Math 273 Lecture 11

Steven Sivek

February 29, 2012

Last time we claimed that the models of a basic slice, namely the submanifolds $T_{1}=T^{2} \times\left[0, \frac{1}{8}\right]$ and $T_{2}=T^{2} \times\left[\frac{1}{2}, \frac{5}{8}\right]$ of

$$
\left(T^{2} \times \mathbb{R}, \xi=\operatorname{ker}(\sin (2 \pi z) d x+\cos (2 \pi z) d y)\right)
$$

with boundary tori perturbed in each case to be convex with boundary slopes 0 and -1 , really are basic slices. We still need one fact to complete this claim:

Proposition 1. T_{1} and T_{2} are minimally twisting.
Proof. Suppose that T_{1} contains a convex torus T of slope $s \notin[-1,0]$ (the proof will be the same for T_{2}). Observe that each torus $T^{2} \times\left\{z_{0}\right\} \subset T_{1}$ has characteristic foliation directed by

$$
\cos (2 \pi z) \partial_{x}-\sin (2 \pi z) \partial_{y}
$$

up to sign, so that $T^{2} \times\left\{z_{0}\right\}$ is foliated by lines of slope $-\tan (2 \pi z)$, which decreases from 0 at $z_{0}=0$ to $-\infty$ at $z_{0}=\frac{1}{4}$. Suppose that there is a convex torus $T \subset M \cong T_{1}$ whose dividing curves have slope $s \notin(-1,0)$, and let s^{\prime} be a slope satisfying $s<s^{\prime}<-1<0$ on the boundary of the Farey tessellation such that s and s^{\prime} are connected by a geodesic. Pick an element of $S L_{2}(\mathbb{Z})$ sending s to $\frac{0}{1}$ and s^{\prime} to $\frac{1}{0}$, so that the boundary slopes -1 and 0 of T_{1} both become negative. The corresponding diffeomorphism of T_{1} sends it to some $T^{2} \times[a, b]$ with $[a, b] \subset\left(0, \frac{1}{4}\right)$.

Now consider the standard tight contact structure $\left(\mathbb{R}^{3}, \xi_{\text {st }}\right)$ with contact form

$$
\alpha=d z+r^{2} d \theta,
$$

and pass to the quotient under $z \mapsto z+1$. The complement of the z-axis is foliated by tori $\Sigma_{r_{0}}=\left\{r=r_{0}\right\}$, each of which is convex because it is transverse to the contact vector field ∂_{r}. On each torus $\Sigma_{r_{0}}$, the contact planes are spanned by ∂_{r} and $-r_{0}^{2} \partial_{z}+\partial_{\theta}$, so $\Sigma_{r_{0}}$ has a characteristic foliation consisting of lines of slope $-r_{0}^{2}$. In particular, there is a contact embedding

$$
\phi: T^{2} \times\left(0, \frac{1}{4}\right) \hookrightarrow M=\bigcup_{0<r<\infty} \Sigma_{r}
$$

which sends each $T^{2} \times\{z\}$ with slope $-\tan (2 \pi z)$ to $\Sigma_{\sqrt{\tan (2 \pi z)}}$, preserving the directed characteristic foliation of each such torus, and thus ϕ is a contactomorphism by a standard argument involving Moser's trick. (We will need to rotate T^{2} by π for one of T_{1} or T_{2} to fix the direction of the foliation, but otherwise the argument is the same in either case.)

The image $\phi(T)$ has dividing curves of slope 0 , and since $\phi(T)$ is parallel to $\phi\left(T^{2} \times\{a\}\right)$ it bounds a solid torus for which the lines of slope 0 are meridians, so we can find a Legendrian curve γ in $\phi(T)$ parallel to the dividing curves which bounds a disk in that solid torus. In particular, γ is an unknot with $t b(\gamma)=0$, and this violates the Thurston-Bennequin inequality since $\xi_{\text {st }}$ is tight, so it cannot exist.

Corollary 2. There are exactly two basic slices with $s_{0}=0$ and $s_{1}=-1$.
Corollary 3. Given any basic slice $\left(T^{2} \times[0,1], \xi\right)$ with boundary slopes s_{0} and s_{1}, and a rational number s between s_{1} and s_{0}, we can find a convex torus parallel to $T^{2} \times\{0\}$ with slope s.

Proof. Reduce to the case $\left(s_{0}, s_{1}\right)=(0,-1)$ and find the torus in either of the two model contact structures by perturbing an appropriate $T^{2} \times\{z\}$.

