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Section I: Introduction

Material we assume known

Definition of an n-dimensional manifold (always Hausdorff,
second countable). Nearly always C∞. Our basic
language is differential topology. May sometimes mention
topological and PL manifolds. Orientations.

Manifolds with boundary ∂M. If ∂M = 0 and M compact
say M is closed. This is the default setting.

Submanifolds P ⊂ M, closed subsets.

Vector bundles V → M, in particular tangent and normal
bundles.

Simon Donaldson Manifold theory



Introduction
Surgery

Sections of TM → M are vector fields. If M is closed (say)
a time dependent vector field Vt defines an ODE
dx
dt = Vt(x) which has a solution for all time with any given
initial condition. This defines a family of diffeomorphisms
Ft : M → M.

Applications of the implicit function theorem. For example
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1 If f : M → N is surjective we say that y ∈ N is a regular
value if for all x ∈ f−1(y) the derivative dfx is surjective. In
this case f−1(y) is a submanifold of dimension
dimM − dimN.

2 If P,Q ⊂ M are submanifolds we say they meet
transversally at x ∈ P ∩Q if TMx = TPx + TQx . If this is so
for all points in P ∩Q then P ∩Q is a submanifold of
dimension dimM − dimP − dimQ.

3 A submanifold P ⊂ M has a tubular neighbourhood,
diffeomeorphic to the unit ball bundle in the normal bundle
of P in M.

4 A map ι : M → N is an immersion if the derivative is
injective at each point. If M is closed and ι is an injective
immersion then ι(M) is a submanifold.
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Transversality:“general position”, results. For example
1 If f : M → N then almost all points y ∈ N are regular values.

(Open, dense, set if M is compact) In particular if
dimM < dimN then f−1(y) is empty for almost all y .

2 If P,Q are submanifolds of M then there is a
diffeomorphism φ : M → M arbitrarily close to the identity
such that φ(M) is transverse to Q.
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Cut-off functions, partitions of unity etc.

Example of applications of some of the above: Any closed
n-manifold M can be embedded as a submanifold in R2n+1.
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1 Choose charts χa : Ua → Rn (for 1 ≤ a ≤ A) and smooth
functions βa supported in Ua, equal to 1 on Va ⊂ Ua, where
(Va)1≤a≤A forms an open cover of M.

2 Let
ι = (β1, . . . , βA, β1χ1, . . . , βAχA) : M → RN

with N = (n + 1)A. This is an injective immersion, so ιM is
a submanifold. Thus now we think of M ⊂ RN .

3 Now suppose N > 2n+ 1 and we have a M ⊂ RN . There is
an obvious map f : TM → RN . If p ∈ RN does not lie in the
image of f then projection from p immerses M in RN−1. We
can also define g : M ×M × R→ RN by
g(x1, x2, t) = tx1 + (1− t)x2. If p does not lie in the image
of g then projection from p is an injective map from M to
RN−1. Since dim (M ×M × R) = 2n + 1 and dimTM = 2n
the images of f , g have dense complements so we can find
a suitable point p to embed in dimension N − 1.

4 Note that this argument shows we can immerse M in R2n.
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There are many books which cover the above. One good one is

M. Spivak A comprehensive introduction to differential
geometry, Vol. 1 Publish or Perish
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We may sometimes discuss structures on manifolds.
Complex, symplectic.

We assume some algebraic topology: π1(M),H∗(M).
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Possible goals one might have;

Modest: study examples.

Ambitious: classify.

Intermediate: “systematic understanding”.

The general plan of the course is to outline some of the theory
of high dimensional manifolds as developed circa 1960 and
also to discuss some results on low dimensional manifolds.
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Section II: Surgery

Most generally we mean that we have an Mn and an
n-dimensional submanifold with boundary Ω ⊂ M. Suppose we
have another manifold with boundary Ω′ and a diffeomorphism
φ : ∂Ω′ → ∂Ω. Then we form a new manifold

M ′ = (M \ intΩ) ∪φ Ω
′.
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A more restricted use of the term (surgery) occurs when we
have an embedded sphere Σ ⊂ Mn, where Σ ∼= Sp with trivial
normal bundle. If we fix a trivialisation of the normal bundle
then there is a tubular neighbourhood N of Σ with closure
N = Ω where Ω is identified with Sp × Bn−p.
Now

