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The title should not be taken too seriously since we can only cover small fragments
of this large subject. We will:

� Outline some main ideas;

� Give examples;

� Explain why there is a distinction between “high dimensional” and “low dimen-
sional” manifold topology.

Other topics lectures in this series which are particularly relevent are Chern classes
and classifying spaces, Poincaré Duality, Morse Theory and the Witten complex.

PART 1, Mostly examples

Connected sum
Let M1,M2 be n-dimensional manifolds. The connected sum M1♯M2 is defined by

removing balls from each manifold and gluing along the resulting boundaries.
Classification of closed 2-manifolds

1. Orientable: S2, T 2, T 2♯T 2, . . . , ♯gT
2

2. Non-orientable: RP2,RP2♯T 2,RP2♯T 2♯T 2 dots.

It is unrealistic/impossible to have such complete classifications in all dimensions.
For n ≥ 4 any finitely presented group can be realised as the fundamental group of

an n-manifold (and with any given rpresentation by generators and relations).
Even if we restrict to simply connected manifolds the algebraic topology data becomes

very complicated, in general.
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For a (closed ,oriented, smooth) manifold we have

� The cohomology H∗(M) with cup-product which is equivalent to the homology
H∗(M) with intersection product.

� Pontrayagin classes pi ∈ H4i(M), Stiefel-Whitney classes wi ∈ H i(M ;Z/2).

� . . . Other more sophisticated gadgets

(Recall that pi(V ) = (−1)ic2i(V ⊗C) where c2i is the Chern class.)

If dimM = 2m we have an intersection form Hm(M) × Hm(M) → Z which is
symmetric if m is even and skew-symmetric if M is odd.

For a closed manifold M the form is nondegenerate. In the skew-symmetric case the
classification of such forms over the integers is very simple: they are sums of the block(

0 1
−1 0

)

In the symmetric case, the classification with real co-efficients is given by the signa-
ture (number of positive eigenvalues-number of negative eigenvalues) but with integer
coefficients there is a rich theory.

Projective planes

Beyond spheres the simplest cohomology of a closed manifold would occur in dimen-
sion 4k with a manifold M having H0 = H2k = H4k = Z and all other cohomology zero.
This occurs only when k = 1, 2, 4. For k = 1 we have the complex projective plane CP2.
This can be obtained by attaching a 4-ball to a 2-sphere by the Hopf map S3 → S2.
For k = 2 we have the quaternionic projective plane constructed from a map S7 → S4.
For k = 4 there is a Moufang plane related to the Cayley numbers and exceptional Lie
groups constructed from a map S15 → S8. The fact that no other cases occur follows
from a relatively deep fact in algebraic topology (the “Hopf invariant 1 problem”).

Plumbing
It is easy to construct manifolds with boundary having any given intersection form.

We illustrate this with the “ADE” manifolds in 4-dimensions which are important in
algebraic geometry and diferential geometry. Let Γ be the Dynkin diagram (a graph)
corresponding to one of the ADE Lie algebras. For each vertex v we take a copy Σv of
the 2-sphere and a tubular neighbourhood Nv of Σv in the total space of its cotangent
bundle. So Σv ⊂ Nv has self-intersection number −2. If vertices v, v′ are joined by
an edge in Γ we glue Nv to Nv′ in such a way that Σv,Σv′ have a single transverse
intersection point, with sign +1. This gives a 4-manifold with boundary XΓ.

One of the amazing facts in this area is that the ADE algebras correspond to the
finite subgroups of SU(2):

� Ak → cyclic of order k + 1;
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� Dk → Dihedral of order 2k;

� E6 → binary tetrahedron, E7 → binary octahedron, E8 → binary icosahedron.

The boundary ∂XΓ is a closed 3-manifold which can be obtained as the quotient S3/G
where G is the group corresponding to Γ. (Recall that SU(2) can be identified with S3

and is the double cover of the rotation group SO(3).)
The simplest case is A1 where there is just one vertex. Then XΓ is a tubular neigh-

bourhood of S2 in T ∗S2. Then ∂XΓ is S3/± 1 = RP3 = SO(3).
In the case of E8, the group G is perfect and ∂XΓ is a homology sphere discovered

by Poincaré. If we add a cone on ∂XΓ to XΓ we get a simply connected 4-dimensional
space Z which is not a manifold but is a “homology manifold”. The intersection form
of Z is the E8 quadratic form.

