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THE CONTACT HOMOLOGY OF LEGENDRIAN KNOTS
WITH MAXIMAL THURSTON–BENNEQUIN INVARIANT

Steven Sivek

We show that there exists a Legendrian knot with maximal
Thurston–Bennequin invariant whose contact homology is trivial. We
also provide another Legendrian knot which has the same knot type
and classical invariants but nonvanishing contact homology.

1. Introduction

The Chekanov–Eliashberg invariant [2,4], which assigns to each Legendrian
knot K a differential graded algebra (Ch(K), ∂) over F = Z/2Z, has been
a powerful tool for classifying Legendrian knots in the standard contact S3.
The closely related characteristic algebra C(K) was defined by Ng [13] to be
the quotient of Ch(K) by the two-sided ideal 〈Im(∂)〉; if two knots K and
K ′ are Legendrian isotopic, then we can add some free generators to C(K)
and C(K ′) to make them isomorphic. Both of these invariants only provide
information about nondestabilizable knots: if K is a stabilized knot, then
both the Legendrian contact homology H∗(Ch(K)) and the characteristic
algebra C(K) vanish. For an introduction to Legendrian knots, see [6].

Shonkwiler and Vela-Vick [20] gave the first examples of Legendrian knots
with nonvanishing contact homology which do not have maximal Thurston–
Bennequin invariant, representing the knot types m(10161) and m(10145).
Conversely, there are conjecturally nondestabilizable knots of type m(10139),
10161, and m(12n242) with nonmaximal tb and vanishing contact homol-
ogy [3, 20]. On the other hand, it is an open question whether there is a
Legendrian knot K for which tb(K) is maximal but the contact homology of
K vanishes. We will answer this question and show that it is not determined
solely by the classical invariants tb and r of K:

Theorem. There are distinct tb-maximizing Legendrian representatives K1

and K2 of m(10132) with the same classical invariants such that K1 has
trivial contact homology, even with Z[t, t−1] coefficients, while K2 does not.
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168 S. SIVEK

These Legendrian knots, found in Chongchitmate and Ng’s atlas of Leg-
endrian knots [3], can be specified as plat diagrams by the following braid
words:

K1 : 6, 7, 4, 3, 7, 5, 3, 6, 4, 2, 5, 1, 3, 2, 5, 2, 4, 6, 2
K2 : 4, 5, 3, 5, 3, 2, 4, 1, 3, 2, 4, 2, 5, 1, 3, 2, 4, 4, 3, 5, 4, 2

Indeed, both knots have classical invariants tb = −1 and r = 0, and Ng [16]
showed that tb(m(10132)) = −1 by bounding tb for an appropriate cable of
m(10132). We will prove this theorem in Section 2.

Finally, the proof that K2 has nonvanishing contact homology uses an
action of C(K2) on an infinite-dimensional vector space, just as the non-
vanishing examples in [20] did. In Section 3, we will show that this is nec-
essary in the sense that C(K2) does not have any finite-dimensional repre-
sentations. It is completely understood when a characteristic algebra C does
not have any one-dimensional representations, but we will ask if such a C
can admit maps C → Matn(F) for some finite n ≥ 2. We will show that
this is possible in general by constructing two-dimensional representations
for specific Legendrian representatives of negative torus knots.

2. The m(10132) examples

2.1. The vanishing example. Let K1 be the Legendrian representative of
m(10132) whose front diagram is shown in Figure 1. Its Chekanov–Eliashberg
algebra is generated freely over Z[t, t−1] by crossings x1, . . . , x19 in order from
left to right and right cusps x20, . . . , x23 in order from top to bottom. The
differentials are specified in Appendix A.

