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0 Introduction

0.1 Practial Arrangement
• The lectures for this module will take place Wednesday

9-11, Thursday 10-11 in Clore.

• Each week I will hand out a sheet with problems. It is
very important you go through these thoroughly, as these
will give the required training for the exam and class
tests.

• Support classes: Thursday 11-12, from January 22.

• The support classes will be run rather differently from
previous years. The objective is to make sure that you
will get a lot out of these support classes.

• The main way to revise for the tests and the exam is by
doing the exercises.

• There will be two class tests. These will take place on
Tuesday 9th February and Tuesday 9th March. Each of
these count for 5% .

• Questions are most welcome, during or after lectures
and during office hour.

• My office hour is to be agreed with students reps. Office
hour will in my office 6M36 Huxley Building.
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0.2 Relevant material
• There are many books which can be used in conjunction

to the module, but none are required.

• The lecture notes displayed during the lectures will be
posted on my webpage: http://www2.imperial.
ac.uk/~svanstri/ Click on Teaching in the left
column. The notes will be updated during the term.

• The lectures will also be recorded. See my webpage.

• There is no need to consult any book. However, recom-
mended books are

– Simmons + Krantz, Differential Equations: The-
ory, Technique, and Practice, about 40 pounds. This
book covers a significant amount of the material we
cover. Some students will love this text, others will
find it a bit longwinded.

– Agarwal + O’Regan, An introduction to ordinary
differential equations.

– Teschl, Ordinary Differential Equations and Dy-
namical Systems. These notes can be downloaded
for free from the authors webpage.

– Hirsch + Smale (or in more recent editions): Hirsch
+ Smale + Devaney, Differential equations, dynam-
ical systems, and an introduction to chaos.

– Arnold, Ordinary differential equations. This book
is an absolute jewel and written by one of the mas-
ters of the subject. It is a bit more advanced than
this course, but if you consider doing a PhD, then
get this one. You will enjoy it.

Quite a few additional exercises and lecture notes can be
freely downloaded from the internet.
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0.3 Notation and aim of this course

Notation: when we write ẋ then we ALWAYS mean
dx

dt
. When

we write y′ then this usually means
dy

dx
but also sometimes

dy

dt
;

which one should always be clear from the context.
This course is about studying differential equations of the

type
ẋ = f(x), resp. ẏ = g(t, y)

which is short for finding a function t 7→ x(t) (resp. t 7→ y(t))
so that

dx

dt
= f(x(t)) resp.

dy

dt
= g(y, y(t)).

In particular this means that (in this course) we will assume

that
dx

dt
is continuous and therefore t 7→ x(t) differentiable.

Aim of this course is to find out when or whether such an
equation has a solution and determine its properties.
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0.4 Examples of differential equations
• An example of a differential equation is the law of New-

ton: mẍ(t) = F (x(t)) ∀t. Here F is the gravitational
force. Using the gravitational force in the vicinity of the
earth, we approximate this by

mẍ1 = 0,mẍ2 = 0,mẍ3 = −g.

This has solution

x(t) = x(0) + v(0)t− g
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 t2.

• According to Newton’s law, the gravitational pull be-
tween two particles of massm andM isF (x) = γmMx/|x|3.
This gives

mẍi = − γmMxi
(x2

1 + x2
2 + x2

3)3/2
for i = 1, 2, 3

Now it is no longer possible to explicitly solve this equa-
tion. One needs some theory be sure that there are solu-
tions and that they are unique.

• In ODE’s the independent variable is one-dimensional.
In a Partial Differential Equation (PDE) such as

∂u

∂t
+
∂u

∂x
= 0

the unknown function u is differentiated w.r.t. several
variables.
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• The typical form for the ODE is the following initial
value problem:

dx

dt
= f(t, x) and x(0) = x0

where f : R × Rn → Rn. The aim is to find some
curve t 7→ x(t) ∈ Rn so that the initial value problem
holds. When does this have solutions? Are these solu-
tions unique?

• An example of an ODE related to vibrations of bridges
(or springs) is the following (see Appendix C, Subsec-
tion C.7):

Mx′′ + cx′ + kx = F0 cos(ωt).

One reason you should want to learn about ODE’s is:

– http://www.ketchum.org/bridgecollapse.
html

– http://www.youtube.com/watch?v=3mclp9QmCGs

– http://www.youtube.com/watch?v=gQK21572oSU

0.5 Issues which will be addressed in the course
include:

• do solutions of ODE’s exist?

• are they unique?

• most differential equations, cannot be solved explicitly.
One aim of this course is to develop methods which al-
low information on the behaviour of solutions anyway.

v
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1 Existence and Uniqueness: Picard The-
orem

In this chapter we will prove a theorem which gives sufficient
conditions for a differential equation to have solutions. Before
stating this theorem, we will cover the background needed for
the proof of this theorem. In this chapter X will denote a space of functions (so in-

finitely dimensional).

1.1 Banach spaces
• A vector space X is a space so that if v1, v2 ∈ X then
c1v1 + c2v2 ∈ X for each c1, c2 ∈ R (or, more usually,
for each c1, c2 ∈ C).

• A norm on X is a map || · || : X → [0,∞) so that

1. ||0|| = 0, ||x|| > 0 ∀x ∈ X \ {0}.
2. ||cx|| = |c|||x|| ∀c ∈ R and x ∈ X
3. ||x+y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (triangle inequal-

ity).

• A Cauchy sequence in a vector space with a norm is a
sequence (xn)n≥0 ∈ X so that for each ε > 0 there exists
N so that ||xn − xm|| ≤ ε whenever n,m ≥ N .

• A vector space with a norm is complete if each Cauchy
sequence (xn)n≥0 converges, i.e. there exists x ∈ X so
that ||xn − x|| → 0 as n→∞.

• X is a Banach space if it is a vector space with a norm
which is complete.

1



1.2 Metric spaces
• A metric space X is a space with together with a func-

tion d : X ×X → R+ (called metric) so that

1. d(x, x) = 0 and d(x, y) = 0 implies x = y.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

• A sequence (xn)n≥0 ∈ X is called Cauchy if for each
ε > 0 there exists N so that d(xn, xm) ≤ ε whenever
n,m ≥ N .

• The metric space is complete if each Cauchy sequence
(xn)n≥0 converges, i.e. there exists x ∈ X so that d(xn, x)→
0 as n→∞.

1.3 Metric space versus Banach space
• Given a norm || · || on a vector space X one can also

define the metric d(x, y) = ||y − x|| on X . So a Banach
space is automatically a metric space. A metric space is
not necessarily a Banach space.
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1.4 Examples
Example 1. Consider R with the norm |x|. You have see in
Analysis I that this space is complete.

In the next two examples we will consider Rn with two
different norms. As is usual in year ≥ 2, we write x ∈ Rn

rather than x for a vector.

Example 2. Consider the space Rn and define |x| =
√∑n

i=1 x
2
i

where x is the vector (x1, . . . , xn). It is easy to check that
|x| is a norm (the main point to check is the triangle inequal-
ity). This norm is usually referred to as the Euclidean norm (as
d(x, y) = |x− y| is the Euclidean distance).

Typo corrected
Example 3. Consider the space Rn and the supremum norm
|x| = maxni=1 |xi| (it is easy to check that this is a norm).

Regardless which of two two norms we put on Rn, in both
cases the space we obtain is complete (this follows from Ex-
ample 1).

Without saying this explicitly everywhere, in this course,
we will always endow Rn with the Euclidean metric. In other
lectures, you will also come across other norms on Rn (for ex-
ample the lp norm (

∑n
i=1 |xi|p)1/p, p ≥ 1.

Example 4. One can define several norms on the space of n×n
matrices. One, which is often used, is the matrix norm ||A|| =
supx∈Rn\{0}

|Ax|
|x| whenA is a n×nmatrix. Here x,Ax are vec-

tors and |Ax|, |x| are the Euclidean norms of these vectors. By

linearity of A we have supx∈Rn\{0}
|Ax|
|x| = supx∈Rn,|x|=1 |Ax|

and so the latter also defines ||A||. In particular ||A|| is a finite
real number.

3



Now we will consider a compact interval I and the vector
space C(I,R) of continuous functions from I to R. In the next
two examples we will put two different norms on C(I,R). In
one case, the resulting vector is complete and in the other it is
not.

Example 5. The set C(I,R) endowed with the supremum Remark: in this course it will suffice that you know that
C(I,Rn) with the supremum norm is complete - it is not
necessary to know the proof of this fact.

norm ||x||∞ = supt∈I |x(t)|, is a Banach space. That || · ||∞ is
a norm is easy to check, but the proof that ||x||∞ is complete is
more complicated and will not proved in this course (this result
is shown in the metric spaces course).

Example 6. The space C([0, 1],R) endowed with the L1 norm
||x||1 =

∫ 1

0
|x(s)| ds is not complete.

(Hint: To prove this norm is not complete, use the sequence
of functions xn(s) = min(

√
n, 1/

√
s) for s > 0 and xn(0) =√

n. That this sequence is Cauchy is easy to see: for m > n

then
∫ 1

0
|xn(s)−xm(s)| ds =

∫ 1/m

0
|√m−√n| ds+

∫ 1/n

1/m
|1/√s− Typo, n > m corrected into m > n.√

n| ds ≤ 1/
√
m+2/

√
n ≤ 3/

√
n→ 0. Assume by contradic-

tion that the sequence xn converges: then there exists a contin-
uous function x ∈ C([0, 1],R) so that ||x− xn||1 converges to
zero. Since x is continuous, there exists k so that |x(s)| ≤

√
k Indeed, for n ≥ k and s ∈ [0, 1/k), we have xn(s)−x(s) ≥

xn(s)−
√
k > 0. Hence ||xn−x|| ≥

∫ 1/k

0
|xn(s)−x(s)|ds ≥∫ 1/k

0
xn(s) − (1/k)

√
k ≥ (1/n)

√
n + (2/

√
k − 2/

√
n) −

(1/k)/
√
k ≥ 1/(2

√
k) when n is large.

for all s. Then it is easy to show that ||xn−x|| ≥ 1/(2
√
k) > 0

when n is large (check this!). So the Cauchy sequence xn does
not converge.

Remark: The previous two examples show that the same set
can be complete w.r.t. one metric and incomplete w.r.t. to an-
other metric.
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1.5 Banach Fixed Point Theorem
The proof of this theorem shows that whatever x0 you
choose the sequence xn defined by xn+1 = F (xn) con-
verges to a fixed point p (and this fixed point does not de-
pend on the starting point x0.

Theorem 1 (Banach Fixed Point Theorem). Let X be a com-
plete metric space and consider F : X → X so that there exists
λ ∈ (0, 1) so that

d(F (x), F (y)) ≤ λd(x, y) for all x, y ∈ X

Then F has a unique fixed point p:

F (p) = p.

Proof. (Existence) Take x0 ∈ X and define (xn)n≥0 by xn+1 =
F (xn). This is a Cauchy sequence:

d(xn+1, xn) = d(F (xn), F (xn−1)) ≤ λd(xn, xn−1).

Hence for each n ≥ 0, d(xn+1, xn) ≤ λnd(x1, x0). Therefore
when n ≥ m, d(xn, xm) ≤ d(xn, xn−1) + · · ·+d(xm+1, xm) ≤
(λn−1 +· · ·+λm)d(x1, x0) ≤ λm/(1−λ)d(x1, x0). So (xn)n≥0

is a Cauchy sequence and has a limit p. As xn → p one has
F (p) = p. Here we use F (xn) = xn+1 → p (since xn → p) and also

F (xn) → F (p) (since d(F (xn), F (p)) ≤ λd(xn, p) → 0.
Since a convergent sequence has only one limit, it follows
that F (p) = p.

(Uniqueness) If F (p) = p and F (q) = q then d(p, q) =
d(F (p), F (q)) ≤ λd(p, q). Since λ ∈ (0, 1), p = q.

Remark: Since a Banach space is also a complete metric space,
the previous theorem also holds for a Banach space.

Example 7. Let g : [0,∞) → [0,∞) be defined by g(x) =
(1/2)e−x. Then g′(x) = (1/2)e−x ≤ 1/2 for all x ≥ 0 and so
there exists a unique p ∈ R so that g(p) = p. (By the Mean

Value Theorem
g(x)− g(y)

x− y = g′(ζ) for some ζ between x, y.

Since |g′(ζ)| ≤ 1/2 for each ζ ∈ [0,∞) this implies that g is a
contraction. Also note that g(p) = p means that the graph of g
intersects the line y = x at (p, p).)
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1.6 Lipschitz functions
LetX be a Banach space. Then we say that a function f : X →
X is Lipschitz if there exists K > 0 so that

||f(x)− f(y)|| < K||x− y||.

Example 8. Let A be a n × n matrix. Then Rn 3 x 7→ Ax ∈
Rn is Lipschitz. Indeed, |Ax − Ay| ≤ K|x − y| where K is

the matrix norm of A defined by ||A|| = supx∈Rn\{0}
|Ax|
|x| .

Remember that ||A|| is also equal to maxx∈Rn;|x|=1 |Ax|.

Example 9. The function R 3 x 7→ x2 ∈ R is not Lipschitz:
there exists no constant K so that |x2 − y2| ≤ K|x− y| for all
x, y ∈ R.

Example 10. On the other hand, the function [0, 1] 3 x 7→
x2 ∈ [0, 1] is Lipschitz.

Example 11. The function [0, 1] 3 x 7→ √x ∈ [0, 1] is not
Lipschitz.

Example 12. Let U be an open set in Rn and f : U → R be
continuously differentiable. Then f : C → R is Lipschitz for
any compact set C ⊂ U . When n = 1 this follows from the
Mean Value Theorem, and for n > 1 this will be proved in
Appendix A.
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1.7 The Picard Theorem for ODE’s (for func-
tions which are globally Lipschitz)

Theorem 2. Picard Theorem (global version). Consider
f : R× Rn → Rn which satisfies the Lipschitz inequality
|f(s, u) − f(s, v)| ≤ K|u − v| for all s ∈ R, u, v ∈ Rn. Let
h = 1

2K
.

Then there exists a unique x : (−h, h)→ Rn satisfying the
initial value problem

dx

dt
= f(t, x) and x(0) = x0. (1)

Proof. By integration it follows that (1) is equivalent to

x(t)− x(0)
•
=

∫ t

0

f(s, x(s)) ds. (2)

It follows that the initial value problem is equivalent to finding
a fixed point of the operator P : B → B defined by

P (x)(t) := x0 +

∫ t

0

f(s, x(s)) ds

on the Banach space B := C([−h, h],Rn) with norm ||x|| =
maxt∈[−h,h] |x(t)|.

Note that P assigns to function x ∈ B another function
which we denote by Px. To define the function P (x), we need
to evaluate its vector value at some t ∈ [−h, h]. This is what
P (x)(t) means. So a solution of P (x) = x is equivalent to
finding a solution of (2) and therefore of (1).

7



Let us show that

P (x)(t) := x0 +

∫ t

0

f(s, x(s)) ds

is a contraction. Take x, y ∈ [−h, h] → Rn. Then for all
In inequality (*) we use that |

∫ t
0
u(s) ds| ≤

∫ t
0
|u(s)| ds for

any function u ∈ B

Inequality (**) follows from Lipschitz assumption.

Inequality (***) holds because |x(s) − y(s)| ≤ ||x − y||
(because ||x−y|| = sups∈[−h,h] |x(s)−y(s)|). So

∫ t
0
|x(s)−

y(s)| ds ≤ t · || − y||, and using |t| ≤ h inequality (***)
follows.

t ∈ [−h, h] one has

|P (x)(t)− P (y)(t)| = |
∫ t

0

(f(s, x(s))− f(s, y(s))) ds|
∗
≤

∫ t

0

|f(s, x(s))− f(s, y(s))| ds
∗∗
≤ K

∫ t
0
|x(s)− y(s)| ds

∗∗∗
≤ (hK)||x− y|| ≤ (1/2)||x− y||.

So
||P (x)− P (y)|| = sup

t∈[−h,h]

|P (x)(t)− P (y)(t)|

≤ (1/2)||x− y||
and so P is a contraction on the Banach space B. By the pre-
vious theorem therefore P has a unique fixed point.

8



1.8 Application to linear differential equations
Consider

x′ = Ax with x(0) = x0 (3)

where A is a n× n matrix and x ∈ Rn. (When we say x ∈ Rn

we mean here that x(t) ∈ Rn.)

• Note that |Ax−Ay| ≤ K|x− y| where K is the matrix

norm of A defined by ||A|| = supx∈Rn\{0}
|Ax|
|x| . So

the Picard Theorem implies that the initial value problem
(3) has a unique solution t 7→ x(t) for |t| < h. It is
important to remark that the Picard theorem states that
there exists h > 0 (namely h = 1/(2K)) so that there
exists a solution x(t) for |t| < h. So at this point we
cannot yet guarantee that there exists a solution all t ∈ R.

• For each choice of x0 ∈ Rn there exists a unique solution
x(t) (for |t| small). For each i = 1, . . . , n, let ui(t) be
the (unique) solution so that ui(0) = ei. Since linear
combinations of solutions of x′ = Ax are also solutions,

c1u1(t) + · · ·+ cnun(t)

is the general solution of x′ = Ax.

That each solution is of this form follows from the unique-
ness part of Picard’s theorem: Each c = (c1, . . . , cn) ∈ R
can be written in a unique way as a linear combination
of the basis vectors ei, namely c = c1e1 + · · ·+ cnen. So
if we are looking for a solution u of u′ = Au, u(0) = c
then by the uniqueness part of Picard’s theorem neces-
sarily u(t) is equal to c1u1(t) + · · · + cnun(t) for all
t ∈ [−h, h].

9



• What form do the solutions of (3) take?

Remember that by the two previous theorems we can find
a solution of x′ = Ax, by taking x0 : [−h, h] → Rn to
be any function (for example x0(t) := x0 and then defin-
ing a sequence of functions x0, x1, . . . by xn+1 = P (xn)
(where the operator P is defined as in the proof of the Pi-
card theorem). This sequence of functions will converge
(in the supremum norm) to the (unique) fixed point of P
and therefore solution of the differential equation. In this
case xn+1(t) = P (xn)(t) := x0 +

∫ t
0
Axn(s) ds.

So apply Picard iteration, taking x0(t) :≡ x0. Then
x1(t) = x0 +

∫ t
0
Ax0(s) ds = x0 + tAx0. x2(t) =

x0 +
∫ t

0
Ax1(s) ds = x0 + tAx0 + t2

2
A2x0. By induc-

tion xn(t) = x0 + tAx0 + t2

2
A2x0 + · · · + tn

n!
Anx0 =∑n

k=0
tkAk

k!
x0. So the solution of (3) is

x(t) = eAtx0 where we write eAt =
∞∑

k=0

tkAk

k!
.

The proof of the Picard Theorem shows that this infinite
sum exists (i.e. converges) when |t| < h. Later on we
shall show that it exists for all t.
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1.9 The Picard Theorem for functions which are
locally Lipschitz

Theorem 3. Picard Theorem (local version). The autonomous version of this theorem goes as follows:
Let V ⊂ Rn be open and g : V → Rn continuous, |g| ≤M ,
|g(u) − g(v)| ≤ K|u − v|, 0 < h < 1/(2K) and {y; |y −
x0)| ≥ hM} ⊂ V . Then there is a unique solution x ∈
(−h, h) → Rn of x′ = g(x), x(0) = x0. This follows from
Theorem 3, taking U = R× V and f(t, x) = g(x) on U .

Let U be an open subset of R × Rn containing (0, x0) and
assume that

• f : U → Rn is continuous,

• |f | ≤M

• |f(t, u)− f(t, v)| ≤ K|x− y| for all (t, u), (t, v) ∈ U This property we call Locally Lipschitz

• h ∈ (0, 1
2K

) is chosen so that [−h, h] × {y; |y − x0| ≤
hM} ⊂ U (such a choice for h is possible since U open).

dx

dt
= f(t, x) and x(0) = x0. (4)

Proof. Fix h > 0 as in the theorem, write I = [−h, h], and let
B := {y ∈ Rn; |y − x0| ≤ hM}. Next define C(I, B) as the
space of continuous functions x : I → B ⊂ Rn and

P : C(I, B)→ C(I, B) by P (x)(t) = x0 +

∫ t

0

f(s, x(s)) ds

Then the initial value problem (4) is equivalent to the fixed
point problem

x = P (x).

We need to show that P is well-defined, i.e. that the expression
P (x)(t) = x0 +

∫ t
0
f(s, x(s)) ds makes sense, and that when

x ∈ C(I, B) then P (x) ∈ C(I, B). To see this first note that
h > 0 is chosen so that when B := {y; |y − x0| ≤ hM} then
[−h, h]×B ⊂ U . So

• when x ∈ C(I, B) then f(t, x(t)) is well-defined for all
t ∈ [−h, h];

11



• hence x0 +
∫ t

0
f(s, x(s)) ds is well-defined;

• |f | ≤ M implies [−h, h] 3 t 7→ x0 +
∫ t

0
f(s, x(s)) ds is

continuous;

• hence t 7→ P (x)(t) is a continuous map;

• finally, |P (x)(t) − x0| ≤
∫ h

0
|f(s, x(s))| ds ≤ hM . So

P (x)(t) ∈ B for all t ∈ [−h, h] and therefore P (x) ∈
C(I, B).

