see that A(1+ [M : QIn)(my Frobfos, — M2 Frobfos,) = b mod [ and again
using the bounds on both sides we conclude that A(1 + [M : Q|n)(my rroboos, —
mlFrob?oov) = b. Subtracting these terms, dividing by [ and arguing recursively we
see that

A(l + [M : Q]n) (,’nl,lﬁrob}ocnU - mQ,FrobeUv) =b
for all i. Thus A(1+ [M : Q]n)|b and
u{l(l—‘r[M:Q]n) 08, = (’uél(l—‘r[M:Q]n) ® 6?/A(1+[M:Q]n)) o6,

as characters of Spo ;. Thus i = po as characters of le and so, for some a € Z, we
have p11 = poef as characters of Z;. We deduce that s; = so€j’ as representations
of H; and hence of GY, and hence again of I'?. The claim follows. O

We now return to the proof of the Proposition. Let A|l € £ be a prime of
M. Let s be an irreducible subrepresentation of ry. Then s occurs on a My[T]-
submodule W C V; ® My. Let Wy denote an irreducible F?—submodule of W and
let sp denote the representation of I'! on Wy. Note that Wy is also H;-invariant
and Gj¢-irreducible. Let I'j denote the set of v in I'; with s] 2 so, or what comes
to the same thing (by regularity) YWy = Wy C W (see Lemma [5.3.1). Then s
extends to a representation of I') and

s = Ind ll:iso.
l

Write § (resp. Sp) for the semi-simplified reduction of s (resp. so).

Let W, denote the Wy-isotypical component of V; ® M) for the action of Gj¢. By
Proposition we see that (W1 N (A; ® Onr, )/ AW1N (A @ Oyy,)) is isotypical
for the action of é?c(Zl) corresponding to an absolutely irreducible representation
of dimension equal to dimps, Wy. Thus (Wo N (A; ® Opr, )/ A(Wo N (A; @ Opyy))
must be absolutely irreducible as a representation of CNY'?C(ZZ).

As FU/Q is unramified above [ (assumption [I|on £) we see that F((;) is linearly
disjoint from F° over F. Thus

_ kere|p, _
~ ! ss
S|kerEl\rl - (I dkerEl|F; O) .
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Hence it suffices to show that for v € I'; — I', we have
50 |pmr % Sol
If they were equivalent then by the claim we would have
S0 2 so® €l

as I'!-modules (for some a € Z). As v has finite order in I';/T, but ¢, has infinite
order, we see that a = 0, and so v € I'}, a contradiction. The Proposition follows.
O

5.4. Potential automorphy for weakly compatible systems.

In this section we prove a potential automorphy theorem for weakly compatible
systems of [-adic representations of the absolute Galois group of a CM field.

Theorem 5.4.1. Suppose that F/Fy is a finite Galois extension of CM (resp.
totally real) fields and that F®°Y /F is q finite Galois extension. Suppose also for
i =1,...,7r that (R;, M;) are totally odd, polarized weakly compatible systems of
l-adic representations of G, with each R; reqular and irreducible. Then there is a
finite, CM (resp. totally real), extension F'/F linearly disjoint from F@v°id) oper

F and with F'/Fy Galois, such that each (Ri|GF,,M¢\G(F,)+) s automorphic.

Proof. The totally real case follows easily from the imaginary CM case by Lemma
2.2.2 (The only thing to check is that we can find an imaginary CM extension
F’/F such that each R; remains irreducible upon restriction to Gp.. It will be
enough to choose F’ linearly disjoint from the fields F!/F obtained by applying
part (1) Lemmato each R;. Such a choice is possibly by Lemma ) Thus
we treat only the imaginary CM case.

Replacing each of the fields M; associated to R; by their compositum, we may
assume that M; = M is independent of i. Let £;; be the Dirichlet density 1 set
of rational primes provided by applying Proposition to R;, and let £; o be
the Dirichlet density 1 set of rational primes above which R is irreducible. Let
L=;Li1NL;2 Then L also has Dirchlet density 1 (Lemma. For Al € L
we see that each FM|GF<<Z) is irreducible.

Removing finitely many primes from £ we may further suppose that

e [ € L implies | > 2(dimR; + 1) for each i,

e [ € L implies [ is unramified in F and [ lies below none of the elements of
the sets S; of bad primes for R;,

o if A\l € £ is a place of M, then all the Hodge-Tate numbers of r; 5 lie in a
range of the form [a,a +1 — 2].

We deduce, by Lemma each r; ) is potentially diagonalizable. Our theorem
now follows by applying Theorem to the r; 5 for any A|l € L. O

We state a simple special case separately.

Corollary 5.4.2. Suppose that F is a CM (resp. totally real) field and that (R, M)
is a totally odd, polarized weakly compatible system of [-adic representa-
tions of Gr, with R regular and irreducible. Then there is a finite, CM (resp.

totally real), Galois extension F'/F, such that (R\GF,,M|G(F,)+) is automorphic.

Corollary 5.4.3. Keep the assumptions of the last Corollary.
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(1) If 1 : M < C, then L°(+R,s) converges (uniformly absolutely on compact
subsets) on some right half plane and has meromorphic continuation to the
whole complex plane.

(2) The compatible system R is strictly pure. Moreover

AR, s) = €(1R, s)A(RY,1 — s).

(3) If F is totally real, n is odd, and v|oo then trry(c,) = +1 and is independent
of A.

Proof. The strict purity follows from Theorem Theorem and the usual
Brauer’s theorem argument as in the last paragraph of the proof of Theorem [5.5.1
below. The convergence and meromorphic continuation and functional equation
of the L-function follow from the theorem and a Brauer’s theorem argument as in
Theorem 4.2 of [HSBTT10]. The last part generalizes an observation of F. Calegari
[Calll]. The theorem reduces the question to the automorphic case where it is the
main result of [Tay10]. O

As one example of the above theorem we state the following result.