To show that K1 has vanishing contact homology, we need to find a rela-
tion ∂x = 1 in Ch(K1). Recall that Ch(K1) uses a signed Leibniz rule
∂(vw) = (∂v)w +(−1)|v|v(∂w), where |v| is the grading of the homogeneous

Figure 1. A front diagram of the representative K1 of
m(10132), defined as the plat closure of the braid word
6, 7, 4, 3, 7, 5, 3, 6, 4, 2, 5, 1, 3, 2, 5, 2, 4, 6, 2 in the notation of
[11]. The numbers label the crossings from left to right, where
each k indicates the kth strand crossing over the (k + 1)st
strand as numbered from 1 at the top to 8 at the bottom.
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element v, and note that the generators with odd grading are

x2, x3, x5, x9, x11, x12, x13, x15, x20, x21, x22, x23.

Let

a = x12(x4(1 + x2x5) − x8) + x14x5

b = x22 + x12 − ax18;

then ∂a = x10x4(1 + x2x5) − x10x8 + x13x5, and so

∂b = 1 + x17x7 + (∂a)x18 − ((∂a)x18 + ax15x7)
= 1 + (x17 − ax15)x7.

Then if c = b(x6 − x4x1) + (x17 − ax15)(x9 + x2), we can compute ∂c =
x6 − x4x1 and so

∂(x20 − c(1 + x16x19)) = 1.
Thus K1 has trivial contact homology over Z[t, t−1], as desired.

2.2. The nonvanishing example. Let K2 be the Legendrian represen-
tative of m(10132) in Figure 2. The algebra Ch(K2) is generated freely
over F = Z/2Z by crossings x1, . . . , x22 from left to right and right cusps
x23, x24, x25 from top to bottom with differentials specified in Appendix B.
In order to show that K2 has nontrivial contact homology, it will suffice to
show that the characteristic algebra C2 = C(K2) is nonvanishing [20]. We
remark that the abelianization of C2 does vanish, however, so that both K1

and K2 have the same abelianized characteristic algebra.
The differential in C2 immediately gives us x1 = x6 = 0, and

x12 = ∂(x12x23 + x15x22 + x17x18)

gives x12 = 0, hence ∂x24 = 0 becomes (1 + x5(x2 + x3))x20 = 1. Then we
can use (∂x13)x20 = 0 and (∂x17)x20 = 0 to get x11 = 0 and x15 = 0, so

x1 = x6 = x11 = x12 = x15 = 0.

Furthermore, ∂x21 = 0 becomes x14 = cx20, so ∂x25 = 0 gives us x14 = x20.
Consider the quotient of C2 by the two-sided ideal

I = 〈x3, x7, x8, x9, x10, x13 + 1 + x2x5, x17, x19, x21, . . . , x25〉.

Figure 2. A front diagram of the representative K2 of
m(10132), defined as the plat closure of the braid word
4, 5, 3, 5, 3, 2, 4, 1, 3, 2, 4, 2, 5, 1, 3, 2, 4, 4, 3, 5, 4, 2.
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The quotient C2/I is generated by x2, x4, x5, x14, x16, x18, and its nontrivial
relations are c = x2 + x14(1 + x2x5) + x16(1 + x5x2) = 1 and

x4 = x5(1 + x2x4),
x18 = 1 + x2x4,

0 = (1 + x5x2)x18,

1 = (1 + x2x5)x18,

1 = (1 + x5x2)x14.

Note that the pair of relations x4 = x5(1 + x2x4) and x18 = 1 + x2x4 are
equivalent to x4 = x5x18 and (1 + x2x5)x18 = 1, the latter of which is
already known, so we can replace the pair with x4 = x5x18. Furthermore,
multiplying the c = 1 equation on the right by x18 gives x14 = (1 + x2)x18,
hence the last relation becomes (1 + x5x2)x2x18 = 1. Then, the c = 1
equation becomes

x16(1 + x5x2) = (1 + x2)(1 + x18(1 + x2x5)),
so we multiply on the right by x2x18 and get

x16 = (1 + x2)(x2x18 + x18x2(1 + x5x2)x18) = (1 + x2)x2x18.