Rohlin’s Theorem, from the 1950’s, asserts that a simply-connected, smooth, closed
4-manifold with “even” intersection form has signature divisible by 16.

The E8 form is even with signature −8, so there is no simply-connnected smooth
closed 4-manifold with this intersection form.

The Pontrayagin classes and examples in dimension 7, 8.
Let V → S4 be a rank 4 Euclidean oriented vector bundle, so the structure group of

V is SO(4). The unit sphere bundle of V is a simply connected closed 7-manifold Y . It
is the boundary of the unit-ball bundle M which contains the zero section S4.

Such bundles V are classified by π3(SO(4)). Recall that the double cover of SO(4) is
the product S3×S3 so π3(SO(4) = Z⊕Z and our bundle is specified by a pair of integers
n+, n−. The self-intersection number d of S4 in M is d = n+ − n−. The Pontrayagin
class p1(M) evaluated on S4 is q = 2(n+ + n−).

The spectral sequence of the fibration S3 → Y → S4 shows that H4(Y,Z) = Z/d.
If d = 0 we get a family of 7-manifolds Yq, for q > 0 a multiple of 4, with the same

cohomology ring as S3 × S4 but of distinct diffeomorphism types since p1(Yq) is q times
the generator of H4.

If d = 1 the manifold Y is a homotopy sphere. By the higher dimensional Poincare
conjecture (discussed below) it is homeomorphic to S7. Milnor showed that for certain
values of n+, n− the manifold Y is an exotic sphere, not diffeomorphic to S7. Moreover,
if we add a cone on Y to M we get a topological 8-manifold which does not admit a
smooth structure.

PART 2: Cobordism, surgery and the Whitney trick

Oriented cobordism is an equivalence relation on closed, oriented n-dimensional man-
ifolds. M0 ∼ M1 if there is an oriented (n+1)-manifold with oriented boundaryM0⊔M1.
The equivalence classes form a group Ωn under the operation of disjoint union.

The Pontrayagin numbers of a closed oriented 4k-manifold M are defined by evalu-
ating polynomials in the Pontrayaguin classes on the fundamental class [M ] ∈ H4k. So
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when k = 1 we have p1, for k = 2 we have p21, p2, for k = 3 we have p31, p2p1, p3 etc.
These numbers are cobordism invariants.

The signature σ(M) of a 4k-manifold M is also a cobordism invariant. The Hirze-
bruch Signature Theorem expresses it as a rational combination of Pontrayagin numbers.
For example σ(M4) = p1/3, σ(M

8) = (7/45)p2− (1/45)p21. The fact that the coefficients
are rational numbers while the signature is an integer has important consequences (in a
similar vein to Rohlin’s Theorem).

A fundamental motivation for the notion of cobordism comes from considering fam-
ilies of equations. For example, suppose that F : X → T is a smooth map and for t ∈ T
let Zt ⊂ X be the set of solutions of the equation F (x) = t. For generic t the solution
set Zt is a manifold of dimension n = dim X − dim T . For different generic values t0, t1
the manifolds Zt0 , Zt1 may not be diffeomorphic but they are cobordant. To see this,
join t0, t1 by a path γ : [0, 1] → T and let W ⊂ X × [0, 1] be the set

W = {(x, s) : F (x) = γ(s).

For a generic path γ this will be a manifold of dimension n+1 giving a cobordism from
Zt0 to Zt1 . A similar discussion applies to other families of equations, such as zero sets of
sections of vector bundles. The ideas can also be extended to certain infinite dimensional
problems, for example moduli spaces of holomorphic curves.

Consider, for example, hypersurfaces X ⊂ RP5 defined by homogeneous polynomials
of degree 4. The polynomial x40 − (x41 + x42 + x43 + x44) gives a 4-sphere. For different
polynomials we get many other 4-manifolds but we can never get CP2, since it not
cobordant to 0.

The equivalence relation of cobordism is generated by standard operations called
surgeries. Let M be an n-dimensional manifold and Σ ⊂ M be an embedded p-sphere
with trivial normal bundle. So the boundary of a tubular neighbourhood N of P is a
copy of Sp×Sn−p−1. The manifold N ′ = Bp+1×Sn−p−1 has the same boundary and the
operation of surgery is to cut out N and replace it by N ′, giving a new closed manifold

M ′ = (M \N) ∪∂N ′ N ′.

