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Let p > q > 0 and suppose that −p
q = [r0, r1, . . . , rk], where this notation

represents the continued fraction

r0 −
1

r1 − 1

. . . 1
rk

and ri ≤ −2 for all i. Last time we proved that there is an injective map

π0Tight(S
1 ×D2,−p

q
)→ π0Tight

min(T 2 × I,−p
q
,−1)

and that the latter set was finite; our goal this time is to relate this to the set of
tight contact structures on a lens space and determine the size of each of these
sets.

Definition 1. The lens space L(p, q) is the 3-manifold constructed by gluing
solid tori V0 and V1 along their boundaries via the orientation-reversing map(

−q q′

p −p′
)
∈ −1 · SL2(Z)

where pq′ − qp′ = 1. (Any two choices of (p′, q′) differ by a Dehn twist along V1

and hence produce the same manifold.) It sends a meridian (1, 0)T of ∂V0 to
the curve (−q, p)T ⊂ ∂V1, so it is easy to see that π1(L(p, q)) = Z/pZ.

Proposition 2. Let −p′

q′ = [r0, r1, . . . , rk + 1]. Then there is an injective map

π0Tight(L(p, q)) ↪→ π0Tight(S
1 ×D2,−p

′

q′
).

Proof. Let ξ be a tight contact structure on L(p, q) and let γ be a Legendrian
curve which is topologically isotopic to the core of V0 and has negative twisting
number n. Shrinking V0 if necessary, we realize it as a standard neighborhood
of γ with two dividing curves on its boundary of slope 1

n . Since ∂V0 = ∂V1, this
means that ∂V1 has two dividing curves in the homology class(

−q q′

p −p′
)(

n
1

)
=

(
−qn+ q′

pn− p′
)
,
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i.e. of slope −p|n|+p′

q|n|+q′ with respect to V1, which is strictly between −p
q and −p′

q′ ,
and we have

−p
q
< −p|n|+ p′

q|n|+ q′
< −p

′

q′
≤ −1

where the last inequality follows from the fact that 1 < p
q < ∞ and p

q is

connected to p′

q′ by an edge of the Farey tessellation.
As before, we can find a convex torus in V1 parallel to ∂V1 with two dividing

curves of slope −1, and this torus bounds a solid torus N ⊂ V1 whose contact
structure is unique up to isotopy. On the complement V1\N ∼= T 2× I, however,
ξ has boundary slopes −p|n|+p′

q|n|+q′ and −1, and since −p′

q′ lies in between them we

can find another convex torus T ⊂ N parallel to ∂V1 of slope −p′

q′ .
If we now use the torus T to redefine the splitting L(p, q) = V0∪V1, it follows

that
ξ|V1
∈ Tight(S1 ×D2,−p

′

q′
).

The boundary slope on V0 is given by(
−q q′

p −p′
)−1(

q′

−p′
)

=

(
0
1

)
,

so V0 is a solid torus with boundary slope∞, meaning ∂V0 has two longitudinal
dividing curves. But this means that ξ|V0 is unique up to isotopy rel boundary,
so the contact structure ξ|V1

determines ξ uniquely.

It follows now that

|π0Tight(L(p, q))| ≤
∣∣∣∣π0Tight

min(T 2 × I,−p
′

q′
,−1)

∣∣∣∣ ,
so we will now work to improve our upper bound on the latter quantity by
showing that certain basic slices “commute” just as different stabilizations of a
Legendrian knot do. Recall that given any m > 1 and a tight contact structure
ξ ∈ Tightmin(T 2 × I,−m,−1), we know how to decompose

T 2 × I ∼= (T 2 × [1, 2]) ∪ (T 2 × [2, 3]) ∪ . . . ∪ (T 2 × [m− 1,m]),

where each T 2 × [i, i + 1] is a basic slice with boundary slopes s0 = −i and
s1 = −(i+1). Since there are two basic slices for each pair of boundary slopes,
this gave us an upper bound of 2m−1 possibilities for ξ.

Lemma 3. |π0Tight
min(T 2 × I,−m,−1)| = m.