Let us next show that

P : C(I, B)→ C(I, B) by P (x)(t) = x0 +

∫ t

0

f(s, x(s)) ds

is a contraction: for each t ∈ [−h, h],

|P (x)(t)− P (y)(t)| =
∣∣∫ t

0
(f(s, x(s))− f(t, y(s))) ds

∣∣

≤
∫ t

0
|f(s, x(s))− f(s, y(s))| ds

≤ K
∫ t

0
|x(s)− y(s)| ds (Lipschitz)

≤ Ktmax
|s|≤t
|x(s)− y(s)|

≤ Kh||x− y|| ≤ ||x− y||/2 (since h ∈ (0, 1
2K

))

Since this holds for all t ∈ [−h, h] we get ||P (x) − P (y)|| ≤
||x − y||/2. So P has a unique fixed point, and hence the
integral equation, and therefore the ODE, has a unique solu-
tion.

12



1.10 Some comments on the assumptions in Pi-
card’s Theorem

• To obtain existence in Theorem 3 it is enough to find
some open set U 3 (0, x0).

• Often one can apply Theorem 3, but not Theorem 2. Take
for example x′ = (1 + x2). Then the r.h.s. is not Lips-
chitz on all of R. It is locally Lipschitz though.

• It is not necessary to take the initial time to be t = 0. The
Picard Theorem also gives that there exists h > 0 so that
the initial value problem

x′ = f(t, x), x(t0) = x0

has a solution (t0 − h, t0 + h) 3 t 7→ x(t) ∈ Rn.

• Let V ⊂ R × Rn and assume that the Jacobian ma- This remark implies that the local Picard Theorem Theorem
3 implies a much punchy statement in the most usual setting
that the right hand side of the ODE is continuously differ-
entiable: Let f : V → Rn be continuously differentiable.
Then for each (0, x0) ∈ U there exists h > 0 and a unique
solution x : (−h, h)→ Rn of ẋ = f(t, x), x(0) = x0.

trix
∂f

∂x
(t, x) exists for (t, x) ∈ V and (t, x) 3 V 7→

∂f

∂x
(t, x) is continuous. Then for each convex, compact

subset C ⊂ V there exists K ∈ R so that

|f(t, x)− f(t, y)| ≤ K|x− y|.

This follows from the Mean Value Theorem in Rn, see
Appendix A. (So one can apply the previous theorem for
each open set U ⊂ C.)

• If (t, x) 7→ f(t, x) has additional smoothness, the solu-
tions will be more smooth. For example, suppose that
f(t, x) is real analytic (i.e. f(t, x) can be written as a
convergent power series), then the solution t 7→ x(t) is
also real analytic.
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1.11 Some implications of uniqueness in Picard’s
Theorem

• If the assumptions of the previous theorem hold and

x1 : I1 → Rn, x2 : I2 → Rn

are both solutions of the initial value problem. Then

x1(t) = x2(t) for all t ∈ I1 ∩ I2.

(See exercises.)

• f : U → Rn does not depend on t (in this case we could
take U = R× V but in any case f(t, x) = f(0, x) for all
t and all x). This case is called autonomous (or time-
independent), and so we can write x′ = f(x), x(0) =
x0. In this setting solutions cannot cross:

More precisely, if x1, x2 are solutions with x1(t1) = x2(t2) =
p ∈ V then

x3(t) = x1(t+ t1) and x4(t) = x2(t+ t2)

are both solutions to x′ = f(x) with x(0) = p. So

x3 ≡ x4.

• The following three important implications for autonomous
systems from local existence uniqueness are explored in
Assignment 2 (this material is examinable):

– the existence of a maximal interval (t−, t+) 3 0 of
existence;

– when t+ <∞ then |x(t)| → ∞ as t→ t+;

– the flow property.
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1.12 Higher order differential equations
Consider a higher order differential equation of the form

y(n) + an−1(t)y(n−1) + · · ·+ a0(t)y = b(t) (5)

where y(i) stands for the i-th derivative of y w.r.t. t.

• One can rewrite (5) as a first order ODE, by defining

z1 = y, z2 = y(1), . . . , zn = y(n−1).

The higher order differential equation (5) is equivalent to

d

dt




z1

. . .
zn−1

zn


 =




z2

. . .
zn

b(t)− [an−1(t)zn + · · ·+ a0(t)z1]




• Picard’s theorem implies ∃! solution of this ODE which
satisfies (z1(0), . . . , zn(0)) = (y(0), . . . , y(n−1)(0)).

• One can rewrite the vectorial equation as

d

dt




z1

. . .
zn−1

zn


 = A(t)




z1

. . .
zn−1

zn




where A(t) is matrix with coefficients depending on t.
Therefore, as in subsection 1.8, the general solution of
the non-homogeneous ODE is of the form c1y1 + · · · +
cnyn + p where p is a particular solution. There are at
most n degrees of freedom.
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1.13 Continuous dependence on initial conditions
Theorem 4. Continuous dependence on initial conditions
Let U ⊂ R × Rn be open, f, g : U → Rn be continuous and
assume that

K = sup
(t,u),(t,v)∈U

|f(t, u)− f(t, v)|
|u− v| , M = sup

(t,u)∈U
|f(t, u)−g(t, u)|

are finite. If x(t) and y(t) are respective solutions of the IVP’s
{

x′ = f(t, x)
x(0) = x0

and
{

y′ = g(t, y)
y(0) = y0

Then

|x(t)− y(t)| ≤ |x0 − y0|eK|t| +
M

K
(eK|t| − 1).

1.14 Gronwall Inequality
Proof:

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

0

|f(s, x(s))− g(s, y(s))| ds.

Moreover,
|f(s, x(s))− g(s, y(s))| ≤

≤ |f(s, x(s))− f(s, y(s))|+ |f(s, y(s))− g(s, y(s))| ≤
≤ K|x(s)− y(s)|+M.

Hence, writing u(t) := |x(t)− y(t)| we have

u(t) ≤ |x0 − y0|+
∫ t

0

(K|u(s)|+M)

and therefore the required inequality follows from the follow-
ing lemma.

16



Lemma 1. Gronwall Inequality

u(t) ≤ C0 +

∫ t

0

(Ku(s) +M) ds for all t ∈ [0, h] =⇒

u(t) ≤ C0e
Kt +

M

K

(
eKt − 1

)
for all t ∈ [0, h].

Proof. Let’s only prove this only when M = 0. Define

U(t) = C0 +

∫ t

0

(Ku(s)) ds.

Then u(t) ≤ U(t). Differentiating, we obtain

U ′(t) = Ku(t).

Hence
U ′(t)/U(t) = Ku(t)/U(t) ≤ K

and therefore
d

dt
log(U(t)) ≤ K.

Since U(0) = C0 this gives

u(t) ≤ U(t) ≤ C0e
Kt.

1.15 Consequences of Gronwall inequality
• Let us interpret the previous result for f = g. Then M =

0 and
{

x′ = f(t, x)
x(0) = x0

and
{

y′ = f(t, y)
y(0) = y0

implies

|x(t)− y(t)| ≤ |x0 − y0|eK|t|.
In particular, uniqueness follows.

17



• The previous inequality states:

|x(t)− y(t)| ≤ |x0 − y0|eK|t| + 0.

So orbits can separate exponentially fast.

1.16 The butterfly effect
If solutions indeed separate exponentially fast, the the differen-
tial equation is said to have sensitive dependence on initial con-
ditions. (The flapping of a butterfly in the Amazon can cause a
hurricane over the Atlantic.)

This sensitive dependence occurs in very simple differen-
tial equations, for example in the famous Lorenz differential
equation

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(6)

with σ = 10, r = 28, b = 8/3.
This equation has solutions which are chaotic and have sen-

sitive dependence.

http://www.youtube.com/watch?v=ByH8_nKD-ZM

1.17 Double pendulum
There are many physical system where sensitive dependence of
initial conditions occurs. For example the double pendulum,
see for example https://www.youtube.com/watch?
v=U39RMUzCjiU or https://www.youtube.com/
watch?v=fPbExSYcQgY.
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2 Linear systems in Rn

In this section we consider

x′ = Ax with x(0) = x0 (7)

where A is a n× n matrix and R 3 t 7→ x(t) ∈ Rn.
In Example 1.8 we saw that

etA =
∑

k≥0

1

k!
(At)k

is defined for |t| small and that x(t) = etAx0 is a solution of
(7) for |t| small. In this section we will show that etA is well-
defined for all t ∈ R and show how to compute this matrix.

Example 13. Let A =

(
λ 0
0 µ

)
. Then one has inductively

(tA)k =

(
(tλ)k 0

0 (tµ)k

)
. So etA =

(
etλ 0
0 etµ

)
.

Example 14. Let A =

(
λ ε
0 λ

)
. Then one has inductively

(tA)k =

(
(tλ)k εktkλk−1

0 (tλ)k

)
. By calculating the infinite

sum of each entry we obtain etA =

(
etλ εtetλ

0 etλ

)
.

Lemma 2. eA is well-defined for any matrix A = (aij).

Proof. let aij(k) be the matrix coefficients of Ak and define
a := ||A||∞ := max |aij|. Then

|aij(2)| =
∑n

k=1 |aikakj| ≤ na2 ≤ (na)2

|aij(3)| =
∑n

k,l |aikaklalj| ≤ n2a3 ≤ (na)3

...
|aij(k)| =

∑n
k1,k2,...,kn=1 |ak1k2ak2k3 · · · akn−1kn| ≤ nk−1ak ≤ (na)k
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So
∑∞

k=0

|aij(k)|
k!

≤ ∑∞
k=0

(na)k

k!
= exp(na) which means

that the series
∑∞

k=0

aij(k)

k!
converges absolutely by the com-

parison test. So eA is well-defined.

2.1 Some properties of exp(A)

Lemma 3. Let A,B, T be n × n matrices and T invertible.
Then

1. If B = T−1AT then exp(B) = T−1 exp(A)T ;

2. If AB = BA then exp(A+B) = exp(A) exp(B)

3. exp(−A) = (exp(A))−1

Proof. (1) T−1(A+B)T = T−1AT+T−1BT and (T−1AT )k =
T−1AkT . Therefore

T−1(
n∑

k=0

Ak

k!
)T =

n∑

k=0

(T−1AT )k

k!
.

(2) follows from the next lemma and (3) follows from (2) tak-
ing B = −A.

For general matrices exp(A+B) 6= exp(A) exp(B).

Note that if AB = BA then (A + B)n = n!
∑

j+k=n

Aj

j!

Bk

k!
.

So (2) in the previous lemma follows from:

Lemma 4.
∞∑

n=0

∑

j+k=n

Aj

j!

Bk

k!
=
∞∑

j=0

Aj

j!

∞∑

k=0

Bk

k!
.
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Proof: A computation shows

2m∑

n=0

∑

j+k=n

Aj

j!

Bk

k!
−

m∑

j=0

Aj

j!

m∑

k=0

Bk

k!
=

′∑ Aj

j!

Bk

k!
+

′′∑ Aj

j!

Bk

k!

where
∑′ respectively

∑′′ denote the sum over terms

j + k ≤ 2m, 0 ≤ j ≤ m,m+ 1 ≤ k ≤ 2m,

j + k ≤ 2m,m+ 1 ≤ j ≤ 2m, 0 ≤ k ≤ m.

So the absolutely values of the coefficients in
∑′ Aj

j!

Bk

k!
are

bounded by
∑m

j=0

||Aj||∞
j!

∑2m
k=m+1

||Bk||∞
k!

. As in the proof

Lemma 2 the latter term goes to zero as m→∞.

Similarly
∑′′ Aj

j!

Bk

k!
goes to zero as→∞. This completes

the proof of Lemma 4.

Example 15.

exp

(
a b
−b a

)
=

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)
.

This is proved in the first assignment of week 3 and also in
Section 2.4.

Each coefficient of etA depends on t. So define
d

dt
etA to be

the matrix obtained by differentiating each coefficient.

Lemma 5.
d

dt
exp(tA) = A exp(tA) = exp(tA)A.
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40 Chapter 3 Phase Portraits for Planar Systems

with λ1 < 0 < λ2. This can be solved immediately since the system decouples
into two unrelated first-order equations:

x ′ = λ1x

y ′ = λ2y .

We already know how to solve these equations, but, having in mind what
comes later, let’s find the eigenvalues and eigenvectors. The characteristic
equation is

(λ − λ1)(λ − λ2) = 0

so λ1 and λ2 are the eigenvalues. An eigenvector corresponding to λ1 is (1, 0)
and to λ2 is (0, 1). Hence we find the general solution

X(t ) = αeλ1t
(

1

0

)
+ βeλ2t

(
0

1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t (1, 0) lie on the
x-axis and tend to (0, 0) as t → ∞. This axis is called the stable line. Since
λ2 > 0, the solutions βeλ2t (0, 1) lie on the y-axis and tend away from (0, 0) as
t → ∞; this axis is the unstable line. All other solutions (with α, β %= 0) tend
to ∞ in the direction of the unstable line, as t → ∞, since X(t ) comes closer
and closer to (0, βeλ2t ) as t increases. In backward time, these solutions tend
to ∞ in the direction of the stable line. !

In Figure 3.1 we have plotted the phase portrait of this system. The phase
portrait is a picture of a collection of representative solution curves of the

Figure 3.1 Saddle phase
portrait for x ′ = –x,
y ′ = y.

3.1 Real Distinct Eigenvalues 43

(a) (b)

Figure 3.3 Phase portraits for (a) a sink and
(b) a source.

Since λ1 < λ2 < 0, we call λ1 the stronger eigenvalue and λ2 the weaker
eigenvalue. The reason for this in this particular case is that the x-coordinates of
solutions tend to 0 much more quickly than the y-coordinates. This accounts
for why solutions (except those on the line corresponding to the λ1 eigen-
vector) tend to “hug” the straight-line solution corresponding to the weaker
eigenvalue as they approach the origin.

The phase portrait for this system is displayed in Figure 3.3a. In this case the
equilibrium point is called a sink.

More generally, if the system has eigenvalues λ1 < λ2 < 0 with eigenvectors
(u1, u2) and (v1, v2), respectively, then the general solution is

αeλ1t
(

u1
u2

)
+ βeλ2t

(
v1
v2

)
.

The slope of this solution is given by

dy

dx
= λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

=
(

λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

)
e−λ2t

e−λ2t

= λ1αe(λ1−λ2)t u2 + λ2βv2

λ1αe(λ1−λ2)t u1 + λ2βv1
,

which tends to the slope v2/v1 of the λ2 eigenvector, unless we have β = 0. If
β = 0, our solution is the straight-line solution corresponding to the eigen-
value λ1. Hence all solutions (except those on the straight line corresponding

Proof.

d

dt
exp(tA) = lim

h→0

exp((t+ h)A)− exp(tA)

h
=

= lim
h→0

exp(tA) exp(hA)− exp(tA)

h
=

= exp(tA) lim
h→0

exp(hA)− I
h

= exp(tA)A.

Here the last equality follows from the definition of exp(hA) =

I + hA+
h2

2!
A2 + . . . .

2.2 Solutions of 2× 2 systems
x(t) = etAx0 is the solution of ẋ = Ax, x(0) = x0 because
ẋ = AetAx0 = Ax(t) and x(0) = e0Ax0 = x0.

Example 16. TakeA =

(
λ 0
0 µ

)
. So x(t) = etA =

(
etλ 0
0 etµ

)
x0

is a solution of the differential equation.
(Case a) λ, µ < 0 (sink). Then x(t)→ 0 as t→∞.
(Case b) If λ, µ > 0 (source). Then x(t) = etAx0 → ∞ as
t→∞ for any x0 6= 0.
(Case c) λ < 0 < µ (saddle). Then x(t) = etAx0 → ∞ as
t → ∞ if the 2nd component of x0 is non-zero, and x(t) → 0
otherwise.
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Example 17. Take A =

(
λ ε
0 λ

)
and let us compute etA

again. tA = tΛ + tN where Λ =

(
λ 0
0 λ

)
and N =

(
0 ε
0 0

)
. Note that ΛN = λN = NΛ and that N2 = 0.

So

etN = I + tN =

(
1 tε
0 1

)
, etΛ =

(
etλ 0
0 etλ

)

and

etA = etΛetN =

(
etλ εtetλ

0 etλ

)
.

In general it is not so easy to compute etA directly from the
definition. For this reason we will discuss

• eigenvalues and eigenvectors;

• using eigenvectors to put a matrix in a new form;

• using eigenvectors and eigenvalues to obtain solutions
directly.

2.3 n linearly independent eigenvectors
Given a concrete n × n matrix A, one usually solves the solu-
tions of ẋ = Ax using eigenvalues and eigenvectors.

Reminder: A vector v 6= 0 is an eigenvector if Av = ρv
for some ρ ∈ C where ρ is called the corresponding eigen-
value. So, (A− ρI)v = 0 and det(A− ρI) = 0. The equation
det(A− ρI) = 0 is a polynomial of degree in ρ.
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Example 18. Take A =




1 2 −1
0 3 −2
0 2 −2


. Consider

det




1− ρ 2 −1
0 3− ρ −2
0 2 −2− ρ


 = −(−1 + ρ)(−2− ρ+ ρ2).

So A has eigenvalues 2, 1,−1. Eigenvector w.r.t. 2:


−1 2 −1
0 1 −2
0 2 −4


 v = 0

which gives v = (3, 2, 1) (or multiples). A has eigenval-
ues 2, 1,−1 with eigenvectors (3, 2, 1), (1, 0, 0), (0, 1, 2).

• Case 1: n linearly independent eigenvectors. Suppose
that v1, . . . , vn are eigenvectors of A with eigenvectors
ρ1, . . . , ρn and assume that these eigenvectors are lin-
early independent.

Lemma from Linear Algebra: if all ρi are distinct then
the eigenvectors v1, . . . , vn are lin. independent and span
Rn.

Then xi(t) = eρitvi is a solution because

ẋi = ρie
ρitvi = eρitAvi = Axi(ti)

Hence
x(t) = c1e

ρ1tv1 + · · ·+ cne
ρntvn

is the general solution of the differential equation.

To determine the solution with x(0) = x0 one needs to
solve ci so that c1v1 + · · · + cnvn = x0 (which can be
done since v1, . . . , vn are linearly independent and span
Rn).
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2.4 Complex eigenvectors
• Case 2: Complex eigenvectors. If v1 is non-real (which

implies sinceA is real that ρ1 is also non-real), then there
exists another eigenvector, say v2 with v̄2 = v1, ρ̄2 = ρ1.)

So write v1 = ζ1 + iζ2, v2 = ζ1 − iζ2, ρ1 = a + ib and
ρ2 = a− ib with ζi, a1, b1 are real. This gives ζi are real vectors in R2

c1e
ρ1tv1 +c2e

ρ2tv2 =
= c1e

at ((cos(bt) + i sin(bt))(ζ1 + iζ2)
+c2e

at(cos(bt)− i sin(bt))(ζ1 − iζ2))
(8)

By taking suitable choices of c1, c2 ∈ C one can rewrite
this as

d1e
at (cos(bt)ζ1 − sin(bt)ζ2)+d2e

at (sin(bt)ζ1 + cos(bt)ζ2)
(9)

where d1, d1 ∈ R. Indeed: the r.h.s. of (8) is equal to
(c1+c2)eat[(cos(bt)ζ1−sin(bt)ζ2)]+(c1−c2)ieat[(sin(bt)ζ1+
cos(bt)ζ2)]. For each d1, d2 real we can find complex
c1, c2 so that c1 + c2 = d1 and (c1 − c2)i = d2. Thus we
get equation (9).

An alternative way of seeing this goes as follows: A(ζ1 +
iζ2) = (a + bi)(ζ1 + iζ2) = (aζ1 − bζ2) + i(aζ2 + bζ1). So
A(ζ1) = aζ1 − bζ2 and A(ζ2) = (aζ2 + bζ1). It follows that if
T is the matrix consisting of columns ζ1, ζ2 then

T−1AT =

(
a b
−b a

)
.

Indeed, AT (e1) = A(ζ1) = aζ1 − bζ2 = aT (e1)− bT (e2) and
so T−1AT (e1) = ae1−be2. Similarly T−1AT (e2) = be1 +ae2.
So

exp(tA) = T exp(T−1tAT )T−1 = T

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)
T−1.
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Here we use Example 15. Now write
(
d1

d2

)
= Tx0 and

check that

exp(At)x0 = T

(
eat cos(bt) eat sin(bt)
−eat sin(bt) eat cos(bt)

)(
d1

d2

)
=

d1e
at (cos(bt)ζ1 − sin(bt)ζ2) + d2e

at (sin(bt)ζ1 + cos(bt)ζ2) .

2.5 Eigenvalues with higher multiplicity
• Case 1: Repeated eigenvalues If ρ = ρ1 = · · · = ρk then

we proceed as follows. Let us consider the case that k =
2 assume ρ1 = ρ2 and v1 is an eigenvector w.r.t. ρ but
there is not 2nd eigenvector. Then there exists a vector
v2 so that (A − ρI)v2 = v1. (The general procedure is
explained in Appendix D.)

So
x1(t) = eρtv1 and x2(t) = teρtv1 + eρtv2

is a solution: indeed

ẋ2 = eρtv1 + tρeρtv1 + ρeρtv2 = ρteρtv1 + (eρtv1 + ρeρtv2) =
= A(teρtv1 + eρtv2)

where we use that Av2 = ρIv2 + v1.

2.6 A worked example: 1
Computing solutions in several ways

Example 19. The matrix A =




1 2 −1
0 3 −2
0 2 −2


 has eigenval-

ues 2, 1,−1 with eigenvectors (3, 2, 1), (1, 0, 0), (0, 1, 2). Set
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T =




3 1 0
2 0 1
1 0 2


 we get T−1AT =




2 0 0
0 1 0
0 0 −1


 .