Corollary 5.4.4. Suppose that K is a finite set of positive integers with the property
that the 2#% partial sums of elements of K are all distinct. For each k € K let fy,
be an elliptic modular newform of weight k + 1 without complex multiplication and
let mp be the corresponding automorphic representation of GLo(A). Then there is
a totally real Galois extension F/Q and a regular algebraic, polarizable, cuspidal
automorphic representation I1 of GLoxx (Ar) such that for all but finitely many
primes v of F we have

rec(l'[v|det|7(jl_2#'c)/2) - <® rec(wk,v|g|det|;|;/2)>

ke

Wr,

In particular the ‘multiple product’ L-function L(Xcxcm, $) has meromorphic con-
tinuation to the whole complex plane.

Proof. Let M denote the compositum of the fields of coefficients of the fi’s. Let
A be any prime of M and let 71\ : Gg — GL2(My) be the A-adic representation
associated to f. Because fi is not CM we know that 7 » has Zariski dense image.
We will apply Theorem to the weakly compatible system

&7

K
The only assumption that is perhaps not clear, is that this system is irreducible.
So it only remains to check this property. The argument is a variant of Goursat’s
Lemma.

Now let H denote the Zariski closure of ([T 7x,1)(Gg) in GLa(M )X and let H
denote its image in PGLy(M)*. Note that the projection of H to each factor is
surjective. As PGLs is a simple algebraic group and all its automorphisms are inner,
H must be of the form PGLy(M)? for some set Z. Moreover we can decompose
K = [l;ez Ki and the mapping H — PGLy(M))* is conjugate to the mapping
which sends the i*" factor of PGLa(M))* diagonally into [];cc, PGL2(My). If for
some ¢ one had #/C; > 1 then we would have ry » = v\ ® x for some k # k' in
KC; and some character x. We can conclude that x is de Rham and then looking at
Hodge-Tate numbers gives a contradiction. Thus we must have H = PGLy(M )
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K

_ _ __o#
and H D SLy(M)*. As the tensor product representation of SLy(M )~ on Mi
is irreducible we conclude that ®K Tk, 1s also irreducible, as desired. O

We now turn to a proposition which will be useful in the next section. Its proof
is essentially the same as the proof of Theorem [5.4.1] once we have established the
following Lemma.

Lemma 5.4.5. Suppose that F' is an imaginary CM field, that (R, M) is a polar-
ized weakly compatible system of l-adic representations of Gg defined over M, and
that R is pure and extremely reqular. If F'/F is a finite extension and if s is a
subrepresentation of ry|g,, for some prime X of M, then there is a CM field F"
with F C F"” C F’ such that the space of s is invariant by Gg». Moreover (s, i)
is a polarized l-adic representation of Gpr. It is totally odd if (R, M) is.

Proof. Let F; denote the normal closure of F'/F*. Let 7 : F < M be an em-
bedding with the property that if H and H’ are different subsets of H, of the
same cardinality then >,y h # >,y h. Choose an embedding 71 : Fy < M
extending 7. Note that R is pure of some weight w.

If s; and so are two G, -submodules of some r) of the same dimension we see
that s; = s if and only if HT, (s;) = HT,, (s2) if and only if HT,, (det s1) =
HT,, (det s2). (The first equivalence by regularity and the second by extreme regu-
larity. Note that in particular any irreducible submodule of r)|q r, has multiplicity
1.)

For 0 € Gal (Fy/F™*) write HT,, ((det s)?) = HT, ,,-1(det s) = {h,}. As dets
is de Rham and pure of weight w dim s, we deduce that h, + hy. = wdim s for all
o € Gal(Fy/FT) and all complex conjugations ¢ € Gal (Fy/FT). Thus if ¢,c €
Gal (Fy/FT) are complex conjugations then hyeer = wdims — hye = h, and so
SUCC — SU.

Let H C Gal(Fy/F*) be the normal subgroup generated by all elements cc/
with ¢, ¢’ € Gal (Fy/F*) complex conjugations. The maximal CM subfield of Iy
is the maximal subfield on which all complex conjugations agree, i.e. F{I. Hence
F'" = FENF' = (Fy)HG (F1/F) ig the maximal CM sub-field of F’. Moreover if
o € H then s? = s and so s extends to a representation of G g .

If ¢c € Gal (Fy/F7) is a complex conjugation then

HT,, (det(ux(s")9)) = HT,, . (det(urs")) = {wdim s — h.} = {h1 }.

As py (sv)c is also a constituent of 7y, we see that s¢ = s as representations of
Gpv. Let v be an infinite place of F and ( , ), a pairing on M as in the definition
of polarization for (ry, ). Then { , ), restricts to a perfect pairing on the space
of s, as otherwise there would be a second irreducible constituent s" # s of 7|g,.,,
with s’ = py(s¥)¢ = s, a contradiction. The Lemma follows. O

(We remark that we have not made use of the whole weakly compatible system,
only of a single l-adic representation with the desired properties.)

Proposition 5.4.6. Suppose that F is a CM field; that (R, M) is a totally odd,
polarized weakly compatible system of l-adic representations. Suppose moreover
that R is pure and extremely reqular. Write ry = rx1 ® --- ® raj, with each ry o
irreducible. Then there is a set of rational primes L of Dirichlet density 1 such that
if X is a prime of M lying above | € L, then there is a finite, CM, Galois extension
F'/F such that each (rx,q G‘FH“/\|G<F/)+) 18 irreducible and automorphic.




POTENTIAL AUTOMORPHY s

Proof. By Lemma we see that for all A and « the pair (ry q, ) is a totally
odd polarized I-adic representation.

