Math 273 Lecture 12

Steven Sivek

March 2, 2012

Let $p>q>0$ and suppose that $-\frac{p}{q}=\left[r_{0}, r_{1}, \ldots, r_{k}\right]$, where this notation represents the continued fraction

$$
r_{0}-\frac{1}{r_{1}-\frac{1}{\ddots \cdot \frac{1}{r_{k}}}}
$$

and $r_{i} \leq-2$ for all i. Last time we proved that there is an injective map

$$
\pi_{0} \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p}{q}\right) \rightarrow \pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)
$$

and that the latter set was finite; our goal this time is to relate this to the set of tight contact structures on a lens space and determine the size of each of these sets.

Definition 1. The lens space $L(p, q)$ is the 3-manifold constructed by gluing solid tori V_{0} and V_{1} along their boundaries via the orientation-reversing map

$$
\left(\begin{array}{cc}
-q & q^{\prime} \\
p & -p^{\prime}
\end{array}\right) \in-1 \cdot \mathrm{SL}_{2}(\mathbb{Z})
$$

where $p q^{\prime}-q p^{\prime}=1$. (Any two choices of $\left(p^{\prime}, q^{\prime}\right)$ differ by a Dehn twist along V_{1} and hence produce the same manifold.) It sends a meridian $(1,0)^{\top}$ of ∂V_{0} to the curve $(-q, p)^{\top} \subset \partial V_{1}$, so it is easy to see that $\pi_{1}(L(p, q))=\mathbb{Z} / p \mathbb{Z}$.
Proposition 2. Let $-\frac{p^{\prime}}{q^{\prime}}=\left[r_{0}, r_{1}, \ldots, r_{k}+1\right]$. Then there is an injective map

$$
\pi_{0} \operatorname{Tight}(L(p, q)) \hookrightarrow \pi_{0} \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p^{\prime}}{q^{\prime}}\right) .
$$

Proof. Let ξ be a tight contact structure on $L(p, q)$ and let γ be a Legendrian curve which is topologically isotopic to the core of V_{0} and has negative twisting number n. Shrinking V_{0} if necessary, we realize it as a standard neighborhood of γ with two dividing curves on its boundary of slope $\frac{1}{n}$. Since $\partial V_{0}=\partial V_{1}$, this means that ∂V_{1} has two dividing curves in the homology class

$$
\left(\begin{array}{cc}
-q & q^{\prime} \\
p & -p^{\prime}
\end{array}\right)\binom{n}{1}=\binom{-q n+q^{\prime}}{p n-p^{\prime}},
$$

i.e. of slope $-\frac{p|n|+p^{\prime}}{q|n|+q^{\prime}}$ with respect to V_{1}, which is strictly between $-\frac{p}{q}$ and $-\frac{p^{\prime}}{q^{\prime}}$, and we have

$$
-\frac{p}{q}<-\frac{p|n|+p^{\prime}}{q|n|+q^{\prime}}<-\frac{p^{\prime}}{q^{\prime}} \leq-1
$$

where the last inequality follows from the fact that $1<\frac{p}{q}<\infty$ and $\frac{p}{q}$ is connected to $\frac{p^{\prime}}{q^{\prime}}$ by an edge of the Farey tessellation.

As before, we can find a convex torus in V_{1} parallel to ∂V_{1} with two dividing curves of slope -1 , and this torus bounds a solid torus $N \subset V_{1}$ whose contact structure is unique up to isotopy. On the complement $\overline{V_{1} \backslash N} \cong T^{2} \times I$, however, ξ has boundary slopes $-\frac{p|n|+p^{\prime}}{q|n|+q^{\prime}}$ and -1 , and since $-\frac{p^{\prime}}{q^{\prime}}$ lies in between them we can find another convex torus $T \subset N$ parallel to ∂V_{1} of slope $-\frac{p^{\prime}}{q^{\prime}}$.