Indeed, T−1ATei = T−1Avi = ρiT
−1vi = ρiei where ei is the

i-th unit vector. Hence

exp(tA) = exp
(
tTT−1ATT−1

)
= T exp

(
tT−1AT

)
T−1

= T




e2t 0 0
0 et 0
0 0 e−t


T−1.

For each vector c =




c1

c2

c3


 there exists x0 ∈ R3 so that

c = T−1x0. Hence

exp(tA)x0 = T




e2t 0 0
0 et 0
0 0 e−t


T−1x0 = T




e2t 0 0
0 et 0
0 0 e−t


 c =

T




c1e
2t

c2e
t

c3e
−t


 = c1e

2t




3
2
1


+ c2e

t




1
0
0


+ c3e

−t




0
1
2


 .

Notice that this agrees with the method suggested in Case be-
low Example 18.

The previous example is an instance of the diagonal Jor-
dan Normal Form:

Theorem: If an n×n matrix A has n distinct eigenvalues
λ1, . . . , λn with eigenvectors vi then

• The eigenvectors v1, . . . , vn are linearly independent and
span Rn;

27



• If we take T the matrix with columns v1, . . . , vn then

T−1AT =




λ1 0
. . .

0 λn


.

• etA = T




etλ1 0
. . .

0 etλn


T−1.

2.7 A second worked example
In the example below, we explain what to do when there is
no basis of eigenvectors. As you will see, the example also
explains what to do in the general situation.

Example 20. Take A =

(
1 9
−1 −5

)
and compute the so-

lution of x′ = Ax with x0 =

(
1
−1

)
. det(A − ρI) =

(
1− ρ 9
−1 −5− ρ

)
= (ρ+ 2)2 so the eigenvalue −2 appears

with double multiplicity. (A − ρI)v =

(
3 9
−1 −3

)
v = 0

implies v is a multiple of v1 :=

(
3
−1

)
so there exists only

one eigenvector. To find the 2nd ‘generalised eigenvector’ con-

sider (A − ρI)v2 = v1 =

(
3
−1

)
which gives v2 =

(
1
0

)

as a solution. From this one can deduce, or ‘guess’ as in Sec-
tion 2.5, equation (?) in the next page. To see this more gener-
ally, note that the eigenvector v1 and the corresponding gener-
alised eigenvector v2 satisfy

Av1 = ρv1, Av2 = ρv2 + v1
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and thus allow us to transform this matrix into what is called a
Jordan normal form. Indeed, take T the matrix with columns
v1, v2, i.e. Tei = vi. Then

T−1AT (e1) = T−1Av1 = T−1ρv1 = ρe1

T−1AT (e2) = T−1Av2 = T−1(ρv2 + v1) =

= ρT−1(v2) + T−1(v1) = ρe2 + e1.

This means that:

T−1AT = N :=

(
−2 1
0 −2

)

Hence etA = TetNT−1 = T

(
e−2t te−2t

0 e−2t

)
T−1. Remem-

bering that T =

(
3 1
−1 0

)
it follows that the solution x(t) =

etAx0 is of the form:

x(t) = c1

(
3
−1

)
e−2t + c2

(
t

(
3
−1

)
+

(
1
0

))
e−2t

where we take T−1x0 =

(
c1

c2

)
. Of course for varying choice

of c1, c2 this gives the general solution, and when we want that
x(0) = x0 then c1 = 1, c2 = −2 solves the initial value prob-
lem.

The previous example is an instance of the Jordan Normal
Form Theorem:

If an n × n matrix A has only one eigenvector v (which
implies that its eigenvalue λ appears with multiplicity n) then

• one can define inductively v1 = v and (A−λI)vi+1 = vi.

• v1, . . . , vn are linearly independent and span Rn.
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• If we take T the matrix with columns v1, . . . , vn then

T−1AT =




λ 1 0
0 λ 1

. . . . . .
0 λ 1
0 λ




.

• etA = Tetλ(I + tN + · · ·+ tn−1

(n−1)!
Nn−1)T−1 where N =



0 1 0
. . . . . .

0 1
0


.

2.8 Complex Jordan Normal Form (General Case)
Theorem 5. For each n × n matrix A there exists a (possibly
complex) matrix T so that T−1AT takes the Jordan Normal

Form: T−1AT =




J1

. . .
Jp


 where

Jj =




ρj 1 0 0
0 ρj 1

. . .
0 ρj 1
0 ρj




and where ρj is an eigenvalue of A so that the dimension of
(A− ρjI)k is equal to the dimension of Jj .

If Jj is a 1 × 1 matrix, then Jj = (ρj). Associated to
each block Jj , there exists an eigenvector vj (with eigenvalue
ρj). The dimension of Jj is equal to the maximal integer kj so
that there exist vectors w1

j , w
2
j , . . . , w

kj
j 6= 0 (where w1

j = vj)
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inductively defined as (A− ρjI)wi+1
j = wij for i = 1, . . . , kj −

1. The matrix T has columns w1
1, . . . , w

k1
1 , . . . , w

1
p, . . . , w

kp
p .

In the computations above, we showed how to determine T
so this holds.

2.9 Real Jordan Normal Form
Splitting real and complex parts we obtain:

For each real n×nmatrixA there exists a real n×nmatrix
T so that T−1AT takes the real Jordan Normal Form:

T−1AT =




J1

. . .
Jp


 where Jj is either as in the

complex Jordan Normal form when ρj real or if it is complex
equal to

Jj =




Cj I 0 0
0 Cj I

. . .
0 Cj I
0 Cj




where Cj =

(
aj bj
−bj aj

)

where ρj = aj + ibj and I =

(
1 0
0 1

)
. If Jj is a 2× 2 matrix, then

(
aj bj
−bj aj

)
.

Proof: See appendix D.
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3 Power Series Solutions
Theorem 6. If f is real analytic near (x0, 0), then x′ = f(t, x), x(0) =
x0 has a real analytic solution, i.e. the solution t 7→ x(t) is a
power series in t which converges for |t| < h.

To prove theorem one considers in the differential equation
x′ = f(t, x) the time t be complex! We will not pursue this
here.

Note that in this chapter we obtain take the derivative w.r.t.
x, so write instead y′ = f(x, y) and look for solutions x 7→
y(x).

In this chapter we will consider some examples. Typically,
one the coefficients appearing in the power series expansions of
the solutions can be found inductively as in the next examples.

Example 21. y′ = y. Then substitute y =
∑

i≥0 aix
i and y′ =∑

j≥1 jajx
j−1 =

∑
i≥0(i+ 1)ai+1x

i. Comparing powers gives∑
i≥0(aix

i − (i + 1)ai+1x
i) = 0 and so ai+1 = ai/(i + 1). So

an = C/n! which gives y(x) = C
∑

n≥0 x
n/n! = C exp(x).

3.1 Legendre equation
Example 22. Consider the Legendre equation at x = 0:

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0.

Write y =
∑

i≥0 aix
i,

y′ =
∑

j≥1

jajx
j−1 =

∑

i≥0

(i+ 1)ai+1x
i.

y′′ =
∑

j≥2

j(j − 1)ajx
j−2 =

∑

i≥0

(i+ 2)(i+ 1)ai+2x
i.
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We determine ai as follows.

y′′ − x2y′′ − 2xy′ + p(p+ 1)y =

∑

i≥0

(i+2)(i+1)ai+2x
i−
∑

i≥2

i(i−1)aix
i−2

∑

i≥1

iaix
i+p(p+1)

∑

i≥0

aix
i

=
∑

i≥2

[(i+ 2)(i+ 1)ai+2 − i(i− 1)ai − 2iai + p(p+ 1)ai]x
i+

+(2a2 + 6xa3)− 2a1x+ p(p+ 1)(a0 + a1x)

∑

i≥0

(i+2)(i+1)ai+2x
i−
∑

i≥2

i(i−1)aix
i−2

∑

i≥1

iaix
i+p(p+1)

∑

i≥0

aix
i

=
∑

i≥2

[(i+ 2)(i+ 1)ai+2 − i(i− 1)ai − 2iai + p(p+ 1)ai]x
i+

+(2a2 + 6xa3)− 2a1x+ p(p+ 1)(a0 + a1x)

So collecting terms with the same power of x together gives
a2 = −p(p+1)

2
a0 and a3 = (2−p(p+1))

6
a1 and

ai+2 =
[i(i− 1) + 2i− p(p+ 1)]ai

(i+ 1)(i+ 2)
= −(p− i)(p+ i+ 1)

(i+ 2)(i+ 1)
ai.

If p is an integer, ap+2j = 0 for j ≥ 0. Convergence of
y =

∑
i≥0 aix

i for |x| < 1 follows from the ratio test.

3.2 Second order equations with singular points
Sometimes one encounters a differential equation where the
solutions are not analytic because the equation has a pole. For
example

y′′ + (1/x)y′ − (1/x2)y = 0.
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Or more generally if the equation can be written in the form

y′′ + p(x)y′ − q(x)y = 0

where p has a pole of order 1 and q a pole of order 2. That is,

p(x) =
a−1

x
+
∑

n≥0

anx
n, q(x) =

b−2

x
+
b−1

x
+
∑

n≥0

bnx
n (10)

and where the sums are convergent. Such systems are said to
have a regular singular point at x = 0.

Even though the existence and uniqueness theorem from
Chapter 2 no longer guarantees the existence of solutions, it
turns out that a solution of the form y = xm

∑
i≥0 aix

i exists.
Here m ∈ R and

∑
aix

i converges near 0). For simplicity we
always assume a0 6= 0.

Example 23.

2x2y′′ + x(2x+ 1)y′ − y = 0.

Substitute y =
∑

i≥0 aix
m+i where we CHOOSE m so that

a0 6= 0. Then y′ =
∑

i≥0(m+ i)aix
m+i−1 and y′′ =

∑
i≥0(m+

i)(m + i − 1)aix
m+i−2. Note that m may not be an integer so

we always start with i = 0. Plugging this in gives

2
∑

i≥0

(m+ i)(m+ i− 1)aix
m+i + 2

∑

i≥0

(m+ i)aix
m+i+1+

+
∑

i≥0

(m+ i)aix
m+i −

∑

i≥0

aix
m+i = 0.

Collecting the coefficient in front of xm gives

(2m(m− 1) +m− 1)a0 = 0.
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Since we assume a0 6= 0 we get the equation 2m(m−1)+m−
1 = 0 which gives m = −1/2, 1. The coefficient in front of all
the terms with xm+i gives

2(m+i)(m+i−1)ai+2(m+i−1)ai−1+(m+i)ai−ai = 0, i.e.

[2(m+ i)(m+ i− 1) + (m+ i)− 1]ai = −2(m+ i− 1)ai−1.

If m = −1/2 this gives aj =
3− 2j

−3j + 2j2
aj−1.

If m = 1 then this gives aj =
−2j

3j + 2j2
aj−1.

So y = Ax−1/2 (1− x+ (1/2)x2 + . . . )+Bx (1− (2/5)x+ . . . ).
The ratio test gives that (1− x+ (1/2)x2 + . . . ) and (1− (2/5)x+ . . . )
converge for all x ∈ R.

Remark: The equation required to have the lowest order
term vanish is called the indicial equation which has two roots
m1,m2 (possibly of double multiplicity).

Theorem 7. Consider a differential equation y′′ + p(x)y′ −
q(x)y = 0 where p, q are as in equation (10). Then

• If m1−m2 is not an integer than we obtain two indepen-
dent solutions of the form y1(x) = xm1

∑
i≥0 aix

i and
y2(x) = xm2

∑
i≥0 aix

i.

• Ifm1−m2 is an integer than one either can find a 2nd so-
lution in the above form, or - if that fails - a 2nd solution
of the form log(x)y1(x) where y1(x) is the first solution.

Certain families of this kind of differential equation with
regular singular points, appear frequently in mathematical physics.

• Legendre equation

y′′ − 2x

1− x2
y′ +

p(p+ 1)

1− x2
y = 0
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• Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0

• Gauss’ Hypergeometric equation

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0

For suitable choices of a, b solutions of this are the sine,
cosine, arctan and log functions.

3.3 Computing invariant sets by power series
One can often obtain curves through certain points as conver-
gent power series.

Example 24. Let x′ = x+ y2, y′ = −y + x2.

• This is an autonomous differential equation in the plane.

• Solutions are unique (r.h.s. is locally Lipschitz).

• So solutions are of the form t 7→ φt(x, y) where φt(x, y)
has the flow property φt+s(x, y) = φtφs(x, y).

• Of course at φt(0, 0) = (0, 0) for all t, since the r.h.s. of
the differential equation is zero (the speed is zero there).

• Nevertheless we can find a curve γ of the form y = ψ(x)
with the property that if (x, y) ∈ γ then φt(x, y) ∈ γ for typo corrected
all t (for which φt(x, y) exists).

• Later on we shall see that x′ = x + y2, y′ = −y + x2

locally behaves very much like the equation in which the
higher order terms are removed: x′ = x, y′ = −y. For
this linear equation the x-axis (y = 0) is invariant: on
that line we have x′ = −x and so orbits go to 0 in the
linear case.
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• What about the non-linear case? Let us assume that one
can write y as a function of x, i.e. y = ψ(x). Then since,
x′ = x+ y2, y′ = −y + x2 we have

ψ′(x) = (
dy

dt
)/(

dx

dt
) =
−y + x2

x+ y2
=
−ψ(x) + x2

x+ [ψ(x)]2
.

Let us assume 0 ∈ γ and write y = ψ(x) = a1x+a2x
2 +

a3x
3 + . . . . Comparing terms gives

a1+2a2x+3a3x
2+· · · = −[a1x+ a2x

2 + a3x
3 + . . . ] + x2

x+ [a1x+ a2x2 + a3x3 + . . . ]2
.

Comparing terms of the same power, shows that a1 = 0,
2a2 = (1− a2− a2

1) and so on. This gives a curve which
is tangent to the x-axis so that orbits remain in this curve.
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4 Boundary Value Problems, Sturm-Liouville
Problems and Oscillatory equations

Instead of initial conditions, in this chapter we will consider
boundary values. Examples:

• y′′+y = 0, y(0) = 0, y(π) = 0. This has infinitely many
solutions: y(x) = c sin(x).

• y′′ + y = 0, y(0) = 0, y(π) = ε 6= 0 has no solutions:
y(x) = a cos(x) + b sin(x) and y(0) = 0 implies a = 0
and y(π) = 0 has no solutions.

• Clearly boundary problems are more subtle.

• We will concentrate on equations of the form u′′+λu = 0
with boundary conditions, where λ is a free parameter.

• This class of problems is relevant for a large class of
physical problems: heat, wave and Schroedinger equa-
tions.

• This generalizes Fourier expansions.

4.1 Motivation: wave equation
Consider the wave equation:

∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t)

where x ∈ [0, π] and the end points are fixed:

u(0, t) = 0, u(π, t) = 0 for all t ,

Below we shall see that some additional condition is needed
on f to ensure that one can find a solution u which is C2.
These technical conditions are not examinable.

u(x, 0) = f(x),
∂

∂t
u(x, t)|t=0 = 0.
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• This is a model for a string of length π on a musical
instrument such as a guitar; before the string is released
the shape of the string is f(x).

• As usual one solves this by writing u(x, t) = w(x) ·v(t),
substituting this into the wave equation and then obtain-
ing w′′(x)/w(x) = v′′(t)/v(t). Since the left hand does
not depend on t and the right hand side not on x this
expression is equal to some constant λ and we get

w′′ = λw and v′′ = λv.

• We need to set w(0) = w(π) = 0 to satisfy the boundary
conditions that u(0, t) = u(π, t) = 0 for all t.

Write λ = −µ2 where µ is not necessarily real.

• When λ 6= 0, v′′ = λv has solution

v(t) = c1 cos(µt) + c2 sin(µt).

• Consider w′′ − λw = 0 and w(0) = w(π) = 0.

– λ = 0 implies w(x) = c3 + c4x and because of the
boundary condition c3 = c4 = 0. So can assume
λ 6= 0.

– If λ 6= 0, solution isw(x) = c3 cos(µx)+c4 sin(µx).
w(0) = 0 =⇒ c3 = 0

therefore w(π) = c4 sin(µπ) = 0 implies µ = n ∈
N
[check: µ is non-real =⇒ sin(µπ) 6= 0]. So

w(x) = c4 sin(nx) and λ = −n2 and n ∈ N \ {0}.
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• So for any n ∈ N we obtain solution

u(x, t) = w(x)v(t) = (c1 cos(nt) + c2 sin(nt)) sin(nx).

• The string can only vibrate with frequencies which are a
multiple of N.

So u(x, t) =
∑

n≥1(c1,n cos(nt) + c2,n sin(nt)) sin(nx) is
solution provided the sum makes sense and is twice differen-
tiable.

Lemma 6.
∑
n2|c1,n| < ∞ and

∑
n2|c2,n| < ∞ =⇒

u(x, t) =
∑

n≥1(c1,n cos(nt) + c2,n sin(nt)) sin(nx) is C2.
Note that in these notes, lemmas and theorems are num-
bered separately. So Theorem 8 follows Theorem 7 not
Lemma 7.

Proof. That
∑N

n=1(c1,n cos(nt)+c2,n sin(nt)) sin(nx) converges
follows from

Weierstrass test: ifMn ≥ 0,
∑
Mn <∞ and un : [a, b]→

R is continuous with supx∈[a,b] |un(x)| ≤ Mn then
∑
un con-

verges uniformly on [a, b] (and so the limit is continuous too!).
Since the d/dx derivative of

N∑

n=1

(c1,n cos(nt) + c2,n sin(nt)) sin(nx)

is equal to
∑N

n=1(c1,n cos(nt)+ c2,n sin(nt))n cos(nx), and the
latter converges, u(x, t) is differentiable w.r.t. x.

Next we need to make sure that the boundary conditions are
satisfied. The first boundary condition is

∂

∂t
u(x, t)|t=0 = 0 for all x ∈ [0, π] (11)

This implies that
∑
c2,nn sin(nx) ≡ 0 =⇒ c2,n = 0 for all

n ≥ 0. So we obtain that a solution is of the form

u(x, t) =
∞∑

n=1

c1,n cos(nt) sin(nx).
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The second boundary condition is

u(x, 0) =
∑

c1,n sin(nx) = f(x) for all x ∈ [0, π]. (12)

This looks like a Fourier expansion, as in Theorem 8. The rea- Note that if f : [0, π] → R and f(0) = f(π) = 0 then we
can define the function g : [0, 2π]→ R so that g(x) = f(x)
for x ∈ [0, π] and g(x) = f(2π − x) for x ∈ [π, 2π].
It follows that g(π − x) = −g(π + x) for x ∈ [0, π].
So this means that

∫ 2π

0
g(x) cos(nx) dx = 0 and there-

fore in the Fourier expansion of g the cosine terms van-
ish, and we have g(x) =

∑∞
n=1 s1,n sin(nx). In particular

f(x) =
∑∞

n=1 s1,n sin(nx).

son why it is possible to do this so that only the sin terms appear
is explained in the margin. Note that we we to make sure that
u(x, 0) =

∑
c1,n sin(nx) = f(x) holds uniformly, and that in

fact u(x, t) is C2. To make sure of this, we need to apply The-
orem 9 and assume that f is C3 and f(0) = f(π) = f ′′(0) =
f ′′(π) = 0 the assumptions in Lemma 6 are satisfied. For an
explanation why these conditions on f implies n2|c1,n| < ∞,
see the proof of Theorem 10 below.

The following theorem is quite straightforward:

Theorem 8. L2 Fourier Theorem. If f : [0, 2π] → R is con-
tinuous (or continuous except at a finite number of points) then
we one can coefficients c1,n, c2,n so that

f ∼
∞∑

n=0

(c1,n cos(nx) + c2,n sin(nx))

in the sense that
∫ 2π

0

|f(x)−
N∑

n=0

(c1,n cos(nx) + c2,n sin(nx))|2 dx→ 0

as N →∞.

What we need here is a uniform convergence:

Theorem 9. Fourier Theorem with uniform convergence. As-
sume f : [0, π] → R is C2 (twice continuously differentiable)
and f(0) = f(π) = 0 then one can find s1,n so that

N∑

n=1

s1,n sin(nx) converges uniformly to f(x) as N →∞.
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We will not prove this theorem here, but elaborate some of
the ideas in the sketch of the proof of the next theorem (which
is not examinable).

Theorem 10. If f is C3 and f(0) = f(π) = f ′′(0) = f ′′(π) =
0, then the assumptions in Lemma 6 are satisfied.

Proof. (Non examinable). Let us assume that f is C2, f(0) =
f(π) = 0. According to the previous theorem (the Fourier
Theorem) one can therefore write f(x) =

∑
n≥1 sn sin(nx).

Let us now show that if f is C3 and f(0) = f(π) = f ′′(0) =
f ′′(π) = 0 the assumptions in Lemma 6 are satisfied, i.e. that
f and f ′ can be written in the form f(x) =

∑
sn(f ′) sin(nx)

and f ′(x) =
∑
cn(f ′) cos(nx) and that

∑
n2s2

n < ∞ and∑
n2c2

n < ∞. Let us prove that
∑ |sn| < ∞. (We change the clarified the logic here a bit

notation from the coefficients cn to sn in the main text since
the new notation is more natural here.) This remark and the
proof below are not examinable, and will given in sketchy
form only. First choose constants sn(f) and cn(f ′) so that
f(x) =

∑
sn(f) sin(nx) and f ′(x) =

∑
cn(f ′) cos(nx) (by

the Fourier theorem one can write f ′ in this way since is C2

and since f ′′(0) = f ′′(π) = 0). Step 1:

(f ′, f ′) =
∑

n,m≥0

cn(f ′)cm(f ′)

∫ π

0

cos(nx) cos(mx) =

= (π/2)
∑

n≥1

|cn(f ′)|2 + π|c0|2.

