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Our goal in this lecture is to classify tight contact structures on S? x [0, 1],
with similar theorems for $3, S' x §2, B3, and R? following immediately. Given
a tight contact structure £ on 3 x [0, 1], we can perturb it to assume that any
given level set ¥; = ¥ x {t} has Morse-Smale characteristic foliation, but this
is not true in general for 1-parameter families of surfaces such as ¥ x [0,1]
itself. Giroux [1] used the term “tomography” to describe the study of families
of characteristic foliations.

Definition 1. A foliation F on a surface ¥ satisfies the Poincaré—Bendizson
property if the a— and w-limit sets of each orbit are either a singular point, a
closed orbit, or a poly-cycle (a union of singular points and flow lines connecting
them).

Theorem 2 (Poincaré—Bendixson). Fvery foliation with isolated singular points
of a sphere or of a planar region has this property.

Remark 3. A surface ¥ C (M, §) whose characteristic foliation has the Poincaré—
Bendixson property is convex if and only if all closed orbits of ¥ are nondegen-
erate and no flow line goes from a negative hyperbolic point to a positive one.
This follows from the same construction we used to show that Morse—Smale
implies convex.

Proposition 4. Let £ be a contact structure on ¥ x [—1,1] with ¥ x {£1}
convex. There is an isotopy rel boundary of ¥ x [—1, 1] so that every non-convex
surface 3y satisfies the Poincaré-Bendixson property.

Proof. Let us first suppose that X; is convex for all % < |¢| € 1, with charac-
teristic foliation (X;)¢ independent of ¢ for % < |t < %, and that ¥ is divided
into regions ¥ UY._ by a curve I (not necessarily a dividing set!) where each
component of X1 is planar and X4 X {%} is transverse to the characteristic
foliation (¥41/2)¢. Let G4 be retractions of ¥4 whose boundaries are isotopic
to I'y /o through curves transverse to (X1 /2)¢.

Let h:[0,1] — [1,1] be an odd, strictly increasing function with h(t) = ¢ for

t > i. We define an isotopy ¢, supported on ¥ X [—%, %] which moves points

vertically, such that ¢; sends G4 x {t} to G4 x {h(t)} for t > 0 and sends
G_ x{t} to G_ x {—h(—t)} for t < 0. (We can also insist that ¢s(G+ x {t}) is



always some parallel G4 x {t'}.) If we let & = ¢3(&), then every characteristic
foliation (X;)¢ for —% <t< % has the Poincaré-Bendixson property.

To see this, take 0 < ¢ < % without loss of generality. Then &'|¢, x(s =
Ela, xqnwyy> and 5 < h(t) < 3, so by assumption 0G4 x {t} divides ¥ x {t}
into planar regions along which the characteristic foliations are independent of
t. At t > % the surface ¥; is convex and fixed by ¢, so the surfaces ¥; must all
have the Poincaré-Bendixson property for t > 0. We proceed analogously when
t <0.

Now in the general case we perform an isotopy of £ in order to construct the
curve I'. Since ¥4; are convex, they have dividing curves I';. We can take a
multi-curve K C ¥ whose complement is a union of planar regions, and by an
isotopy we can also insist that every component of K intersects and is transverse
to both I';y and I'_;. Now we can apply the Legendrian realization principle to
Ki =K x{£3} C £ x {3} and then take X to be a tubular neighborhood of

K and ¥ _ its complement. O

In particular, if (¥ x I, £) has convex boundary then the non-convex surfaces
Y, = ¥ x {t} have either degenerate closed orbits or “retrograde connections”
from negative to positive hyperbolic points. Generically we can assume that
these retrograde connections happen at finitely many times ¢4, ...,t,, and that
at those times, all critical points are nondegenerate and the retrograde connec-
tion is the only orbit connecting two hyperbolic points.

Proposition 5. The set of times t where X; has a retrograde orbit has no
accumulation points.

Proof. Suppose there was an accumulation point at ¢ = 0 and let £; — 0 be a
times whose retrograde orbits limit to the one at time t = 0. Choose coordinates
locally so that we are working on R? x [—1,1] with area form w = dx A dy at
each slice and so that the positive and negative hyperbolic points at each time
including ¢ = 0 are at (41,0,¢;) € R? x [~1,1], with the retrograde orbit
equal to the line segment of the z-axis between them at height ¢;. Then the
characteristic foliation along each orbit is directed by a positive multiple v of
0., so if the contact form is
a =+ fdt

then 7, = t,w = gy, (x)dy for some positive function g;, on each orbit.