∂(Sp × Bn−p) = Sp × ∂Bn−p = Sp × Sn−p−1,

and this is the same as ∂Ω′ where Ω′ = Bp+1 × Sn−p−1. So we
get a new manifold M ′: the result of surgery on Σ. (But the
construction may also depend essentially on the trivialisation of
the tubular neighbourhood.)
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In Ω′ = Bp+1 × Sn−p−1 we have an embedded sphere
{0} × Sn−p−1 with a given trivialisation of its normal
bundle. Thus we get Σ′ ⊂ M ′ and if we do surgery on Σ′

we recover M.

Take Sp × {pt.} in Sp × Sq. Then surgery (with the obvious
framing) gives Sp+q. This can be seen by observing that

Sp+q = Sp × Bq ∪Sp×Sq−1 Bp+1 × Sq−1.

If Rp+q+1 = Rp+1 ⊕ Rq then the decomposition
corresponds to taking vectors (ξ, η) with |ξ| ≥ |η| or
|ξ| ≤ |η| respectively.
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Application

Any finitely presented group can occur as π1(Mn) for n ≥ 4.
For connected n-dimensional manifolds M1,M2 we have the
notion of the connected sum M1]M2.
Note One should be careful with orientations here. If Mi are
orientable then M1]M2 will not always be diffeomorphic to
M1]M2.
For p ≥ 1 let M be the connected sum of N copies of S1 × Sp.
We have elements γ1, . . . , γN in π1(M) corresponding to the S1

factors in the summands.
If p ≥ 2 then π1(M) is the free group generated by the γi .
Let W1, . . .Wr be words in the γi . If p ≥ 2 then these words can
be represented by disjoint embedded circles.
The normal bundles to each of these are trivial since M is
orientable and SL(n,R) is connected. Fix trivialisations. Doing
surgeries we get a new manifold M ′.
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Proposition If p ≥ 3 then π1(M ′) is the group with presentation

〈γi :Wj = 1〉.

This follows from two applications of the Van Kampen theorem.
The point is that when we remove the loops we do not change
π1 (if p ≥ 3).
Consequence : Since there is no algorithmic procedure for
determining if two groups given by presentations are
isomorphic there can be no such procedure for determining if
two n-manifolds are diffeomorphic, once n ≥ 4.

For 2-manifolds there is such a procedure, for example by
computing homology.

There are known restrictions on fundamental groups of
3-manifolds.
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Dehn surgery

Now let K ⊂ S3 be an embedded circle (or “knot”). The normal
bundle is trivial but two trivialisations differ up to homotopy by a
class in π1(SO(2)) = Z. Any trivialisation determines a
“parallel” copy (or longitude) K ′ of K . We can fix a standard
trivialisation by specifying that the linking number of K ,K ′ is
zero. More generally the trivialisations are indexed by the
linking number in Z. This depends on an orientation of S3 but
not an orientation of K .
Thus for each integer r we can do “r -framed surgery” on K to
get another 3-manifold M ′.

If r = 0 then M ′ has the integral homology of S1 × S2;
If r = ±1 then M ′ has the integral homology of S3;
If |r | > 1 then H1(M ′;Z) = Z/rZ.

(There is a generalisation to the case when r is rational but we
will not go into that.)
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Example

+1 surgery on the right handed trefoil.
Wirtinger presentation of π1(S3 \ K ).

Think of K ⊂ R3 ⊂ S3.
Choose a planar projection of the knot and fix an
orientation.
For each “arc” of the picture (i.e. between undercrossings)
take a generator γi which passes from the base point
under the arc, in a direction fixed by the orientation.
For each crossing where an arc γk passes over another
strand of the knot cutting it into arcs γi , γi+1 we have a
relation of the form

γi+1 = γkγiγ
−1
k .

This gives a system of generators and relations for
π1(S3 \ K )

Note that if we abelianize the relations we get γi+1 = γi , which
confirms that H1(S3 \ K ) = Z.
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In the case of the trefoil we get generators
a = γ1, b = γ2, c = γ3 with

b = cac−1 , a = bcb−1 , c = aba−1.