Thus, we see that x4, x14, and x16 can be expressed in terms of x2, x5, and
x18, and c = 1 can be rewritten as

0 = (1 + x2) (1 + x18(1 + x2x5) + x2x18(1 + x5x2)) .

Relabeling x2, x5, x18 as a, b, c, respectively, we have a homomorphism from
C2/I to the quotient R of the free algebra F〈a, b, c〉 by the two-sided ideal
generated by the relations

0 = 1 + c(1 + ab) + ac(1 + ba),
0 = (1 + ba)c,
1 = (1 + ab)c,
1 = (1 + ba)ac.

Proposition 2.1. The algebra R is nontrivial.

Proof. We will construct an infinite-dimensional representation of R, follow-
ing ideas from [20]. Let H be a countable-dimensional F-vector space, with
basis {v0, v1, v2, . . . }, and write H = H1⊕H2 where each Hi summand is iso-
morphic to H. Let f, g : H → H be homomorphisms defined by f(vi) = v2i

and g(vi) = v2i+1, so that the diagrams

H1

⊕

f !! H1

⊕

H2

g
""!!!!!!!!
H2

H1

⊕ f

##""
""

""
""

H1

⊕

H2
g !! H2
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represent isomorphisms H ∼→ H1 and H ∼→ H2, respectively. We also define
homomorphisms p, s : H → H by p(vi) = vi−1 for i ≥ 1, p(v0) = 0 and
s(vi) = vi+1 + v2(i+1). It is straightforward to check the identities

s ◦ p = f + 1, p ◦ g = f, p ◦ s = g + 1.

We define a right action of a and b on H ∼= H1 ⊕H2 by the diagrams

H1

⊕ p
""

##""
""

"

H1

⊕

H2

1!!

""!!!!!

H2

and
H1

⊕

g !!

1
""

##""
""

"

H1

⊕

H2

s!!

""!!!!!

H2

respectively. Then we can compute the action of ab and ba by concatenating
the a and b diagrams to get

H1

⊕

s◦p !! H1

⊕

H2

g
""!!!!!!!!

1 !! H2

and
H1

⊕

1 !!

p◦g

##""
""

""
""

H1

⊕

H2
p◦s !! H2

respectively, hence by the above identities 1 + ab and 1 + ba are exactly the
specified isomorphisms H ∼→ H1 and H ∼→ H2. Finally, let c act on H as the
map

H1

⊕
∼

$$#####

H

H2 0

%%$$$$$

where the indicated isomorphism is the inverse of H ∼→ H1. Then the com-
position ac is the homomorphism

H1

⊕
0

$$#####

H

H2
∼

%%$$$$$

where the isomorphism is inverse to H ∼→ H2. It is now easy to check that
(1 + ab)c = 1, (1 + ba)c = 0, and (1 + ba)ac = 1. Finally, we note that
c(1 + ab) is the projection of H onto H1 ⊂ H and likewise ac(1 + ba) is the
projection onto H2, hence

1 = c(1 + ab) + ac(1 + ba).

Therefore, the action that we have constructed satisfies all of the defining
relations of R. !
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Since R is nonvanishing and we have a homomorphism C2 → C2/I → R,
we conclude that C2 (and hence the contact homology of K2) is nonvanishing
as well.

3. Finite-dimensional representations of C(K)

Although the Legendrian knot K2 of Section 2.2 is now known to have
nontrivial contact homology and characteristic algebra, one can ask for a
simpler proof of this fact; in particular, one can ask if C2 has any finite-
dimensional representations. The answer in this case is no.

Lemma 3.1. Suppose that an F-algebra A has a relation of the form ab = 1.
If the quotient of A by the two-sided ideal 〈ba− 1〉 is trivial, i.e. if 0 = 1 in
A/〈ba − 1〉, then there is no representation A → Matn(F) for any n.