Proof. We will apply the change of basis(
0 −1
1 m+ 1

)
∈ SL2(Z)
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to change each slope −k
1 to − 1

m+1−k , so that we can describe these contact
structures in terms of Legendrian knots. We construct each contact structure
the following way: start with a standard neighborhood N of a tb = −1 Leg-
endrian unknot U ⊂ (S3, ξst), take a positive stabilization U+ or a negative
stabilization U− inside N , identify a standard neighborhood N ′ of this stabi-
lization and remove it from N . The result is a tight contact structure on T 2× I
with boundary slopes − 1

1 and − 1
2 , and since the destabilization corresponds to

pushing U± across a bypass it is easy to see that this contact structure is a
basic slice. The basic slices corresponding to U+ and U− are not isotopic rel
boundary, however, or else the knots would be Legendrian isotopic even though
their rotation numbers are ±1.

We can perform this process m − 1 times to factor a tight T 2 × I with
boundary slopes −1 and − 1

m into m− 1 basic slices, where if we have a knot K
at some step then we remove a standard neighborhood of K± from a standard
neighborhood of K to get the next basic slice, and the choice of basic slice is
determined by the sign of the stabilization. The resulting contact structure on
T 2 × I is the solid torus N minus a standard neighborhood of an unknot Um

isotopic to the core of N , with tb(Um) = −m because we have obtained Um

by stabilizing U a total of m − 1 times. But we know that there are exactly
m Legendrian unknots with tb = −m, namely one for each possible rotation
number r = −m + 1,−m + 3, . . . ,m − 3,m − 1. We conclude that there are
exactly m contact structures on T 2 × I with the specified boundary slopes.

Proposition 4. |π0Tight
min(T 2×I,−p

q ,−1)| ≤ (−r0−1) . . . (−rk−1−1)(−rk),
where −p

q = [r0, . . . , rk].

Proof. By the same argument as in the above lemma, but with a more compli-
cated change of basis, there are exactly −rk minimally twisting contact struc-
tures on T 2 × I with boundary slopes −p

q and

−p
′

q′
= [r0, . . . , rk−1,−1] = [r0, . . . , rk−1 + 1].

Given an element of π0Tight
min(T 2 × I,−p

q ,−1), we identify and remove one

of these contact structures, leaving an element of π0Tight
min(T 2 × I,−p′

q′ ,−1),
and the proposition follows by induction on k.

In particular, using the inequality |π0Tight(L(p, q))| ≤ |π0Tight
min(T 2 ×

I,−p′

q′ ,−1)| where −
p′

q′ = [r0,r1, . . . , rk + 1], we have now shown that

|π0Tight(L(p, q))| ≤ (−r0 − 1) . . . (−rk−1 − 1)(−rk − 1).

If we can show equality, then it will follow that the associated bounds for S1×D2

and minimally twisting T 2 × I are tight as well, and in particular that

|π0Tight(S
1 ×D2,−p

q
)| = (−r0 − 1) . . . (−rk−1 − 1)(−rk).
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We claim there are in fact
∏
(−ri − 1) tight contact structures on L(p, q),

and in fact that all of them can be obtained by Legendrian surgery.

Definition 5. Let K ⊂ S3 be a knot, and identify a meridian µ and a longitude
λ on ∂N(K) where λ lies in a Seifert surface for K. We perform Dehn surgery
on K with slope a

b by constructing a 3-manifold

Y = (S1 ×D2) ∪f S3\N(K)

where the gluing map f : S1 × ∂D2 → ∂N(K) sends {∗} × ∂D2 to the curve
aµ+ bλ.

Example 6. The lens space L(p, q) can be constructed by −p
q -surgery on an

unknot in S3.

For nullhomologous knots a Seifert surface provides a canonical framing λΣ,
but arbitrary Legendrian knots come with another preferred framing λtb: the
Thurston-Bennequin or contact framing specified by the oriented normal vectors
to K inside ξ. For a Legendrian knot in S3, this framing can be expressed as
λtb = tb(K) · µ+ λΣ.