Finally, we claim that these basic slices correspond to bypass attachments.
Proposition 4. Let T be a convex torus with two dividing curves of slope 0 , and let D be a bypass attached to T along a curve of slope $-\frac{p}{q}$ in some contact manifold, with $p>q>0$. Then some neighborhood $\left(T^{2} \times[0,1], \xi_{D}\right)$ of $T \cup D$ is a basic slice.

Proof. We already showed that in such a neighborhood $T^{2} \times\{1\}$ has two dividing curves of slope -1 , so we only need to see that ξ_{D} is minimally twisting, which we will do by embedding it inside a minimally twisting contact structure. Take the contact structure

$$
\left(T^{2} \times \mathbb{R}, \xi=\operatorname{ker}(\sin (2 \pi z) d x+\cos (2 \pi z) d y)\right)
$$

and perturb $T_{0}=T^{2} \times\{0\}$ and $T_{1 / 8}=T^{2} \times\left\{\frac{1}{8}\right\}$ to be convex with dividing curves of slope 0 and -1 and characteristic foliations consisting of ruling curves of slope $-\frac{p}{q}$. Let A be an annulus with one boundary component a ruling curve of T_{0} and one a ruling curve of $T_{1 / 8}$. Then A intersects $\Gamma_{T_{0}}$ in $2 p$ points and $\Gamma_{T_{1 / 8}}$ in $2(p-q)$ points, and $q>0$, so by the Imbalance Principle A contains a bypass D_{0} along T_{0}. Now by Giroux flexibility we can arrange the characteristic foliation on $T_{0} \cup D_{0}$ to match the one on $T \cup D$, so they have a contactomorphic neighborhood with contact structure ξ_{D}. Then ξ_{D} embeds in $T^{2} \times\left[-\epsilon, \frac{1}{8}-\epsilon\right]$ for an arbitrarily small $\epsilon>0$, and this is minimally twisting by the same proof as when $\epsilon=0$.

Let $p>q>1$, and let $\operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p}{q}\right)$ be the set of tight contact structures on $S^{1} \times D^{2}$ with convex boundary having dividing set Γ, where Γ is
a pair of curves of slope $-\frac{p}{q}$. (This means that each component of Γ is in the homology class $-q\left[\partial D^{2}\right]+p\left[S^{1}\right] \in H_{1}\left(S^{1} \times \partial D^{2}\right)$. . Similarly, let Tight ${ }^{\min }\left(T^{2} \times\right.$ $\left.I,-\frac{p}{q},-1\right)$ be the set of minimally twisting tight contact structures with a pair of dividing curves of slope -1 on $T^{2} \times\{0\}$ and $-\frac{p}{q}$ on $T^{2} \times\{1\}$. We wish to describe the latter set by breaking its members into basic slices, so first we need to see how the boundary slope $-\frac{p}{q}$ changes upon removing a basic slice.

For any rational $-\frac{p}{q}<-1$, consider the continued fraction expansion

$$
-\frac{p}{q}=r_{0}-\frac{1}{r_{1}-\frac{1}{r_{2}-\frac{1}{\ddots \cdot-\frac{1}{r_{k}}}}}
$$

with all $r_{i} \leq-2$; we will abbreviate this as $-\frac{p}{q}=\left[r_{0}, \ldots, r_{k}\right]$. Let $-\frac{p^{\prime}}{q^{\prime}}$ be the fraction obtained by taking $\frac{p^{\prime}}{q^{\prime}}$ to be the first point connected to $\frac{p}{q}$ when traveling counterclockwise from $\frac{0}{1}$. Since $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ are connected, the vectors (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are an integral basis of \mathbb{Z}^{2}, and since $\frac{p^{\prime}}{q^{\prime}}<\frac{p}{q}$ we conclude that $p q^{\prime}-q p^{\prime}=1$. The three properties

$$
p q^{\prime}-q p^{\prime}=1, p^{\prime}<p, q^{\prime} \leq q
$$

uniquely characterize p^{\prime} and q^{\prime} in terms of p and q.
Now let $-\frac{a}{b}=\left[r_{0}, \ldots, r_{k-1}, r_{k}+1\right]$; if $r_{k}=-2$ then this is equivalent to $\left[r_{0}, \ldots, r_{k-1}+1\right]$. We claim that $a=p^{\prime}$ and $b=q^{\prime}$.
Lemma 5. Suppose that $-\frac{p}{q}$ and $-\frac{p^{\prime}}{q^{\prime}}$, both less than or equal to -1 , satisfy $p q^{\prime}-q p^{\prime}=1,0<p^{\prime}<p$, and $0<q^{\prime}<q$. Then for any integer $r<\frac{1}{-p / q}$, so do the rational numbers $-\frac{a}{b}=r-\frac{1}{-p / q}$ and $-\frac{a^{\prime}}{b^{\prime}}=r-\frac{1}{-p^{\prime} / q^{\prime}}$.
Proof. We have $-\frac{a}{b}=\frac{r p+q}{p}$ and $-\frac{a^{\prime}}{b^{\prime}}=\frac{r p^{\prime}+q^{\prime}}{p^{\prime}}$, so