Let £ be the Dirichlet density 1 set of rational primes obtained by applying
Proposition to R. Then for A\[l € £ we see that 7y o Gre,) is irreducible.
Removing finitely many primes from £ we may further suppose that

e [ € L implies | > 2(dim R + 1),
e [ € L implies [ is unramified in F' and [ lies below no element of the set S
of bad primes for R,
o if A\l € £ then all the Hodge-Tate numbers of r lie in a range of the form
[a,a+1—2].
We deduce, by Lemma that ry o is potentially diagonalizable. Our theorem
now follows by applying Theorem to {rx.a} with F®°id) equal to the com-

positum of the errﬂ’a for o = 1,...,jx. Then 7) 4|c,, will be irreducible for
a=1,...,jx, and 50 ) o|c,, Will also be irreducible. O

5.5. Irreducibilty results.

We will first recall some basic group theory. If F' is a number field and [ is a
rational prime we will let GG, denote the category of semi-simple, continuous
representations of G on finite dimensional Q;-vector spaces which ramify at only
finitely many primes. If U, V and W are objects of GGp; with U W =2V oW
then U = V' (because they have the same traces). We will let Repy; denote the
Grothendieck group of GGp,. If V is an object of GGp; we will denote by [V] its
class in Repp,;. We have the following functorialities.

(1) The rule [U][V] = [U ® V] makes Repy; a commutative ring with 1.

(2) If o € G then there is a ring homomorphism tr, : Repy; — Q; defined by
tr,[V] =tro|yv. If A € Repp, then the function o + tr, A is a continuous
class function Gp — Q. If A, B € Repy; and tr, A = tr,B for all 0 € Gp
(or even for a dense set of o) then A = B.

(3) We will write dim for tr;. Then in fact dim : Repp; — Z and dim[V] =

(4) There is a perfect symmetric Z-valued pairing ( , )r; on Repy,; defined by

(U], [V])py = dimg, Hom ¢, (U, V).

If A =", n;[V;] with the V; irreducible and distinct then (A, A)p; = >, ni.
In particular if A € Repp,; and dim A > 0 and (A4, A)r; = 1 then A = [V]
for some irreducible object V of GGp;.

(5) Suppose that G; and Gy are algebraic groups over @, and that 6 : Gr —
G1(Q)) x G2(Q)) is a continuous homomorphism with Zariski dense image.
Suppose also that p; and p} are semi-simple algebraic representations of G;
over Q;. Then

([(p1r @ p2) 0 0], [(p) @ p) 0 0])py = dimHom g, xa,(p1 @ p2, pi @ ph)

= (dimHom G (p1,p1))(dim Hom G2 (P2, p5))

(lp1 0 0], [p1 0 0]) pa(lp2 © 0], [p3 © 0]) Fa-

(6) If o € Gg then there is a ring isomorphism conj, from Repp; to Rep,-1p,
such that conj,[V] equals the class of the representation of G,-1p on V|
under which 7 acts by oo~ !. It preserves dimension, and takes ( , )r; to
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(, )o-1ry- We have tr rconj, A = tr,,,-1A. Also if o € G then conj, is
the identity on Repp;.

(7) If F'/F is a finite extension then the formula resp/p[V] = [V]g,,] defines a
ring homomorphism resp//r : Repr; — Repp, ;. Note that if o € G/ then
tryrespr pA = tr,A (so in particular dimresp/ pA = dim A). If 0 € Gg
then conj, oresp//p = r€8,-1p1 /51 © CONj,.

(8) If F'/F is a finite extension there is a Z-linear map indp/r : Repp; —
Repy; defined by indp/p[V] = [Ind & Gr " V]. Note the following.

(a) troindp pA = ZTEGF/GF/ ToT— 1eGF, tr o1 A

(b) dimindp//pA = [F': F|dim A.

(¢) indpr/p(A(resp pB)) = (indp pA)B.

(d) (1ndF//FA B)py = (A respi pB)pr 1. (By Frobenius reciprocity.)

(e) If F”/F is another finite extension then

respr/p o indp / p = Z ind(,-1pry. oy prr © CONj, OTESEY (5 Fr1) /-
[0]€G 1 \Gp /G pir
(By Mackey’s formula.)
(f) If F'/F is a finite Galois extension then there is a finite collection of in-

termediate fields F'/F!/F with F'/F] soluble together with characters
¥; : Gal (F'/F]) — C* and integers n; such that

in the Grothendieck group of finite dimensional representation of the
finite group Gal (F'/F) over C. (This is just Brauer’s theorem for
Gal (F'/F).) If1: Q; = C then applying 2~! and multiplying by any
A € Repp,; we conclude that

A= Z niindpi//p([z_ldzi]resF;/FA).
i
Writing for any i, j
Gr =[] GroinGr

k
we see further that if

A= "niindpp([ i) Bi)

then
(A, A)py = E”k nin;
((conj,,, o reSF{-(omF;)/F;)([l_1¢i] i) 1 TES(g -1 ). FJ{/FJ{([l_l%]Bj))(g;j}cF;).F;,z-

(9) If S is a finite set of primes of F including all those above [ we will say that
A € Repy, is unramified outside S if we can write A =} n;[V;] with each

V; unramified outside S. In this case, we can define, for each 2 : Q, = C,

L5(uA, s) = [ L Vi, )™

at least as a formal Euler product, which will converge in some right half
plane if, for each i the Weil-Deligne representation WD(V}|¢,.,) is pure of
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weight w; for all but finitely many primes v € S of F. This definition is
independent of the choices and we have

LA+ B),s) = L°(1A,s)L° 1B, s)
and
LS(zind}m/FA7 s) = LS/(ZA, s),
where S’ denotes the set of primes of F’ above S.

Our first result is not really an irreducibility result, but it uses similar methods so
we include it here. It is a generalization of results of Dieulefait [Die04] in dimension
2. The key ingredient is Theorem

Theorem 5.5.1. Suppose that F is a CM field, that n is a positive integer and
that 1 > 2(n+ 1) is a rational prime such that {; & F. Suppose that (r,pn) is an n-
dimensional, totally odd, regular algebraic, polarized /-adic representation
of Gg. Suppose moreover that the following conditions are satisfied.

