Exercises for V5D3: Advanced topics in geometry

Steven Sivek

Wintersemester 2016/17

This document will be updated regularly; the exercises will not be graded, but are highly recommended anyway.

Week of October 17:

1. Prove that $S^{2} \times S^{4}$ does not admit a symplectic structure.
2. Let $\phi_{t}: M \rightarrow M$ be the family of diffeomorphisms generated by a time-dependent vector field X_{t} on M. Prove that $\frac{d}{d t}\left(\phi_{t}^{*} \alpha\right)=\phi_{t}^{*}\left(\mathcal{L}_{X_{t}} \alpha\right)$ for any k-form α. Conclude that if M is symplectic and X_{t} is a Hamiltonian vector field, then ϕ_{1}^{*} is a symplectomorphism.
3. Prove that $\operatorname{Ham}(M, \omega)$ is a normal subgroup of $\operatorname{Symp}(M, \omega)$.

Week of October 24:
4. If X is a smooth submanifold of M, we define its conormal bundle as

$$
N^{*} X=\left\{(x, \xi) \in T^{*} M \mid x \in X, \xi(v)=0 \text { for all } v \in T_{x} S\right\} .
$$

Prove that $N^{*} X$ is an exact Lagrangian in $T^{*} M$ with its usual contact form, and conclude the same for the zero section and any cotangent fiber as special cases.
5. Let $(M, \omega=d \alpha)$ be an exact symplectic manifold, and $L \subset M$ an exact Lagrangian. Prove that if $\Sigma \subset M$ is a nonempty compact surface with boundary $\partial \Sigma \subset L$, then $\left(\Sigma,\left.\omega\right|_{\Sigma}\right)$ is not symplectic.
6. Let $i_{0}: M \hookrightarrow T^{*} M$ be the inclusion of the zero section into $T^{*} M$. Prove that any map $i: M \hookrightarrow T^{*} M$ which is sufficiently C^{1}-close to i_{0} is also a section of $\pi: T^{*} M \rightarrow M$.

November 3-10:
7. Let Ω_{0} and J_{0} be the standard symplectic and complex structures on the vector space $\mathbb{R}^{2 n}$, and let $\operatorname{Sp}(2 n), G L(n, \mathbb{C}) \subset G L(2 n, \mathbb{R})$ be the automorphisms which preserve Ω_{0} and commute with J_{0} respectively. Prove that the intersection of any two of $\operatorname{Sp}(2 n), G L(n, \mathbb{C})$, and $O(2 n)$ is the same group, namely $U(n)$.
8. Prove that $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ does not admit an almost complex structure.
9. Show that the Nijenhuis tensor $\mathcal{N}(u, v)=[J u, J v]-J[u, J v]-J[J u, v]-[u, v]$ vanishes for any almost complex structure on a surface.

November 15-22:
10. Recall that the Fubini-Study form $\omega_{F S}$ on $\mathbb{C P}^{1}$ is defined on each coordinate chart $\varphi_{i}:\left\{z_{i} \neq 0\right\} \rightarrow \mathbb{C}$ as $\omega_{F S}=\varphi_{i}^{*} \omega$, where $\omega=\frac{i}{2} \partial \bar{\partial} \log \left(|z|^{2}+1\right)$ is a Kähler form on \mathbb{C}. Compute ω in terms of the real coordinates x and y, where $z=x+i y$, and use this to show that $\int_{\mathbb{C P}^{1}} \omega_{F S}=\pi$.
11. Show that the Kodaira-Thurston manifold is diffeomorphic to $S^{1} \times Y$, where if we write $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with coordinates $x, y \in \mathbb{R} / \mathbb{Z}$ then Y is the quotient

$$
Y=[0,1] \times T^{2} /((0,(x, y)) \sim(1,(x+y, y))
$$

i.e. the mapping torus of the diffeomorphism $h: T^{2} \rightarrow T^{2}, h(x, y)=(x+y, y)$. Show that if $h: X \rightarrow X$ is an orientation-preserving diffeomorphism of a closed, oriented manifold inducing an action $h_{*}: H_{1}(X) \rightarrow H_{1}(X)$, then the mapping torus of h has first Betti number $1+\operatorname{dim} \operatorname{ker}\left(h_{*}-\mathrm{Id}\right)$. Conclude that $H_{1}\left(S^{1} \times Y\right)$ has rank 3 as claimed.
12. Verify that the standard symplectic form $d x \wedge d y$ on T^{2} is h-invariant and use this to construct a symplectic form on $S^{1} \times Y$.