Along the limiting separatrix v at t = 0 it follows that %hzo is a multiple
of dy, hence (n; A %) t=0 = 0 along 7. On the other hand, f; has sign +1 at
the endpoints (£1,0,0), so there must be a point p on the interior of v where
fo =0 and fy is increasing along ~y, hence dfy(9,) > 0 at p. But a Ada > 0 is
equivalent to

fedne +ne A (dfy — 1) > 0
and at p we have fo = ng A1 = 0, so it follows that go(p)dfo(dz) - dy A dz =
(no A dfo)p > 0, which is a contradiction. O

In fact, we can learn more from this argument. Giroux used a careful analysis
to show the following:



Lemma 6 (Crossing lemma). Suppose that (X4,)e contains a retrograde saddle-
saddle connection, i.e. a flow line from a negative hyperbolic point p_ to a
positive hyperbolic point py. There is a neighborhood (to — €,to + €) on which
this retrograde orbit corresponds to a pair of flow lines which cross at t = tg,
with the stable separatriz ¢, of py passing above the negative separatriz c_ of
p— fort >ty and vice versa fort < ty.

Here is a picture of the characteristic foliation on ¥; near a retrograde orbit,
at times ty — €, tg, and tg + €.

The dotted lines in the “before” and “after” pictures are a local picture of a
dividing set at each time. The dividing sets change when crossing t = tg by the
same picture as a bypass attachment along the thin diagonal arc in the “before”
picture; if we perturb it slightly to make that arc Legendrian, then it is not
hard to see that this neighborhood of the retrograde orbit really does contain
a bypass. In particular, retrograde saddle-saddle connections are equivalent to
bypass attachments.

Suppose that ¥ = S2, and that (X x I,¢) is tight with convex boundary.
Then we can perturb £ rel boundary so that there is a finite set of times ¢; when
Y has a retrograde saddle-saddle connection, and since I's;, must be connected
there cannot be any degenerate closed orbits: Giroux showed that these cause
the death or birth of a pair of nondegenerate closed orbits, which would change
#I's,,. Every other surface ¥; = ¥ x {¢} must be convex, since (X;)¢ satisfies the
Poincaré—Bendixson property. This means that we can construct £ by taking a
contact structure in which every ¥; is convex and attaching a series of bypasses;
last time we observed that these must all be trivial bypasses. Thus it remains to
be seen that if we take a convex S? and attach a bypass B, then a neighborhood
of S2U B is diffeomorphic to S? x I where each S? x {t} is convex. This justifies
the claim that trivial bypasses really are trivial, at least on S2.

Proposition 7. Let D be a neighborhood of a retrograde orbit v in an S? in a
tight contact structure & for which all singular points are isolated and no other
arcs of (52)5 connect pairs of hyperbolic points. Then D x I can be isotoped rel
boundary so that each D x {t} is convexr.

Proof. Let p+ be the hyperbolic points of each sign at either end of . If 4 is
the other half of the stable separatrix of p,, then by the Poincaré-Bendixson
property, 4" limits to either a singular point, a closed orbit, or a poly-cycle. The
closed orbit cannot exist because £ is tight, and no vertex of a limit poly-cycle
can be elliptic, but a poly-cycle in S? cannot have two connected hyperbolic
vertices by assumption so 4 must in fact limit to a singular point, and this



point is then positive elliptic; call it e;. Similarly, the other half of the unstable
separatrix of p_ limits to a negative elliptic point e_. We can include these
points in the disk D and arrange D so that D¢ has no other singularities:

We will focus on a neighborhood D’ of the flow line connecting e_ to h_.
Since there are only finitely many unstable separatrices of negative hyperbolic
points, we can make D’ small enough so that it misses all of them except the
ones emanating from h_, and the one which leaves D’ never returns. If this
neighborhood were embedded in the negative region of a convex surface % C
3 xR, one could find a perturbation of D’ rel boundary so that the characteristic

foliation changes inside D’ as follows:
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But on the other hand we don’t actually need X to be convex, because the char-
acteristic foliation determines the contact structure in a neighborhood of &, so
we can always change the foliation in this way. This is called the Elimination
Lemma, because it allows us to eliminate pairs of elliptic and hyperbolic sin-
gularities of the same sign from a characteristic foliation, and we have already
implicitly proved it by Giroux flexibility: in a neighborhood D’ x I where our
disk is at D’ x {0}, we can find some isotopy ¢5 sending (x,0) to (x, f(x)) where
graph(f) has the desired foliation, and we can fix f = 0 outside D’.