$$
a b^{\prime}-b a^{\prime}=-(r p+q) p^{\prime}+p\left(r p^{\prime}+q^{\prime}\right)=p q^{\prime}-q p^{\prime}=1
$$

Furthermore, $b^{\prime}<b$ is equivalent to $p^{\prime}<p$, which is true by assumption, and $a^{\prime}<a$ is equivalent to $-r p^{\prime}-q^{\prime}<-r p-q$, or $-r\left(p-p^{\prime}\right)>q-q^{\prime}$. But then $\binom{p}{q}$ and $\binom{p^{\prime}}{q^{\prime}}$ are an integral basis of \mathbb{Z}^{2}, hence $\binom{p-p^{\prime}}{q-q^{\prime}}$ and either $\binom{p}{q}$ or $\binom{p^{\prime}}{q^{\prime}}$ are as well, so the points $\frac{p}{q}, \frac{p^{\prime}}{q^{\prime}}$, and $\frac{p-p^{\prime}}{q-q^{\prime}}$ form a triangle in the Farey tessellation. This means that $\frac{p}{q}=\frac{p^{\prime}+\left(p-p^{\prime}\right)}{q^{\prime}+\left(q-q^{\prime}\right)}$ lies in between the other two points, hence $\frac{p}{q}<\frac{p-p^{\prime}}{q-q^{\prime}}$ and in particular $-r\left(\frac{p-p^{\prime}}{q-q^{\prime}}\right)>\frac{1}{p / q}\left(\frac{p}{q}\right) \geq 1$. We conclude that $-r\left(p-p^{\prime}\right)>q-q^{\prime}$ as desired.

Now suppose $r_{k} \leq-2$. If $-\frac{p}{q}=r_{k}=\left[r_{k}\right]$ and $-\frac{p^{\prime}}{q^{\prime}}=-\frac{r_{k}+1}{1}=\left[r_{k}+1\right]$, so that $p=-r_{k}, p^{\prime}=-r_{k}-1$, and $q=q^{\prime}=1$, then we have $p q^{\prime}-q p^{\prime}=1$,
$0<p^{\prime}<p$, and $0<q^{\prime} \leq q$. By repeated use of the lemma, it follows that if

$$
\begin{aligned}
-\frac{p}{q} & =\left[r_{0}, \ldots, r_{k-1}, r_{k}\right] \\
-\frac{p^{\prime}}{q^{\prime}} & =\left[r_{0}, \ldots, r_{k-1}, r_{k}+1\right]
\end{aligned}
$$

then $p q^{\prime}-q p^{\prime}=1,0<p^{\prime}, p$, and $0<q^{\prime} \leq q$.
Proposition 6. Let $\xi \in \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)$ with $p>q>0$, and suppose that $-\frac{p}{q}$ has continued fraction $\left[r_{0}, \ldots, r_{k}\right]$. Let $-\frac{p^{\prime}}{q^{\prime}}=\left[r_{0}, \ldots, r_{k-1}, r_{k}+1\right]$. Then ξ may be factored into a union $\left(T^{2} \times\left[0, \frac{1}{2}\right], \xi^{\prime}\right) \cup\left(T^{2} \times\left[\frac{1}{2}, 1\right], \xi^{\prime \prime}\right)$, where $\xi^{\prime \prime}$ is a basic slice and

$$
\xi^{\prime} \in \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p^{\prime}}{q^{\prime}},-1\right) .
$$

Proof. Fix the characteristic foliation of $T^{2} \times \partial I$ to be ruled by Legendrian curves of slope 0 ; then as before we can take a convex annulus with one boundary component on each $T^{2} \times\{i\}, i=0,1$, and find a bypass along $T^{2} \times\{1\}$ on that annulus by the Imbalance Principle. Some neighborhood of $T^{2} \times I$ and that bypass is a basic slice, which then has boundary slopes $-\frac{p}{q}$ and $-\frac{a}{b}$ for some a, b.

