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Last time, when we wanted to destabilize a Legendrian unknot with tb < −1,
we found a disk with corners ∆′ that we could cut out of a Seifert surface to
realize this destabilization. This disk turns out to be a fundamental object in
convex surface theory called a bypass. We will examine the effect of gluing them
to convex surfaces to see how the dividing sets can change, but first we need to
figure out how dividing sets on a surface with corners change when we round
those corners.

Lemma 1. Let Σ and Σ′ be convex surfaces in (M, ξ) which intersect trans-
versely along the Legendrian knot K. Then points of ΓΣ and ΓΣ′ alternate along
K.

Proof. We can assume that tw(K,Σ) = tw(K,Σ′) = −n with n > 0, or else
neither dividing set intersects K. Then K has a neighborhood contactomorphic
to a neighborhood of {(0, 0)} × S1 in R2 × S1, with contact form

ξ = ker(cos(nθ)dx− sin(nθ)dy).

Furthermore, we can choose coordinates near K so that Σ is the half-plane
{x ≥ 0, y = 0} and Σ′ is the half-plane {x = 0, y ≥ 0}; since ∂x and ∂y are
contact vector fields, both Σ and Σ′ are indeed convex.

On Σ the dividing curves are the points where ∂x ∈ ξ|Σ, i.e. where cos(nθ) =

0, so K ∩ ΓΣ is the set of points (0, 0, (2k+1)π
2n ); likewise, the dividing set ΓΣ′ is

the set where ∂y ∈ ξ|Σ′ , or equivalently sin(nθ) = 0, so K ∩ ΓΣ′ = (0, 0, kπn ).
These sets of points alternate along K, as desired.

Proposition 2 (Edge rounding). Let Σ and Σ′ be convex surfaces intersecting
transversely at a right angle along the Legendrian knot K ⊂ ∂Σ∩∂Σ′. Then we
can smooth Σ∪Σ′ in a neighborhood of K so that the dividing curves on Σ∪Σ′

turn right as they approach K, as seen from “outside” the right angle.

Proof. Fix the model neighborhood of the previous lemma and a suitably small
r > 0, and replace Σ ∪ Σ′ within the cylinder around K of radius r by the
quarter-cylinder

C = {(x, y, θ) | (x− r)2 + (y − r)2 = r2}.
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Along points (x, y, θ) of C, the unit vectors pointing toward (r, r, θ) define a
contact vector field v which interpolates between ∂x along Σ and ∂y along Σ′,
and v is transverse to C, so the dividing set Γ is defined by the condition v ∈ ξ,
which along C is equivalent to

v = sin(nθ)∂x + cos(nθ)∂y.

We can see that these curves connect each arc of ΓΣ to the next arc of ΓΣ′ to its
right along K (viewed along an arc of ΓΣ as it approaches K), and vice versa.

We remark that the rounded surface and associated contact vector field in
this proof are not smooth, but they are C1 and we can perturb them slightly
to make them smooth. Since the dividing curves are determined by C1 data,
namely the singularities and flow lines of the characteristic foliation, this does
not change the result.

Definition 3. Let Σ ⊂ (M, ξ) be a convex surface, and let a ⊂ Σ be a Legen-
drian arc which intersects ΓΣ in three points, including both points of ∂a. A
bypass for Σ along a is a convex half-disk D with Legendrian boundary, inter-
secting Σ transversely along a and satisfying tb(∂D) = −1.

It follows that ΓD is a single arc with both endpoints on the interior of
a. By Giroux flexibility we can fix the characteristic foliation to have elliptic
singularities at all three points of a∩ ΓΣ and a hyperbolic singularity along the
interior of ∂D\a:

Note that this is exactly the form of the disk ∆′ we used above to destabilize a
tb < −1 unknot. If D is oriented, then the sign of the bypass is the sign of the
singularity along int(a).

Theorem 4. Let Σ be a convex surface and attach a bypass D along some arc
a ⊂ Σ. Isotoping Σ across D has the following effect on the dividing curves ΓΣ:

Proof. Extend a to a simple closed curve γ in a neighborhood of a which is trans-
verse to ΓΣ and use the Legendrian realization principle to make γ Legendrian;
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in fact, we can foliate a neighborhood N(γ) = γ × [−ε, ε] ⊂ Σ by Legendrian
curves parallel to γ. Glue a vertically invariant neighborhood N(γ)× [0, 1] onto
Σ along N(γ)× {0}, and then glue D × [−ε, ε] to N(γ)× {1} along a× [−ε, ε].
The theorem now follows from several applications of the edge rounding lemma,
though we must be careful about rounding the corners ∂a× {±ε}.

For example, let Σ be a convex surface in a tight contact manifold. There are
two ways in which the attaching arc of a bypass can intersect the same dividing
curve at two consecutive points:

The first of these does not change the isotopy class of ΓΣ, so it is called a trivial
bypass, while the second cannot exist by Giroux’s criterion. If Σ is a sphere,
then ΓΣ is connected and so there are only two possible attaching arcs up to
isotopy:

The first of these is a trivial bypass, and the second one is forbidden, so every
attaching arc of a bypass on a convex sphere in a tight contact structure looks
like the picture on the left. Information like this about the existence of bypasses
will be extremely useful in studying tight contact structures.

