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Let p > ¢ > 0 and suppose that ,g = [ro,71,...,7k], where this notation
represents the continued fraction

and r; < —2 for all 7. Last time we proved that there is an injective map
moTight (8! x D%, —2) = mTight™™ (T2 x I, -2, ~1)
q q

and that the latter set was finite; our goal this time is to relate this to the set of
tight contact structures on a lens space and determine the size of each of these
sets.

Definition 1. The lens space L(p, ¢) is the 3-manifold constructed by gluing
solid tori Vj and V; along their boundaries via the orientation-reversing map
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where pq’ — gp’ = 1. (Any two choices of (p’,¢’) differ by a Dehn twist along V;
and hence produce the same manifold.) It sends a meridian (1,0)7 of 9V; to
the curve (—q,p)T C V4, so it is easy to see that 71 (L(p,q)) = Z/pZ.

Proposition 2. Let —%: = [ro,71,...,7k + 1]. Then there is an injective map
/
moTight(L(p, q)) < meTight(S* x D? —Zi/)
q

Proof. Let & be a tight contact structure on L(p,q) and let v be a Legendrian
curve which is topologically isotopic to the core of V) and has negative twisting
number n. Shrinking Vj if necessary, we realize it as a standard neighborhood
of v with two dividing curves on its boundary of slope % Since 9V = 0V, this
means that 0V; has two dividing curves in the homology class
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plaltp e respect to V1, which is strictly between —2 and —%,
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i.e. of slope —

and we have , ,
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where the last inequality follows from the fact that 1 < g < 00 and £ is

3

connected to p—: by an edge of the Farey tessellation.
As before, we can find a convex torus in V; parallel to 9V; with two dividing
curves of slope —1, and this torus bounds a solid torus N C V; whose contact

structure is unique up to isotopy. On the complement V;\N = T2 x I, however,
pln|+p’
qlnl+q’

¢ has boundary slopes — and —1, and since _% lies in between them we

can find another convex torus 7' C N parallel to 0V of slope —5—;.
If we now use the torus T to redefine the splitting L(p, q) = VoUV4, it follows
that

/
€|y, € Tight(S! x D2, -L).

/

The boundary slope on Vj is given by
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so Vy is a solid torus with boundary slope co, meaning 0V, has two longitudinal

dividing curves. But this means that |y, is unique up to isotopy rel boundary,
so the contact structure £|y, determines £ uniquely. O

It follows now that

|moTight(L(p, )| <

/
7o Tight™™ (T2 x I, —%, —1)’ 7

so we will now work to improve our upper bound on the latter quantity by
showing that certain basic slices “commute” just as different stabilizations of a
Legendrian knot do. Recall that given any m > 1 and a tight contact structure
€ € Tight™™(T2 x I, —m, —1), we know how to decompose

T? x I=2(T? x [1,2)) U(T? x [2,3))U...U(T? x [m — 1,m]),

where each T2 x [i,i + 1] is a basic slice with boundary slopes sg = —i and
s1 = —(i+1). Since there are two basic slices for each pair of boundary slopes,
this gave us an upper bound of 2™~! possibilities for &.

Lemma 3. |mTight™"(T2 x I, —m, —1)| = m.

Proof. We will apply the change of basis

< ) m_+11 ) € SL,(Z)



to change each slope —% to —m, so that we can describe these contact
structures in terms of Legendrian knots. We construct each contact structure
the following way: start with a standard neighborhood N of a tb = —1 Leg-
endrian unknot U C (53,&), take a positive stabilization U, or a negative
stabilization U_ inside N, identify a standard neighborhood N’ of this stabi-
lization and remove it from N. The result is a tight contact structure on 72 x I
with boundary slopes —% and —%, and since the destabilization corresponds to
pushing Uy across a bypass it is easy to see that this contact structure is a
basic slice. The basic slices corresponding to U, and U_ are not isotopic rel
boundary, however, or else the knots would be Legendrian isotopic even though
their rotation numbers are £1.

We can perform this process m — 1 times to factor a tight 72 x I with
boundary slopes —1 and —% into m — 1 basic slices, where if we have a knot K
at some step then we remove a standard neighborhood of Ky from a standard
neighborhood of K to get the next basic slice, and the choice of basic slice is
determined by the sign of the stabilization. The resulting contact structure on
T? x I is the solid torus N minus a standard neighborhood of an unknot U,,
isotopic to the core of N, with tb(U,,) = —m because we have obtained U,
by stabilizing U a total of m — 1 times. But we know that there are exactly
m Legendrian unknots with tb = —m, namely one for each possible rotation
number r = —m+ 1,—m + 3,...,m — 3,m — 1. We conclude that there are
exactly m contact structures on 72 x I with the specified boundary slopes. [

Proposition 4. |moTight™" (T2 x I, —L-DI<(=ro—1) ... (=rp—1—=1)(=7x),
where =5 = [ro, ..., ri].
Proof. By the same argument as in the above lemma, but with a more compli-

cated change of basis, there are exactly —r, minimally twisting contact struc-
tures on T2 x I with boundary slopes —% and

p/
—? = [TQ, ey Th—1, —1] = [7‘07 e, TE—1 T+ 1}.