To compute $-\frac{a}{b}$, we flip this picture upside down and thus reverse the signs of all the slopes: this is the same as attaching a bypass on top of a torus with slope $\frac{p}{q}$ along an arc of slope $\frac{0}{1}$, so $\frac{a}{b}$ is the first point we reach by traveling counterclockwise along the Farey tessellation from $\frac{0}{1}$ which is connected to $\frac{p}{q}$ by a geodesic. But we have already seen that such $\frac{a}{b}$ must satisfy $p b-a q=1$, $a<p$, and $b \leq q$, so $\frac{a}{b}$ is exactly the point $\frac{p^{\prime}}{q^{\prime}}$ described above.

Corollary 7. Let $\xi \in \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)$ with $p>q>0$. and

$$
-\frac{p}{q}=\left[r_{0}, \ldots, r_{k}\right]
$$

Then ξ may be factored into a union of

$$
\left(-r_{k}-1\right)+\left(-r_{k-1}-2\right)+\ldots+\left(-r_{0}-2\right)
$$

basic slices with predetermined boundary slopes. In particular, $\operatorname{Tight}^{\min }\left(T^{2} \times\right.$ $\left.I,-\frac{p}{q},-1\right)$ is finite.

Proposition 8. Let $\xi \in \operatorname{Tight}\left(T^{2} \times I,-\frac{p}{q},-1\right)$ be a tight contact structure with $p>q>0$. Then given any slope s with $-\frac{p}{q}<s<-1$, there is a convex torus parallel to $T^{2} \times\{0\}$ with two dividing curves of slope s.

Proof. If ξ is minimally twisting then we can factor ξ into a union of basic slices as above; on one of them, the interval between its boundary slopes must contain s, and then we know that this basic slice must contain the desired torus.

If instead ξ is not minimally twisting, we can find a torus T parallel to $T^{2} \times\{0\}$ with slope $r \notin\left[-\frac{p}{q},-1\right]$ and use the above argument to factor out a sequence of basic slices with boundary slopes between $-\frac{p}{q}$ and r; again, the interval determined by the boundary slopes on one of these slices must contain s.

Proposition 9. There is an injective map

$$
\pi_{0} \operatorname{Tight}\left(S^{1} \times D^{2},-\frac{p}{q}\right) \rightarrow \pi_{0} \operatorname{Tight}^{\min }\left(T^{2} \times I,-\frac{p}{q},-1\right)
$$

Proof. Given a tight contact structure on $S^{1} \times D^{2}$, let K be a Legendrian knot isotopic to $S^{1} \times\{0\}$, stabilized sufficiently many times to ensure $t w(K)<-1$. Let $N \subset \operatorname{int}\left(S^{1} \times D^{2}\right)$ be a standard neighborhood of K, so that ∂N has two dividing curves of slope $\frac{1}{t w(K)}$, and let $M=\left(S^{1} \times D^{2}\right) \backslash N$. Then $\left.\xi\right|_{M}$ is a tight contact structure on $T^{2} \times I$, and $-\frac{p}{q}<-1<\frac{1}{\operatorname{tw(K)}}$, so we can find a convex torus $T \subset M$ parallel to ∂N with two dividing curves of slope -1 . Then T bounds a solid torus N^{\prime} on which ξ is unique up to isotopy rel boundary, so if $M^{\prime}=\left(S^{1} \times D^{2}\right) \backslash N^{\prime}$ then it just remains to be seen that $\left(M^{\prime}, \xi\right)$ is minimally twisting.

If $\left(M^{\prime}, \xi\right)$ is not minimally twisting, then M^{\prime} contains a convex boundaryparallel torus with dividing slope s not between $-\frac{p}{q}$ and -1 . This splits M^{\prime} into two $T^{2} \times I$ with boundary slopes $\left(-\frac{p}{q}, s\right)$ and $(s,-1)$; if $s>-1$ then the second $T^{2} \times I$ contains a convex torus with slope 0 , and if $s<-\frac{p}{q}$ then the first one does. Either way, M^{\prime} contains such a torus T^{\prime} and we can Legendrian realize a curve $\gamma \subset T^{\prime}$ of slope 0 with $\operatorname{tw}\left(\gamma, T^{\prime}\right)=0$. But then γ is isotopic to ∂D^{2}, i.e. it bounds a disk in $S^{1} \times D^{2}$, and so γ is a topological unknot with $\operatorname{tb}(\gamma)=0$, contradicting the tightness of ξ. We conclude that $\left(M^{\prime}, \xi\right)$ is minimally twisting after all.