Proof. Suppose there is a homomorphism ϕ : A → Matn(F), so in particular
ϕ(1) = 1. The equation ϕ(ab−1) = 0 implies that ϕ(a) and ϕ(b) are inverse
matrices, so they commute and ϕ(ba−1) = 0 as well. Then, ϕ factors through
the quotient A/〈ba − 1〉 in which 0 = 1, hence ϕ(1) = ϕ(0) = 0, which is a
contradiction. !

Now in C2, we showed in Section 2.2 that x11 = x12 = 0 and (1 + x5(x2 +
x3))x20 = 1. If we impose the relation x20(1 + x5(x2 + x3)) = 1, then
x18 = x20(∂x22) = 0 as well and so 0 = ∂x23 = 1, hence C2 has no finite-
dimensional representations by Lemma 3.1. This argument also proves the
claim made in Section 2.2 that the abelianization of C2 is trivial.

Lemma 3.1 can also be used to prove that the characteristic algebra of
the Legendrian m(10161) studied in [20] has no finite-dimensional represen-
tations, by adding x28x13 = 1 to the relations ∂xi = 0 in [20, Appendix A]
and showing that 0 = 1 as a consequence, and similarly for the m(10145)
representative mentioned in the same article. Neither one of these knots has
maximal Thurston–Bennequin invariant.

On the other hand, it is interesting to ask when the characteristic algebra
C of a Legendrian knot K has n-dimensional representations. For n = 1 the
answer depends only on tb and the topological knot type:

Proposition 3.2. There is a homomorphism C → Mat1(F) ∼= F if and only
if the Kauffman bound

tb(K) ≤ min-degaFK(a, x) − 1

(see [10]) is sharp.

Proof. The Kauffman bound for K is achieved if and only if a front diagram
for K admits an ungraded normal ruling [18], which happens if and only
if Ch(K) admits an ungraded augmentation [8, 9, 19]. An augmentation is
an algebra homomorphism Ch(K) ε→ F which satisfies ε ◦ ∂ = 0, and these
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correspond bijectively to algebra homomorphisms C → F, so the latter exists
if and only if the Kauffman bound is sharp. !

In particular, the Kauffman bound is known to be sharp for all knots
with at most 9 crossings except for m(819) and m(942) (see [15]); for all
10-crossing knots except m(10124), m(10128), m(10132), and m(10136) [1,
14]; and for all alternating knots [18]. Thus, the characteristic algebra of
a Legendrian representative of any alternating knot or knot with at most
ten crossings other than the six exceptions above has a one-dimensional
representation if and only if it is tb-maximizing.

We will now demonstrate the existence of infinitely many Legendrian
knots whose characteristic algebras have n-dimensional representations for
n = 2 but not for n = 1. For convenience, we will use the following presen-
tation of Mat2(F).

Lemma 3.3. The ring Mat2(F) can be presented as
F〈a, b〉

〈a2 = b2 = 0, ab + ba = 1〉 .

Proof. Let R be the F-algebra with the given presentation, and consider a
map ϕ : R → Mat2(F) of the form

a +→ A =
(

0 1
0 0

)
,

b +→ B =
(

0 0
1 0

)
.

It is easy to check that A2 = B2 = 0 and AB + BA = I, so ϕ is a valid
homomorphism, and since A, B, AB, BA form an additive basis of Mat2(F)
it is surjective. To check that ϕ is also injective, we note that any nonzero
monomial in R is equal to one of 1, a, b, ab, or ba = 1 + ab, and so 1, a, b, ab
span R as an F-vector space; since the image of ϕ has order |Mat2(F)| =
16 ≥ |R| it follows that ϕ is injective. !

Let Tp,−q be the Legendrian representative of the (p,−q)-torus knot as in
Figure 3, where q > p ≥ 3; there are p numbered left cusps at the leftmost
edge of the diagram, q−p left cusps in the innermost region of the diagram,
and q right cusps. The algebra Ch(Tp,−q) can be computed following [13]:
the front projection is simple, so Ch(Tp,−q) is generated by crossings and
right cusps and the differential counts admissible embedded disks in the
diagram.