(1) (Potential diagonalizability) r is potentially diagonalizable (and hence
potentially crystalline) at each prime v of F above .
(2) (Irreducibility) 7|g,,, is irreducible.

Then r is part of a strictly pure compatible system of l-adic representations of
Gr.

Proof. Let G denote the Zariski closure of the image of r, let G° denote the con-
. —1A0F

nected component of G and let FO = F" @@, By Theorem (or Corollary

4.5.2) we can find a finite Galois CM extension F'/F, which is totally real if F' is

totally real and which is linearly disjoint from F OF" over F , an isomorphism

1:Q; = C, and a cuspidal, regular algebraic, polarized automorphic representation

(m, x) of GL,,(Ap/) such that

(re (), e (006 ™™) 2 (Pl plG -

For the rest of this proof we will fix F’. Note that F’ is automatically Galois
over any intermediate field between F’' and F. Suppose that F/ D F” D F with
F’/F" soluble, then by Lemma there is a cuspidal, regular algebraic, polarized
automorphic representation ("), x(F")) of GL,, (Ap~) such that

(Tl,z(ﬂ—(F ))77_”()()6[1771) = (T‘GF//vN‘G(F//)+)'

Let I’ be a rational prime and let «' : Q, = C. Note that if 0 € G and if
F' > F" > F" > F with F'/F" soluble (in which case F'/F" is also soluble) then
ri o (1) gy 2 () and (2 7)) 22 gy (1) Let G (vesp.
GF") 5 G") denote the Zariski closure of 7y () (resp. 7y (7)) and let (G”)°
(resp. (GF)) denote the connected component of G (resp. GF)). It follows
from Lemma that GF") /(GF0 and the map Gpr — GE /(GF)0 is
independent of I’. In the case (I',¢) = (I,1) we see, by the choice of F’, that
Gal (FOF"/F") 5 GE) /(GF)0. Thus this is true for all (I/,2). We deduce
that (for any (I/,7')) we have GF") = G’ and that the natural map

Grv — G'(Qy) x Gal (F'/F")
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has Zariski dense image (where we consider Gal (F’/F"") as a finite algebraic group).
If we decompose 11 () into irreducibles as

e (m) =102 (T)1 @ - @ 1w (T
then this induces a unique decomposition
LY (ﬂ—(F )) — rl/,l,(ﬂ—(F ))1 BB 7Al/,z/(,n_(F ))t

with 7y, (W(F”))Oé|GF, = ry v (m)a. (Note that by regularity the ry (7)o are pair-
wise non-isomorphic, as they will have different Hodge—Tate numbers.) We de-
duce that if 0 € Gp and if F/ D F” > F"” > F with F'/F" soluble (so that
F'/F" is also soluble) then ry (W(F,,/))Q|GF,, = Tl/,l/(ﬂ'(F”))a and 7y (W(F”))g =]
(e F"))

Ty (T «- Moreover if p; and py are representations of Gal (F/F") over Q,

then
([rere (7)ol o), frve (7)ol [p2]) 2,0 = (1], [02]) o
Choose intermediate fields F7, characters v;, integers n;, and elements o, € G,

as in item above. Write Fjj, for (az_j,in’)FJ’ Then

1] = niindpyplr (7 @ (i 0 Art g o det))]
in Repp;. This motivates us to set
Avra =Y _niindpyp (e (@) [() 7 0 vi]) € Reppyr.

Note that
dimAl/’Z/@ = ZnZ[Fz/ : F] dim’l’l/’l/(ﬂ')a = dimry,z/ (W)a.

Also note that
(Al’,z’,aa Al’,z’,oz)F,l’
Zi,j,k 415
L. — Oij . » —
([rvw (PN 717 G, s i (W F590) o] [(0) T 05l G, D Figrt
— T4 —
Zi,j,k ninj([(ll) 1’(/}1' " |GFijk]7 [(Zl) 1wj|GFijk])Fijk7l/
= (LDpr
= 1.
(The first and third equality follow from item above, while the second equal-
ity follows from items and above.) Thus Ay o = [ri .o for some irre-
ducible continuous representation 7y ,» o of Gr on a @l,—vector space of dimension
dim 7y (7). Set
Ty =Tv 1D BTy .
We see that r;, = r and that

trry (o) = Zni Z (") Yy (ror=Y))trry o (7 FD) (ror ).

i T7€Gr/Gpi, ToT *€G R/
Let v' denote a prime of F’ and set v = v'|p. By Theorem [2.1.1} if v /I’ then

YWD (rr |G, )T 2 rec(my @ | det | 7?)
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is pure. Hence YWD(ry v|g,, ) is also pure. (See Lemma m) Moreover if
o € Wg, then
tr Z/WD(’I"Z/J/ |GF1, )(CT)
= Z/tI‘ Ty (0’)
= Zz T ZTEGF/GF’_IV ToT 1 €G R Y (TO’Tfl)Z/tI‘ Ty (W(Fi))(TJTil)

— F! 1-n)/2 —
=DM D oreGr /Gy, ror—1eGyy, YVilTOT Dtr rec(ﬂ'gm,))‘pj ® | det |Em')|)£/ Y(rorh).

(Again by Theorem M) If " is another prime with v /I” and if +" : Q;, = C
then we conclude that
Z/WD(T’Z/W ‘GF,, )Ss = Z”WD(?"[//JN ‘GF,, )Ss.
As both are pure we conclude from Lemma [I.3.6] that
Z/WD(TI/}I/ |GF1, )F—ss = Z”WD(T‘[//’ZH ‘GFU )F_SS.
Thus the ry ,» form a strictly pure compatible system. ]

Recall that if (7, x) is a cuspidal, regular algebraic, polarized automorphic rep-
resentation of GL,, (Ar) then ({r,.(m)}, {ri.(x)e, ""}) is a strictly pure polarized
compatible system of weight w. (See Theorem and the discussion at the end of

section ) Then [x| = || [|27"~". If 7 has central character x, then we see that
Ixx| = || ||;(”_1_w)/2, and so 7 ® || det Hgﬂﬂ_n)ﬂ has a unitary central character

and so is unitary. If (7', x’) is a cuspidal, regular algebraic, polarized automorphic
representation of GL,,(Ag) and if {r;,(7’)} has weight w’ and if S is a finite set of
finite places of F' then
L3(m x (7)Y, s+ (w—w' +n' —n)/2)
= L (| det || 7% < (|| det [TV, )
is meromorphic and is holomorphic and non-zero at s = 1 unless

7= 7'|| det ||Errw/_w—i_n_nl)/2

in which case it has a simple pole at s = 1 (see [Sha81] and [JS8&1]).