It follows that
∑

n≥0 |cn(f ′)|2 < ∞. Step 2: for n ≥ 1 we
have

sn(f) = (2/π)

∫ π

0

f(x) sin(nx) dx

and
cn(f ′) = (2/π)

∫ π

0

f ′(x) sin(nx) dx.
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Using partial integration on the last expression, and using that
f(0) = f(π) = 0 gives for n ≥ 1,

cn(f ′) = (2/π)

∫ π

0

f ′(x) cos(nx) dx = (2/π)[f(x) cos(nx)]π0 +

+n(2/π)

∫ 1

0

f(x) sin(nx) dx = (2n/π)sn(f).

It follows from this, f(0) = f(π) = 0 and Step 1 that
∑
n2|sn(f)|2 <

∞. Step 3: Now we use the Cauchy inequality
∑
anbn ≤∑

a2
n

∑
b2
n. Taking an = 1/n and bn = n|sn(f)| we get that∑ |sn(f)| =

∑
anbn ≤

∑
a2
n

∑
b2
n. By Step 2,

∑
b2
n < ∞

and since
∑

1/n2 <∞, it follows that
∑ |sn(f)| <∞. In the

same way, we can prove that if f is C3 and f(0) = f(π) =
f ′(0) = f ′(π) = f ′′(0) = f ′′(π) = 0 then

∑
n2|sn(f)| <

∞. Therefore the assumptions in Lemma 6 are satisfied. If
we assume f(0) = f(π) = f ′′(0) = f ′′(π) = 0 and con-
sider g(x) = f(x) − a1 sinx − a2 sin 2x with a1, a2 so that
g′(0) = g′(π) = 0 then we can apply the above to g. It follows
that

∑
n2|sn(g)| < ∞. This also implies

∑
n2|sn(f)| < ∞.

This concludes the explanation of item 2 above Theorem 9.

In conclusion we get:

• Provided we assume that f(0) = f(π) = f ′′(0) = f ′′(π)
and that f is C3 we can find

u(x, t) =
∞∑

n=1

c1,n cos(nt) sin(nx)

which is C2 and solves the wave equation together with
the boundary conditions.

• c1,n can be found by methods you have seen before.

• Since w′′ = λw, one calls λ an eigenvalue and w an
eigenfunction.
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4.2 A typical Sturm-Liouville Problem
In this subsection we will state the Sturm-Liouville Theorem
which generalises the previous Fourier theorem.

Let us consider another example:

y′′ + λy = 0, y(0) + y′(0) = 0, y(1) = 0.

• If λ = 0 then y(x) = c1 + c2x and the boundary condi-
tions give y(x) = 1− x.

• If λ 6= 0 we write again λ = µ2. The equation y′′+λy =
0 gives y(x) = c1e

iµx + c2e
−iµx.

• Plugging in y(0) + y′(0) = 0, y(1) = 0 gives

• (c1 + c2) + iµ(c1 − c2) = 0 and c1e
iµ + c2e

−iµ = 0.
Indeed, 0 = (1 + iµ)(cosµ − i sinµ) − (1 − iµ)(cosµ +
i sinµ) = (2(µ cosµ − sinµ), so tanµ = µ. The easi-
est way to show that this has only real roots, is by using
that eigenvalues are real, see Subsection 4.3. One can prove
this also by elementary methods, but this is much more in-
volved. For example, take µ = s + it with s, t real. Then
you (1 + iµ)e−iµ − (1 − iµ)eiµ = 0 can be rewritten as

e2is(cos 2t + i sin 2t) =
1 + is− t
1− is+ t

and do some geometric

calculations...

• So c2 = −c1e
2iµ and (1 + iµ)e−iµ − (1 − iµ)eiµ = 0.

tanµ = µ (see margin). This has infinitely many so-
lutions µn ∈ [0,∞), n = 0, 1, . . . with µn → ∞ and
µn ≈ (2n+ 1)π/2.

• Eigenvalues: λn = µ2
n ≈ (2n + 1)2(π/2)2, n = 0, . . . ;

eigenfunctions: y0(x) = 1−x and yn(x) = sin(
√
λn(1−

x)), n ≥ 1. To see this, note that we have y(x) =
[c1e

iµx + c2e
−iµx] = c1[eiµx− e2iµe−iµx] = c̃1[e−iµ+iµx−

eiµ−iµx] = 2c̃1 sin(µx − µ). Here c̃1 is a new (complex)
constant. So yn(x) = sin(µn(1− x) is an eigenfunction.
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These are special cases of following type of problem: given
functions p, q, r : [a, b]→ R find y : [a, b]→ R so that

(p(x)y′)′ + q(x)y + λr(x)y = 0. (13)

Theorem 11. Sturm-Louiville Theorem Assume that p, r >
0 are continuous and p is C1 on [a, b]. Then (13) with the
boundary conditions (14)

α0y(a) + α1y
′(a) = 0, β0y(b) + β1y

′(b) = 0. (14)

(where αi, βi are assumed to be real and neither of the vectors
(α0, α1), (β0, β1) are allowed to be zero) has infinitely many
solutions with the following properties:

1. The eigenvalues λn are real, distinct and of single multi-
plicity;

2. The eigenvalues λn tend to infinity, so λ1 < λ2 < . . .
and λn →∞.

3. If n 6= m then corresponding eigenfunctions yn, ym are
orthogonal in the sense that

∫ b

a

ym(x)yn(x)r(x) dx = 0.

In other words, one can find coefficients cn, n = 0, 1, 2, . . .
so that f is the limit of the sequence of functions

∑N
n=0 cnyn.

More precisely, if f is merely continuous than this con-
vergence is in the L2 sense, while if f is C2 then this
convergence is uniform (this sentence is not examinable,
and in this course we will not cover a proof of this sen-
tence).

4. Each continuous function can be expanded in terms of
the eigenfunctions, as in the Fourier case!!
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Let’s make two additional remarks:

• Note that if yn, ym are solutions and we set

W (ym, yn)(x) := det(
ym(x) y′m(x)
yn(x) y′n(x)

) = ym(x)y′n(x)−yn(x)y′m(x)

then W (a) = 0 and W (b) = 0. To see this, note that the
first boundary condition in equation (14) implies

(
ym(a) y′m(a)
yn(a) y′n(a)

)(
α0

α1

)
= 0.

Since (α0, α1) 6= (0, 0) the determinant of the matrix is
zero.

• How to find an so that f(x) =
∑

n≥0 anyn(x)? Just take

(f, ryk) = (
∑

n≥0 anyn(x), ryk) =
∑

n≥0 an(yn, ryk)
= ak(yk, ryk).

Here we used in the last equality that (yn, ryk) 6= 0 im-
plies n = k. Hence

ak :=
(f, ryk)

(yk, ryk)

where (v, w) is the inner product: (v, w) =
∫ b
a
v(t)w(t) dt.

4.3 A glimpse into symmetric operators
• Sturm-Liouville problems are solved using some opera-

tor theory: the 2nd order differential equation is equiva-
lent to

Ly(x) = λr(x)y(x) where L =

(
− d

dx
p(x)

d

dx
− q(x)

)
.

This turns out to be a symmetric operator in the sense
that (Lv,w) = (v, Lw) where (v, w) =

∫ b
a
v(x)w(x) dx

is as defined above.
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• The situation for analogous to the finite dimensional case:

• L is a symmetric (and satisfies some additional proper-
ties) =⇒ its eigenvalues are real, and its eigenfunctions
form a basis.

L is symmetric (self-adjoint) on the space of functions
satisfying the boundary conditions. Let Lu = −(pu′)′ − qu
and Lv = −(pv′)′ − qv.
∫ b
a
L(u)v̄ dx =

∫ b
a
[−(pu′)′v̄ − quv̄] dx.

∫ b
a
uL(v) dx =∫ b

a
[−u(pv′)′ − quv̄] dx.

∫ b
a
−(pu′)′v̄ dx = −pu′v̄|ba +

∫ b
a
pu′v̄′ dx

= −pu′v̄|ba + puv̄′|ba −
∫ b
a
u(pv̄′)′ dx.

Hence

∫ b
a
[L(u)v̄− uL(v)] dx = −p(x)[u′v̄ − uv̄′]

∣∣∣
b

a

= − [p(b)W (u, v̄)(b)− p(a)W (u, v̄)(a)]

If u, v satisfy the boundary conditions, then α0u(a)+α1u
′(a) =

0 and α0v(a) + α1v
′(a) = 0. Since α0, α1 are real, therefore

α0v̄(a) + α1v̄
′(a) = 0. Hence, W (u, v̄)(a) = W (u, v̄)(b) = 0,

and therefore
∫ b

a

[L(u)v̄ − uL(v)] dx = 0.

In other words, L is self-adjoint is on the space H of func-
tions satisfying the boundary conditions. That is,

∫ b

a

[L(u)v̄ − uL(v)] dx = 0, i.e. (Lu, v) = (u, Lv).
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Proof that eigenvalues are real and orthogonality of eigen-
functions: Define (u, v) =

∫ b
a
u(x)v(x) dx. Then the para-

graph showed (Lu, v) = (u, Lv).

• Suppose that Ly = rλy. Then the eigenvalue λ is real:
Indeed,

λ(ry, y) = (λry, y) = (Ly, y) = (y, Ly) = λ̄(y, ry) = λ̄(ry, y)

since r is real. Since (ry, y) > 0 it follows that λ = λ̄.

• Suppose that Ly = rλy and Lz = rµz.

λ 6= µ =⇒
∫ b
a
r(x)y(x)z(x) dx = (ry, z) = 0.

So the eigenfunctions y, z are orthogonal. Indeed,

λ(ry, z) = (λry, z) = (Ly, z) = (y, Lz) = (y, µrz)
= µ̄(y, rz) = µ̄(ry, z) = µ(ry, z).

where we have used that r and µ are real. Since λ 6= µ it
follows that (ry, z) = 0.

Remark 1. In this remark (which is not examinable) we dis-
cuss what is required for the proof of the above theorem:

• to define Hilbert space H: this is a Banach space with
an inner product for which (v, w) = (w, v) where z is
complex conjugation;

• to define the norm ||v|| =
√

(v, v) (generalizing ||z|| = typo corrected
√

(z, z) =
√
zz̄ on C); Note ||v|| =

√∫ b
a
|v(x)|2 dx, the

so-called L2 norm.

• to associate to a linear A : H → H the operator norm
||A|| = supf∈H,||f ||=1 ||Af ||;

48



• to call a linear operator A is compact if for each se-
quence ||fn|| ≤ 1, there exists a convergent subsequence
of Afn.

• to show that ifA : H → H is compact, then there exists a
sequence of eigenvalues αn → 0 and eigenfunctions un.
These eigenvalues are all real and the eigenfunctions are
orthogonal. If the closure of A(H) is equal to H , then
for each f ∈ H then one can write f =

∑∞
j=0(uj, f)uj .

• The operator L in Sturm-Liouville problems is not com-
pact, and that is why one considers some related operator
(the resolvent).

• This related operator is compact.

• The above theorem then follows.

The Sturm-Liouville Theorem is fundamental in

• quantum mechanics;

• in large range of boundary value problems;

• and related to geometric problems describing properties
of geodesics.

4.4 Oscillatory equations
Consider (py′)′ + ry = 0 where p > 0 and C1 as before.

Theorem 12. Let y1, y2 be solutions. Then the Wronskian x 7→
W (y1, y2)(x) := y1(x)y′2(x)− y2(x)y′1(x) has constant sign.
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Proof. (py′1)′ + ry1 = 0 and (py′2)′ + ry2 = 0. Multiplying the
first equation by y2 and the second one by y1 and subtract:

0 = y2(py′1)′ − y1(py′2)′ = y2p
′y′1 + y2py

′′
1 − y1p

′y′2 − y1py
′′
2 .

Differentiating W and substituting the last equation in

pW ′ = p[y′1y
′
2 + y1y

′′
2 − y′2y′1 − y2y

′′
1 ] = py1y

′′
2 − py2y

′′
1

gives
pW ′ = −p′W.

This implies that ifW (x) = 0 for some x ∈ [a, b] thenW (x) =
0 for all x ∈ [a, b].

Lemma 7. W (y1, y2) ≡ 0 =⇒ ∃c ∈ R with y1 = cy2 (or
y2 = 0).

Proof. Since W (y1, y2) = 0, y2 6= 0 implies (y1, y
′
1) is a mul-

tiple of (y2, y
′
2). Can this multiple depend on x? No: if

y1(x) = c(x)y2(x) and y′1(x) = c(x)y′2(x) ∀x
=⇒ c(x)y′2(x) = y′1(x) = c′(x)y2(x) + c(x)y′2(x) ∀x.

Hence c′ ≡ 0.

Theorem 13. Sturm Separation Theorem Let y1, y2 be two so-
lutions which are independent (one is not a constant multiple
of the other). Then zeros are interlaced: between consecutive
zeros of y1 there is a zero of y2 and vice versa.

Proof. Assume y1(a) = y1(b) = 0. y′1(a) 6= 0 (otherwise
y1 ≡ 0) and y′2(b) 6= 0. We may choose a, b so that y1(x) > 0
for x ∈ (a, b). Then y′1(a)y′1(b) < 0. (Draw a picture.) Also,

W (y1, y2)(a) = −y2(a)y′1(a) and W (y1, y2)(b) = −y2(b)y′1(b).

Since y′1(a)y′1(b) < 0 and W (a)W (b) > 0 (W does not change
sign), we get y2(a)y2(b) < 0, which implies that y2 has a zero
between a and b.
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5 Calculus of Variations
Many problems result in differential equations. In this chapter
we will consider the situation where these arise from a min-
imisation (variational) problem. Specifically, the problems we
will consider are of the type

• Minimize

I[y] =

∫ 1

0

f(x, y(x), y′(x)) dx (15)

where f is some function and y is an unknown function.

• Minimize (15) conditional to some restriction of the type
J [y] =

∫ 1

0
f(x, y(x), y′(x)) dx = 1.

5.1 Examples (the problems we will solve in this
chapter):

Example 25. Let A = (0, 0) and B = (1, 0) with l, b > 0
and consider a path of the form [0, 1] 37→ c(t) = (c1(t), c2(t)),
connecting A and B. What is the shortest path?

Task: Choose [0, 1] 3 t 7→ c(t) = (c1(t), c2(t)) with c(0) =
(0, 0) and c(1) = (1, 0) which minimises

L[c] =

∫ 1

0

√
c′1(t)2 + c′2(t)2 dt.

Of course this is a line segment, but how to make this pre-
cise?

If we are not in a plane, but in a surface or a higher dimen-
sional set, these shortest curves are called geodesics, and these
are studied extensively in mathematics.

Example 26. Let A = (0, 0) and B = (l,−b) with l, b > 0 and
consider a path of the form (x, y(x)), x ∈ [0, l], connecting
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A and B. Take a ball starting at A and rolling along this path
under the influence of gravity to B. Let T be the time this ball
will take. Which function x 7→ y(x) which will minimise T ?

The sum of kinetic and potential energy is constant

(1/2)mv2 +mgh = const.

Since the ball rolls along (x, y(x)) we have v(x) =
√
−2gy(x).

Let s(t) be the length travelled at time t. Then v = ds/dt.
Hence dt = ds/v or

T [y] :=

∫ l

0

√
1 + y′(x)2

√
−2gy(x)

dx.

Task: minimise T [y] within the space of functions x 7→
y(x) for which y and y′ continuous and y(0) = 0 and y(l) =
−b. This is called the Brachisotochrome, going back to Bernouilli
in 1696.

Example 27. Take a closed curve in the plane without self-
intersections and of length one. What is the curve c which
maximises the area D it encloses? Again, let [0, 1] 37→ c(t) =
(c1(t), c2(t)) with c(0) = c(1) and so that s, t ∈ [0, 1) and
s 6= t implies c(s) 6= c(t).

The length of the curve is againL[c] =
∫ 1

0

√
c′1(t)2 + c′2(t)2 dt.

To compute the area of D we use the Green theorem:
∫

c

Pdx+Qdy =

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y
)dxdy

Take P ≡ 0 and Q = x. Then

∫ ∫

D

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∫ ∫

D

1 dxdy = area of D.

So

A[c] =

∫ ∫

D

1 dxdy =

∫

c

xdy =

∫ 1

0

c1(t)c′2(t) dt.
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This is an isoperimetric problem: find the supremum of
A[c] given L[c] = 1.

5.2 Extrema in the finite dimensional case
We say that F : Rn → R take a local minimum at x̃ if there
exists δ > 0 so that

F (x) ≥ F (x̃) for all x with |x− x̃| < δ.

Theorem 14. Assume that F is differentiable at a and also has
a minimum at x̃ then DF (x̃) = 0.

Proof. Let us first assume that n = 1. Then that f has a min-
imum means that F (x̃ + h) − F (x̃) ≥ 0 for all h near zero.
Hence

F (x̃+ h)− F (x̃)

h
≥ 0 for h > 0 near zero and

F (x̃+ h)− F (x̃)

h
≤ 0 for h < 0 near zero.

Therefore

F ′(x̃) = lim
h→0

F (x̃+ h)− F (x̃)

h
= 0

Let us consider the case that n > 1 and reduce to the case
that n = 1. So take a vector v at x̃, define l(t) = x̃ + tv and
g(t) := F ◦ l(t). So we can use the first part of the proof and
thus we get g′(0) = 0. Applying the chain rule 0 = g′(0) =
Dg(0) = DF (l(0))Dl(0) = DF (x̃)v and so

∂F

∂x1

(x̃)v1 + · · ·+ ∂F

∂xn
(x̃)vn = 0.

Hence DF (x̃)v = 0 where DF (x̃) is the Jacobian matrix at x̃.
Since this holds for all v, we get DF (x̃) = 0.
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Remember we also wrote sometimes DFx̃ for the matrix
DF (x̃) and that DF (x̃)v is the directional derivative of f at x̃
in the direction v.

5.3 The Euler-Lagrange equation
The infinite dimensional case: the Euler-Lagrange equation

• In the infinite dimensional case, we will take F : H → R
where H is some function space. The purpose of this
chapter is to generalise the previous result to this setting,
and show that the solutions of this problem gives rise to
differential equations.

• Mostly the function space is the space C1[a, b] of C1

functions y : [a, b] → Rn. This space is an infinite di-
mensional vector space (in fact, a Banach space) with
norm |y|C1 = supx∈[a,b](|y(x)|, |Dy(x)|).

• Choose some function f : [a, b] × Rn × Rn → R. Take
(x, y, y′) ∈ [a, b]×Rn×Rn denote by fy, fy′ the corre-
sponding partial derivatives. So fy(x, y, y′) and fy′(x, y, y′)
vectors. Attention: here y and y′ are just the names of
vectors in Rn (and not - yet - functions or derivatives of
functions).

• Here fy is the part of the 1×(1+n+n) vectorDf which
concerns the y derivatives.

Assume f : [a, b] × Rn × Rn → R with fy, fy′ continuous
and define I : C1[a, b]→ R by,

I[y] =

∫ b

a

f(x, y(x), y′(x)) dx.

Given ỹ : [a, b]→ Rn, let’s denote

fy[ỹ](x) = fy(x, ỹ(x), ỹ′(x)) and fy′ [ỹ](x) = fy′(x, ỹ(x), ỹ′(x))
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where fy, fy′ are the corresponding partial derivatives of f . Fix
ya, yb ∈ Rn and define

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

Theorem 15. If A 3 y 7→ I[y] has a minimum at ỹ then

1. for every v ∈ C1[a, b] with v(a) = v(b) = 0 we get∫ b
a
(fy[ỹ] · v + fy′ [ỹ]v′) dx = 0.

2. fy′ [ỹ] exists, is continuous on [a, b] and

d

dx
fy′ [ỹ] = fy[ỹ].

Proof. Remember that

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

Hence v ∈ C1[a, b] with v(a) = v(b) = 0, then y+hv ∈ A for
each h. So the space A is affine.

Assume that I : C1[a, b] → R has a minimum at ỹ, which
means that

I[ỹ + hv] ≥ I[ỹ] ∀v ∈ C1[a, b], v(a) = v(b) = 0 ∀h ∈ R

I[ỹ + hv]− I[ỹ] =

=

∫ b

a

f(x, (ỹ + hv)(x), (ỹ + hv)′(x))− f(x, ỹ(x), ỹ′(x))dx.

By Taylor’s Theorem,

f(x, (ỹ + hv)(x), (ỹ + hv)′(x))− f(x, ỹ(x), ỹ′(x)) =

fy[ỹ]hv + fy′ [ỹ]hv′ + o(h).

So

I[ỹ + hv]− I[ỹ] = h ·
[∫ b

a

[fy[ỹ]v + fy′ [ỹ]v′] dx

]
+ o(h).
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Hence a necessary condition for ỹ to be a minimum of I is
∫ b

a

[fy[ỹ]v + fy′ [ỹ]v′] dx = 0

for each v ∈ C1[a, b] with v(a) = v(b) = 0.
Partial integration gives
∫ b

a

fy′ [ỹ]v′ dx = (fy′ [ỹ]v)
∣∣b
a
−
∫ b

a

d

dx
fy′ [ỹ]v dx.

Remember v(a) = v(b) = 0, so (fy′ [ỹ]v)
∣∣b
a

= 0. Therefore a
necessary condition for ỹ to be a minimum of I is:

v ∈ C1[a, b] with v(a) = v(b) = 0 =⇒∫ b

a

[
fy[ỹ]− d

dx
fy′ [ỹ]

]
v dx = 0.