We label the generators of Ch(Tp,−q) as follows. On the left half of the
diagram, xij is the intersection of the strands through the numbered left
cusps i and j for 1 ≤ i < j ≤ p. On the right half, yij denotes the intersection
of strands through the numbered right cusps i and j for 1 ≤ i < j ≤
min(q, i + p − 1), and zi is the ith right cusp.
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Figure 3. A Legendrian representative T5,−8 of the (5,−8)-
torus knot.

We define an algebra homomorphism f : Ch(Tp,−q) → Mat2(F) by sending
all generators to 0 except

xi,i+1, yj,j+p−1 +→ a,

x1,p, yj,j+1 +→ b.

In Figure 3, f is equal to a on the crossings marked with gray dots, b on
the crossings marked with black dots, and 0 on all other crossings and right
cusps. If we can show that f(∂v) = 0 for all generators v, then f is a
morphism of DGAs (where Mat2(F) has trivial differential) and it induces
a representation C(Tp,−q) → Mat2(F).

Proposition 3.4. The homomorphism f : Ch(Tp,−q) → Mat2(F) satisfies
f(∂v) = 0 for all v.

Proof. Call an admissible disk nontrivial if none of its corners are in ker(f).
Then it is easy to see that any nontrivial disk has exactly two corners, and
if both corners have the same color (in the sense of Figure 3, i.e., if they
are sent to the same element of Mat2(F)) then the contribution of this disk
to f(∂v) is either a2 = 0 or b2 = 0. Thus we can determine f(∂v) by only
counting disks with initial vertex at v and having exactly one gray corner
and one black corner.

If v is the right cusp zi, then there are two nontrivial disks contributing
ab and ba to the differential, so f(∂zi) = 1 + ab + ba = 0. For all crossings
v, however, the only possible black corner for a nontrivial disk is x1,p. Such
a disk must include either the first or the pth numbered left cusp on its
boundary depending on whether the interior of the disk is immediately above
or below x1,p, but then the boundary of the disk must pass through either
z1 or zq, which in particular is to the right of v, and so it cannot contribute
to f(∂v). We conclude that f(∂v) = 0 for all generators v of Ch(Tp,−q), as
desired. !
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We can compute tb(Tp,−q) = −pq for all p and q, hence Tp,−q is tb-
maximizing by the classification of Legendrian torus knots [7], but for odd
p the Kauffman bound is tb(K) ≤ −pq + q − p [5]. Using Proposition 3.2,
we conclude:
Corollary 3.5. Let p ≥ 3 be odd and q > p. Then the characteristic algebra
C(Tp,−q) admits an n-dimensional representation for n = 2 but not for n = 1.
Remark 3.6. The knots T3,−4 and T3,−5 are the unique tb-maximizing rep-
resentatives of m(819) and m(10124) up to change of orientation [7], so if
any tb-maximizing Legendrian representative of a knot with at most 10
crossings has vanishing contact homology or characteristic algebra (such
as the m(10132) of Section 2.1) then it must represent one of m(942),
m(10128), m(10132), or m(10136). The characteristic algebras of the known
tb-maximizing Legendrian m(942), m(10128), and m(10136) knots, which have
plat diagrams with braid words

m(942) : 2, 1, 1, 4, 5, 3, 5, 3, 2, 4, 3, 3, 2, 4
m(10128) : 6, 5, 5, 4, 3, 3, 2, 1, 5, 4, 3, 2, 2, 4, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6
m(10136) : 6, 5, 4, 3, 7, 5, 3, 3, 2, 1, 4, 3, 2, 4, 5, 2, 3, 1, 1, 2, 3, 4, 5, 6

respectively, can also be shown to have two-dimensional representations, so
they do not vanish. The m(942) knot is given in the table of [12], and the
others both appear in [3].