For each r the class bacar−3 is represented by a meridian with
linking number r . Doing the surgery kills this class, so π1(M ′)
has a presentation with one extra relation bacar−3 = 1.
We take r = +1. Eliminate c to get

bab = aba , ba2ba−3 = 1.

Write a = x , b = x−1y we get

x−1y2 = yx

which is equivalent to (yx)2 = x5, and

x−1y2 = yx

which is equivalent to (yx)2 = z3.
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Conclusion

In this case π1(M ′) has a presentation y3 = x5 = (yx)2.
Let Γ ⊂ SO(3) be the group of symmetries of the icosahedron:
it has order 60.

X = rotation about 2π/5 at a vertex p;

Y = rotation about 2π/3 at centre of a face with p a vertex;

Then one sees that YX is rotation about π at midpoint of
opposite edge.

So X 5 = Y 3 = (XZ )2 = 1. We get a surjective homomorphism
ρ : π1(M ′)→ Γ.
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In fact (as we may see later) M ′ is the “Poincaré 3-manifold”
and may alternatively be described as SO(3)/Γ. Then ρ is the
induced map π1(M ′)→ Γ and the kernel of ρ is
π1(SO(3)) = Z/2. So π1(M ′) has order 120.
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Futher examples (1)

.
Seifert fibrations
Consider S1 as the unit circle in C.
Consider the solid torus

N = S1 × B2 = {(z,w) ∈ C2 : |z| = 1, |w | ≤ 1}.

Then we have an obvious free S1 action on N

λ(z,w) = (λz,w).

A 3-manifold M is a (principle) S1 bundle if there is an action of
S1 on M which is locally modelled on this one.
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Now given non-zero r ∈ Z. We can consider the action on N

λ(z,w) = (λr z, λw).

This is not free: points with w = 0 have stabiliser the cyclic
group of order r : Cr ⊂ S1. The quotient of N by the action is the
same as the quotient of B2 by the obvious action of Cr which is
again a copy of B2. A 3-manifold M has a Seifert fibration if
there is an S1 action on M which is locally modelled on one of
these, for suitable r . The quotient M/S1 is a 2-manifold.
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Suppose M0 is an S1 bundle and let K be a fibre. Thus K has
an obvious 0-framing and for any integer r we get another
framing. For r 6= 0, performing Dehn surgery with this framing
we get a new manifold M1 which has a Seifert fibration with a
fibre of multiplicity r .
This is just because when we re-glue the solid torus we take
the standard action on the boundary to the other one.
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Now consider the Poincaré manifold M = SO(3)/Γ. We can
think of SO(3) as the set of unit tangent vectors to S2. Thus
there is an action of S1 on SO(3) which commutes with the
action of Γ, so we get an induced action on M. Contemplating
the icosahedron one see this that this is a Seifert fibration with
three multiple fibres of multiplicities 2,3,5 and quotient space
S2.
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Now we would like to see that the manifold M ′, obtained by +1
Dehn surgery on the trefoil, also has such a Seifert fibration.

Think of S3 ⊂ C2. Then we have an S1 action

λ(z1, z2) = (λ
2z1, λ3z2).

The map
(z1, z2) 7→ z3

1z−3
2 ∈ C ∪ {∞}

shows that the quotient is S2. There are two multiple fibres, of
multiplicities 2,3, corresponding to z2 = 0, z1 = 0.
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We have the “Clifford torus”in S3.

T = {(z1, z2) : |z1| = |z2| = 1/
√

2}.

Writing S3 = R3 ∪∞, this goes over to the standard torus in R3.
The trefoil is the (2,3)-torus knot: any orbit in T under our
action.
The action defines a framing of the knot, as above. (i.e. a
nearby fibre gives a parallel copy (longitude) of the knot.
EXERCISE. These two fibres have linking number 6=2.3.
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Thus +1 Dehn surgery relative to the standard framing
corresponds to taking r = 6− 1 = 5 relative to the fibration
framing. We create a new multiple fibre of multiplicity 5.
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From this it is not hard to see that M is diffeomorphic to the
Poincaré manifold SO(3)/Γ.
Note however that it is not true that the base and the
multiplicities of singular fibres determine the total space.
Example: S3 (the Hopf fibration) and S1 × S2 are two S1

bundles over S2.