This prove first assertion of Theorem and also the 2nd assertion
because of the following lemma:

Lemma 8. If G : [a, b] → R is continuous and
∫ b
a
Gv dx = 0

for each v ∈ C1[a, b] with v(a) = v(b) = 0, then G ≡ 0.

Proof. If G(x0) > 0 then ∃δ > 0 so that G(x) > 0, ∀x with
|x − x0| < δ. Choose v ∈ C1[a, b] with v(a) = v(b) = 0, so
that v > 0 on x ∈ (x0 − δ, x0 + δ) ∩ (a, b) and zero outside.
Then

∫ b
a
G(x)v(x) dx > 0.

Quite often x does not appear in f . Then it is usually more
convenient to rewrite the Euler-Lagrange equation:

Lemma 9. If x does not appear explicitly in f , then
d

dx
fy′ [ỹ] =

fy[ỹ] implies fy′ [ỹ]ỹ′ − f [ỹ] = C.
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Proof.

d

dx
(fy′ [ỹ]ỹ′ − f [ỹ]) = (

d

dx
fy′ [ỹ])ỹ′ + fy′ [ỹ]ỹ′′

−(fx[ỹ] + fy[ỹ]ỹ′ + fy′ [ỹ]ỹ′′)

= y′
{
d

dx
fy′ [ỹ]− fy[ỹ]

}
− fx[ỹ].

Since fx = 0, and by the E-L equation, the term {·} = 0 this
gives the required result.

Example 28. Shortest curve connecting two points (0, 0) and
(1, 0). Let us consider curves of the form x 7→ (x, y(x)) and
minimise the length: I[c] =

∫ b
a

√
1 + y′(x)2 dx. The Euler-

Lagrange equation is
d

dx
fy′ [ỹ] = fy[ỹ] = 0. Note fy′ =

y′√
1 + (y′)2

, so
d

dx

y′√
1 + (y′)2

= 0. Hence the EL equation

gives
ỹ′√

1 + (ỹ′)2
= C. This means that ỹ′ = C1. Hence

ỹ(x) = C1x + C2. With the boundary conditions this gives
ỹ(x) = 0.

5.4 The brachistochrone problem
Example 29. (See Example 26) The curve x→ (x, y(x)) con-
necting (0, 0) to (l,−b) with the shortest travel time (brachis-

tochrone). Then f(x, y, y′) =

√
1 + (y′)2

√−2gy
. Since y < 0, we

orient the vertical axis downwards, that is we write z = −y
and z′ = −y′, i.e. take f(x, z, z′) =

√
1 + (z′)2

√
2gz

. Note that

fz′ = (1/2)
1√

1 + (z′)2
√

2gz
2z′.
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The EL equation from the previous lemma gives f ′z′ [z̃]z̃′ −
f [z̃] = const, i.e. (writing z instead of z̃):

(z′)2

√
1 + (z′)2

√
z
−
√

1 + (z′)2

√
z

= const.

Rewriting this gives

z[1 + (z′)2] = const.

Rewriting this again gives the differential equation

dz

dx
=

√
C − z
z

or
dx

dz
=

√
z

C − z

withC > 0. As usual we solve this by writing dx =

√
z

C − zdz
and so

x =

∫ √
z

C − z dz.

Substituting z = C sin2(s), where s ∈ [0, π], gives

x =

∫ √
sin2(s)

1− sin2(s)
(2C) sin(s) cos(s) ds =

2C

∫
sin2(s) dt = C

∫
(1−cos(2s)) dt = (C/2)(2s−sin(2s))+A

Since the curve starts at (0, 0) we have A = 0.
So we get

x(s) =
C

2
(2s− sin(2s)),

z(s) = C sin2(s) =
C

2
(1− cos(2s)).

(16)

Here we choose C so that z = b when x = L. This is called
a cycloid, an evolute of the circle. This is the path of a fixed
point on a bicycle wheel, as the bicycle is moving forward.
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Substituting 2s to φ and taking a = C/2 we get

x(φ) = a(φ− sin(φ)),
z(φ) = a(1− cos(φ)).

(17)

What is a? Given L = x0 and −b = y0 we need to choose
a, φ so that x(φ) = L and z(φ) = b. This amounts two equa-
tions and two unknowns.

Two special cases:

• The right endpoint is (L, 0), the top of the curve: then
take φ = 2π and we have x(2π) = 2πa and z(2π) = a.

• The right endpoint is (L, 2a) and this is the bottom of the
curve: then φ = π and x(π) = aπ and y(π) = 2a.

2.2. Calculus of variations: some classical problems 33

PSfrag replacements
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Figure 2.4: Element of arc length.

Hence the time of descent is given by

T =

∫

curve

ds√
2gy

=
1√
2g

∫ y0

0

√√√√1 +
(

dx
dy

)2

y
dy.

Our problem is to find the path {x(y), y ∈ [0, y0]}, satisfying x(0) = 0 and x(y0) = x0, which
minimizes T , that is, to determine the minimizer for the function I : S → R, where

I(x) =
1√
2g

∫ y0

0

(
1 + (x′(y))2

y

) 1
2

dy, x ∈ S,

and S = {x ∈ C1[0, y0] | x(0) = 0 and x(y0) = x0}. Here2 F (α, β, γ) =
√

1+β2

γ is independent of

α, and so the Euler-Lagrange equation becomes

d

dy

(
x′(y)√

1 + (x′(y))2
1√
y

)
= 0.

Integrating with respect to y, we obtain

x′(y)√
1 + (x′(y))2

1√
y

= C,

where C is a constant. It can be shown that the general solution of this differential equation is
given by

x(Θ) =
1

2C2
(Θ − sin Θ) + C̃, y(Θ) =

1

2C2
(1 − cosΘ),

where C̃ is another constant. The constants are chosen so that the curve passes through the points
(0, 0) and (x0, y0).

PSfrag replacements

(0, 0)

(x0, y0)

x

y

Figure 2.5: The cycloid through (0, 0) and (x0, y0).

This curve is known as a cycloid, and in fact it is the curve described by a point P in a circle
that rolls without slipping on the x axis, in such a way that P passes through (x0, y0); see Figure
2.5.

2Strictly speaking, the F here does not satisfy the demands made in Theorem 2.1.1. Notwithstanding this fact,
with some additional argument, the solution given here can be fully justified.

A remarkable property of the brachistochrone: Take an ini-
tial point (x̂, ŷ) on this curve, and release it from rest. Then the
time to hit the lower point of the curve is independent of the
choice of the initial point!!!

Theorem 16. For any initial point (x̂, ŷ) (i.e. for any initial φ̂)

T =

∫ L

x̂

√
1 + (z′)2

2g(z − z0)
dx =

√
a

g

∫ π

φ=φ̂

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ

is equal to = π
√
a/g. Wow!

Proof. Not examinable Let us first show the integrals are equal:

x(φ) = a(φ− sin(φ)), z(φ) = a(1− cos(φ)) =⇒
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z′ =
dz

dx
=

dz

dφ
dx

dφ

=
a sin(φ)

a(1− cos(φ))
=⇒

√
1 + (z′)2 =

√
(1− cos(φ))2 + sin2(φ)

(1− cos(φ))2
=

√
2(1− cos(φ))

(1− cos(φ))2
.

x(φ) = a(φ− sin(φ)), z(φ) = a(1− cos(φ)) =⇒

z′ =
dz

dx
=

dz

dt
dx

dt

=
a sin(φ)

a(1− cos(φ))
=⇒

√
1 + (z′)2 =

√
(1− cos(φ))2 + sin2(φ)

(1− cos(φ))2
=

√
2(1− cos(φ))

(1− cos(φ))2
.

Since dx = a(1− cos(φ)) dφ this gives
√

1 + (z′)2

2g(z − z0)
dx =

√
a√
g

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ.

Showing the two integrals the same.
Claim: the following integral does not depend on φ̂:

∫ π

φ=φ̂

√
1− cos(φ)

cos(φ̂)− cos(φ)
dφ

Substitute sin(φ/2) =
√

1− cosφ/
√

2 and cosφ = 2 cos2(φ/2)−
1 gives:
√

1− cos(φ)

cos(φ̂)− cos(φ)
=
√

2
sin(φ/2)√

2[cos2(φ̂/2)− cos2(φ/2)]
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Substitute u = cos(φ/2)/ cos(φ̂/2), then as φ varies between
[φ̂, π] then u varies from 1 to 0.

∫ π

φ̂

sin(φ/2)√
cos2(φ̂/2)− cos2(φ/2)

dφ

Substitute u = cos(φ/2)/ cos(φ̂/2) gives

sin(φ/2)√
cos2(φ̂/2)− cos2(φ/2)

=
sin(φ/2)

cos(φ̂/2)
√

1− u2
.

Since du = −(1/2)
sin(φ/2)

cos(φ̂/2)
dφ and since u varies from 1 to 0

the integral is equal to
∫ 1

0

2√
1− u2

du = 2 arcsin(u)
∣∣1
0

= π

So the time to decent from any point is π
√
a/g.

For history and some movies about this problem:

• http://www.sewanee.edu/physics/TAAPT/TAAPTTALK.
html

• http://www-history.mcs.st-and.ac.uk/HistTopics/
Brachistochrone.html

• http://www.youtube.com/watch?v=li-an5VUrIA

• http://www.youtube.com/watch?v=gb81TxF2R_
4&hl=ja&gl=JP

• http://www.youtube.com/watch?v=k6vXtjne5-c

• Check out this book: Nahin: When Least Is Best. Great
book!
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5.5 Are the critical points of the functional I
minima?

Are the critical points of I minima?

• In general we cannot guarantee that the solutions of the
Euler-Lagrange equation gives a minimum.

• This is of course is not surprising: a minimum x̃ ofF : Rn →
R satisfies DF (x̃) = 0, but the latter condition is not
enough to guarantee that x̃ is a minimum.

• It is also not always the case that a functional of the
form I[y] =

∫ b
a
f(x, y(x), y′(x)) dx over the set A =

{y; y : [a, b] → Rn is C1 and y(a) = ya, y(b) = yb}
does have a minimum.

• Additional considerations are often required.

5.6 Constrains in finite dimensions
Often one considers problems where one has a constraint. Let
us first consider this situation in finite dimensions:

5.6.1 Curves, surfaces and manifolds

Definition: We define a subset M of Rn to be a manifold (of
codimension k) if M = {x ∈ Rn; g(x) = 0} where g : Rn →
Rk and k < n where the matrix Dg(x) has rank k for each
x ∈M .

Remark: There are other, equivalent, definitions of mani-
folds and also some more general definitions of the notion of a
manifold, but this goes outside the scope of this course.

Theorem 17. Let M ⊂ Rn be a manifold of codimension k.
Then near every x ∈ M one can write M as the graph of a
function of (n− k) of its coordinates.
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Examples. M = {(x, y) ∈ R2;x2 + y2 = 1} can be
described locally in the form x 7→ (x, y(x)) or in the form
y 7→ (x(y), y).

Proof. Consider x0 ∈ M and for simplicity assume that the
last k columns of the k × n matrix Dg(x) are linearly inde-
pendent. Then the k × k matrix made up of the last k columns
of the k × n matrix Dg(x) is invertible. This puts us in the
position of the Implicit Function Theorem. Indeed, write x =
(u, v) ∈ Rn−k ⊕ Rk. The Implicit Function Theorem implies
that there exists a function G : Rn−k → Rk so that

g(u, v) = 0 ⇐⇒ v = G(u).

SoM is locally a graph of a functionG: the set is locally of the
formM = {(u,G(u));u ∈ Rn−k}. (If some other combination
of columns of Dg(x) are linearly independent then we argue
similarly.)

Examples:

• Assume that g : R3 → R and consider M = {x ∈
Rn; g(x) = 0}. Moreover assume that Dg(x) 6= 0 for
each x ∈ M . Then M is a surface. Any (orientable)
surface can be written in this form.

• The set x2 +2y2 = 1, x2 +y4 +z6 = 1 is a codimension-
two manifold (i.e. a curve) in R3.

Definition: The tangent plane at x̂ ∈ M is defined as the
collection of vectors v ∈ Rn (based at x̂) so that Dgx̂(v) = 0.

To motivate this definition consider a C1 curve γ : [0, 1]→
M ⊂ Rn with γ(0) = x̂. Since γ(t) ∈ M , it follows that
g ◦ γ(t) = 0 for all t and therefore

∂g

∂x1

(x̂)γ′1(0) + · · ·+ ∂g

∂xn
(x̂)γ′n(0) = 0.
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This if we write v = γ′(0) then Dg(x̂)v = 0. Hence 0 =
Dg(x̂)v = ∇g(x̂) · v where · is the usual dot product in Rn.
So the vector ∇g(x̂) is orthogonal to v := γ′(0) for each such
curve γ.

5.6.2 Minima of functions on constraints (manifolds)

Suppose x̃ is minimum of F : M → R where M = {x ∈
Rn; g(x) = 0} and g : Rn → R. What does this imply? Write
x̃ = (x̃1, . . . , x̃n−1, x̃n).

Theorem 18. (Lagrange multiplier) If Dg(x̃) 6= 0 and x̃ is
minimum ofF : M → R, then ∃λ ∈ R withDF (x̃) = λDg(x̃).

Proof. Since Dg(x̃) 6= 0, we get that
∂g

∂xi
(x̃) 6= 0 for some

i = 1, . . . , n. In order to be definite assume
∂g

∂xn
(x̃) 6= 0

and write w̃ = (x̃1, . . . , x̃n−1). By the Implicit Function The-
orem, locally near w̃ there exits h so that g(x) = 0 ⇐⇒
xn = h(x1, . . . , xn−1). So w̃ is minimum of (x1, . . . , xn−1) 7→
F ◦ (x1, x2, . . . , xn−1, h(x1, . . . , xn−1)). This means for all
i = 1, . . . , n− 1:

∂F

∂xi
(x̃) +

∂F

∂xn
(x̃)

∂h

∂xi
(w̃) = 0.

Since g(x1, . . . , xn−1, h(x1, . . . , xn−1)) = 0 we also get

∂g

∂xi
(x̃) +

∂g

∂xn
(x̃)

∂h

∂xi
(w̃) = 0 ∀i = 1, . . . , n− 1.

Substituting these into the previous equation and writing

λ =

∂F

∂xn
(x̃)

∂g

∂xn
(x̃)
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gives

∂F

∂xi
(x̃)− λ ∂g

∂xi
(x̃) = 0 ∀i = 1, . . . , n− 1.

(For i = n the last equation also holds, by definition.)

5.7 Constrained Euler-Lagrange Equations

Let I[y] =
∫ b
a
f(x, y(x), y′(x)) dx and J [y] =

∫ b
a
g(x, y(x), y′(x)) dx

be functionals on

A = {y; y : [a, b]→ Rn is C1 and y(a) = ya, y(b) = yb}.

as before. Define

M = {y; y ∈ A with J [y] = 0}.

Theorem 19. If M 3 y 7→ I[y] has a minimum at ỹ then there
exists λ ∈ R so that the E-L condition hold for F = f − λg.
That is,

d

dx
Fy′ [ỹ] = Fy[ỹ].

The idea of the proof combines the Lagrange multiplier ap-
proach with the proof of the previous Euler Lagrange theorem.

Example 30. Maximize the area bounded between the graph of
y and the line segment [−1, 1]×{0}, conditional on the length
of the arc being L. (This is a special case of Dido’s problem.)

Let A be the set of C1 functions y : [−1, 1] → R with
y(−1) = y(1) = 0. Fix L > 0 and let

I[y] =

∫ 1

1

y(x) dx and J [y] =

∫ 1

−1

√
1 + (y′)2 dx− L = 0.

65



Write

f = y, g =
√

1 + (y′)2, F = f − λg = y − λ
√

1 + (y′)2.

The Euler Lagrange equation in the version of Lemma 9
gives Fy′ [ỹ]ỹ′ − F [ỹ[= C which amounts to (writing y instead
of ỹ):

−λ(y′)2

√
1 + (y′)2

− [y − λ
√

1 + (y′)2] = C.

Rewriting this gives

1 =
(y + C)2

λ2
(1 + (y′)2).

Substituting y + C = λ cos θ gives y′ = −λ sin θ
dθ

dx
. Sub-

stituting this in the previous equation gives

1 = cos2 θ

(
1 + λ2 sin2 θ

(
dθ

dx

)2
)
.

Since cos2 θ + sin2 θ = 1, this implies

λ cos θ
dθ

dx
= ±1, i.e.

dx

dθ
= ±λ cos θ

which means x = ±λ sin θ and y + C = λ cos θ: a circle
segment!
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6 Nonlinear Theory
In the remainder of this course we will study initial value prob-
lems associated to autonomous differential equations

x′ = f(x), x(0) = x0 (18)

where f : Rn → Rn is C∞. We saw:

• There exists δ(x0) > 0 so that this has a unique solution
x : (−δ, δ)→ Rn;

• There exists a unique maximal domain of existence I(x0) =
(α(x0), β(x0)) and a unique maximal solution x : I(x0)→
Rn.

• If β(x0) <∞ then |x(t)| → ∞ when t ↑ β(x0).

• If α(x0) > −∞ then |x(t)| → ∞ when t ↓ α(x0).

• The solution is often denoted by φt(x0).

• One has the flow property: φt+s(x0) = φtφs(x0), φ0(x0) =
x0.

• Solutions do not intersect. One way of making this pre-
cise goes as follows: t > s and φt(x) = φs(y) implies
φt−s(x) = y. (So φs(φt−s(x)) = φt(x) = φs(y) implies
φt−s(x) = y.)

6.1 The orbits of a flow
Rather than studying each initial value problem separately, it
makes sense to study the flow φt associated to x′ = f(x), x(0) =
x0. The curves t 7→ φt(x) are called the orbits. For example
we will show that the flow of

ẋ = Ax−Bxy
ẏ = Cy +Dxy

is equal to
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6.2 Singularities
Consider x′ = f(x), x(0) = x0.

If f(x0) = 0 then we say that x0 is a rest point or singular-
ity. In this case x(t) ≡ x0 is a solution, and by uniqueness the
solution. So φt(x0) = x0 for all t ∈ R.

This notion is so important that several alternative names
are used for this: rest point, fixed point, singular point or
critical point.

Near such points usually a linear analysis suffices.

Since f(x0) = 0, and assuming that f is C1 we obtain by
Taylor’s Theorem

f(x) = f(x0)+A(x−x0)+o(|x−x0|1) = A(x−x0)+o(|x−x0|)

where o(|x−x0|) is so that o(|x−x0|)/|x−x0| → 0 as x→ x0.
(By the way, if f is C2 we have f(x) = A(x − x0) + O(|x −
x0|2).)

A = Df(x0) is called the linear part of f at x0.

6.3 Stable and Unstable Manifold Theorem
A matrix A is called hyperbolic if its eigenvalues λ1, . . . , λn
have non-zero real part, i.e. satisfy <(λi) 6= 0, i = 1, . . . , n.
Order the eigenvalues so that
<(λi) < 0 for i = 1, . . . , s and <(λi) > 0 for i = s+1, . . . , n.

Let Es (resp. Eu) be the eigenspace associated to the eigenval-
ues λ1, . . . , λs (resp. λs+1, . . . , λn).
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A singular point x0 of f is called hyperbolic if the matrix
Df(x0) is hyperbolic.

Theorem 20. Stable and Unstable Manifold Theorem Let
x0 be a singularity of f and assume x0 is hyperbolic. Then
there exist a manifold W s(x0) of dimension s and a manifold
W u(x0) of dimension n− s both containing x0 so that

x ∈ W s(x0) =⇒ φt(x)→ x0 as t→∞,

x ∈ W u(x0) =⇒ φt(x)→ x0 as t→ −∞.
W s(x0),W u(x0) are tangent to x0 + Es resp. x0 + Eu at x0.

Remarks:

• Remember the notion of a manifold was defined in the
previous chapter. Most of the time we will consider the
case dimension one (then it is a curve) or of dimension
two (then it is a surface.

• If s = n then the singularity is called a sink.

• If 1 ≤ s < n then it is called a saddle.

• s = 0 then it called a source.

• W s(x0) is called the stable manifold.

• W u(x0) is called the unstable manifold.

Example 31. Take x′ = x + y2, y′ = −y + x2. By Theo-
rem 20 there is supposed to an invariant manifold W u(0) (a
curve) which is tangent to the x-axis. How to find the power
series expansion ofW u(0)? Of course this is the same example
as described in Chapter 3, but let us redo it here:

y′(x) = (
dy

dt
)/(

dx

dt
) =
−y + x2

x+ y2
. (19)
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Figure 1: An example of a differential equation which will be
studied later on in which there are several singularities: with a
sink, source and saddle.

Since 0 ∈ W u(0) and W u(0) is tangent to the horizontal axis,
we can describe this curve by y(x) = a2x

2 + a3x
3 + . . . . That

this power series converges follows from the stable and unsta-
ble manifold theorem). Substituting this in (19) gives

2a2x+ 3a3x
2 + · · · = −[a2x

2 + a3x
3 + . . . ] + x2

x+ [a2x2 + a3x3 + . . . ]2
.

Comparing terms of the same power, shows that 2a2 = (1−a2)
and so on. Thus we determine the power series expansion of
y(x).

Proof of Theorem 20. We will only prove this theorem
in the case that s = n and when the matrix A = Df(x0) has
n real eigenvalues λi < 0 and n eigenvectors v1, . . . , vn. For
simplicity also assume x0 = 0. Consider x near x0 = 0 and
denote the orbit through x by x(t).

