Math 273 Lecture 21

Steven Sivek

April 13, 2012

At the beginning of the course, we used open book decompositions to show that every closed 3 -manifold admits a contact structure. There is a strong relationship between these two notions, due to Giroux [1], which we will now investigate; first, we recall some definitions as well as Thurston and Winkelnkemper's proof that contact structures exist.

Definition 1. An open book decomposition of a closed 3-manifold Y is a pair $\left(B, \pi: Y \backslash B \rightarrow S^{1}\right)$, where $B \subset Y$ is an oriented link called the binding and π is a fibration. The fibers $\pi^{-1}(\theta)$ are the interiors of compact surfaces Σ_{θ} called pages, which satisfy $B=\partial \Sigma_{\theta}$ for all θ.

Theorem 2 ([3]). An open book decomposition (B, π) gives rise to a contact structure on Y.

Proof (sketch). Let Σ be the page of the open book, and write $Y \backslash N(B)$ as the mapping torus of $h: \Sigma \rightarrow \Sigma$. Take a 1-form λ on Σ such that $d \lambda$ is an area form and $\lambda=(1+t) d \theta$ on a neighborhood $[-1,0]_{t} \times S_{\theta}^{1}$ of each component of $\partial \Sigma$; the space of all such λ is convex and nonempty. Then the 1 -form

$$
\alpha=\phi \lambda+(1-\phi) h^{*} \lambda+K d \phi
$$

is a contact form on $\Sigma \times[0,1]_{\phi}$ for K large, and it descends to a contact form on the mapping torus $Y \backslash N(B)$. Near $\partial N(B)$ it is equal to $(1+t) d \theta+K d \phi$.

Now on each solid torus component $S_{\theta}^{1} \times D_{(r, \phi)}^{2}$ of $N(B)$, we need to identify a contact form α which is equal to $(2-r) d \theta+K d \phi$ near $r=1$; we will take $\alpha=f(r) d \theta+g(r) d \phi$ for some functions f and g which equal $2-r$ and K respectively near $r=1$. We pick f and g to satisfy $f(r)=1$ and $g(r)=r^{2}$ near $r=0$ and then choose any extension of (f, g) over the rest of $[0,1]$ which satisfies $f g^{\prime}-g f^{\prime}>0$; this is equivalent to the contact condition $\alpha \wedge d \alpha>0$, so we are done.

Near any component of the binding B we have $\alpha=d \theta+r^{2} d \phi$, where B given in coordinates by $r=0$ and ∂_{θ} is tangent to B with the same orientation it inherits as $\partial \Sigma_{\theta}$. Since $\alpha\left(\partial_{\theta}\right)=1, B$ is a positively transverse link. Furthermore, on any page Σ_{θ} we have $\left.d \alpha\right|_{\Sigma_{\theta}}=\phi d \lambda+(1-\phi) h^{*} d \lambda$, which is an area form because both $d \lambda$ and $h^{*} d \lambda$ are. We describe these properties as follows:

Definition 3. A contact structure ξ on Y is supported by the open book (B, π) if up to isotopy it admits a contact form α such that B is a positively transverse link and $d \alpha$ is a positive area form on each page Σ_{θ}.

Thus Theorem 2 actually provides a contact structure supported by the given open book.

Example 4. Consider S^{3} as the unit sphere in \mathbb{C}^{2}, with the standard contact form $\alpha=r_{1}^{2} d \theta_{1}+r_{2}^{2} d \theta_{2}$. The positive Hopf link $H \subset S^{3}$ can be expressed as the zero set of the polynomial $f\left(z_{1}, z_{2}\right)=z_{1} z_{2}$, and then the map

$$
\pi\left(z_{1}, z_{2}\right)=\frac{z_{1} z_{2}}{\left|z_{1} z_{2}\right|}
$$

defines a fibration $\pi: S^{3} \backslash H \rightarrow S^{1}$. Each page $\Sigma_{\phi}=\pi^{-1}(\phi)$ can be parametrized by a map