More precisely, we have to fix a diffeomorohism ϕ : ∂N ′ → ∂N .
There is a standard cobordism from M to M ′ defined by adding a “handle” H =

Bp+1 ×Bn−p. We have

∂(Bp+1 ×Bn−p) = (Sp ×Bn−p) ∪ (Bp+1 × Sn−p−1).

Take a diffeomorphism Φ : H → N and define WΣ = M ∪Φ H. After smoothing out the
“corner” along ∂N this gives a cobordism from M to M ′.

TakeRn+1 with coordinates x1, . . . xq, y1, . . . yp+1 where p+q = n. Let f : Rn+1 → R
be the quadratic function |x|2−|y|2. Then f−1(−1) contains a sphere Σ = Sp and f−1(1)
contains a sphere Sq−1. The manifold f−1(1) is obtained from f−1(−1) by surgery along
Σ and WΣ = f−1[−1, 1].

For a general cobordismW fromM0 toM1 we choose a Morse function F : W → [0, 1]
equal to 0 on M0 and 1 on M1. There are a funite number of critical values of F in

4



[0, 1]. The level set F−1(t) changes by a surgery as t crosses a critical value and this
gives a “factorisation” of the cobordism into a composite of surgeries. The number p+1
of negative directions is the index of the critical point.

Dimension 3
Let K ⊂ S3 be an embedded circle: a knot. The boundary of tubular neighbourhood

N is a torus T . There is a well-defined meridian µ in H1(T ) which bounds a disc in N .
To specify a surgery we need to define a class γ ∈ H1(T ) with γ.µ = 1 (which will bound
in the solid torus N ′ which we glue in). There is a unique longitude class λ ∈ H1(T )
with λ.mu = 1 and such that λ maps to zero in H1(S

3 \N) so we can take γ = λ+ cµ
for any integer surgery coefficient c.

Now let L ⊂ S3 be a link with components Ki. Perform surgery on each component
with coefficents ci to get a 3-manifold Y which is the boundary of a 4-manifold X. Then
H2(X) has a basis σi in which the intersection form has diagonal entries the ci and
off-diagonal entries the linking numbers of Ki,Kj .

The fact that the cobordism group Ω3 is zero implies that any compact 3-manifold
is obtained in this way.

We get another description of the ALE manifolds XΓ by taking a link with unknotted
components, linking matrix corresponding to the graph Γ and all coefficents −2.

The Whitney trick
Suppose that P,Q are connected submanifolds of dimensions p, q in a simply con-

nected (p+q)-dimensional manifold M , intersecting transversally in a finite set of points.
Suppose that p, q ≥ 3. If two intersection points a, b have opposite signs then there is
an isotopy of P ⊂ M to P ′ which reduces the number of intersection points by 2.

Choose paths in P and Q between a and b. Since M is simply connected the union
of these paths bounds a disc D in M . Since dimM > 4 a generic disc is embedded and
since p, q ≥ 3 does not meet P or Q in its interior. By choosing a suitable framing of
the normal bundle of D ⊂ M compatible with the given data on the boundary one finds
that a neighbourhood of D in M is standard and one can write down the isotopy which
cancels the intersection points.

This the basic fact that distiguishes high dimensional and low-dimensional manifold
topology. In dimension 4 with p = q = 2 the argument fails (and the conclusion is false).
The disc could meet P,Q and have self-intersection points. There is also a framing
problem.

(In dimension 3 there are famous results (Dehn’s Lemma, The loop theorem) in a
similar spirit, but proved in an entirely different way.)

The h-cobordism theorem

Suppose that M0,M1 are simply connected manifolds of dimension n ≥ 5 and W is
a cobordism from M0 to M1. Suppose that W is simply connected and that the inclusion
maps M0,M1 ⊂ W induce isomorphisms on homology. Then M0,M1 are diffeomorphic
and W = M0 × [0, 1].
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Choose a Morse function f0 to represent W as a composite of surgeries. If there are
no critical points the conclusion follows so the problem is to adjust f0 to remove critical
points. To give the main idea, suppose n = 6 and there are just two critical points
u, v ∈ W of f0. The hypothesis on homology implies that u, v have index-difference 1.
Let’s suppose that u has index 3, v has index 4 and f0(u) = 1/4, f0(v) = 3/4. Write
M = f−1

0 (1/2) .There are a pair of 3-spheres Pu, Pv ⊂ M so that M0 is obtained from M
by surgery along Pu and M1 is obtained from M by surgery along Pv. The hypothesis on
homology implies that the intersection number of Pu, Pv is ±1. Using the Whitney trick
we can suppose that Pu, Pv meet transversally in just one point. Then a neighbourhood
of Pu ∪ Pv ⊂ M is standard and one can write down a deformation of f0 which cancels
the critical points.