It is not known whether there are Legendrian knots whose characteris-
tic algebras have representations of minimal dimension n ≥ 3, or whether
this minimal dimension can be used to distingush any Legendrian knots
with nontrivial characteristic algebras and the same classical invariants. We
leave open the question of which Legendrian knots K admit representations
C(K) → Matn(F) for fixed n ≥ 2 or even for any finite n.1

4. Appendix A: The differential of the vanishing m(10132)

Let K1 be the representative of m(10132) with braid word
6, 7, 4, 3, 7, 5, 3, 6, 4, 2, 5, 1, 3, 2, 5, 2, 4, 6, 2.

Then Ch(K1) has generators x1, . . . , x23 over Z[t, t−1] with the following
nonzero differentials [11]:
∂x2 = −x1,

∂x4 = x3,

∂x6 = x3x1,

1Added in press: Ng and Rutherford [17] have shown that the question of whether C(K)
as defined over F[t, t−1] admits an n-dimensional representation depends only on tb(K)
and the smooth knot type of K, by proving that this occurs if and only if a particular
Legendrian satellite of K admits a normal ruling.
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∂x8 = x3 + x3x2x5 − x6x5,

∂x9 = x1 + x7x4x1 − x7x6,

∂x11 = 1 + x2x5 + x7x4 + x7x4x2x5 − x7x8 + x9x5,

∂x12 = x10,

∂x13 = x10x4x1 − x10x6,

∂x14 = −x12x4x1 + x12x6 + x13,

∂x17 = x10x4x15 + x10x4x2x5x15 − x10x8x15 + x13x5x15,

∂x18 = −x15x7,

∂x20 = 1 − x4x1 + x6 − x4x1x16x19 + x6x16x19,

∂x21 = 1 − x12x4x15 − x12x4x2x5x15 + x12x8x15 − x14x5x15 + x17

− x19x5x15 − x19x16x12x4x15 − x19x16x12x4x2x5x15

+ x19x16x12x8x15 − x19x16x14x5x15 + x19x16x17,

∂x22 = 1 − x10 + x17x7 + x10x4x18 + x10x4x2x5x18 − x10x8x18 + x13x5x18,

∂x23 = t−1 + x15x2 + x15x7x4x2 + x15x9 − x18x3x2 + x18x6.

5. Appendix B: The differential of the nonvanishing m(10132)

Let K2 be the representative of m(10132) with braid word

4, 5, 3, 5, 3, 2, 4, 1, 3, 2, 4, 2, 5, 1, 3, 2, 4, 4, 3, 5, 4, 2.

Then Ch(K2) has generators x1, . . . , x25 over Z/2Z with the following
nonzero differentials [11]:

∂x2 = ∂x3 = x1,

∂x7 = x4 + x5(1 + (x2 + x3)x4),
∂x8 = x6,

∂x9 = x6(1 + (x2 + x3)x4),
∂x10 = x9 + x8(1 + (x2 + x3)x4),
∂x13 = x6(x2 + x3) + x11(1 + x5(x2 + x3)),
∂x14 = (1 + (x2 + x3)x4)x12,

∂x15 = x12x11,

∂x16 = x14x11 + (1 + (x2 + x3)x4)x15,

∂x17 = x12(x13 + x8(x2 + x3)) + x15(1 + x5(x2 + x3)),
∂x19 = (1 + (x2 + x3)x4) + cx18,

∂x20 = x18x12,

∂x21 = x14 + x19x12 + cx20,
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∂x22 = (1 + x5(x2 + x3))x18,

∂x23 = 1 + x11x22 + (x13 + x8(x2 + x3))x18,

∂x24 = 1 + x22x12 + (1 + x5(x2 + x3))x20,

∂x25 = 1 + c,

where

c = x2+x3+(1+(x2+x3)x4)x17+x14(x13+x8(x2+x3))+x16(1+x5(x2+x3)).
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