Theorem 5.5.2. Suppose that F' is a CM field and that 7 is a regular algebraic,
polarizable, cuspidal automorphic representation of GL,(Ar). If m has extremely
reqular weight, then there is a set of rational primes L of Dirichlet density 1 such
that if l € £ and v: Q; = C then ry,(r) is irreducible.

Proof. Let L be the set of rational primes of Dirichlet density 1 provided by Propo-
sition applied to the compatible system R := {r;,(7)}. Suppose [ € £ and
1:Q; 5 C. Let

() =11 ()1 @ - @ ()
be a decomposition into irreducibles. Let F’/F and 7, for « = 1,...,j be as in
Proposition for {ry »(m)} and (I,2). Let S denote the finite set of primes of
F which divide [ or above which 7 ramifies or above which F’ ramifies. Then

orde—; LS (1(R®RY), s) = orde—y L¥(n x ©¥,5) = —1.

We will show that ord,—; L°(2(R ® RY), s) also equals —j, and the theorem will
follow.

Suppose that we are given an intermediate field F’ D F” O F with F’'/F" solu-
ble. By Lemmal[2.2.2] there is a regular algebraic, polarizable, cuspidal automorphic
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representation W&FN) of GL,,_ (Apr) such that rlﬂ(ﬂ'&FH)) 2 r1,(m)ala,, - Moreover

71.(T)alG,, is irreducible. Let n, = dimry,(7)q. If ¢ : Gal(F'/F") — Q isa
character then
ordg—1 LS(zrlﬂ(ﬂ')abF,, ® Tl,z(ﬂ)g‘GFu ® Y, s)
ords—1 LS(W,&FN) X (WEF”))V X (1o oArt pr), s+ (ng —ny)/2)
—0a,60y,1

= —([ra(malep W) [ria(m)sla o ) e,
where 6,3 = 1 if @« = 8 and equals O otherwise, and where dy; = 1if ¢ =1

and equals 0 otherwise. [Note that the 7T»(YF”)H det ||g//_n”)/ ? have different weights

so that if WSFN)H det Hg,,_"”)m =] w,(yfw)H det [|1=")/2(4 0 1) o Art pr o det) then
v = '. Moreover, we would also have r;,(7)y|q,., = 71.(7)y|c,, @ ¥, and so, as
71.(7)~| G, is irreducible, ¢ = 1. Similarly the r;,(7),|g,.,, have different Hodge~
Tate numbers, so if 7;,(7),|q,, = r,.(7)y |G, ® ¥ then v = +'. Moreover as
71,(7)|G,, is irreducible we see that we also have ¢ = 1.] Thus

ords—1 LS (Z(TI,Z(T")‘GFH ® Tl,z(ﬂ)|éF// ® 1, 5)
= 7(reSF1//F [Tl,z(ﬂ')] [1/}], resF///F [Tl,l(ﬂ—)])F”J'

Now let F}, n; and ¢; be as in item of the list at the start of this section.
Then

LR ®RY),s) = [[ L (ria(m)la,, © r(m)lE,, @ diys)™

and ords—1 L°(((R®@ RY), 5)
= =2 ni[Yilrespy plri(m)], resry plre (m)]) Fr
= = ni(indpy p([Yilrespy plr(m)]), [rea(m)]) F
= —(fre(@] [ra(m) e
= =
as desired. 0O

Theorem 5.5.3. Suppose that F is a CM field and that R is a pure, extremely
reqular, totally odd, polarizable weakly compatible system of l-adic representations
of Gp. Then we can write R = R1 & --- & Rs where each R; is an irreducible,

strictly pure, totally odd, polarizable compatible system of l-adic representations of
Gp.

Proof. Choose a set L of rational primes of Dirichlet density 1 which simultaneously
works for Propositions and (See Lemma [A.1.7) Choose A|l € £ such
that [ is unramified in F and [ > 2(n 4+ 1) and r) is crystalline with Hodge—-Tate
numbers all in an interval of the form [a,a 4 — 2]. Decompose r) into irreducible
subrepresentations
AN =TA\1D - DTy,

By Theorem each r) o is part of a strictly pure compatible system R,. Let
F'/F and 7, for a = 1,. .., j, be as in Proposition for R and X\. Then Rq|q,.,
is the compatible system associated to m,. Moreover 7, is extremely regular. By
Theorem there is a set L, of rational primes of Dirichlet density 1 such that
if N|I' € L, then ro x|a,, is irreducible. Thus R, is irreducible. O
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APPENDIX A.

The results recorded in this appendix make no reference to results proved else-
where in this paper.

A.1. Some algebra.

The results of this section are probably well known to experts. However as
we couldn’t find references we include proofs. We start with some commutative
algebra.