$$
f(r, \theta)=(\sqrt{t}, \theta, \sqrt{1-t}, \phi-\theta)
$$

in polar coordinates, i.e. $z_{1}=\sqrt{t} e^{i \theta}$ and $z_{2}=\sqrt{1-t} e^{i(\phi-\theta)}$; here $0<t<1$ and $\theta \in S^{1}$, so the pages are annuli. Then

$$
f^{*} \alpha=t d \theta+(1-t)(-d \theta)=(2 t-1) d \theta
$$

and so $f^{*} d \alpha=2 d t \wedge d \theta$, which is an area form on $[0,1]_{t} \times S_{\theta}^{1}$, so $d \alpha$ is an area form on each page. Furthermore, the components $\left\{r_{1}=0\right\}$ and $\left\{r_{2}=0\right\}$ of H have oriented tangent vectors $\partial_{\theta_{2}}$ and $\partial_{\theta_{1}}$ respectively, at which points $\alpha\left(\partial_{\theta_{2}}\right)=r_{2}^{2} \iota_{\partial_{\theta_{2}}} d \theta_{2}=1$ and $\alpha\left(\partial_{\theta_{1}}\right)=r_{1}^{2} \iota \iota_{\theta_{1}} d \theta_{1}=1$ are positive. Thus (H, π) supports the standard tight contact structure ξ_{st} on S^{3}.

Exercise 5. Show that the open book decomposition of S^{3} whose binding is the unknot $U=\left\{r_{1}=0\right\}$ and whose pages are the disks $\left\{\theta_{1}=\right.$ const. $\}$ also supports $\xi_{\text {st }}$.

Proposition 6. Let ξ and ξ^{\prime} be contact structures supported by the same open book (B, π). Then ξ is isotopic to ξ^{\prime}.

Proof. We will first construct isotopies of these contact structures so that they have sufficiently nice contact forms. Apply an isotopy so that ξ has a contact form α with the desired properties. Then we let $d \phi$ be an area form on S^{1} and pull it back to get a form $\pi^{*} d \phi$ on $Y \backslash B$. In a neighborhood $N=S^{1} \times D^{2}$ of any component B_{i} of the binding, we can choose coordinates $(\theta,(r, \phi))$ so that $d \phi$ agrees with the form $\pi^{*} d \phi$, and since $\alpha\left(\partial_{\theta}\right)>0$ along B_{i} we can also insist that $\alpha\left(\partial_{\theta}\right)>0$ on all of N by possibly shrinking it. Take $\epsilon>0$ small enough that the solid torus $N^{\prime}=\{r<\epsilon\}$ lies inside N, and define a smooth nondecreasing function $f:[0, \epsilon] \rightarrow[0,1]$ so that $f(r)=r^{2}$ near $r=0$ and $f(r)=1$ near $r=\epsilon$. Then f defines a function on N^{\prime} which we can extend to all of Y by letting $f=1$ outside any of the solid tori N^{\prime}.

For any $t \geq 0$, we define a new 1-form $\alpha_{t}=\alpha+t f(r) d \phi$. We can check that

$$
\alpha_{t} \wedge d \alpha_{t}=\alpha \wedge d \alpha+t f(r) d \phi \wedge d \alpha+t \alpha \wedge d f \wedge d \phi
$$

Note that $t f(r) d \phi \wedge d \alpha \geq 0$, because $d \alpha$ is a volume form on each page and $d \phi$ is dual to a vector which is positively transverse to each page. Furthermore, $\alpha \wedge d f \wedge d \phi$ is zero outside the neighborhoods N^{\prime} (where $d f=0$) and equal to $t f^{\prime}(r) \cdot \alpha \wedge d r \wedge d \phi$ on N^{\prime}; since $d r \wedge d \phi$ is nonnegative on D^{2} and zero on ∂_{θ}, while $\alpha\left(\partial_{\theta}\right)>0$, we conclude that $t \alpha \wedge d f \wedge d \phi \geq 0$ as well. Therefore α_{t} is actually a contact form for any $t>0$, and since $\alpha=\alpha_{0}$ these all define contact structures isotopic to ξ. We use the same construction, with the same neighborhoods N^{\prime} of B, to find contact forms α_{t}^{\prime} for ξ^{\prime} up to isotopy.