If we now use the torus T to redefine the splitting $L(p, q)=V_{0} \cup V_{1}$, it follows that

$$
\left.\xi\right|_{V_{1}} \in \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p^{\prime}}{q^{\prime}}\right)
$$

The boundary slope on V_{0} is given by

$$
\left(\begin{array}{cc}
-q & q^{\prime} \\
p & -p^{\prime}
\end{array}\right)^{-1}\binom{q^{\prime}}{-p^{\prime}}=\binom{0}{1}
$$

so V_{0} is a solid torus with boundary slope ∞, meaning ∂V_{0} has two longitudinal dividing curves. But this means that $\left.\xi\right|_{V_{0}}$ is unique up to isotopy rel boundary, so the contact structure $\left.\xi\right|_{V_{1}}$ determines ξ uniquely.

It follows now that

$$
\left|\pi_{0} \operatorname{Tight}(L(p, q))\right| \leq\left|\pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p^{\prime}}{q^{\prime}},-1\right)\right|
$$

so we will now work to improve our upper bound on the latter quantity by showing that certain basic slices "commute" just as different stabilizations of a Legendrian knot do. Recall that given any $m>1$ and a tight contact structure $\xi \in \operatorname{Tight}^{\mathrm{min}}\left(T^{2} \times I,-m,-1\right)$, we know how to decompose

$$
T^{2} \times I \cong\left(T^{2} \times[1,2]\right) \cup\left(T^{2} \times[2,3]\right) \cup \ldots \cup\left(T^{2} \times[m-1, m]\right)
$$

where each $T^{2} \times[i, i+1]$ is a basic slice with boundary slopes $s_{0}=-i$ and $s_{1}=-(i+1)$. Since there are two basic slices for each pair of boundary slopes, this gave us an upper bound of 2^{m-1} possibilities for ξ.

Lemma 3. $\left|\pi_{0} \operatorname{Tight}^{\mathrm{min}}\left(T^{2} \times I,-m,-1\right)\right|=m$.
Proof. We will apply the change of basis

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & m+1
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

to change each slope $-\frac{k}{1}$ to $-\frac{1}{m+1-k}$, so that we can describe these contact structures in terms of Legendrian knots. We construct each contact structure the following way: start with a standard neighborhood N of a $t b=-1$ Legendrian unknot $U \subset\left(S^{3}, \xi_{\text {st }}\right)$, take a positive stabilization U_{+}or a negative stabilization U_{-}inside N, identify a standard neighborhood N^{\prime} of this stabilization and remove it from N. The result is a tight contact structure on $T^{2} \times I$ with boundary slopes $-\frac{1}{1}$ and $-\frac{1}{2}$, and since the destabilization corresponds to pushing $U_{ \pm}$across a bypass it is easy to see that this contact structure is a basic slice. The basic slices corresponding to U_{+}and U_{-}are not isotopic rel boundary, however, or else the knots would be Legendrian isotopic even though their rotation numbers are ± 1.

We can perform this process $m-1$ times to factor a tight $T^{2} \times I$ with boundary slopes -1 and $-\frac{1}{m}$ into $m-1$ basic slices, where if we have a knot K at some step then we remove a standard neighborhood of $K_{ \pm}$from a standard neighborhood of K to get the next basic slice, and the choice of basic slice is determined by the sign of the stabilization. The resulting contact structure on $T^{2} \times I$ is the solid torus N minus a standard neighborhood of an unknot U_{m} isotopic to the core of N, with $t b\left(U_{m}\right)=-m$ because we have obtained U_{m} by stabilizing U a total of $m-1$ times. But we know that there are exactly m Legendrian unknots with $t b=-m$, namely one for each possible rotation number $r=-m+1,-m+3, \ldots, m-3, m-1$. We conclude that there are exactly m contact structures on $T^{2} \times I$ with the specified boundary slopes.

Proposition 4. $\left|\pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)\right| \leq\left(-r_{0}-1\right) \ldots\left(-r_{k-1}-1\right)\left(-r_{k}\right)$, where $-\frac{p}{q}=\left[r_{0}, \ldots, r_{k}\right]$.