A good reference for much of the above is Rolfsen: Knots and
links
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Further Examples (2)

Connections with complex geometry: blowing up.

Recall that CPn is the quotient of Cn+1 \ {0} by the obvious
action of C∗. It is a complex manifold and so has a natural
orientation. Let CPn be the same manifold with the opposite
orientation.
We can also write CPn = Cn ∪ CPn−1.
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In complex geometry the blow up Ĉn of Cn at the origin is
defined as the subset of CPn−1 × Cn satisfying the equations

uizj = ziuj .

Here (zi) ∈ Cn and [ui ] ∈ CPn−1. There is a projection map
π : Ĉn → Cn with π−1(0) = CPn−1 but otherwise a
diffeomorphism.
More generally, if X is any complex manifold of complex
dimension n and p ∈ X we construct a new manifold X̂ .
Proposition X̂ is diffeomorphic to the connected sum of X and
CPn
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To see this we construct an orientation-reversing
diffeomorphism h from Ĉn to CPn \ {0}.
We start be defining

h0 : Cn \ {0} → Cn \ {0}

h0(z) =
1
|z|2

z.

This acts as inversion on each complex line through the origin
and reverses orientation. Now regarding Cn \ {0} ⊂ Ĉn and
also Cn \ {0} ⊂ CPn we can write

h0(u, z) = [u,
∑

uizi ].

In this form it is clear that h0 extends to the desired
diffeomorphism h.
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Further Examples (3)

: Elliptic fibrations and logarithmc transformations.

Take a generic homogenous polynomial f1 of degree 3 in
z1, z2, z3. Then the zero set of f is a 2-dimensional submanifold
C1 of CP2.
Basic fact: C is a complex torus. It is convenient for us to write
this as C∗/Z where the action is generated by multiplication by
μ with |μ| 6= 1.
Now take another generic polynomial f2 with zero set C2. Then
C1,C2 meet in 9 points. Away from these points the quotient
f1/f2 is well-defined in C ∪ {∞}. Blow up these 9 points to get a
manifold X = CP2]9CP2.
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The fundamental point is that the map f1/f2 extends to a
well-defined holomorphic map F : X → S2.
The fibre F−1(λ) can be identified with the curve defined by the
polynomial f1 − λf2. For generic λ this is again a torus. (in fact
there are exactly χ(X ) = 12 singular fibres). Such a structure is
called an “elliptic fibration”.
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For any k ≥ 1 we can take the “fibrewise connected sum” of k
copies of X to get a new manifold with an elliptic fibration (in
fact this can be done in such a way that the result is again a
complex manifold, with a holomorphic fibration).
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Consider a neighbourhood of a torus fibre in X . This can be
written (differentiably) as S1 × N where N = S1 × B2 as before.
For non-zero r we can make the same construction we did
before, to add a multiple fibre, but now we multiple everything
by S1, so we get a new manifold Xr say. A more careful study
shows that this is compatible with the complex structure, so Xr

is again a complex manifold. It has an elliptic fibration but now
there are multiple fibres. In this context the construction is
called logarithmic transformation.
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The manifold X is simply connected. The blowing up
construction gives us 9 disjoint 2-spheres in X . Each meets a
fibre in just one point. This implies that the complement of a
fibre is also simply connected and in turn that Xr is.

EXERCISE. If we perform two logarithmic transforms with
multiplicites r1, r2 then the resulting manifold is simply
connected provided r1, r2 are co-prime. If we perform more than
two transforms then the manifold is not simply connected.

A good reference for much of the above is Gompf and Stipsicz:
4-manifolds and Kirby calculus.
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Section 3. Morse functions, hendles and
cobordism

This is a central section in the course. Inter alia we are working
towards a proof of the “h-cobordism theorem”. Many of the
ideas can be traced a long way back (some perhaps to Möbius
1865).
There is a wide variety of paths we could take.
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We want to have discussions at three levels:

spaces (differential topoology);

homotopy;

homology.