Finally, we take t to be very large and define an isotopy from ξ to ξ^{\prime} by the family of contact forms $\alpha_{s}=(1-s) \alpha_{t}+s \alpha_{t}^{\prime}$. Then we compute

$$
\alpha_{s} \wedge d \alpha_{s}=\left[(1-s)^{2} \alpha_{t} \wedge d \alpha_{t}+s^{2} \alpha_{t}^{\prime} \wedge d \alpha_{t}^{\prime}\right]+s(1-s)\left[\alpha_{t} \wedge d \alpha_{t}^{\prime}+\alpha_{t}^{\prime} \wedge d \alpha_{t}\right]
$$

and the first term in brackets is clearly positive, so we must show that the second term in brackets is nonnegative. Outside the neighborhoods N^{\prime}, where $f=1$ and $d f=0$, we have

$$
\alpha_{t} \wedge d \alpha_{t}^{\prime}+\alpha_{t}^{\prime} \wedge d \alpha_{t}=(\alpha+t d \phi) \wedge d \alpha^{\prime}+\left(\alpha^{\prime}+t d \phi\right) \wedge d \alpha=t d \phi \wedge\left(d \alpha+d \alpha^{\prime}\right)+O(1)
$$

which is positive for t large enough. Inside the neighborhoods N^{\prime}, we have

$$
\begin{aligned}
\alpha_{t} \wedge d \alpha_{t}^{\prime}+\alpha_{t}^{\prime} \wedge d \alpha_{t} & =(\alpha+t f d \phi) \wedge\left(d \alpha^{\prime}+t f^{\prime} d r \wedge d \phi\right)+\left(\alpha^{\prime}+t f d \phi\right) \wedge\left(d \alpha+t f^{\prime} d r \wedge d \phi\right) \\
& =t\left(f^{\prime} \cdot\left(\alpha+\alpha^{\prime}\right) \wedge d r \wedge d \phi+f d \phi \wedge\left(d \alpha+d \alpha^{\prime}\right)\right)+O(1)
\end{aligned}
$$

Note that f^{\prime} and f are both nonnegative. Near $r=0$ we have $f^{\prime} d r \wedge d \phi=$ $2 r d r \wedge d \theta$, which is a positive area form on D^{2} and so the first term in parentheses is positive; then away from $r=0$ we have $f>0$ and so the second term is positive. Thus for t large enough this form is positive on all of N^{\prime}, and so α_{s} is a contact form for $0 \leq s \leq 1$. We conclude that it gives the desired isotopy between ξ and ξ^{\prime}.

We have now shown that every open book decomposition of Y supports a unique contact structure up to isotopy. The Giroux correspondence provides a converse: every contact structure is supported by an open book, and furthermore if two open books support the same contact structure then they are related by a series of moves called positive stabilizations. Before proving this, we will consider some equivalent ways to describe the contact structure supported by an open book.

Proposition 7. The contact structure (Y, ξ) is supported by the open book (B, π) if and only if up to isotopy, ξ admits a contact form whose Reeb vector field R is positively tangent to B and positively transverse to the pages of π.