Let T be the matrix consisting of the vectors v1, . . . , vn
(that is Tej = vj). Then T−1AT = Λ where Λ is a diago-
nal matrix (with λ1, . . . , λn on the diagonal).

Let us show that limt→∞ x(t) = 0 provided x is close to 0.
Let us write y(t) = T−1(x(t)). It is sufficient to show

that y(t) → 0. Instead we will show |y(t)|2 = T−1(x(t)) ·
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T−1(x(t))→ 0 as t→∞.

d|y(t)|2
dt

=
d

dt
(T−1x(t) · T−1(x(t)) = 2T−1x · T−1ẋ

= 2T−1x · T−1f(x)

= 2T−1x · T−1Ax+ 2T−1x · T−1[f(x)− Ax].

Let us first estimate the first term in this sum under the as-
sumption that all eigenvalues of A are real. Then

T−1x · T−1Ax = y · Λy ≤ −ρ|y|2 (20)

where ρ = mini=1,...,n |λi|. Here we use that Λ is diagonal with
all eigenvalues real (and therefore the eigenvectors are real and
so T and y are also real).

The second term can be estimated as follows: Since f(x)−
Ax = o(|x|) for any ε > 0 there exists δ > 0 so that |f(x) −
Ax| ≤ ε|x| provided |x| ≤ δ. Hence using the Cauchy inequal-
ity and the matrix norm we get

T−1x·T−1[f(x)−Ax] ≤ ε|y|·|T−1[f(x)−Ax]| ≤ |y|·||T−1||·ε|x|.
provided |x| ≤ δ. Of course we have that |x| = |TT−1x| =
|Ty| ≤ ||T || · |y|. Using this in the previous inequality gives

2T−1x · T−1[f(x)− Ax] ≤ 2ε||T || · ||T−1|| · |y|2. (21)

Using (20) and (21) in the estimate for
d|y(t)|2
dt

gives

d|y(t)|2
dt

≤ −2ρ|y(t)|2 + 2ε||T || · ||T−1|| · |y(t)|2 ≤ −ρ′|y(t)|2

where ρ′ = (2ρ − 2ε||T || · ||T−1||). Provided we take ε > 0
sufficiently small we get that ρ′ > 0. That is if we write z(t) =
|y(t)|2 then we get z′ ≤ −ρ′z which means

|y(t)|2 = z(t) ≤ z(0)e−tρ
′ ≤ |y(0)|2e−tρ′
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and therefore that |y(t)| → 0 as t → ∞ (with a rate which is
related to ρ′/2 (which is close to ρ if we choose ε > 0 small).

IfA is diagonalisable but the eigenvalues are no longer real,
then the estimate in the inequality in (20) needs to be altered
slightly. Let us explain the required change by considering an

example. Take A =

(
−a b
−b −a

)
. Note A has eigenvalues

−a ± bi and that A is already in the real Jordan normal form.
Moreover,

y · Ay =

(
y1

y2

)
·
(
−ay1 + by2

−by1 − ay2

)

= −a
(
[y1(t)]2 + [y2(t)]2

)
= −a|y|2.

so the argument goes through. Using the real Jordan normal
form theorem, the same method applies as long asA has a basis
of n eigenvectors. This concludes the proof of Theorem 20 in
this setting. We will skip the prove in the general setting, but
the next example shows what happens if there is no basis of
eigenvectors.

In fact, when we prove that x(t) by showing that |y(t)|2
tends to zero, we use the function U(x) := |T−1(x)|2. Later
we will call this a Lyapounov function.

Example 32. Let us consider a situation when the matrix does

not have a basis of eigenvectors. LetA =

(
−1 Z
0 −1

)
where

Z ∈ R. This has eigenvalues −1 (with double multiplicity).
Take U(x, y) = ax2 + bxy + cy2. Then

U̇ = 2axẋ+ bẋy + bxẏ + 2cyẏ
= 2ax(−x+ Zy) + b(−x+ Zy)y + bx(−y) + 2cy(−y)
= −2ax2 + (2Za− b− b)xy + (Zb− 2c)y2.
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Case 1: If Z ≈ 0, then we can take a = 1, b = 0, c = 1
because then U̇ = −2x2 + (2Z)xy − 2y2 ≤ 0 (since Z ≈ 0).

Case 2: If Z is large and a = 1, b = 0, c = 1 then we
definitely don’t get U̇ ≤ 0. However, in this case we can set
b = 0, and write

U̇ = −2ax2 + (2Za)xy − 2cy2

= −2a[x− (Z/2)y]2 + (aZ2/2− 2c)y2

= −2[x− (Z/2)y]2 − y2 < 0.

where in the last line we substitutes a = 1 and c = 1/2+Z2/4.
Thus U = c corresponds to a ‘flat’ ellipse when Z is large.

General case: This all seems rather ad hoc, but the Jor-
dan normal form suggests a general method. Indeed A has

an eigenvector v1 =

(
1
0

)
(i.e. (A + I)v1 = 0) and we

can choose a 2nd vector v2 so that (A + I)v2 = εv1 where

ε > 0 is small. So v2 =

(
0
ε/Z

)
. Taking T = (v1v2) gives

T−1AT =

(
−1 ε
0 −1

)
. In this new coordinates we are in

the same position as if Z ≈ 0. So we can argue as in the first
case.

6.4 Hartman-Grobman
Theorem 21. Hartman-Grobman Let x0 be a singularity
and that A = Df(x0) is a hyperbolic matrix. Then there exists
a continuous bijection (a homeomorphism) h : Rn → Rn so
that h(x0) = 0 and so that near x0,

h sends orbits of x′ = f(x) to orbits of x′ = Ax.

Remark: In other words, there exists an open set U 3 x0 so
that

h ◦ φt(x) = φAt ◦ h(x)
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for each x, t so that

∪0≤s≤tφs(x) ⊂ U.

Here φAt is the flow associated to x′ = Ax and φt the flow for
x′ = f(x).

Remark: A homeomorphism is a continuous bijection whose
inverse is also continuous. In Euclidean space (and ‘mani-
folds’), this is the same as saying that it is continuous bijection.

6.5 Lyapounov functions
Sometimes one applies a method which is similar to the proof
given in Theorem 20, namely one uses a so-called Lyapounov
function:

In actual fact, we will use the notion of Lyapounov func-
tion more loosely, and for example sometimes give the same
name to a function for which merely V̇ ≤ 0.

Definition: Let W ⊂ Rn be an open set containing x0.
V : W → R is a Lyapounov function for x0 if it is C1 and

• V (x0) = 0, V (x) > 0 for x ∈ W \ {x0};

• V̇ ≤ 0 for x ∈ W .

Here V̇ :=
dV (x(t))

dt
= DVx(t)

dx

dt
= DVx(t)f(x(t)).

Remarks: V should be thought of as a way to measure the
distance to x0. That V̇ ≤ 0 means that this ‘distance’ is non-
increasing. In quite a few textbooks a Lyapounov function is
one which merely satisfies the first property; let’s call such
functions weak-Lyapounov functions.

Warning: In some cases one calls a function Lyapounov
even if it does not satisfies all its properties.

Definitions:

• x0 is called asymptotically stable if, for each x near x0,
one has φt(x)→ x0.
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• x0 is called stable if for each ε > 0 there exists δ > 0 so
that if x ∈ Bδ(x0) implies φt(x) ∈ Bε(x0) for all t ≥ 0.
(So you nearby points don’t go far.)

Lemma 10. Lyapounov functions

1. If V̇ ≤ 0 then x0 is stable. Moreover, φt(x) exists for all
t ≥ 0 provided d(x, x0) is small.

2. If V̇ < 0 for x ∈ W \{x0} then ∀x is close to x0 one gets
φt(x)→ x0 as t→∞, i.e. x0 is asymptotically stable.

Proof. (1) Take ε > 0 so that B2ε(x0) ⊂ W . Let

δ := inf
y∈∂Bε(x0)

V (y).

Since V > 0 except at x0 we get δ > 0. It follows that

V −1[0, δ) ∩ ∂Bε(x0) = ∅. (22)

Take x ∈ V −1[0, δ) ∩ Bε(x0) (this holds for all x near x0 by
continuity of V and since V (0) = 0). Since φ0(x) = x and
t → V (φt(x)) is non-increasing, φt(x) ∈ V −1[0, δ) for all t ≥
0. Since t → φt(x) is continuous curve, φ0(x) = x ∈ Bε(x0)
and (22), it follows that φt(x) ∈ Bε(x0) for all t ≥ 0. In
particular φt(x) remains bounded, and so φt(x) exists ∀t.

(2) V̇ < 0 implies that t → V (φt(x)) is strictly decreas-
ing. Take x ∈ V −1[0, δ) ∩ Bε(x0) and suppose by contra-
diction that V (φt(x)) does not tend to 0 as t → ∞. Then,
since t 7→ V (φt(x)) is decreasing, there exists V0 > 0 so that
V (ρt(x)) ≥ V0 > 0. Hence ∃ρ > 0 with φt(x) /∈ Bρ(x0)
∀t ≥ 0. Combining this with part (1) gives that

φt(x) ∈ Bε(x0) \Bρ(x0) for all t ≥ 0.

But V̇ < 0, V̇ is only zero at x0 and V̇ attains its maximum in
a compact set Bε(x0) \Bρ(x0) it follows that ∃κ > 0 so that

V̇ ≤ −κ whenever x(t) ∈ Bε(x0) \Bρ(x0).
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But since x(t) is in this compact set for all t ≥ 0,

V̇ ≤ −κ,∀t ≥ 0.

Hence

V (φt(x))− V (x) ≤ −κt→ −∞ as t→∞,

contradicting V ≥ 0.

Example 33.
x′ = 2y(z − 1)
y′ = −x(z − 1)
z′ = xy

Its linearisation is A :=




0 −2 0
1 0 0
0 0 0


. Note A has eigenval-

ues ±
√

2i and 0. So A is not hyperbolic, and theorem 20 does
not apply.

Take V (x, y, z) = ax2 + by2 + cz2. Then

V̇ = 2(axẋ+byẏ+czż) = 4axy(z−1)−2bxy(z−1)+2cxyz.

We want V ≥ 0 and V̇ ≤ 0. We can achieve this by setting
c = 0, 2a = b. This makes V̇ = 0. It follows that solutions stay
on level sets of the function V = x2 +2y2. x0 = (0, 0, 0) is not
asymptotically stable. Strictly speaking V is not a Lyapounov
function because V (0, 0, z) = 0: more work needed to check
if x0 is stable.

Example 34. Consider the system x′ = −y−xy2, y′ = x−yx2.
The only singularity of this system is at (0, 0). Indeed, if x′ =
0, then either y = 0 or 1+xy = 0; if y = 0 then x(1−xy) = 0
implies x = 0; if 1 + xy = 0 then 0 = x(1− xy) = 2x implies
x = 0 which contradicts 1 + xy = 0.

Let us show that (0, 0) is asymptotically stable. To do this,
take the quadratic function V (x, y) = x2+y2. Then V̇ = 2xẋ+
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2yẏ = −2x2y2 ≤ 0, so (0, 0) is stable. Since V is decreasing
(non-increasing), this implies that there exists V0 ≥ 0 so that
V (x(t), y(t)) ↓ V0. If V0 = 0 then the solution converges to
(0, 0) as claimed. If V0 > 0 then the solution converges to
the circle {(x, y);x2 + y2 = V0}, and in particular remains
bounded. Note that the set V (x, y) = x2 + y2 = V0 does not
contain singular points and also is not a periodic orbit, since
V̇ < 0 except when x = 0 or y = 0. (By looking at the arrows,
one concludes that the orbits are tangent to circles when x = 0
or when y = 0 but otherwise spiral inwards.) It follows that
V0 = 0 and so we are done.

6.6 The pendulum
Consider a pendulum moving along a circle of radius l, with
a mass m and friction k. Let θ(t) be the angle from the ver-

tical at time t. The force tangential to the circle is −(kl
dθ

dt
+

mg sin(θ)). So Newton’s law gives

mlθ′′ = −klθ′ −mg sin θ i.e. θ′′ = −(k/m)θ′ − (g/l) sin θ.

Taking ω = θ′ gives

θ′ = ω

ω′ =
−g
l

sin(θ)− k

m
ω.

Singularities are (nπ, 0) which corresponds to the pendulum
being in vertical position (pointing up or down). Linearizing
this at (0, 0) gives

(
0 1
−g/l −k/m

)

which gives eigenvalues (−k/m±
√

(k/m)2 − 4g/l)/2.
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Figure 2: The phase portrait of the pendulum (no friction).

Note that, as l > 0, the real part of (−k/m±
√

(k/m)2 − 4g/l)/2
is negative. (If (k/m)2 − 4g/l < 0 then both e.v. are complex
and if (k/m)2− 4g/l > 0 then both e.v. are real and negative.)

Let us construct a Lyapounov function for this:

E = kinetic energy + potential energy
= (1/2)mv2 +mg(l − l cos(θ))
= (1/2)ml2ω2 +mgl(1− cos(θ)).

Then E ≥ 0 and E = 0 if and only if ω = 0 and θ = nπ.
Moreover,

Ė = ml(lωω′ + gθ′ sin θ)

= ml(lω(
−g
l

sin(θ)− k

m
ω) + gω sin θ)

= −kl2ω2

.

If the friction k > 0 then Ė < 0 except when ω = 0. If the
friction k = 0 then Ė = 0 and so solutions stay on level sets of
E.

6.7 Hamiltonian systems
When the friction k = 0 we obtain an example of a Hamilto-
nian system.

This is a system for which there exists a functionH : R2 →
R so that the equation of motion (i.e. the differential equation):
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Figure 3: The phase portrait of the pendulum (with fric-
tion). The labels in the axis of this figure should have been
−4π,−2π, 0, 2π, 4π.

ẋ =
∂H

∂y
(x, y)

ẏ = −∂H
∂x

(x, y)

For such systems

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ

=
∂H

∂x

∂H

∂y
+
∂H

∂y
(−∂H

∂x
)

= 0.

6.8 Van der Pol’s equation
In electrical engineering the following equation often arrises

ẋ = y − x3 + x
ẏ = −x. (23)

This system has a singularity at (x, y) = (0, 0). Its linear part

at (0, 0) is
(

1 1
−1 0

)
. This has eigenvalues (1±

√
3i)/2 and

therefore (0, 0) is a source. What happens with other orbits?

Theorem 22. There is one periodic solution of this system and
every non-equilibrium solution tends to this periodic solution.
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Figure 4: The phase portrait of the van der Pol equation.

The proof of this theorem will occupy the remainder of this
section.

Define

v± = {(x, y);±y > 0, x = 0} and g± = {(x, y);±x > 0, y = x3−x}.

This splits up R2 in regions A,B,C,D where horizontal and
vertical speed is positive/negative.

ẋ = y − x3 + x
ẏ = −x.

Lemma 11. For any p ∈ v+, ∃t > 0 with φt(p) ∈ g+.

Proof. Define (xt, yt) = φt(p).

• Since x′(0) > 0, φt(p) ∈ A for t > 0 small.

• x′ > 0, y′ < 0 in A. So the only way the curve φt(p) can
leave the region A ∩ {(x, y); y < y0} is via g+.

• So φt(p) cannot go to infinity before hitting g+.

• Hence T = inf{t > 0;φt(p) ∈ g+} is well-defined.

• We need to show T <∞.
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• Choose t0 ∈ (0, T ) and let a = xt0 . Then a > 0 and
xt ≥ a for t ∈ [t0, T ].

• Hence ẏ ≤ −a for t ∈ [t0, T ] and therefore y(t) −
y(t0) ≤ −a(t− t0) for t ∈ [t0, T ].

• T = ∞ =⇒ limt→∞ y(t) → −∞ which gives a con-
tradiction since (x(t), y(t)) ∈ A for t ∈ (0, T ).

Similarly

Lemma 12. For any p ∈ g+, ∃t > 0 with φt(p) ∈ v−.

For each y > 0 define F (y) = φt(0, y) where t > 0 is min-
imal so that φt(0, y) ∈ v−. Similarly, define for y < 0 define
F (y) = φt(0, y) where t > 0 is minimal so that φt(0, y) ∈ v+.
By symmetry F (−y) = −F (y).

Define the Poincaré first return map to v+ as

P : v+ → v+ by (0, y) 7→ (0, F 2(y)).

P (p) = φt(p) where t > 0 is minimal so that φt(p) ∈ v+.

Lemma 13. 1. P : v+ → v+ is increasing (here we order
v+ as (0, y1) < (0, y2) when y1 < y2);

2. P (p) > p when p ≈ 0;

3. P (p) < p when p is large;

4. P : v+ → v+ has a unique attracting fixed point.
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Proof. The proof of (1): Uniqueness of solns =⇒ orbits don’t
cross =⇒ P is increasing.

Instead of (2), (3) and (4) we shall prove the following
statement:

p 7→ δ(p) := |F (p)|2 − |p|2 is strictly decreasing

δ(p) > 0 for p > 0 small and

δ(p)→ −∞ as p→∞

(24)

Note that this implies (2) and (3) and (4) (see lecture). So
Theorem 22 follows from (24).

Step 1: A useful expression for δ(p). Define

p∗ = (0, y∗) ∈ v+ so that ∃t with φt(p∗) = (1, 0)
and φs(p∗) ∈ A for 0 < s < t.

Define U(x, y) = x2 + y2. Pick p ∈ v+ and let τ > 0 be
minimal so that φτ (p) ∈ v−. (So φτ (p) = F (p).) Hence

δ(p) : = |F (p)|2 − |p|2 = U(φτ (p))− U(φ0(p))

=
∫ τ

0
U̇(φt(p)) dt.

Note

U̇ = 2xẋ+ 2yẏ =

= 2x(y − x3 + x) + 2y(−x) = −2x(x3 − x) = 2x2(1− x2)
.

Hence

δ(p) = 2

∫ τ

0

[x(t)]2(1− [x(t)]2)dt = 2

∫

γ

x2(1− x2) dt.

Here γ is the curve [0, τ ] 3 t→ φt(p). If p < p∗ then δ(p) > 0
because then (1− [x(t)]2) ≥ 0 for all t ∈ [0, τ ].

Step 2: δ(p) when p > p∗. We can decompose the curve γ in
three pieces as γ meets the line x = 1 twice
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• the piece of γ with both endpoint on this line we call γ2;

• γ1 is the curve which connects p ∈ v+ to the line x = 1.

• γ3 is the curve which connects F (p) ∈ v− to the line
x = 1.

Now consider

δi(p) := 2

∫

γi

x2(1− x2) ds for i = 1, 2, 3.

Step 3: δ1(p) is decreasing when p > p∗.

• γ1 is a curve which can be regarded as function of x.

• Hence we can write
∫

γ1

x2(1−x2) dt =

∫

γ1

x2(1− x2)

dx/dt
dx =

∫

γ1

x2(1− x2)

y − (x3 − x)
dx.

• As p moves up, the curve γ1 (connecting p ∈ v+ to a
point on the line x = 1) moves up and so y − (x3 − x)
(along this curve) increases.

• Hence p → δ1(p) = 2
∫
γ1
x2(1 − x2) dt decreases as p

increases.

Step 4: δ2(p) is decreasing when p > p∗.

• Along γ2, x(t) is a function of y ∈ [y1, y2] (where (1, y1),
y1 > 0 and (1, y2), y2 < 0) are the intersections points of
γ with the line x = 1.

• Since −x = dy/dt we get in the 2nd integral one has
∫ y2
y1

because that corresponds to
the way the curve γ1 is oriented.∫

γ1
x2(1− x2) dt =

∫ y2
y1
−x(y)(1− [x(y)]2) dy

=
∫ y1
y2
x(y)(1− [x(y)]2) dy
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• Since x(y) ≥ 1 along γ2 (and y2 < y1), this integral is
negative.

• As p increases, the interval [y1, y2] gets larger, and the
curve γ2 moves to the right and so x(y)(1− [x(y)]2) de-
creases. It follows that δ2(p) decreases as p increases.

• It is not hard to show that δ2(p) → −∞ as p → ∞, see
lecture.

Exactly as for δ1(p), one also gets that δ3(p) decreases as
p increases. This completes the proof of the equation (24) and
therefore the proof of Lemma 13 and Theorem 22.

6.9 Population dynamics
A common predator-prey model is the equation

ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0

Here x are the number of rabbits and y the number of foxes.
For example, x′ = Ax−Bxy expresses that rabbits grow with
speed A but that the proportion that get eaten is a multiple of
the number of foxes.

Let us show that the orbits look like the following diagram:

MathCapstone.pdf http://www.cs.utexas.edu/~schrum2/MathCapstone.pdf
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• Singularities are (x, y) = (0, 0) and (x, y) = (D/C,A/B).

• If p is on the axis, then φt(x) is on this axis for all t ∈ R.

• At (0, 0) the linearisation is
(
A 0
0 −D

)
, so eigenval-

ues are A,−D and (0, 0) is a saddle point.

• At (x, y) = (D/C,A/B) the linearisation is
(
A−By −Bx
Cy Cx−D

)
=

(
0 −BD/C

CA/B 0

)
which has eigenvalues±ADi (purely

imaginary).

ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0

• Analysing the direction field, suggests that orbits cycle
around (D/C,A/B) (see lecture).

• Try to find Lyapounov of the form H(x, y) = F (x) +
G(y).

• Ḣ = F ′(x)ẋ+G′(y)ẏ = xF ′(x)(A−By)+yG′(y)(Cx−
D).

• If we set (that is, insist on) Ḣ = 0 then we obtain

xF ′

Cx−D =
yG′

By − A (25)

• LHS of (25) only depends on x and RHS only on y. So
expression in (25) = const.