We will begin with homology.
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Let M be a compact n-manifold. A function f on M is a Morse
function if the derivative df is transverse to the zero section in
T ∗M.
What this says is that at critical points p in M, where df = 0 the
Hessian is non-degenerate. In local co-ordinates

det
(
∂2f
∂xi∂xj

)

6= 0.

A basic fact is that Morse functions exist (and are “dense” in a
suitable sense).

By the classification of quadratic forms we can choose
co-ordinates centred at p so that

f (x) = f (p)−




∑

i = 1λx2
i +

n∑

i=λ+1

x2
i



+O(x3).

The number λ is called the index of the critical point.
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By a slightly subtle lemma (Morse lemma) we can choose the
co-ordinates so that the O(x3) term is 0. In practice we can
avoid appealing to this, because it is easy to show that we can
change f slightly to have the given form.
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Fix a Morse function f on M. We will describe the “Witten
complex” which computes the homology of M.
Let g be a Riemannian metric on M. This defines the gradient
vector field gradf , vanishing at the critical points. We have a
gradient flow

dx
dt
= −gradfx .

Each solution x(t) has forward and backward limits
limt→±∞ x(t), which are critical points.
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Fundamental fact, I For generic metrics g; if p± are critical
points of indices μ± then the set of flow lines which travel from
p− (at t = −∞) to p+ (at t = +∞) is a manifold (possibly
empty) of dimension μ− − μ+ − 1.
Important note : here we take the quotient by the obvious
action of R on the flow lines.

Simon Donaldson Manifold theory



Introduction
Surgery

Explanation

There is “descending manifold” V (p−) from p−, of dimension
μ−, and an “ascending manifold” U(p+) from p+ of dimension
n − μ+.
Without loss of generality f (p−) > f (p+). Fix generic c such
that f (p−) < c < f (p+). Then the level set Nc = f−1(c) is a
manifold of dimension n − 1. The intersection V (p−) ∩ Nc is
locally a submanifold of dimension μ− − 1 and the intersection
U(p+) ∩ Nc is locally a submanifold of dimension n − μ+ − 1. If
the intersection is transverse then it is (locally) a submanifold of
dimension

(μ− − 1) + (n − μ+ − 1)− (n − 1) = μ− − μ+ − 1.

The intersection points correspond to flow lines from μ− to μ+.
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It is not hard to show that this transverality can be achieved, for
generic metrics g (The “Morse-Smale condition”.) Fix such a
metric.
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LetM(p−, p+) be the set of flow lines from p− to p+ (divided by
the R-action). In general this is not compact but the failure of
compactness arises solely from “factorisations” through
intermediate critical points. In particular

If μ− − μ+ = 1 thenM(p−, p+) is compact: a finite set of
points.

μ− − μ+ = 2 thenM(p−, p+) is a 1-manifold with
boundary points corresponding to factorisations through an
intermediate critical point of index μ− − 1 = μ+ + 1.

The general statement is thatM(p−, p+) has a
compactification which is a “manifold with corners”.
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Granted this we can proceed to define the Witten complex. For
simplicity we use Z/2 co-efficients, to avoid discussing signs.
Let Cp be the Z/2-vector space with basis corresponding to
critical points of index p.
Let ∂ : Cp → Cp−1 be the linear map with matrix entries given
by counting flow lines.
Then the fact that a 1-manifold with boundary has an even
number of boundary points shows that ∂2 = 0.
Let H∗ be the homology of this complex.
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FACT: This computes the singular homology H∗(M,Z/2).