Proof. Suppose we have a contact form α with such a Reeb vector field R, and recall that $\alpha(R)=1$ and $\iota_{R} d \alpha=0$ by definition. Then $\alpha(R)>0$ along B, so B is a positively transverse link. At any point p on a page Σ_{θ}, we have $\iota_{R}(\alpha \wedge d \alpha)=\left(\iota_{R} \alpha\right) d \alpha-\alpha \wedge \iota_{R} d \alpha=d \alpha$, and so given a positive basis $\left(v_{1}, v_{2}\right)$ for $T_{p} \Sigma_{\theta}$ we have

$$
d \alpha\left(v_{1}, v_{2}\right)=(\alpha \wedge d \alpha)\left(R, v_{1}, v_{2}\right)>0
$$

so $d \alpha$ is an area form on Σ_{θ}. Therefore (B, π) supports $\xi=\operatorname{ker}(\alpha)$.
Conversely, suppose that (Y, ξ) is supported by (B, π), so that there is a contact form α for which B is positively transverse and $d \alpha$ is positive on each page. Let R be the Reeb vector field of α. Then at any point on a page, the fact that $\iota_{R}(\alpha \wedge d \alpha)=d \alpha$ is an area form on the page implies that R must be positively transverse to that page. Furthermore, on a neighborhood $S_{\theta}^{1} \times D^{2}$ of a component of B, we can write $R=a \partial_{\theta}+b \partial_{x}+c \partial_{y}$ where (x, y) are rectangular coordinates on D^{2}. If at $(x, y)=(0,0)$ we have $(b, c) \neq(0,0)$, then either b or c is nonzero on an entire neighborhood of the point $(\theta, 0,0)$. The oriented normal vectors to the pages $\Sigma_{0}, \Sigma_{\pi / 2}, \Sigma_{\pi}$, and $\Sigma_{3 \pi / 2}$ at points a distance ϵ away from B are given by $\partial_{y},-\partial_{x},-\partial_{y}$, and ∂_{x} respectively, and so these pages cannot be positively transverse to R in the respective cases $c<0, b>0, c>0$, and $b<0$. We conclude that in fact $(b, c)=(0,0)$ along B, so the Reeb vector has the form $R=a \partial_{\theta}$, and then $a \cdot \alpha\left(\partial_{\theta}\right)=\alpha(R)=1$ and $\alpha\left(\partial_{\theta}\right)>0$ together imply that $a>0$, so R is positively tangent to B.

Definition 8. Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be a polynomial with $f(0,0)=0$ and an isolated singularity at the origin. Then for $\epsilon>0$ small, the sphere S^{3} of radius ϵ centered at the origin admits a Milnor open book (B, π), where $B=f^{-1}(0) \cap S^{3}$ and $\pi: S^{3} \backslash B \rightarrow S^{1}$ is the Milnor fibration

$$
\pi\left(z_{1}, z_{2}\right)=\frac{f\left(z_{1}, z_{2}\right)}{\left|f\left(z_{1}, z_{2}\right)\right|}
$$

Proposition 9. A Milnor open book on S^{3} supports the tight contact structure.
Proof. We will give a proof in the case where f is homogeneous. Recall that the standard contact structure $\xi_{\text {st }}$ is given by $T S^{3} \cap i\left(T S^{3}\right)$ corresponding to the strictly plurisubharmonic exhaustion function $\phi\left(z_{1}, z_{2}\right)=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$ on B^{4}.

We wish to show that the Reeb vector field R is positively transverse to the pages of π, so first we must determine R; we will compute R for the boundary of a general Stein domain and then specialize to the case $S^{3}=\partial B^{4}$. Given an spsh function $\phi: X \rightarrow \mathbb{R}$ and complex structure J, the induced contact form on the level set ∂X is $\alpha=-d \phi \circ J$. Write the Reeb vector field in the form $R=J v$ for some vector v; then we have an induced metric $\langle x, y\rangle=d \alpha(x, J y)$ on X, so $\left(\iota_{R} d \alpha\right)(x)=d \alpha(J v, x)=-\langle x, v\rangle$. Since $\iota_{R} d \alpha=0$ on $T S^{3}$, the vector v must be orthogonal to all of $T(\partial X)$, hence it is a multiple of $\nabla \phi$. Furthermore, R satisfies $\alpha(R)=-d \phi(J R)=1$, so $\left\langle\nabla \phi,-J^{2} v\right\rangle=-1$ or simply $\langle\nabla \phi, v\rangle=1$. Therefore $R=J \frac{\nabla \phi}{|\nabla \phi|^{2}}$.