• We may as well set const = 1. This gives F ′ = C−D/x
and G′ = B − A/y.

85



• So F (x) = Cx − D log x,G(y) = By − A log y and
H(x, y) = Cx−D log x+By − A log y.

Summarising:

Theorem 23. Take (x, y) 6= (D/C,A/B) with x, y > 0 and
consider its orbits under

ẋ = (A−By)x
ẏ = (Cx−D)y.

where A,B,C,D > 0.

Then t 7→ φt(x, y) is periodic (i.e. is a closed curve).

Proof. Take H0 = H(x, y) and let Σ = {(u, v);H(u, v) =
H0}.

• The orbit φt(x, y) stays on the level set Σ of H .

• It moves with positive speed.

• So it returns in finite time.

• Orbits exist for all time, because it remains on Σ (and
therefore cannot go to infinity).
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7 Dynamical Systems
So far we saw:

• Most differential equations cannot be solved explicitly.

• Nevertheless in many instances one can still prove many
properties of its solutions.

• The point of view taken in the field dynamical systems is
to concentrate on

– attractors and limit sets: what happens eventually;

– statistical properties of orbits.

In this chapter we will discuss a result which describes the
planar case (i.e. the two-dimensional case).

Throughout the remainder of this notes, we will tacitly as-
sume the solution φt(x) through x exists for all t ≥ 0.

7.1 Limit Sets
Let φt be the flow of a dynamical system and take a point x.
Then the ω-limit set of x, denoted by ω(x), is the set of limit
points of the curve [0,∞) 3 t 7→ φt(x). More specifically,
y ∈ ω(x) if and only if there exists a sequence tn →∞ so that
φtn(x)→ y.

So ω(x) describes where the point x eventually goes. It is
easy to prove that ω(x) is a closed set (see assignments). (But,
possibly, ω(x) = ∅.)

We say that x lies on a periodic orbit if φT (x) = x for some
T > 0. The smallest such T > 0 is called the period of x. Note
that then
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• γ = ∪t∈[0,T )φt(x) is closed curve without self-intersections,
and

• ω(x) = γ.

7.2 Local sections
Definition: We say that a manifold S 3 p of codimension-one
in Rn is a local section at p for the autonomous differential
equation x′ = f(x) if:

1. S = {x ∈ Rn; g(x) = 0} contains p and Dg(p) 6= 0
(hence is a manifold containing p);

2. f(p) 6= 0 and that Dg(p)f(p) 6= 0 (this means that f(p)
does not lie in the tangent space of S at p).

Theorem 24 (Flow Box Theorem). Assume S is a local sec-
tion at p and assume q is that φt0(q) = p for some t0 > 0.
Then

• there exists a neighbourhood U of q;

• a smooth function τ : U → R so that τ(q) = t0 so that
for each x ∈ U , φτ(x)(x) ∈ S.

If t0 > 0 is the minimal time so that φt0(q) ∈ S then we will
also have that τ(x) > 0 is minimal so that φτ(x)(x) ∈ S. τ(x)
is then called the first arrival time and the map P (x) = φτ(x)(x)
the Poincaré entry map to S.

Proof. DefineG(x, t) = g(φt(x)). ThenG(q, t0) = g(φt0(q)) =
g(p) = 0. Moreover,

∂G

∂t
(q, t0) = Dg(φt0(q))

∂φt
∂t

(q)
∣∣
t=t0

= Dg(p)f(φt0(q))

= Dg(p)f(p) 6= 0 (because S is a section at p).
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Hence by the implicit function theorem there exists x 7→ τ(x)
so that G(x, τ(x)) = 0 for x near q. Hence φτ(x) ∈ S for x
near q.

Remarks:

1. If S is a section at p and φtn(x) → p for some tn →
∞ then there exists t′n → ∞ so that φt′n(x) → p and
φt′n(x) ∈ S.

2. If f(p) 6= 0 then one can find a local section at p: just
take g : Rn → R affine (of the form x 7→ A(x − p)
where A is a 1 × n matrix with Af(p) 6= 0. Then S =
{x; g(x) = 0} is a codimension-one hyperplane with the
required properties.

3. If p lies on a periodic orbit and S a local section at p,
then φT (p) = p and then there exists a neighbourhood U
of p and a map P : S ∩U → S so that P (p) = p. This is
called the Poincaré return map.

4. As in the example of the van der Pol equation, one can
use this map to check whether the periodic orbit is at-
tracting.
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224 Chapter 10 Closed Orbits and Limit Sets

Y1

Y0
I0

I1

T

D

Figure 10.7 Solutions exit
the region D through T.

Proposition. For a planar system, suppose that Y ∈ ω(X). Then the solution
through Y crosses any local section at no more than one point. The same is true if
Y ∈ α(X).

Proof: Suppose for the sake of contradiction that Y1 and Y2 are distinct points
on the solution through Y and S is a local section containing Y1 and Y2.
Suppose Y ∈ ω(X) (the argument for α(X) is similar). Then Yk ∈ ω(X) for
k = 1, 2. Let Vk be flow boxes at Yk defined by some intervals Jk ⊂ S ; we
assume that J1 and J2 are disjoint as depicted in Figure 10.8. The solution
through X enters each Vk infinitely often; hence it crosses Jk infinitely often.

X
Y1

Y2

m2

m1

Figure 10.8 The solution
through X cannot cross V1 and
V2 infinitely often.

7.3 Planar Systems
Theorem 25. Let S be a local section for a planar differen-
tial equation, so S is an arc c. Let γ = ∪t≥0φt(x) and let
y0, y1, y2 ∈ S ∩ γ. Then y0, y1, y2 lie ordered on γ if and only
if they lie ordered on S.

In this chapter we tacitly assume that if γ is a closed curve in
R2 without self-intersections, then the complement of γ has
two connected components: one bounded one and the other
unbounded. This result is called the Jordan curve theorem
which looks obvious, but its proof is certainly not easy. It
can be proved using algebraic topology.

Proof. Take y0, y1, y2 ∈ γ ∩ c. Assume that y0, y1, y2 are con-
secutive points on γ, i.e. assume y2 = φt2(y0), y1 = φt1(y0)
with t2 > t1 > 0. Let γ′ = ∪0≤s≤t1φs(y0) and consider the arc
c′ in c between y0, y1. Then

• c′ ∪ γ′ is a closed curve which bounds a compact set D
(here we use a special case of a deep result namely the
Jordan theorem);

• Either all orbits enterD along c′ or they all leaveD along
c′.

• Either way, since the orbit through y does not have self-
intersections and because of the orientation of x′ = f(x)
along c, φt2(y0) cannot intersect c′, see figure.
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Lemma 14. If y ∈ ω(x). Then the orbit through y intersects
any local section at most once.

Proof. 1. Assume by contradiction that y1 = φu(y) and
y2 = φv(y) (where v > u) are contained on a local sec-
tion S.

2. Since y ∈ ω(x) where exists tn → ∞ so that φtn(x) →
y. Hence φtn+u(x)→ y1 and φtn+v(x)→ y2.

3. Since y1, y2 ∈ S, (2) implies that for n large there exists
un, vn → 0 so that φtn+u+un(x) ∈ S, φtn+u+un(x) → y1

and φtn+v+vn(x) ∈ S, φtn+v+vn(x)→ y2.

4. Take n′ > n so that

tn + u+ un < tn + v + vn < tn′ + u+ vn′ . (26)

Then

φtn+u+un(x), φtn+v+vn(x), φtn′+u+vn′
(x)

do not lie ordered on S: the first and last one are close to
y1 and the middle one close to y2. This and (26) contra-
dict the previous theorem.
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7.4 Poincaré Bendixson
Theorem 26 (Poincaré-Bendixson Theorem). Consider a pla-
nar differential equation, take x ∈ R2 and assume that ω :=
ω(x) is non-empty, bounded and does not contain a singular
point of the differential equation. Then ω is a periodic orbit.

That is, we have an autonomous differential equation in R2,
ẋ = f(x) with x ∈ R2.Proof. • Assume that ω does not contain a singular point.

• Take y ∈ ω. Then there exists sm →∞ so that φsm(x)→
y. Hence for each fixed t > 0, φsm+t(x) → φt(y) as
m→∞. It follows that the forward orbit γ = ∪t≥0φt(y)
is contained in ω. Since ω is compact, any sequence
φtn(y) has a convergent subsequence. Hence ω(y) 6= ∅
and ω(y) ⊂ ω.

• Take z ∈ ω(y). Since z is not a singular point, there
exists a local section S containing z. Since z ∈ ω(y),
there exists tn →∞ so that φtn(y)→ z and φtn(y) ∈ S.

• By the previous lemma, φtn(y) = φtn′ (y) for all n, n′.
So ∃T > 0 so that φT (y) = y and y lies on a periodic
orbit.

• We will skip the proof that ω is equal to the orbit through
y (but see lecture).

We say that A is a forward invariant domain in R2 if x ∈ A
implies that φt(x) ∈ A for t > 0. The following theorem
follows from the previous one:

Theorem 27. Consider a planar differential equation and as-
sume that A is a bounded forward invariant set so that either A
does not contain any singularities or so that the stable manifold
each singularity in A has dimension ≤ 1. Then A contains a
periodic orbit.
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7.5 Consequences of Poincaré-Bendixson
We could have also restated this theorem in the following
way: Let γ be a periodic orbit of a differential equation
x′ = f(x) in the plane surrounding a region D. Then D
contains a singularity or a periodic orbit in the interior of
D.

Theorem 28. Let γ be a periodic orbit of a differential equation
x′ = f(x) in the plane surrounding an open region D. Then D
contains a singularity or another periodic orbit.

The proof is not examinable:

Proof: Assume by contradiction that D contains no other
singularity or periodic orbit. Note that the D is invariant. Take
x ∈ D and consider the orbit φt(x). Then ω(x) = γ by
Poincaré-Bendixson. Now consider instead of x′ = f(x) the
differential equation x′ = −f(x) (so just run time backwards).
Again γ is a periodic orbit, and applying Poincaré-Bendixson
again, the accumulation points of φt(x) as t→ −∞ again must
be equal to γ. Now take a section S at a point z ∈ γ. Then the
previous assertions imply that there exist sequences tn → ∞
and sn → −∞ so that φtn(x), φsn(x) ∈ S. This contradicts
Theorem 23 in the notes. This theorem strengthens the previous one.

Theorem 29. Let γ be a periodic orbit of a differential equa-
tion x′ = f(x) in the plane surrounding a region D. Then D
contains a singularity.

Again the proof is not examinable:

Sketch of proof: assume that D does not contain a singu-
larity. Then by the previous theorem it contains another peri-
odic orbit γ′. Let A ≥ 0 be the greatest lower bound of the
areas of regions surrounded by periodic orbits. If A = 0 then
one can show this implies there exists a singularity. If A > 0
then one can show that there exists a periodic orbit γ̂ in D
which does not surround another periodic orbit. But this then
contradicts the previous lemma.
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Other ways of proving the previous corollary are related
to the Brouwer fixed point theorem, are rather use index argu-
ments related to the Euler characteristic. To describe this one
needs to discuss some ideas from algebraic topology.

7.6 Further Outlook
• The Poincaré Bendixson theorem implies that planar dif-

ferential equations cannot have ‘chaotic’ behaviour.

• Differential equations in dimension ≥ 3 certainly can
have chaotic behaviour, see the 3rd year course dynami-
cal systems (M3PA23) and for example http://www.
youtube.com/watch?v=ByH8_nKD-ZM.

• To describe their statistical behaviour one uses proba-
bilistic arguments; this area of mathematics is called er-
godic theory. This is a 4th year course ( M4PA36). For
more information see for example, http://en.wikipedia.
org/wiki/Ergodic_theory

• The geometry of attractors is often fractal like, see the
3rd year course chaos and fractals (M3PA46). For more
information see for example, http://en.wikipedia.
org/wiki/Fractal.

• Instead of differential equations one also studies discrete
dynamical systems, xn+1 = f(xn). When f : C → C
is a polynomial this leads to the study of Julia sets us-
ing tools from complex analysis. For more information,
see http://en.wikipedia.org/wiki/Julia_
set.

Dynamical systems is an extremely active area, and is both
interesting for people focusing on pure as well as those more
interested in applied mathematics.
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For example, Fields Medalists whose work is in or related
to this area, include: Avilla (2014, complex dynamics), Lin-
denstrauss (2010, ergodic theory), Smirnov (2010, part of his
work relates to complex dynamics), Tao (2006, part of his work
related to ergodic theory), McMullen (1998, complex dynam-
ics), Yoccoz (1994, complex dynamics), Thurston (1982, a sig-
nificant amount of work was about low and complex dynam-
ics), Milnor (1962, his current work is in complex dynamics).

Applied dynamicists often aim to understand specific dy-
namical phenomena, related to for example biological systems,
network dynamics, stability and bifurcation issues etc.

One of the appeals of dynamical systems that it uses math-
ematics from many branches of mathematics, but also that it is
so relevant for applications.
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Appendix A Multivariable calculus
Some of you did not do multivariable calculus. This note pro-
vides a crash course on this topic and includes some very im-
portant theorems about multivariable calculus which are not
included in other 2nd year courses.

A.1 Jacobian
Suppose that F : U → V where U ⊂ Rn and V ⊂ Rp. We
say that F is differentiable at x ∈ U if there exists a linear map
A : Rn → Rm (i.e. a m× n matrix A)

|(F (x+ u)− F (x))− Au|
|u| → 0

as u→ 0. In this case we define DFx = A.

• In other words F (x + u) = F (x) + Au + o(|u|). (A is
the linear part of the Taylor expansion of F ).

• How to compute DFx? This is just the Jacobian matrix,
see below.

• If f : Rn → R then Dfx is a 1 × n matrix which is also
called grad(f) or∇f(x).

Example 35. Let F (x, y) =

(
x2 + yx
xy − y

)
then

DFx,y =

(
2x+ y x
y x− 1

)
.

Usually one denotes by (Dfξ)u is the directional derivative
of f (in the direction u) at the point ξ.
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Example 36. If F (x, y) =

(
x2 + yx
xy − y

)
and e1 =

(
1
0

)

then (DFx,y)e1 =

(
2x+ y x
y x− 1

)
e1 =

(
2x+ y
y

)
. This

is what you get when you fix y and differentiate w.r.t. x in
F (x, y).

For each fixed y one has a curve x 7→ F (x, y) =

(
x2 + yx
xy − y

)

and (DFx,y)e1 =

(
2x+ y
y

)
gives its speed vector.

Remark: Sometimes one writesDF (x, y)u instead ofDFx,yu.
If u is the i-th unit vector ei then one often writes DiFx,y

and if i = 1 something like DxF (x, y).

Theorem 30 (Multivariable Mean Value Theorem). If f : R→
Rm is continuously differentiable then ∀x, y ∈ R there exists
ξ ∈ [x, y] so that |f(x)− f(y)| ≤ |Dfξ||x− y|.

Proof. By the Main Theorem of integration, f(y) − f(x) =∫ y
x
Dfs ds (where Dft is the n× 1 matrix (i.e. vertical vector)

of derivatives of each component of f . So

|f(x)− f(y)| = |
∫ y
x
Dfs ds| ≤

∫ y
x
|Dfs| ds

≤ maxs∈(x,y) |Dfs| |x− y| ≤ |Dfξ||x− y|

for some ξ ∈ [x, y].

Corollary: If f : Rn → Rm is continuously differentiable
then for each x, y ∈ Rn there exists ξ in the arc [x, y] connect-
ing x and y so that |f(x) − f(y)| ≤ |Dfξ(u)||x − y| where
u = (x − y)/|x − y|. Proof: just consider f restricted to the
line connecting x, y and apply the previous theorem.
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A.2 The statement of the Inverse Function The-
orem

Theorem 31 (The Inverse Function Theorem). Let U ⊂ Rn be
open, p ∈ U and F : U → Rn be continuously differentiable
and suppose that the matrix DFp is invertible. Then there exist
open sets W ⊂ U and V ⊂ Rn with p ∈ W and F (p) ∈ V , so
that F : W → V is a bijection and so that its inverse G : V →
W is also differentiable.

Definition A differentiable map F : U → V which has a
differentiable inverse is called a diffeomorphism.

Proof: Without loss of generality we can assume that p =
0 = F (p) (just apply a translation). By composing with a linear
transformation we can even also assume DF0 = I . Since we
assume that x 7→ DFx is continuous, there exists δ > 0 so that

|| I −DFx|| ≤ 1/2 for all x ∈ Rn with |x| ≤ 2δ. (27)

Here, as usual, we define the norm of a matrix A to be typo corrected

||A|| = sup{|Ax|; |x| = 1}.
Given y with |y| ≤ δ/2 define the transformation

Ty(x) = y + x− F (x).

Note that
Ty(x) = x⇐⇒ F (x) = y.

So finding a fixed point of Ty gives us the point x for which
G(y) = x, where G is the inverse of F that we are looking for.

We will find x using the Banach Contraction Mapping The-
orem.

(Step 1) By (27) we had || I−DFx|| ≤ 1/2 when |x| ≤ 2δ.
Therefore, the Mean Value Theorem applied to x 7→ x− F (x)
gives
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|x− F (x)− (0− F (0))| ≤ 1

2
|x− 0| for |x| ≤ 2δ

Therefore if |x| ≤ δ (and since |y| ≤ δ/2),

|Ty(x)| ≤ |y|+ |x− F (x)| ≤ δ/2 + δ/2 = δ.

So Ty maps the closed ball B := Bδ(0) into itself.
(Step 2) Ty : B → B is a contraction since if x, z ∈ Bδ(0)

then |x−z| ≤ 2δ and so we obtain by the Mean Value Theorem
again

|Ty(x)−Ty(z)| = |x−F (x)− (z−F (z))| ≤ 1

2
|x− z|. (28)

(Step 3) Since Bδ(0) is a complete metric space, there ex-
ists a unique x ∈ Bδ(0) with Ty(x) = x. That is, we find a
unique x with F (x) = y.

(Step 4) The upshot is that for each y ∈ Bδ/2(0) there is
precisely one solution x ∈ Bδ(0) of the equation F (x) = y.
Hence there exists W ⊂ Bδ(0) so that the map

F : W → V := Bδ/2(0)

is a bijection. So F : W → V has an inverse, which we denote
by G.

(Step 5) G is continuous: Set u = F (x) and v = F (z).
Applying the triangle inequality in the first inequality and equa-
tion (28) in the 2nd inequality we obtain,

|x− z| = |(x− z)− (F (x)− F (z)) + (F (x)− F (z))| ≤

≤ |(x− z)− (F (x)− F (z))|+ |F (x)− F (z)| ≤

≤ 1

2
|x− z|+ |F (x)− F (z)|.
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So |G(u)−G(v)| = |x− z| ≤ 2|F (x)− F (z)| = 2|u− v|.

(Step 6) G is differentiable:

|(G(u)−G(v))−(DFz)
−1(u−v)| = |x−z−(DFz)

−1(F (x)−F (z))| ≤

||(DFz)−1||·|DFz(x−z)−(F (x)−F (z))| = o(|x−z|) = 2o(|u−v|).
as ||(DFz)−1|| is bounded, using the definition and the last in-
equality in step 5. Hence

|G(u)−G(v)− (DFz)
−1(u− v)| = o(|u− v|)

proving that G is differentiable and that DGv = (DFz)
−1.

Example 37. Consider the set of equations

x2 + y2

x
= u, sin(x) + cos(y) = v.

Given (u, v) near (u0, v0) = (2, cos(1) + sin(1)) is it possible
to find a unique (x, y) near to (x0, y0) = (1, 1) satisfying this
set of equations? To check this, we define

F (x, y) =

(
x2+y2

x

sin(x) + cos(y)

)
.

The Jacobian matrix is
(

x2−y2
x2

2y
x

cos(x) − sin(y)

)
.

The determinant of this is y2−x2
x2

sin(y) − 2y
x

cos(x) which is
non-zero near (1, 1). So F is invertible near (1, 1) and for every
(u, v) sufficiently close to (u0, v0) one can find a unique solu-
tion near to (x0, y0) to this set of equations. Near (π/2, π/2)
the map F is probably not invertible.
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A.3 The Implicit Function Theorem
Theorem 32 (Implicit Function Theorem). Let F : Rp×Rn →
Rn be differentiable and assume that F (0, 0) = 0. More-
over, assume that n × n matrix obtained by deleting the first
p columns of the matrix DF0,0 is invertible. Then there exists
a function G : Rp → Rn so that for all (x, y) near (0, 0)

y = G(x)⇐⇒ F (x, y) = 0.

The proof is a fairly simple application of the inverse func-
tion theorem, and won’t be given here. The Rp part in Rp×Rn

can be thought as parameters.

Example 38. Let f(x, y) = x2 +y2−1. Then one can consider
this as locally as a function y(x) when ∂f/∂y = 2y 6= 0.

Example 39. Consider the following equations:

x2 − y2 − u3 + v2 + 4 = 0,
2xy + y2 − 2u2 + 3v4 + 8 = 0.

Can one write u, v as a function of x, y in a neighbourhood of
the solution (x, y, y, v) = (2,−1, 2, 1)? To see this, define

F (x, y, u, v) = (x2−y2−u3+v2+4, 2xy+y2−2u2+3v4+8).

We have to consider the part of the Jacobian matrix which con-
cerns the derivatives w.r.t. u, v at this point. That is

(
−3u2 2v
−4u 12v3

)∣∣∣∣
(2,−1,2,1)

=

(
−12 2
−8 12

)

which is an invertible matrix.
So locally, near (2,−1, 2, 1) one can write

(u, v) = G(x, y) that is F (x, y,G1(x, y), G2(x, y)) = 0.