Taking account of orientations and signs we can compute the
integral homology in a similar way.
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We will see soon that the homology computed by the Witten
complex of a Morse function is indeed the ordinary singular
homology of M. But it is interesting to imagine that we do not
know any other definition of homology and see why this gives a
good approach, i.e. independent of the choice of Morse
function f .
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Suppose that f−1, f1 are two Morse functions on M (satisfying
also the Morse-Smale condition). For t ∈ R let ft be the function
given by

1 ft = f−1 if t ≤ −1;
2 ft = f1 if t ≥ 1;
3 ft = β(t)f−1 + (1− β(t))f1 if −1 ≤ t ≤ 1;

where β(t) is a smooth function equal to 1 if t ≤ −1/2 and to 0
if t ≥ 1/2.
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Now we have a time-dependent vector field on M defined by
gradft . We consider solutions of the equation dx

dt = gradft . These
have forward limits as t → +∞, which are critical points of f1,
and backward limits as t → −∞, which are critical points of f−1.
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Similar considerations to those before show that, after perhaps
slightly perturbing the vector field, there are for each μ a finite
number of solutions which have forward and backward limits of
the same index μ. Counting these defines a map

I : C+∗ → C−∗ ,

where C±∗ are the complexes defined by f±1. An argument like
the proof that ∂2 = 0 shows that this is a map of chain
complexes and so induces a map on homology.
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More generally we can consider any time dependent vector
field, equal to gradf−1 for t << 0 and to gradf1 for t >> 0.
Again we get a map of complexes and we argue that this is
independent of the vector field up to chain homotopy.
Then a “gluing argument” shows that I induces an isomorphism
on homology. So the “Morse homology” is independent of the
choice of f .
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This leads to one proof of the Poincaré Duality Theorem: for a
compact oriented n-manifold M;

Hp(M : Z) = Hn−p(M;Z).

The proof is to replace f by −f .
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Digression on Poincar é Duality

Let P and Q be oriented submanifolds of dimension p, q
respectively in an oriented manifold M of dimension n. Then,
after perhaps making a small perturbation, we can suppose
P,Q intersect transversally in a manifold of dimension p+ q − n
(empty if p + q < n).

1 The homology class of the intersection is independent of
the perturbation.

2 The homology class of the intersection depends only on
the homology classes [P] ∈ Hp(M), [Q] ∈ Hq(M);

3 While it is not quite true that any homology class can be
represented by a submanifold, the construction extends to
define a bilinear map

Hp(M)× Hq(M)→ Hn−p−q(M).

A detailed treatment of duality is given in the book
Characteristic classes Milnor and Stasheff.
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If for simplicity we work with co-efficients in a field F then when
p + q = n this pairing

Hp(M)× Hn−p → Hn(M) = F ,

defines a duality Hp(M) = (Hn−p(M))∗ = Hn−p(M) which is the
same as that we saw above via the Witten complex.
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Under this, the intersection pairing Hp × Hq → Hn−p−q goes
over to the algebraic topologists cup product Hi × Hj → Hi+j .
Classical example . Let M be the complex projective plane.
Then H2(M) = Z with generator the class [L] of a complex line
L. Then L.L = 1 (two lines meet in a point).
Let Cd be a complex curve defined by a polynomial of degree
d . Then it is clear that Cd .L = d , so [Cd ] = d [L]. Thus
Cd1
.Cd2

= d1d2 which is Bezout’s Theorem.
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Other duality theorems. Lefschetz For an oriented n-manifold
M with boundary

Hp(M) = Hn−p(M, ∂M).

Alexander For a “reasonable” subset A ⊂ Sn

Ĥp(Sn \ A) = Hn−p−1(A).

For example a Jordan curve A in S2, knot A in S3 (linking
number).

Simon Donaldson Manifold theory



Introduction
Surgery

Return to our Morse function f on a compact oriented
n-manifold M.

We now make another discussion at the level of homotopy.

Suppose for simplicity that as p runs over the critical points the
values f (p) are distinct (the critical values).
For c ∈ R let Mc = f−1(−∞, c].
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If c is not a critical value then Mc is a compact manifold
with boundary.

If c << 0 then Mc is empty and if c >> 0 then Mc = M.

If the interval [c1, c2] does not contain any critical values
than Mc1 ,Mc2 are homotopy equivalent (in fact
diffeomorphic).

As c increases across a critical value corresponding to a
critical point p of index μ the set Mc changes at the level of
homotopy by the attachment of a μ-cell.