Next, we observe that

$$
\nabla \phi=\sum_{i=1}^{2}\left(x_{i} \partial_{x_{i}}+y_{i} \partial_{y_{i}}\right)
$$

so since f is homogeneous it follows that $d f(\nabla \phi)=(\operatorname{deg} f) f$. In particular, along the level set $B=f^{-1}(0)$ we have $d f(R)=d f\left(\frac{i}{|\nabla \phi|^{2}} \nabla \phi\right)=0$ because
$d f(\nabla \phi)=(\operatorname{deg} f) \cdot 0=0$, and so R is tangent to B. Next, by writing f in polar coordinates and taking logarithmic derivatives, we see that $d \pi=\operatorname{Im}\left(f^{-1} d f\right)$. We want to show that R is transverse to the pages of π, so it will suffice to show that $d \pi(R)>0$, or equivalently that $d \pi(i \nabla \phi)>0$ since the two differ by a factor of $|\nabla \phi|^{2}$. Now we can compute

$$
d \pi(i \nabla \phi)=\operatorname{Im}\left(f^{-1} d f(i \nabla \phi)\right)=\operatorname{Re}\left(f^{-1} d f(\nabla \phi)\right)=\operatorname{Re}(\operatorname{deg} f)=\operatorname{deg} f>0
$$

as desired. Therefore (B, π) supports $\xi_{\text {st }}$.
Now suppose f is not homogeneous. We replace $\phi\left(z_{1}, z_{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ with the function

$$
\psi\left(z_{1}, z_{2}\right)=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\frac{1}{c}\left|f\left(z_{1}, z_{2}\right)\right|^{2}\right)
$$

and let S^{3} be the level set $\psi^{-1}\left(\frac{r^{2}}{2}\right)$, where c and r are some positive constants. The Reeb vector field on S^{3} is now $R=i \frac{\nabla \psi}{|\nabla \psi|^{2}}$, where

$$
\nabla \psi=\nabla \phi+\frac{1}{c} f \nabla f
$$

and since $d \pi=\operatorname{Im}\left(f^{-1} d f\right)$ as before we have

$$
d \pi(R)=\frac{1}{|\nabla \psi|^{2}} \operatorname{Re}\left(f^{-1} d f\left(\nabla \phi+\frac{1}{c} f \nabla f\right)\right)=\frac{1}{|\nabla \psi|^{2}} \operatorname{Re}\left(\frac{d f(\nabla \phi)}{f}+\frac{d f(\nabla f)}{c}\right) .
$$

Since $d f(\nabla f)=|\nabla f|^{2}$ and $\frac{1}{c}=\frac{r^{2}-|z|^{2}}{|f|^{2}}$ along $S^{3}=\psi^{-1}\left(\frac{r^{2}}{2}\right)$, we conclude that up to a factor of $|\nabla \psi|^{2}, d \pi(R)$ is the real part of

$$
\frac{d f(\nabla \phi)}{f}+\left(r^{2}-|z|^{2}\right)\left|\frac{\nabla f}{f}\right|^{2} .
$$

We leave it as an exercise to show that this quantity can also be made positive on $S^{3} \backslash f^{-1}(0)$ by taking r sufficiently small and c sufficiently large compared to r.

References

[1] Emmanuel Giroux, Contact structures and symplectic fibrations over the circle, notes from the summer school "Holomorphic curves and contact topology, Berder, June 2003", available at http://web.archive.org/web/20040828230626/http://www-fourier.ujfgrenoble.fr/~eferrand/giroux3.ps.
[2] Emmanuel Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing, 2002.
[3] W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347.