Suppose that L is a finite extension of Q; and let | |1 denote the l-adic norm
on L normalized by |I|; = I7[*@]. We will denote the l-adic completion of the

polynomial ring Op[s1,...,s:] by Or{s1,...,s,), and we will let L(sy,...,s,) =
Or(s1,...,8:)[1/1] denote the Tate algebra. The Gauss norm |f|; of an element
f € L(s1,...,s,) is defined to be the maximum of the | |; norm of any coeffi-

cient of a monomial in the s;’s. The Gauss norm is multiplicative ([BGR84] 5.1.2])
and L(sq,...,s,) is a UFD ([BGR&84l 5.2.6]). From these two facts one can de-
duce without difficulty that Or (s1,...,s,) is also a UFD. (The units are the units
in L(sy,...,s,) with Gauss norm 1; and the irreducibles are the irreducibles in
L(s1,...,s.) with Gauss norm 1 together with a uniformizer in Oy, times any unit
in Or(s1,...,8:).) The Tate algebra L(sy,...,s,) is noetherian ([BGR84 5.2.6]);
all its ideals are closed ([BGR84 5.2.7]); and a prime ideal p of L(s1,...,s,) is
maximal if and only if L{sq,...,s,)/p is a finite extension of L ([BGR8&4} 6.1.2]).

By an affinoid algebra we shall mean a quotient of a Tate algebra by some ideal.
Maximal ideals are dense in the spectrum of an affinoid algebra ([BGR84, 6.1.1]).
The completed tensor product of two affinoid algebras is again an affinoid algebra
(IBGR84, 6.1.1]). We will call an affinoid algebra A geometrically connected if
Spec A ®, L' is connected for all finite extensions L'/L. It suffices to check this
for a cofinal collection of finite extensions L'/L (because, for any field L', any L’-
algebra B and any finite extension L” /L, if Spec B ®, L" is connected then so is
Spec B).

Lemma A.1.1. Suppose that A; and Ay are two geometrically connected affinoid
algebras over L, then A1®1 Ay is also geometrically connected.

Proof. Suppose that
Spec A1®, Ay @, L' = UM [JU®

is a decomposition into two non-empty open su_bsets7 for some finite extension
L'/L. We will derive a contradiction. Each UU) contains a maximal ideal and
after replacing L’ by a finite extension we may suppose that each UU) contains a
maximal ideal mU) with residue field L. Let m; denote the contraction of m) into
Aj®p L'. Then m; is a prime ideal and (A; ® L')/m; = L’. Thus m; is maximal.
We have an isomorphism

(A1®LA2 Xr, L’)/mj = Aj/ Rp L
where j' # j. Thus the fibre Spec (A1<§>LA2 ®r L')/m; is connected and so

Spec (A1®LA2 ®r L’)/mj C U(j)
However

(1B Az @1 L)/ (my,my) = (Ay & L) /my 01 (Ay & L') fmg = L,
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and so we see (my,my) is a maximal ideal of A1®1A; @1 L' lying in UMD NUP), a
contradiction. O

Lemma A.1.2. Suppose that f(t) € O[t] and f(0) € OfF. Then
A=0L(s,t)/(sf(t) - 1)
is an integral domain complete in the l-adic topology.

Proof. As O (s,t)is a UFD, it suffices to prove that sf(¢)—1 is irreducible. Suppose
sf(t) — 1 = gh in Op(s,t). Reducing modulo A and using the fact that sf(¢t) — 1
is irreducible in (O /\)[s, t], we see that one of g and h reduces to a constant and
hence is itself a unit. The Lemma follows. ([

Corollary A.1.3. If a € Op — {0} then Or(s,t)/(st — «) is an integral domain.

Proof. Consider the map

0:0L(s,t)/(st —a) —> Op(s',t)/(s't—1)
h(s,t) — h(as',t).

By Lemma it suffices to show that @ is injective.
If B € Op — {0} then any element of Of(s,t)/(st — §) has a representative of

the form
Z aitl + Z biSZ.
=0 =1

Moreover we claim this representative is unique. Indeed if

oo oo o0
Zaﬂfz + Z bis' = (st — ) z ci ;s
i=0 i=1 i,5=0

then

Citl,j+1 = ﬁflcm
for all 4,j € Zxo. If 375 cijs't! € Op(s,t) this forces ¢; ; = 0 for all 4, j € Zxo,
which proves the claim.

Applying these observations for 5 = « and for 8 = 1, the injectivity of 6 follows.
O

Lemma A.1.4. Suppose that ay,...,a, € O —{0}. Then
A= OL<31,t1, S2,... ,t7->/(81t1 — 1y, S,-tr — Oé,-)
is an integral domain complete in the l-adic topology.

Proof. By the exactness of completion (and noetherianness of the polynomial ring
Opr[s1,t1, 82, ..., tr]) we see that A is the [-adic completion of

AO = OL[Sl,tl, S2,... ,tr]/(Sltl — 1y ..y, Srtr — Oér).
The ring A° is noetherian and flat over O, (because it is free over O with basis
{TTs%% : azb; = 0}) and so A is also flat over @y. Thus it suffices to show that
A[l/l] = L<81,t17 59,. .. ,tr>/(81t1 — 1y ...y Srtr — Ckr)

is a domain.

The ring A° is also excellent (being a finitely generated Op-algebra), Cohen—
Macaulay (being a complete intersection in a polynomial ring over Oy ) and normal
(being Cohen-Macaulay and regular in codimension 1). Hence A is normal ([Mat80,
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33.1]), and so A[1/!] is also normal. Thus it suffices to show that A[1/l] is geomet-
rically connected (or even just connected).
In the case r = 1 we see that, for any finite extension L’/L, the ring

L'(s1,t1)/(s1t1 — a) = (Op/(s1,t1)/ (s1t1 — a))[1/]]

is a domain by Corollary Hence L(s1,t1)/(s1t1 — aq) is geometrically con-
nected.
In general we have

A[L/1) = Lsy, t1)/(s1t1 — 1)@ - - - ®L(sy, t.) [ (87t — ),

and so the case r = 1 and Lemma imply that A[1/l] is geometrically con-
nected. g

Next we turn to representation theory.

Lemma A.1.5. Let T be a group and M a field of characteristic 0. Also let
r: T — GL, (M)

be a semi-simple representation. Suppose that for all v € T we have trr(y) € M,
and that for some v € T the characteristic polynomial of r() has distinct, M-
rational roots. Then r is conjugate to a representation into GL,,(M).