Given an element of moTight™" (T2 x I, —%, —1), we identify and remove one
of these contact structures, leaving an element of 71'0Tightmi’“(T2 x I, —%:7 —-1),
and the proposition follows by induction on k. O

In particular, using the inequality |moTight(L(p,q))| < |7r0Tightmi“(T2 X
I, —%, —1)| where —% = [ro,71,. ..,k + 1], we have now shown that

|moTight(L(p, )| < (=ro—1) ... (=rk—1 — 1)(=rp — 1).

If we can show equality, then it will follow that the associated bounds for S* x D?
and minimally twisting T2 x I are tight as well, and in particular that

7o Tight(S* x D2, —§)| = (—ro—1) ... (—=rp_1 — 1)(~7).



We claim there are in fact [[(—r; — 1) tight contact structures on L(p, q),
and in fact that all of them can be obtained by Legendrian surgery.

Definition 5. Let K C S® be a knot, and identify a meridian i and a longitude
A on ON(K) where A lies in a Seifert surface for K. We perform Dehn surgery
on K with slope § by constructing a 3-manifold

Y = (S' x D*) Uy S3\N(K)

where the gluing map f : S x D? — ON(K) sends {*} x D? to the curve
ap 4 bA.

Example 6. The lens space L(p,q) can be constructed by —g—surgery on an
unknot in S3.

For nullhomologous knots a Seifert surface provides a canonical framing Ay,
but arbitrary Legendrian knots come with another preferred framing As: the
Thurston-Bennequin or contact framing specified by the oriented normal vectors
to K inside &. For a Legendrian knot in S3, this framing can be expressed as
)\tb = ib(K) s p+ )\2.

Definition 7. Let K C (Y,{) be Legendrian. A contact §-surgery (Y',¢’) on
K is constructed by performing a topological 7-surgery on K with respect to

the contact framing and extending the contact structure on Y\N(K) across
S1 x D? by a tight contact structure on S' x D?2.

Of course, we need to check that such a surgery is well-defined. For 7 = 0
this is impossible, because we would need a tight contact structure on S! x D?
with boundary slope 0, whereas any Legendrian curve on S! x 8D? parallel to
the dividing set would bound an overtwisted disk. On the other hand, if § = %
then this is uniquely defined: we can choose f to send {*} x dD? to u + n)y
and S x {*} to p+ (n — 1)\, and then the curve on S! x D? sent to My is
({*} x D?) — (S* x {*}). This means that the contact structure on S* x D?
should have two dividing curves of slope —1, and there is exactly one such
structure, so we conclude that contact %—surgery is well-defined for all n. (For
general % # 0 we will have to finish the classification of tight contact structures
on solid tori.)

Definition 8. A Legendrian surgery on a Legendrian knot K C Y is a contact
(—1)-surgery along K.

Legendrian surgery is particularly interesting because of its relation to sym-
plectic geometry. We will prove the following theorem next time.

Theorem 9. Let (X,w) be a Stein filling of (Y,€ = ker(a)) , i.e. Y = 0X and
wly =da. If (Y',£') is the result of Legendrian surgery on K CY, then there
is a 4-dimensional 2-handle H attached to X along K with framing tb(K) — 1
such that X U H is a Stein filling of Y.



Corollary 10. If Y is Stein fillable, then so is the result of any Legendrian
surgery on Y.

Now we will use Legendrian surgery to describe some Stein fillable contact
structures on L(p, q). Note first that performing the following “slam dunk” move
on a topological surgery diagram does not change the underlying manifold for
any n € Z and r € Q.
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Thus if —g = [ro,..., 7] then we can describe L(p, q) by the following surgery
diagram:

- (LLAH-96)

For each component K; of this link with coefficient r; < —2, we can realize K; as
a Legendrian knot with tb(K;) =r+1 < -1l and r(K;) € {r;+2,r;+3,...,r;—
3, —r; — 2}: there are —r; — 1 possible values of r(K;). The Legendrian surgery
on K is then topologically an r;-surgery, so Legendrian surgery on every Kj;
yields a Stein fillable (hence tight) contact structure on L(p, q).

Let (X,J) = B*UHyU...U Hj, be the Stein domain with boundary L(p, q)
constructed by this procedure. If h; € Hy(X,0X) is a cocore of Hy, then
(c1(X,J), h;) = r(K;) for each i [1]. But a theorem of Lisca and Matié¢ [2]
says that if two different Stein structures on X give isotopic contact structures
TY NJ(TY) onY = 0X, then their first Chern classes are identical, so every
choice of (r(Ky),...,r(K})) yields a distinct isotopy class of contact structure.
There are [[(—r; —1) such choices, hence at least that many tight (indeed, Stein
fillable) contact structures on L(p,q). Since this matches the upper bound we
have already established, we conclude:

'
Q1T

Theorem 11. Let p > q > 0 and write —% = [ro,...,rx]. Then the lens space

L(p, q) has exactly
(=ro—1)(=r1—1)...(—rx — 1)

tight contact structures up to isotopy, and each of them is Stein fillable.

Corollary 12. Ifp > q > 0, then the set moTight(S! x D2, f%’) has cardinality

(—7‘0 — 1) P (—Tk,1 — 1)(—Tk).
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