Proof. By the same argument as in the above lemma, but with a more complicated change of basis, there are exactly $-r_{k}$ minimally twisting contact structures on $T^{2} \times I$ with boundary slopes $-\frac{p}{q}$ and

$$
-\frac{p^{\prime}}{q^{\prime}}=\left[r_{0}, \ldots, r_{k-1},-1\right]=\left[r_{0}, \ldots, r_{k-1}+1\right]
$$

Given an element of $\pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)$, we identify and remove one of these contact structures, leaving an element of $\pi_{0} \operatorname{Tight}{ }^{\min }\left(T^{2} \times I,-\frac{p^{\prime}}{q^{\prime}},-1\right)$, and the proposition follows by induction on k.

In particular, using the inequality $\left|\pi_{0} \operatorname{Tight}(L(p, q))\right| \leq \mid \pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times\right.$ $\left.I,-\frac{p^{\prime}}{q^{\prime}},-1\right) \mid$ where $-\frac{p^{\prime}}{q^{\prime}}=\left[r_{0}, r_{1}, \ldots, r_{k}+1\right]$, we have now shown that

$$
\left|\pi_{0} \operatorname{Tight}(L(p, q))\right| \leq\left(-r_{0}-1\right) \ldots\left(-r_{k-1}-1\right)\left(-r_{k}-1\right)
$$

If we can show equality, then it will follow that the associated bounds for $S^{1} \times D^{2}$ and minimally twisting $T^{2} \times I$ are tight as well, and in particular that

$$
\left|\pi_{0} \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p}{q}\right)\right|=\left(-r_{0}-1\right) \ldots\left(-r_{k-1}-1\right)\left(-r_{k}\right)
$$

We claim there are in fact $\prod\left(-r_{i}-1\right)$ tight contact structures on $L(p, q)$, and in fact that all of them can be obtained by Legendrian surgery.

Definition 5. Let $K \subset S^{3}$ be a knot, and identify a meridian μ and a longitude λ on $\partial N(K)$ where λ lies in a Seifert surface for K. We perform Dehn surgery on K with slope $\frac{a}{b}$ by constructing a 3 -manifold

$$
Y=\left(S^{1} \times D^{2}\right) \cup_{f} \overline{S^{3} \backslash N(K)}
$$

where the gluing map $f: S^{1} \times \partial D^{2} \rightarrow \partial N(K)$ sends $\{*\} \times \partial D^{2}$ to the curve $a \mu+b \lambda$.

Example 6. The lens space $L(p, q)$ can be constructed by $-\frac{p}{q}$-surgery on an unknot in S^{3}.

For nullhomologous knots a Seifert surface provides a canonical framing λ_{Σ}, but arbitrary Legendrian knots come with another preferred framing $\lambda_{t b}$: the Thurston-Bennequin or contact framing specified by the oriented normal vectors to K inside ξ. For a Legendrian knot in S^{3}, this framing can be expressed as $\lambda_{t b}=t b(K) \cdot \mu+\lambda_{\Sigma}$.

Definition 7. Let $K \subset(Y, \xi)$ be Legendrian. A contact $\frac{a}{b}$-surgery $\left(Y^{\prime}, \xi^{\prime}\right)$ on K is constructed by performing a topological $\frac{a}{b}$-surgery on K with respect to the contact framing and extending the contact structure on $\overline{Y \backslash N(K)}$ across $S^{1} \times D^{2}$ by a tight contact structure on $S^{1} \times D^{2}$.

Of course, we need to check that such a surgery is well-defined. For $\frac{a}{b}=0$ this is impossible, because we would need a tight contact structure on $S^{1} \times D^{2}$ with boundary slope 0 , whereas any Legendrian curve on $S^{1} \times \partial D^{2}$ parallel to the dividing set would bound an overtwisted disk. On the other hand, if $\frac{a}{b}=\frac{1}{n}$ then this is uniquely defined: we can choose f to send $\{*\} \times \partial D^{2}$ to $\mu+n \lambda_{t b}$ and $S^{1} \times\{*\}$ to $\mu+(n-1) \lambda_{t b}$, and then the curve on $S^{1} \times D^{2}$ sent to $\lambda_{t b}$ is $\left(\{*\} \times \partial D^{2}\right)-\left(S^{1} \times\{*\}\right)$. This means that the contact structure on $S^{1} \times D^{2}$ should have two dividing curves of slope -1 , and there is exactly one such structure, so we conclude that contact $\frac{1}{n}$-surgery is well-defined for all n. (For general $\frac{p}{q} \neq 0$ we will have to finish the classification of tight contact structures on solid tori.)