Proof. Let B denote the M-span of the image of r in M, x,(M). Note that the
M-span By of B is a finite dimensional, semi-simple M-algebra. Let ey, ..., e, be
an M-basis of Byy consisting of elements of B and let €], ..., e, be the dual basis
for the trace pairing. Then B D )", Me;. If b € B we have tr (be;) € M for all i
and so B C ), Me;. Thus B=) Me; =) Me} and

In particular B is a finite dimensional semi-simple M-algebra and M" is a faithful
B ®pr M-module.
We have

B =P M,,(D;)

where each D; is a division algebra with centre a finite extension Z(D;) of M. Let
7«]2. = dimg(p,) D;. As a representation of B ®;, M = Gaj,r M (M), where T
runs over M-embeddings Z(D;) < M for each j, we have

M= @u
JT

for some non-negative integers n; . Since tr (B) C M, we see that n;, = n; is
independent of 7. The existence of an element of B with n-distinct M-rational
eigenvalues implies that r; = n; = [Z(D;) : M] =1 for all j. Thus D; = M for all
7, and the lemma follows. ([

Next we have a result about unramified tori.

Lemma A.1.6. Suppose that fl and TQ are unfamiﬁed tori over Zy and that ¢ :
Ty — Ty is a surjection. Then the cokernel of Th(Z;) — T2(Z;) is finite of order
dividing the order of the torsion subgroup of X*(T1)/¢* X *(T5).
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Proof. We have an exact (in the centre) sequence

T1(Z) -2 To(Zy) — Hom (X*(Th) /6" X*(T»), (Z™)*) /(Frob; — 1).
(Recall that (Z}“)Fmblr:l = Zi».) There is a positive integer m so that Frob;" acts
trivially on X*(77). There is also a surjection

Hom (X*(T1)/¢*X*(T2)

/g (Z) %) /(Frob™ — 1) —
Hom (X*(T1)/¢* X*(T2),

(an) )/(Frob; — 1).
Thus it suffices to show that
Hom (X*(T1)/¢* X*(T2), (Z;")*)/ (Frob]™ — 1)

is finite with order dividing the order of the torsion subgroup of X*(T)/¢* X*(I5).
There is also an exact (in the centre) sequence

Hom ((X*(T1)/¢" X*(T2))", (Z}")*) — Hom (X*(11) /¢* X*(To), (Z}")*) —
Hom ((X*(T)/¢" X*(T2))*", (Zi))
and hence an exact (in the centre) sequence
Hom ((X*(T1)/¢* X*(T2))", (Z")*) —

)"
Hom (X*(Tl)/diX*(B) (Z3)*)/(Frob}" — 1)
— Hom ((X*(T1)/¢* X*(T5))*", (Z3™)) /B,

where B denotes the image of (Frob® — 1)Hom (X*(T})/¢* X*(T»), (Z‘”)X) in the
group Hom ((X*(T1)/¢* X*(T2))*", (Z}*)*). As
Hom ((X*(T1)/¢" X ™ (T2))"", (Z}™)*)
is finite with order the prime-to-l part of #(X*(T1)/¢*X*(T%))™", it suffices to
show that
Hom ((X*(T1)/¢"X*(T2))", (Zi")*)/ (Frobi" — 1) = (0).

However this follows from the fact that Frob;" — 1 is surjective on (2;“) * (which is
proved recursively modulo higher and higher powers of ). O

Finally we recall the following observation, which isn’t really algebraic.

Lemma A.1.7. The intersection of a finite number of sets of rational primes of
Dirichlet density 1 has Dirichlet density 1.

Proof. A set of rational primes has Dirichlet density 1 if and only if its complement
has Dirichlet density 0. Thus the Lemma follows from the fact that the union of a
finite number of sets of rational primes of Dirichlet density 0 has Dirichlet density
0. O

A.2. Building fields and characters.

For the convenience of the reader we recall some results about the construction
of fields and characters, but we will start by recalling some facts about algebraic
characters.
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Suppose that F is a number field, [ is a rational prime and ¢ : Q, = C. Let Fy
denote the maximal CM subfield of F'. Suppose also that x is an algebraic character
of A} /F* with

Xl(Foxo)O T H ().
T€Hom (F,C)
Then

| e Artr)(@) [ @) ) =x@) [ o)

T€Hom (F,C) T€Hom (F,C)

for x € A}. Moreover 7;,(x) is de Rham at all primes above [ and, if 7: F < Q
then HT,(r;,(x)) = {@or }. (See [Sex68].) Moreover we have that

1) ar 4+ a = wt(y) for all 7,7 € Hom (F, C) with 7|g, = 7’|, o ¢;

) a, only depends on 7|p,;

) wt(xixe) = wt(xa1) + wt(x2);

) if o is an automorphism of F' then wt(x?) = wt(x) (as o|p, commutes with
Ok

) wi(x o Ngr/x) = wt(x);

) if Fy is totally real then wt(y) is even;

) wt([| |lr) = —=2;

) for all places v of F' the Weil-Deligne representation WD(ry,(x))|cy, is
pure of weight wt(x).

(
(
(
(

=N

Any algebraic [-adic character of G arises in this way.
Next we recall Lemma 4.1.2 of [CHTOS].

Lemma A.2.1. Suppose that F is a number field, that F®v°'d) /F js q finite Galois
extension and that S is a finite set of places of F. For v € S let E,/F, be a finite
Galois extension. Then we can find a finite, soluble Galois extension E/F linearly
disjoint from F@°) such that for each v € S and each prime w of E above v, the
extension Ey, /F, is isomorphic to E,/F,.

In a somewhat similar vein we have the following result.

Lemma A.2.2. Suppose that F' is a number field, that S is a finite set of places
of F, that F(v°id) /F s q finite Galois extension and that N is a positive integer.
Then we can find a finite cyclic extension E/F of degree N in which all the elements
of S split completely and which is linearly disjoint from F@vid) oper F.