In general bypasses are hard to find, but there are some situations where this
is not the case. For example, the idea of the proof of the following proposition
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was already used once, when we showed that Legendrian unknots with tb < −1
can be destabilized.

Proposition 5 (Imbalance Principle). Let Σ ⊂ (M, ξ) be a convex annulus with
Legendrian boundary K0 tK1, and suppose that |ΓΣ ∩K0| < |ΓΣ ∩K1| and ΓΣ

is disconnected. Then Σ contains a bypass along K1.

Proof. There must be two points of ΓΣ ∩K1 which are connected to each other
by an arc γ of ΓΣ, so that γ cuts off a disk D from Σ. Passing to an outermost
arc, we may assume that there are no dividing curves on the interior of D, and
then take D′ to be a slightly larger disk. We can Legendrian realize the arc
∂D′\∂Σ, since it is nonisolating, and then D′ is a bypass.

Proposition 6 (Right-to-Life Principle). Let (M, ξ) be tight, and suppose that
a ⊂ Σ is an arc which corresponds to a trivial bypass move. Then there exists a
bypass along a in any vertically invariant neighborhood of Σ.

Proof. Complete a to a simple closed curve γ0 which shares an arc δ of γ0\ΓΣ

with a smaller simple closed curve γ1 as shown below:

Since γ0 ∪ γ1 is non-isolating, we can use the Legendrian Realization Principle.
Then (γ0 × {0})∪ (γ1 × {1}) is Legendrian in Σ×R, so we can find an annulus
A bounded by these curves and perturb it to be convex. The dividing set on
A intersects γ0 in four points but only intersects γ1 twice, so by the Imbalance
Principle, A contains a bypass D along γ0.

The product region δ × I of A is vertically invariant, and δ × {t} intersects
the dividing set of Σ × {t} exactly at the endpoints, so ΓA ∩ (δ × I) consists
of a single vertical arc. Thus the attaching arc α of the bypass D must not
intersect the interior of δ. But then there are only two possibilities for α: one
corresponds to a forbidden bypass, and the other is the arc a, as desired.

We will show that trivial bypasses really are trivial: in other words, attaching
a trivial bypass to a convex surface does not change the contact structure in a
neighborhood of that surface. In order to do that, we first need the following
fact about families of convex surfaces.

Proposition 7. Suppose that Σ × I has two contact structures ξ0, ξ1 which
induce the same characteristic foliation on Σ× ∂I and for which every surface
Σt = Σ × {t} is convex and divided by a multicurve Γt. Then ξ0 and ξ1 are
isotopic rel boundary.
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Proof. Each ξi has contact form αi = ηit + f itdt, where we can take η0
0 = η1

0

and η0
1 = η1

1 , and since dαi = dηit − η̇it ∧ dt + df it ∧ dt, the contact condtion
αi ∧ dαi > 0 is equivalent to

f itdη
i
t + ηit ∧ (df it − η̇it) > 0.

Since each Σt is convex, we can find a smooth family of functions git on Σ which
vanish to first order along Γt and which satisfy

gitdη
i
t − dgit ∧ ηit > 0,

following our proof that surfaces with dividing sets are convex, and we can also
take g0

t = g1
t for t = 0, 1. At each time t, the functions git both vanish to

first order on Γt and have sign ±1 on (Σt)±, so their quotient is a well-defined
positive function on all of Σ. In particular, we can check that

g0d

(
g0

g1
η

)
− dg0 ∧

(
g0

g1
η

)
=

(
g0

g1

)2

(g1dη − dg1 ∧ η)

at any time t, and so if we replace α1 with the contact form

α′1 = (η′t)
1 + (f ′t)

1dt :=
g0
t

g1
t

(
η1
t + f1

t dt
)

for ξ1 then we can take g0
t = g1

t and the condition η0
t = η1

t for t ∈ {0, 1} still
holds.

Now for each i and a sufficiently large constant λ we have a family of contact
forms

αis = ηit + ((1− s)f it + sλgt)dt,

since αis is contact near s = 0 and αis ∧ dαis is dominated by sλ(gtdη
i
t− dgt ∧ ηit)

away from s = 0. Thus by an isotopy through contact forms we can replace
each αi by the form

αi = ηit + λgtdt.

Finally, we interpolate between these using the isotopy

αs = ((1− s)η0
t + sη1

t ) + λgtdt.

Again αs ∧ dαs is dominated by

λ
(
(1− s)(gtdη0

t − dgt ∧ η0
t ) + s(gtdη

1
t − dgt ∧ η1

t )
)
∧ dt,

so if λ� 0 then these are all contact forms and now Gray stability gives us the
desired contact isotopy.
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