One application is the higher dimensional topological Poincare conjecture: for n ≥ 5
a manifold Mn homotopy equivalent to Sn is homeomorphic to Sn.

The theorem also leads to classification results for manifolds with simple topolology.
For example any 2-connected 6 manifold is diffeomorphic to a connected sume of copies
of S3 × S3.
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Exercises
1. Let Fr be the free group on r generators and γ ∈ Fr. For n ≥ 4 use surgery on

a connected sum of r copies of S1 × Sn−1 to construct an n-dimensional manifold with
fundamental group Fr/ < γ >. Why does this not work if n = 3?

2. Show that RP2♯RP2♯RP2 and T 2 ♯RP2 are homeomorphic.

Let CP
2
denote CP2 with reversed orientation. Show that no two of

S2 × S2,CP2♯CP2,CP2♯CP
2

are homeomorphic but S2 × S2 ♯CP
2
is homeomorphic to CP2♯CP

2
♯CP

2
.

(Complex geometry may be helpful here. Blowing up a point on complex surface

correponds to connected sum with CP
2
.)

3. Let X be the 4-manifold corresponding to the A2 graph (two vertices joined by
one edge). Show that π1(X) = Z/3.

4. Let W be an oriented (2n+ 1) manifold with boundary M . There is a boundary
map

∂ : Hn+1(W,M) → Hn(M).

Use duality and the long exact sequence in cohomology to show that the image of ∂ is an
isotropic subspace in Hn(M) with respect to the intersection form (i.e. ∂a.∂b = 0 for all
a, b) of dimension 1

2dimHn(M). In the case when n is even, deduce that the signature
of M is zero.

For an oriented surface Σ of genus g denote λi(Σ) = Λg+i(H1(Σ)). Let Σ0,Σ1 be
oriented surfaces of genus g0, g1 respectively and let W be a cobordism from Σ0 to Σ1.
Show that W defines, up to an overall factor, linear maps

λi
W : λi(Σ0) → λi(Σ1).

Investigate how your construction behaves with respect to composition of cobordisms.

(Hint: A a p-dimensional subspace of a vector space V defines an element in Λp(V ),
up to a factor.)

5. Show that CPn is not a boundary when n is even. Construct manifiolds Wm with
∂Wn = CP2m+1.
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(Hint: consider a map from CP2m+1 to quaternionic projective space HPm.)

6. The Hopf invariant of a smooth map f : S4k−1 → S2k can be defined as follows.
Choose a k-form ω on S2k of integral 1. Then choose a (k − 1)-form α on S4k−1 such
that f∗(ω) = dα. The Hopf invariant is

H(f) =

∫
S4k−1

α ∧ f∗(ω).

Show that this is well-defined, independent of choices of ω, α.
Let X be a closed manifold of dimension 4k which has a decomposition X = B4k∪N

where N is a tubular neighbourhood of a 2k-sphere Σ ⊂ X with Σ.Σ = 1. So ∂N is a
(4k − 1)-sphere. If Ω is a closed 2k-form on X with integral 1 overΣ show that∫

X
Ω2 = 1.

By constructing a suitable form Ω, show that the Hopf invariant of the map S4k−1 =
∂N → S2k is 1.

7. Let M be the 8-manifold constructed in Part 1, from a vector bundle V → S4,
with d = n+−n− = 1 and Y = ∂M . Let Z be the space obtained by adding a cone over
Y to M . Suppose that Y is diffeomorphic to S7 so that Z is a smooth 8-manifold. use
the signature theorem to show that p2 = (1/7)(45 + q2) where q = 2(n+ + n−). Hence
derive a contradiction to the assumption that Y is diffeomorphic to S7, for certain values
of n+, n−.

8. Use Alexander Duality to show that a knot K ⊂ S3 bounds an oriented surface
Σ, embedded in S3 \ K (a Seifert surface). The surface Σ is homeomorphic to closed
surface of some genus g, minus a disc. Now perform surgery on K with coefficient c > 0
to construct a 3-manifold Y which is the boundary of a 4-manifold X. Show that

� H2(X) = Z and a generator is represented by an embedded surface in X of genus
g and self-interection c.

� H1(Y ) = Z/c.

(For the first part, recall that H1(S3 \K) can be identified with homotopyclasses of
maps from S3 \K to S1.)
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