November 24-December 1:

13. Fix $d \geq 1$ and define the Veronese embedding $i_{d}: \mathbb{C P}^{2} \hookrightarrow \mathbb{C P}^{\binom{d+2}{2}}$ by

$$
i_{d}\left(\left[z_{0}: z_{1}: z_{2}\right]\right)=\left[z_{0}^{d}: z_{0}^{d-1} z_{1}: \cdots: z_{2}^{d}\right]
$$

where the coordinates of $i_{d}(z)$ range over all degree- d monomials in z_{0}, z_{1}, z_{2}. Prove that i_{d} is an embedding, and that if f and g are two generic, homogeneous degree- d polynomials in z_{0}, z_{1}, z_{2} and $B=\{z \mid f(z)=g(z)=0\}$, then the Lefschetz pencil $\pi\left(\mathbb{C P}^{2} \backslash B\right) \rightarrow \mathbb{C P}^{1}$ defined by $\pi(z)=[f(z): g(z)]$ can also be constructed by intersecting $i_{d}\left(\mathbb{C P}^{2}\right)$ with a pencil of hyperplanes on $\mathbb{C P}^{\binom{d+2}{2}}$.
14. Let (Σ, ω) be a closed surface with symplectic embeddings into two closed 4manifolds $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$, where Σ has self-intersection zero in each M_{i}. Prove that the fiber sum along Σ satisfies

$$
\begin{aligned}
& \chi\left(M_{1} \#_{\Sigma} M_{2}\right)=\chi\left(M_{1}\right)+\chi\left(M_{2}\right)-2 \chi(\Sigma), \\
& \sigma\left(M_{1} \#_{\Sigma} M_{2}\right)=\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)
\end{aligned}
$$

where $\sigma(X)$ denotes the signature of the intersection form on $H_{2}(X)$. (Hint: Novikov additivity says that if $\partial X_{1}=Y$ and $\partial X_{2}=-Y$, then $\sigma\left(X_{1} \cup_{Y} X_{2}\right)=$ $\sigma\left(X_{1}\right) \# \sigma\left(X_{2}\right)$.) Construct symplectic manifolds $E(n)$ with elliptic fibrations $E(n) \rightarrow$ $\mathbb{C P}^{1}$, where $\chi(E(n))=12 n$ and $\sigma(E(n))=-8 n$, for all $n \geq 1$.
15. Let A be the annulus $B^{2}(\epsilon) \backslash \operatorname{int}\left(B^{2}(\delta)\right)$ for some $0<\delta<\epsilon$. Prove that there is an area-preserving self-diffeomorphism $\phi: A \rightarrow A$ which exchanges the two boundary components.

December 6-15:
16. Let X be a smooth 4-manifold and $\pi: X \rightarrow S^{2}$ a Lefschetz fibration with a smooth fiber F and vanishing cycles $c_{1}, \ldots, c_{k} \subset F$. Prove that $\pi_{1}(X) \cong \pi_{1}(F) / N$, where $N \subset \pi_{1}(F)$ is the normal subgroup generated by c_{1}, \ldots, c_{k}.
17. Define a function $f: \mathbb{C P}^{n} \rightarrow \mathbb{R}$ by the formula

$$
f\left(\left[z_{0}: z_{1}: \cdots: z_{n}\right]\right)=\frac{\sum a_{i}\left|z_{i}\right|^{2}}{\sum\left|z_{i}\right|^{2}}
$$

where $a_{0}<a_{1}<\cdots<a_{n}$. Show that f is Morse by computing the critical points of f and their indices, and determine the corresponding Morse homology.
18. Let M be a connected, open n-manifold, and $f: M \rightarrow \mathbb{R}$ a Morse function with finitely many critical points. Prove that f can be modified to give a Morse function with no critical points of index n.

Week of January 16:
19. Let (X, ω) be a symplectic $2 n$-manifold, and $Y \subset X$ a closed ($2 n-1$)-dimensional submanifold. Suppose that there is a vector field v defined on a neighborhood of Y such that v is transverse to Y and $\mathcal{L}_{v} \omega=\omega$. Show that:

- the 1-form $\alpha=\left.\iota_{v} \omega\right|_{Y}$ is a contact form on Y, meaning that $\alpha \wedge(d \alpha)^{n-1}$ is a volume form on Y;
- d d is a symplectic form on the contact structure $\xi=\operatorname{ker}(\alpha) \subset T Y$;
- some neighborhood of Y in X is symplectomorphic to a neighborhood of $\{0\} \times$ Y in the symplectization

$$
\left(\mathbb{R} \times Y, d\left(e^{t} \alpha\right)\right)
$$

(Y is called a contact-type hypersurface in X.)
20. Suppose that Y embeds into two symplectic manifolds (X, ω) and $\left(X^{\prime}, \omega^{\prime}\right)$ as a separating contact-type hypersurface, and write

$$
X=X_{1} \cup_{Y} X_{2}, \quad X^{\prime}=X_{1}^{\prime} \cup_{Y} X_{2}^{\prime}
$$

with the Liouville vector field pointing from X_{1} and X_{2} into X_{1}^{\prime} and X_{2}^{\prime}. If there is a diffeomorphism $\varphi: Y \rightarrow Y$ such that $\varphi^{*} \xi^{\prime}=\xi$, where ξ and ξ^{\prime} are the induced contact structures, show that the manifold $X_{1} \cup_{\varphi} X_{2}^{\prime}$ admits a symplectic structure.

January 24:
21. Which homology classes in $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right) \cong \mathbb{Z}$ can be represented by a pseudoholomorphic sphere $u:\left(S^{2}, j\right) \rightarrow\left(\mathbb{C P}^{2}, J\right)$ for some J ? Are there homology classes in which any two such spheres with distinct images must intersect transversally?