Definition 7. Let K ⊂ (Y, ξ) be Legendrian. A contact a
b -surgery (Y ′, ξ′) on

K is constructed by performing a topological a
b -surgery on K with respect to

the contact framing and extending the contact structure on Y \N(K) across
S1 ×D2 by a tight contact structure on S1 ×D2.

Of course, we need to check that such a surgery is well-defined. For a
b = 0

this is impossible, because we would need a tight contact structure on S1 ×D2

with boundary slope 0, whereas any Legendrian curve on S1 × ∂D2 parallel to
the dividing set would bound an overtwisted disk. On the other hand, if a

b = 1
n

then this is uniquely defined: we can choose f to send {∗} × ∂D2 to µ + nλtb
and S1 × {∗} to µ + (n − 1)λtb, and then the curve on S1 × D2 sent to λtb is
({∗} × ∂D2) − (S1 × {∗}). This means that the contact structure on S1 ×D2

should have two dividing curves of slope −1, and there is exactly one such
structure, so we conclude that contact 1

n -surgery is well-defined for all n. (For
general p

q 6= 0 we will have to finish the classification of tight contact structures
on solid tori.)

Definition 8. A Legendrian surgery on a Legendrian knot K ⊂ Y is a contact
(−1)-surgery along K.

Legendrian surgery is particularly interesting because of its relation to sym-
plectic geometry. We will prove the following theorem next time.

Theorem 9. Let (X,ω) be a Stein filling of (Y, ξ = ker(α)) , i.e. Y = ∂X and
ω|Y = dα. If (Y ′, ξ′) is the result of Legendrian surgery on K ⊂ Y , then there
is a 4-dimensional 2-handle H attached to X along K with framing tb(K) − 1
such that X ∪H is a Stein filling of Y ′.
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Corollary 10. If Y is Stein fillable, then so is the result of any Legendrian
surgery on Y .

Now we will use Legendrian surgery to describe some Stein fillable contact
structures on L(p, q). Note first that performing the following “slam dunk” move
on a topological surgery diagram does not change the underlying manifold for
any n ∈ Z and r ∈ Q.

n

r

n- _
1
r

Thus if −p
q = [r0, . . . , rk] then we can describe L(p, q) by the following surgery

diagram:

- _
p
q

r0
r1

r2
r3 rk-1

rk

...

For each component Ki of this link with coefficient ri ≤ −2, we can realize Ki as
a Legendrian knot with tb(Ki) = ri+1 ≤ −1 and r(Ki) ∈ {ri+2, ri+3, . . . , ri−
3,−ri − 2}: there are −ri − 1 possible values of r(Ki). The Legendrian surgery
on Ki is then topologically an ri-surgery, so Legendrian surgery on every Ki

yields a Stein fillable (hence tight) contact structure on L(p, q).
Let (X, J) = B4 ∪H0 ∪ . . .∪Hk be the Stein domain with boundary L(p, q)

constructed by this procedure. If hi ∈ H2(X, ∂X) is a cocore of Hk, then
〈c1(X, J), hi〉 = r(Ki) for each i [1]. But a theorem of Lisca and Matić [2]
says that if two different Stein structures on X give isotopic contact structures
TY ∩ J(TY ) on Y = ∂X, then their first Chern classes are identical, so every
choice of (r(K0), . . . , r(Kk)) yields a distinct isotopy class of contact structure.
There are

∏
(−ri−1) such choices, hence at least that many tight (indeed, Stein

fillable) contact structures on L(p, q). Since this matches the upper bound we
have already established, we conclude:

Theorem 11. Let p > q > 0 and write −p
q = [r0, . . . , rk]. Then the lens space

L(p, q) has exactly
(−r0 − 1)(−r1 − 1) . . . (−rk − 1)

tight contact structures up to isotopy, and each of them is Stein fillable.

Corollary 12. If p ≥ q > 0, then the set π0Tight(S
1×D2,−p

q ) has cardinality

(−r0 − 1) . . . (−rk−1 − 1)(−rk).
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