Proof. Let {Fi(aVOid)} denote the intermediate fields between F(@v°id) and F for
which Gal (Fi(avmd) /F) is simple. Augment S to include, for each i, a prime which

does not split in Fi(aVOid). Then the linear disjointness of E from F®v°id) will be
automatic. Choose a prime vy of F' with vy € S. Now use Lemma 4.1.1 of [CHTOg]
to choose a finite order character

X:AXJFX — Q"
such that
px =1,

* X,
e and x| Fy has order N.
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—k A . . . oo . .
Then F o XA F /F is a cyclic extension of degree divisible by N in which all the
primes in S split completely. The unique sub-extension E/F of degree N satisfies
the requirements of the lemma. ([

Corollary A.2.3. Suppose that F is an tmaginary CM field, that S is a finite set
of places of F, that F(v°d) /F s q finite Galois extension and that N is a positive
integer. Then we can find a cyclic CM extension E/F of degree N in which all the
elements of S split completely and which is linearly disjoint from F@void) oper F.

Proof. Let F'™ denote the maximal totally real subfield of F. By the Lemma we can
find a totally real cyclic extension E*/FT of degree N in which all the primes of
F* below S split completely and which is linearly disjoint from the normal closure
of Favoid) /p+ oyer F+. Then we can take E = E1F. O

We now turn to building characters, and record three results, all of which have
a similar feel but which are slightly different. We start by restating (a special case
of) Lemma 2.2 of [HSBT10].

Lemma A.2.4. Suppose that F is an imaginary CM field with mazximal totally real
subfield FT and that S is a finite set of primes of F. Let

—X
X ( %C+)X —Q
and
—X
'(/JS : O;‘,S — @
be continuous characters such that
%'(Aj’;)xﬁ@?,s = X|(A;°+)Xm(9;’s'
Also let
X —X
¢0 Pt — Q
be a character such that
¢)0|(F+)x = X|(F+)>< .
Then there is a continuous character
¢: A% — Q"
such that
L4 ¢|F>< = ¢0;
* Plas )« =X
o and 9lox = s,

When we invoke this Lemma we may not specify S or the character g, but
instead we may list local conditions to be satisfied by ¢ at a finite number of
primes. We hope that the reader will have no difficulty in finding a set S and
a character g, so that if we apply the Lemma with these choices it produces a
character ¢ with the desired local properties.

We next record two similar results about algebraic characters of Gg.

Lemma A.2.5. Suppose that | is a rational prime; that F is an imaginary CM
field with mazimal totally real subfield F*, and that S is a finite set of primes of
F' containing all primes above | and satisfying S¢ = S. Let

—X
X: GF+ —>Ql
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be a continuous character; and, for v € S, let

Y)ZJU : GFU —>@IX

be a continuous character such that

(¢U¢’ZC]C)|IF@ = X|IFU .

For v|l suppose that the character 1, is de Rham.

(1) Suppose further that every element of S is unramified over Ft, and that
x(¢y) is independent of vico. Then there is a continuous character

0:Gp — Q
such that
00° = X|GF
and, for allv € S,
O, = Yolrp, -

(2) Alternatively, suppose further that l > 2 and that

18 a continuous character such that

o 00° equal to the reduction of x|Gp,

e and for v € S the restriction §|GFU equals the reduction of 1,,.
Then there is a continuous character

0:Gpr — Q,
lifting 6 and such that
00° = X|GF
and, for allv € S,
0|1F,, = ¢U|IF1, .

Proof: We deduce the first part from Lemma Replacing x by x0p/p+ if
need be, we may suppose that x(c,) = 1 for all v|oo. Note that y is algebraic, and
s0, because F'T is totally real, all its Hodge-Tate numbers are equal to some integer

w. By class field theory we may think of x : A;i+ — @lx and ¢, : F — @lx and
look for § : AY/F* — @lx If v|l then

% = H Tomr

T:Fv<—>@l
on a some non-empty open subgroup of F,*. Moreover m, + m,o. = w for all 7.
Let X' : A%, — @, be defined by
X' () = x(@)(Np+ jgou)™.
Then ' has open kernel containing (F5)*. Let
o = H TmT:FXH@lX.

T:F‘—)@l
We see that

dol(pryx = X'|(p+yx.
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Thus in particular x’ is actually valued in the algebraic closure Q of Q in Q;. Also
define

Y R —Q
to be v, if v /l and
O |
T:Fv;)@L

if v|l. In either case 9! has open kernel and is valued in Q.
Now apply Lemma to X', ¢o and [],cg¢,. (Note that the norm map

Npg/p+ from [], g Orw to the intersection of this group with Ay, is surjective.)

We get a character
—X
with open kernel such that

* dlpx = do;
o ¢|(A°F°+)X =x;
e and ¢|O;w =) forallv e S.

The character
0:A% — Q
defined by
0(a) =d(a) ] (rar) ™
T F—=Q,
satisfies the requirements of the first part of the present lemma.

The second part follows easily from Lemma 4.1.6 of [CHTOS]. If 7 : F < Q; lies
above v € S then we will let m, denote the 7 Hodge-Tate number of 1,,. We need
only verify that m, + m,. is independent of 7. However the character x must be
algebraic and for each 7 : F < Q, the 7 Hodge-Tate number of y is m, +m,.. The
result follows from the facts recalled at the start of this section. [J

Probably the assumption [ > 2 in the second part of this Lemma could be
replaced by the assumption that x(c,) is independent of v|oo as in the first part of
the Lemma.

Again we will often invoke this Lemma without specifying S or the characters
1, but instead we may list local conditions to be satisfied by 6 at a finite number
of primes. We hope that the reader will have no difficulty in finding a set S and
characters 1, so that if we apply the Lemma with these choices it produces a
character 6 with the desired local properties.
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