Definition 8. A Legendrian surgery on a Legendrian knot $K \subset Y$ is a contact (-1)-surgery along K.

Legendrian surgery is particularly interesting because of its relation to symplectic geometry. We will prove the following theorem next time.

Theorem 9. Let (X, ω) be a Stein filling of $(Y, \xi=\operatorname{ker}(\alpha))$, i.e. $Y=\partial X$ and $\left.\omega\right|_{Y}=d \alpha$. If $\left(Y^{\prime}, \xi^{\prime}\right)$ is the result of Legendrian surgery on $K \subset Y$, then there is a 4-dimensional 2-handle H attached to X along K with framing $t b(K)-1$ such that $X \cup H$ is a Stein filling of Y^{\prime}.

Corollary 10. If Y is Stein fillable, then so is the result of any Legendrian surgery on Y.

Now we will use Legendrian surgery to describe some Stein fillable contact structures on $L(p, q)$. Note first that performing the following "slam dunk" move on a topological surgery diagram does not change the underlying manifold for any $n \in \mathbb{Z}$ and $r \in \mathbb{Q}$.

Thus if $-\frac{p}{q}=\left[r_{0}, \ldots, r_{k}\right]$ then we can describe $L(p, q)$ by the following surgery diagram:

For each component K_{i} of this link with coefficient $r_{i} \leq-2$, we can realize K_{i} as a Legendrian knot with $t b\left(K_{i}\right)=r_{i}+1 \leq-1$ and $r\left(K_{i}\right) \in\left\{r_{i}+2, r_{i}+3, \ldots, r_{i}-\right.$ $\left.3,-r_{i}-2\right\}$: there are $-r_{i}-1$ possible values of $r\left(K_{i}\right)$. The Legendrian surgery on K_{i} is then topologically an r_{i}-surgery, so Legendrian surgery on every K_{i} yields a Stein fillable (hence tight) contact structure on $L(p, q)$.

Let $(X, J)=B^{4} \cup H_{0} \cup \ldots \cup H_{k}$ be the Stein domain with boundary $L(p, q)$ constructed by this procedure. If $h_{i} \in H_{2}(X, \partial X)$ is a cocore of H_{k}, then $\left\langle c_{1}(X, J), h_{i}\right\rangle=r\left(K_{i}\right)$ for each i [1]. But a theorem of Lisca and Matić [2] says that if two different Stein structures on X give isotopic contact structures $T Y \cap J(T Y)$ on $Y=\partial X$, then their first Chern classes are identical, so every choice of $\left(r\left(K_{0}\right), \ldots, r\left(K_{k}\right)\right)$ yields a distinct isotopy class of contact structure. There are $\prod\left(-r_{i}-1\right)$ such choices, hence at least that many tight (indeed, Stein fillable) contact structures on $L(p, q)$. Since this matches the upper bound we have already established, we conclude:

Theorem 11. Let $p>q>0$ and write $-\frac{p}{q}=\left[r_{0}, \ldots, r_{k}\right]$. Then the lens space $L(p, q)$ has exactly

$$
\left(-r_{0}-1\right)\left(-r_{1}-1\right) \ldots\left(-r_{k}-1\right)
$$

tight contact structures up to isotopy, and each of them is Stein fillable.
Corollary 12. If $p \geq q>0$, then the set $\pi_{0} \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p}{q}\right)$ has cardinality

$$
\left(-r_{0}-1\right) \ldots\left(-r_{k-1}-1\right)\left(-r_{k}\right)
$$

References

[1] Robert E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693.
[2] P. Lisca and G. Matić, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997), no. 3, 509-525.