For our situation we need a stronger version of the Elimination Lemma,

however, since we want to isotope D’ x I rel boundary so that no surface ¢ (D’ x

{t}) has a retrograde orbit. In order to do so, let ¢ : (—¢,€) — [0, 1] be an even,
compactly supported bump function with ¢(0) = 1, and define the isotopy

¢s(@,t) = (2,0 + () f ().

(We need to check that this is well-defined, but & (t+4(t) f(z)) = 144/ (t) f () >
0 as long as we rescale f to make it sufficiently small.) We will also arrange f
and (S?)¢ so that the horizontal line through e_ and p_ is a union of flow lines
of ¢s(D x {0}) at all times, and that the orbit leaving D’ along e_ does not
connect to another hyperbolic point.

This isotopy certainly fixes the boundary of D’ x I and eliminates e_ and
h_ in D’ x {0}, so that ¢1(D x {0}) no longer has a retrograde orbit. We may
have introduced new retrograde orbits in other disks ¢1(D x {t}) by accident,




however, so we need to check that this does not happen. But at all times around
t = 0 where ¢1(D’ x {t}) has no more negative hyperbolic points, this cannot
happen because only the horizontal flow line can connect to a hyperbolic point,
namely h,, and as we follow it left out of D’ it not limit to another hyperbolic
point. Otherwise, when ¢ (D’ x {t}) still has a hyperbolic point coming from
h_, we know that the unstable separatrix of h_ will connect to an elliptic point
because it was already redirected away from h, in the first place.

Since our isotopy ¢1 eliminates the retrograde orbit from D x I, we conclude
that the image of every surface S? x {t} will be convex, as desired. O

Theorem 8. Any two tight contact structures &,&' on S? x I with the same
characteristic foliation on S? x 01 are isotopic rel boundary.

Proof. We have shown that each contact structure can be isotoped rel boundary
so that every surface S? x {t} is convex in both ¢ and ¢’. Now change &' by
a continuous isotopy fixing S? x 9I so that each dividing curve on S? x {t} is
brought to the dividing curve of £ on S? x {t}. Since the two contact structures
are convex at every level and divided by the same family of curves, they are
isotopic rel boundary. O

Theorem 9. Up to isotopy, there is a unique tight contact structure on B3 with
convex boundary and a given characteristic foliation on OB>. There is a unique
tight contact structure up to isotopy on each of S3, R?, and S' x S2.

Proof. We know tight contact structures exist on each of these. Given two
tight contact structures &, & on B? with the same characteristic foliation on the
boundary, we can find contactomorphic Darboux balls B, B’ C B? and remove
them one at a time. The remaining contact manifolds are £|g2+; and &'|s2x7,
and both are tight with the same characteristic foliation on S§2 x I, so they are
isotopic and this extends over B and B’.

Suppose there are two tight contact structures £, £’ on S3. Remove contac-
tomorphic Darboux balls from each; the complements are tight contact balls,
hence they are isotopic as well.

For &,¢" on R3, given n > 0 we can let ¥ and ¥’ be perturbations of the
sphere of radius n which are convex for £ and &’ respectively, and by Giroux
flexibility we can arrange for them to have the same characteristic foliations.
We identify invariant neighborhoods of ¥ and ¥’ by a contact isotopy for all
n > 0, and similarly for Darboux balls centered at the origin, and then the
regions between the neighborhoods of ¥ at radii n and n + 1 (and likewise for
¥') are tight S? x I with convex boundaries, hence they are all isotopic as well.

Finally, for £,¢ on S x S? we take convex perturbations of a sphere ¥ =
{x} x S? with the same characteristic foliation. The complement of a standard
neighborhood of ¥ is a tight S? x I with a fixed boundary, hence is unique up
to isotopy. U

Finally, we note as a corollary that trivial bypasses are trivial when attached
to any convex surface, not just S2.



Proposition 10. Let ¥ be a convex surface and B a trivial bypass attached
along some arc a C %. Then a neighborhood of ¥ U B is contactomorphic rel
boundary to (X x I,€) in which every ¥ x {t} is convex.

Proof. Cut out a small disk D around a which contains the disk cobounded
by « and one of the dividing curves; we can realize 0D as a Legendrian curve
so that D is convex, and by Giroux’s criterion it has a tight neighborhood.
The Right-to-Life Principle says that we can find a trivial bypass along « in a
vertically invariant neighborhood of D, which is also tight, so a neighborhood of
the union of D and the trivial bypass is a topological D x I with a tight contact
structure. But the tight contact structure on D x I =2 B3 is unique (given the
characteristic foliation along its boundary), so we can isotope it fixing D x I
so that each D x {t} becomes convex. This isotopy extends trivially to all of
¥ x I, and it follows that each X x {¢} becomes convex as well. O
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