101



It is even possible to determine ∂G1/∂x (i.e. ∂u/∂x). In-
deed, writing u = G1(x, y) and v = G2(x, y) and differentiate:

x2 − y2 − u3 + v2 + 4 = 0,
2xy + y2 − 2u2 + 3v4 + 8 = 0,

with respect to x. This gives

2x− 3u2 ∂u
∂x

+ 2v ∂v
∂x

= 0,
2y − 4u∂u

∂x
+ 12v3 ∂v

∂x
= 0.

So
(

∂u
∂x
∂v
∂x

)
=

(
3u2 −2v
4u −12v3

)−1(
2x
2y

)

=
1

8uv − 36u2v2

(
−12v3 2v
−4u 3u2

)(
2x
2y

)

Hence
∂u

∂x
=

(−24xv3 + 4vy)

8uv − 36u2v2
.
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Appendix B Prerequisites

B.1 Function spaces
1. Let f : [0, 1] → R be a function and fn : [0, 1] → R be

a sequence functions. Define what it means to say that
fn → f uniformly.

Answer: for all ε > 0 there exists n0 so that for all n ≥
n0 and all x ∈ [0, 1] one has |fn(x)− f(x)| < ε.

Answer 2: ||fn − f ||∞ → 0 as n → ∞ where ||fn −
f ||∞ = supx∈[0,1] |fn(x)− f(x)|.

2. Let f : [0, 1] → R be a function and fn : [0, 1] → R be
a sequence functions. Define what it means to say that
fn → f pointwise.

Answer: for all ε > 0 and all x ∈ [0, 1] there exists n0 so
that for all n ≥ n0 one has |fn(x)− f(x)| < ε.

3. Let f : [0, 1] → R be a function and fn : [0, 1] → R be a
sequence functions. Assume that fn → f uniformly and
that fn is continuous. Show that f is continuous.

Answer: Take ε > 0, x ∈ [0, 1]. Choose n0 so that
|fn − f |∞ < ε/3 for n ≥ n0 and pick δ > 0 so that
|fn0(x)− fn0(y)| < ε/3 for all y with |y − x| < δ. Then
for all y with |y − x| < δ, |f(x) − f(y)| < |f(x) −
fn0(x)| + |fn0(x) − fn0(y)| + fn0(y) − f(y)| < ε/3 +
ε/3 + ε/3 = ε.

4. Let f : [0, 1] → R be a function and fn : [0, 1] → R be
a sequence functions. Assume that fn → f pointwise
and that fn is continuous. Show that f is not necessarily
continuous.

Answer: Take fn(x) = (1 − nx) for x ∈ [0, 1/n] and
fn(x) = 0 elsewhere. Then fn → f pointwise, where
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f(0) = 1 and f(x) = 0 for x ∈ (0, 1].

Appendix C Explicit methods for solv-
ing ODE’s

This Appendix summarises explicit methods for solving ODE’s.
Since most of the material is already covered in first year ma-
terial, it will not be covered in the lectures.

C.1 State independent
• This section summarises techniques for solving ODE’s.

• The first subsections are about finding x : R→ R so that
x′ = f(x, t) and x(0) = x0 where f : R2 → R.

• So the issue is to find curves with prescribed tangents.

• Let us first review methods for explicitly solving such
equations (in part reviewing what you already know).

C.2 State independent ẋ = f(t).

In this case, each solution is of the form x(t) =
∫ t

0
f(s) ds +

x(0).

Example 40. Assume the graph t 7→ (t, x(t)) has tangent
vector (1, sin(t)) at t. Then x′(t) = sin(t) and so x(t) =
− cos(t) + c. So the solution of the ODE x′(t) = sin(t) finds a
curve which is tangent to the arrows of the vector field.
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C.3 Separation of variables
Separation of variables: ẋ = f(t)g(x). Then one can find
solutions as follows.

∫ x(T )

x(0)

dy

g(y)
=

∫ T

0

1

g(x(t))

dx

dt
dt =

∫ T

0

f(t) dt.

Here the first equality follows from the substitution rule (taking
y = x(t)) and 2nd from 1

g(x(t))
dx
dt

= f(t).

Example 41. dx
dt

= ax+ b, x(t) = x0. Then dx
ax+b

= dt, x(0) =
x0 which gives, when a 6= 0,

(1/a)[log(ax+ b)]x(T )
x0

= T,

log((ax(T ) + b)/(ax0 + b)) = aT

and therefore

x(T ) = x0e
aT +

eaT − 1

a
b for T ∈ (−∞,∞)

Example 42. dx
dt

= x2, x(0) = x0. Then dx
x2

= dt, x(0) = x0.
Hence [−1/x]

x(t)
x0 = t and so x(t) = 1

1/x0−t . Note that x(t)

is well-defined for t ∈ (−∞, 1/x0) but that x(t) → ∞ as
t ↑ 1/x0. The solution goes to infinity in finite time.

Example 43. dx
dt

=
√
|x|, x(0) = x0. If x0 > 0 and x(t) > 0

then we obtain dx√
x

= dt, x(0) = x0 and so 2
√
x(t)− 2

√
x0 =

t. Thus x(t) = (
√
x0 + t/2)2 for t ∈ (−2

√
x0,∞). When

t = −2
√
x0 then x(t) = 0, so need to analyse this directly.

When x0 = 0 then there are many solutions (non-uniqueness).
For any −∞ ≤ t0 ≤ 0 ≤ t1 ≤ ∞

x(t) =




−(t− t0)2/4 for t ∈ (−∞, t0)

0 for t ∈ [t0, t1]
(t− t1)2/4 for t ∈ (t1,∞)

is a solution.
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So, without imposing some assumptions, solutions need
not be unique.

C.4 Linear equations x′ + a(t)x = b(t).
To solve this, first consider the homogeneous case x′+a(t)x =
0. This can be solved by separation of variables: dx/x=-a(t)dt
and so x(t) = x0 exp[−

∫ t
0
a(s) ds].

To find the solution of the ODE, apply the variation of vari-
ables ‘trick’: substitute x(t) = c(t) exp[−

∫ t
0
a(s) ds] in the

equation and obtain an equation for c(t).

Example 44. x′ + 2tx = t. The homogeneous equation x′ +
2tx = 0 has solution x(t) = ce−t

2 .
Substituting x(t) = c(t)e−t

2 into x′+2tx = t gives c′(t)e−t2+
c(t)(−2t)e−t

2
+ 2tc(t)e−2t2 = t, i.e. c′(t) = tet

2 . Hence
c(t) = c0 + (1/2)et

2 and therefore x(t) = c0e
−t2 + (1/2).

That the equation is of the form

c0 · solution of hom.eq + special solution

is due to the fact that the space of solutions x′ + 2tx = 0 is
linear (linear combination of solutions are again solutions).

C.5 Exact equationsM(x, y)dx+N(x, y)dy = 0
when ∂M/∂y = ∂N/∂x.

Suppose f(x, y) ≡ c is a solution. Then df = (∂f/∂x)dx +
(∂f/∂y)dy = 0 and this corresponds to the ODE if ∂f/∂x =
M and ∂f/∂y = N . But if f is twice differentiable we have

∂M/∂y = ∂2f/∂x∂y = ∂2f/∂y∂x = ∂N/∂x.

It turns out that this necessary condition for ‘exactness’ is also
sufficient if the domain we consider has no holes (is simply
connected).
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Example 45. (y − x3)dx + (x + y2)dy = 0. The exactness
condition is satisfied (check!). How to find f with ∂f/∂x =
y−x3 and ∂f/∂y = x+y2? The first equation gives f(x, y) =
yx−(1/4)x4+c(y). The second equation then gives x+c′(y) =
∂f/∂y = x + y2. Hence c(y) = y3/3 + c0 and f(x) = yx −
(1/4)x4 + y3/3 + c0 is a solution.

Sometimes you can rewrite the equation to make it exact.

Example 46. ydx + (x2y − x)dy = 0. This equation is not

exact (indeed,
∂y

∂y
6= ∂(x2y − x)

∂x
). If we rewrite the equation

as y/x2dx+ (y − 1/x)dy = 0 then it becomes exact.

Clearly this was a lucky guess. Sometimes one can guess
that by multiplying by a function of (for example) x the ODE
becomes exact.

Example 47. The equation (xy−1)dx+(x2−xy)dy = 0 is not
exact. Let us consider the equation µ(x)(xy−1)dx+µ(x)(x2−
xy)dy = 0. The exactness condition is µx = µ′(x2 − xy) +
µ(2x−y). Rewriting this gives µ′(x)x(x−y)+µ(x)(x−y) = 0,
and so xµ′+µ = 0 implies the exactness condition. So we can
take µ(x) = 1/x. So instead of the original ODE we solve
(y − 1/x)dx+ (x− y)dy = 0 as in the previous example.

C.6 Substitutions
• Sometimes one can simplify the ODE by a substitution.

• One instance of this method, is when the ODE is of the
form M(x, y)dx + N(x, y)dy = 0 where M,N are ho-
mogeneous polynomials of the same degree.

In this case we can simplify by substituting z = y/x.
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Example 48. (x2 − 2y2)dx+ xydy = 0. Rewrite this as dy
dx

=
−x2+2y2

xy
. Substituting z = y/x, i.e. y(x) = z(x)x gives

x
dz

dx
+ z =

dy

dx
=
−1 + 2z2

z
.

Hence
dz

dx
=
−1

z
+ z.

This can be solved by separation of variables.

C.7 Higher order linear ODE’s with constant
coefficients

Note that each y1 and y2 are solutions of

y(n) + an−1y
(n−1) + · · ·+ a0y = 0 (29)

then linear combinations of y1 and y2 are also solutions.
Substituting y(x) = erx in this equation gives:

ern
(
rn + an−1r

n−1 + · · ·+ a0

)
= 0.

Of course the polynomial equation rn+an−1r
n−1+· · ·+a0 = 0

has n solutions r1, . . . , rn ∈ C.

Case 1: If these ri’s are all different (i.e. occur with single
multiplicity), then we obtain as a solution:

y(x) = c1e
r1x + · · ·+ cne

rnx.

Case 2: What if, say, r1 is complex? Then r̄1 is also a
root, so we may (by renumbering) assume r2 = r̄1 and write
r1 = α + βi and r2 = α− βi with α, β ∈ R. So

er1x = eαx(cos(βx)+sin(βx)i), er2x = eαx(cos(βx)−sin(βx)i),

108



and c1e
r1x+c2e

r2x = (c1+c2)eαx cos(βx)+(c1−c2)ieαx sin(β).
Taking c1 = c2 = A/2 ∈ R =⇒ c1e

r1x + c2e
r2x =

Aeαx cos(βx) On the other hand, taking c1 = −(B/2)i =
−c2 =⇒ c1e

r1x + c2e
r2x = Beαx sin(βx) (nothing prevents

us choosing ci non-real!!).

So if r1 = r̄2 is non-real, we obtain as a general solution

y(x) = Aeαx cos(βx) +Beαx sin(βx) + c3e
r3x + · · ·+ cne

rnx.

Case 3: Repeated roots: If r1 = r2 = · · · = rk then one
can check that c1e

r1x + c2xe
r2x + · · ·+ ckx

ker1x is a solution.

Case 4: Repeated complex roots: If r1 = r2 = · · · =
rk = α + βi are non-real, then we have corresponding roots
rk+1 = rk+2 = · · · = r2k = α− βi and we obtain as solution

c1e
αx cos(βx) + · · ·+ ckx

keαx cos(βx)+

+ck+1e
αx sin(βx) + · · ·+ c2kx

keαx sin(βx).

Example 49. Vibriations and oscillations of a spring
One can model an object attached to a spring by Mx′′ =

Fs + Fd where Fd is a damping force and Fs a spring force.
Usually one assumes Fd = −cx′ and Fs = −kx. So

Mx′′ + cx′ + kx = 0 or x′′ + 2bx′ + a2x = 0

where a =
√
k/M > 0 and b = c/(2M) > 0.

Using the previous approach we solve r2 + 2br + a2, i.e.
r1, r2 = −2b±

√
4b2−4a2

2
= −b±

√
b2 − a2.

Case 1: If b2−a2 > 0 then both roots are real and negative.
So x(t) = x0(er1t + Ber2t) is a solution and as t → ∞ we get
x(t)→ 0.

Case 2: If b2 − a2 = 0 then we obtain r1 = r2 = −a and
x(t) = Ae−at +Bte−at. So x(t) still goes to zero as→∞, but
when B is large, x(t) can still grow for t not too large.
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Case 3: If b2 − a2 < 0. Then x(t) = e−bt(A cos(αt) +
B sin(αt)) is a solution. Solutions go to zero as t → ∞ but
oscillate.

Example 50. Vibriations and oscillations of a spring with
forcing

Suppose one has external forcing

Mx′′ + cx′ + kx = F0 cos(ωt).

If b2−a2 < 0 (using the notation of the previous example) then

e−bt(A cos(αt) +B sin(αt))

is still the solution of the homogeneous part and one can check

F0√
(k − ω2M)2 + ω2c2

(ωc sin(ωt) + (k − ω2M) cos(ωt) =

F0√
(k − ω2M)2 + ω2c2

cos(ωt− φ)

is a particular solution where ω = arctan(ωc/(k − ω2M)).

F0√
(k − ω2M)2 + ω2c2

cos(ωt− φ)

is a particular solution where ω = arctan(ωc/(k − ω2M)).
Here c is the damping, M is the mass and k is the spring

constant.

• If damping c ≈ 0 and ω ≈ k/M then the denominator is
large, and the oscillation has large amplitude.

• (k − ω2M)2 + ω2c2 is minimal for ω =

√
k

M
− c2

2M2

and so this is the natural frequency (or eigen-frequency).
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Figure 5: The vector field (1, sin(t)) drawn with the Maple
command: with(plots):fieldplot([1, sin(t)], t = -1 .. 1, x = -1 ..
1, grid = [20, 20], color = red, arrows = SLIM);

• This is important for bridge designs (etc), see

– http://www.ketchum.org/bridgecollapse.
html

– http://www.youtube.com/watch?v=3mclp9QmCGs

– http://www.youtube.com/watch?v=gQK21572oSU

C.8 Solving ODE’s with maple
Example 51. > ode1 := diff(x(t), t) = x(t)^2;

d 2
--- x(t) = x(t)
dt

> dsolve(ode1);
1

x(t) = --------
-t + _C1

> dsolve({ode1, x(0) = 1});
1

x(t) = - -----
t - 1

Example 52. Example: y′′ + 1 = 0.
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> ode5 := diff(y(x), x, x)+1 = 0;
/ d / d \\
|--- |--- y(x)|| + 1 = 0
\ dx \ dx //

> dsolve(ode5);
1 2

y(x) = - - x + _C1 x + _C2
2

C.9 Solvable ODE’s are rare
It is not that often that one can solve an ODE explicitly. What
then?

• Use approximation methods.

• Use topological and qualitative methods.

• Use numerical methods.

This module will explore all of these methods.

In fact, we need to investigate whether we can even speak
about solutions. Do solutions exist? Are they unique? Did we
find all solutions in the previous subsections?

C.10 Chaotic ODE’s
Very simple differential equations can have complicated dy-
namics (and clearly cannot be solved analytically). For exam-
ple the famous Lorenz differential equation

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz

(30)

with σ = 10, r = 28, b = 8/3.
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has solutions which are chaotic and have sensitive depen-
dence (the butterfly effect).

http://www.youtube.com/watch?v=ByH8_nKD-ZM

Appendix D A proof of the Jordan nor-
mal form theorem

In this section we will give a proof of the Jordan normal form
theorem.

Lemma 15. Let L1, L2 : V → V where V is a finite dimen-
sional vector space. AssumeL1L2 = 0 and ker(L1)∩ker(L2) =
{0}. Then V = ker(L1)⊕ ker(L2).

Proof. Let n be the dimension of V and let =(L2) stands for
the range of L2. Note that dim ker(L2) + dim=(L2) = n,
Since L1L2 = 0 it follows that ker(L1) ⊃ =(L2) and therefore
dim ker(L1) ≥ dim=(L2) = n − dim ker(L2). As ker(L1) ∩
ker(L2) = {0}, equality holds in dim ker(L1)+dim ker(L2) ≥
n and the lemma follows.

Proposition 1. Let L : V → V where V is a finite dimensional
vector space. Let λ1, . . . , λs be its eigenvalues with (algebraic)
multiplicity mi. Then one can write V = V1 ⊕ V2 ⊕ · · · ⊕ Vs
where Vi = ker((L− λiI)mi) and so L(Vi) ⊂ Vi.

Proof. Consider the polynomial p(t) = det(tI − L). This is a
polynomial of degree n, where n is the dimension of the vector
space and with leading term tn. By the Cayley-Hamilton the-
orem one has p(L) = 0 and of course p(L) is also of the form
Ln + c1L

n−1 + · · ·+ cn = 0. This can be factorised as

(L− λ1I)m1(L− λ2I)m2 · · · (L− λsI)ms = 0,

where all λi’s are distinct - here we use that the factors (L−λiI)
commute.
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We claim that ker((L − λiI)mi) ∩ ker(L − λjI)mj = 0.
Indeed, if not then we can take a vector v 6= 0 which is in the
intersection. We may assume mi ≥ mj . Choose 1 ≤ m′j ≤ mj

minimal so that (L − λjI)m
′
jv = 0 and (L − λjI)m

′
j−1v 6=

0. Since v ∈ ker((L − λiI)mi) we have that w := (L −
λjI)m

′
j−1(L− λiI)miv is equal to 0, but on the other hand w is

equal to (L− λjI)m
′
j−1((L− λjI) + (λj − λi))miv which, by

expanding the latter expression (and using that v ∈ ker((L −
λiI)mi)) is equal to (L − λjI)m

′
j−1(λj − λi)

miv 6= 0. This
contradiction proves the claim.

This means that we can apply the previous lemma induc-
tively to the factors (L − λiI)mi , and thus obtain the proposi-
tion.

It follows that if we choose T so that it sends the decom-
position Rn1 ⊕ . . .Rnk , where ni = dimVi, to V1 ⊕ · · · ⊕ Vk

then T−1LT is of the form




A1

. . .
Ap


 where Ai are

square matrices corresponding to Vi (and the remaining entries
are zero). The next theorem gives a way to find a more precise
description for a linear transformation T so that T−1LT takes
the Jordan form. Indeed, we apply the next theorem to each
matrix Ai separately. In other words, for each choice of i, we
take W = Vi, A = (L − λiI)|Vi and m = mi in the theorem
below.

Theorem 33. Let A : W → W be a linear transformation of
a finite dimensional vector space so that Am = 0 for some
m ≥ 1. Then there exists a basis W of the form

u1, Au1, . . . , A
a1−1u1, . . . , us, . . . , A

as−1(us)

where ai ≥ 1 and Aai(ui) = 0 for 1 ≤ i ≤ s.
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Remark: Note thatAaj−1(uj) = (T−λi)aj−1(uj) is in the ker-
nel of A = T −λiI , so is an eigenvector of A corresponding to
eigenvalues 0 (i.e. an eigenvector of T corresponding to eigen-
value λi. The vector w1

j = Aaj−2(uj) = (T−λiI)aj−2(uj) cor-
responds to a vector so that Aw1

j = wj , so Tw1
j = λw1

j + wj ,
and so on. So as in Chapter 2, if we take the matrix T with
columns

Aa1−1u1, . . . , u1, A
a2−1u2, . . . , u2, A

as−1us, . . . , us

then T−1LT will have the required Jordan form with λ on the
diagonal, and 1’s in the off-diagonal except in columns a1, a1 +
a2, . . . , a1 + a2 + · · ·+ as.

Proof. The proof given below goes by induction with respect
to the dimension of W . When dimW = 0 the statement is
obvious. Assume that the statement holds for dimensions <
dim(W ). Note that A(W ) 6= W since otherwise AW = W
and therefore Am(W ) = Am−1(W ) = · · · = W which is a
contradiction. So dimA(W ) < dimW and by induction there
exists v1, . . . , vl ∈ A(W ) so that

v1, Av1, . . . , A
b1−1(v1), . . . , vl, Avl, . . . , A

bl−1vl (31)

is a basis for A(W ) and Abi(vi) = 0 for 1 ≤ i ≤ l. Since
vi ∈ A(W ) one can choose ui so that Aui = vi. The vec-
torsAb1−1v1, . . . , A

bl−1vl are linearly independent and are con-
tained in ker(A) and so we can find vectors ul+1, . . . , um so
that

Ab1−1v1, . . . , A
bl−1vl, ul+1, . . . , um (32)

forms a basis of ker(A). But then

u1, Au1, . . . , A
b1(u1), . . . , ul, . . . , A

blul, ul+1, . . . , um (33)

is the required basis of W . Indeed, consider a linear combina-
tion of vectors from (33) and applyA. Then, because vi = Aui,
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we obtain a linear combination of the vectors from (31) and so
the corresponding coefficients are zero. The remaining vec-
tors are in the kernel of A and are linearly independent because
they correspond to (32). This proves the linear independence
of (33). That (33) spans W holds, because the number of vec-
tors appearing in (33) is equal to dim ker(A) + dimAW . In-
deed, Ab1(u1), . . . , Ablul, ul+1, . . . , um are all in ker(A) (they
are the same vectors as the vectors appearing in (32)). The re-
maining number of vectors is b1 + · · · + bl which is the same
as the dimension of AW , as (31) forms a basis of this space.
It follows that the total number of vectors in (33) is the same
as dim(ker(A)) + dim(AW ) and so together with their linear
independence this implies that (33) forms a basis of W .
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