This gives a (partial) description of M as a CW complex. The
information needed to give a complete description consists of
the attaching maps of the successive cells. (It is best here to
consider the case when the index increases with the critical
value, so suitable sets Mc are the skeleta of the CW complex.)
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For details see J. Milnor Morse Theory Princeton UP.
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Cellular homology

Suppose that X is a finite CW complex with skeleta Xj . Then by
excision Hi(Xj ,Xj−1) vanishes for i 6= j and has one generator
for each j cell when i = j . From the long exact sequences of
pairs we get maps

∂ : Hj+1(Xj+1,Xj)→ Hj(Xj ,Xj−1)

with ∂2 = 0 and such that the homology of the resulting
complex is H∗(X ). Tracing through the definitions you find that
this is exactly the Witten complex.
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Handles

Now we want to describe at the level of differential topology
how Mc changes as c crosses a critical value.

Recall the decomposition

Sn = Bn−λ × Sλ ∪ Sn−λ−1 ∪ Bλ+1.

A way of seeing this is to write the ball Bn+1 (at the level of
homoeomorphism) as

Bn+1 = Bn+1−λ × Bλ

whence

Sn = ∂Bn+1 = Bn+1−λ × ∂Bλ ∪ ∂Bn+1−λ × Bλ.
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The n + 1-dimensional λ-handle is the product Bn+1−λ × Bλ a
“manifold with corners”.
Suppose W is an n + 1-dimensional manifold with boundary
and Σ is an embedded λ− 1 dimensional sphere in the
boundary ∂W . Suppose we are given a trivialisation of the
normal bundle of Σ in ∂W . Thus a tubular neighbourhood
N ⊂ ∂W is identified with Sλ−1 × Bn+1−λ. We form a new
topological space W ′ by adjoining Bn+1−λ × Bλ to W along
Sλ−1 × Bn+1−λ. This can be given the structure of a manifold
with boundary (rounding off the corners). We say that W ′ is
obtained from W by adjoining a λ-handle along Σ.
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It is clear that ∂W ′ is obtained from ∂W by surgery on Σ, using
the given trivialisation of the normal bundle.

When W is empty and λ = 0 we interpret this saying that
W ′ = Bn+1.

When λ = n + 1 so Σ is a component of ∂W the effect is to fill
in that component with a ball.
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The basic point is that if f is a Morse function on an
(n+1)-dimensional manifold M then the set Mc changes by
attaching a λ-handle as c increases through a critical value
belonging to a critical point of index λ.
To see this one easily reduces to the local quadratic model.
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Suppose we are given a framed link L =
⋃

i Li in S3 = ∂B4. So
the Li are disjoint embedded circles and each has a framing,
specified by an integer ri . We attach 2-handles to B4 to get a
4-manifold with boundary X .
Then H2(X ;Z) has generators corresponding to the
components Li which we can represent by embedded surfaces
Σi ⊂ X . The intersection numbers are given by the linking
numbers

Σi .Σj = lk(Li , Lj) fori 6= j

and the framings
Σi .Σi = ri .
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Let Q be the intersection matrix Qij = Σi .Σj .

It is not hard to see that X is simply connected. We have a long
exact homology sequence

0→ H2(∂X )→ H2(X )→ H2(X , ∂X )→ H1(∂X )→ 0.

By duality H2(X , ∂X ) = H2(X ) and the map in the middle is
given by Q.
If detQ 6= 0 then ∂X is a rational homology 3-sphere and
|H1(∂X )| = |detQ. In particular if detQ= ±1 we get an integral
homology 3-sphere.
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Examples

1. Consider the function f on CP2 defined by

f (z0, z1, z2) =

∑
i ai |zi |2∑

i |zi |2
,

where a0 < a1 < a2. This is a Morse function with a minimum
at [1, 0, 0] a maximum at [0, 0, 1] and a critical point of index 2
at [0, 1, 0]. Let X be the manifold with boundary obtained by
removing a small ball around the maximum. Then X is obtained
by attaching a 2-handle along the “unknot”with framing r = 1.
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2. Let L be the standard 2-component link with framings 0.
Then X is (S2 × S2) \ B4.

3. Let L be the 8 component link associated to the “E8

diagram”. and all framings −2. Then detQ= ±1 and ∂X is a
homology sphere. In fact this is the Poincaré manifold we
discussed before.

Remark In this case we can take the Σi to be 2-spheres. We
can also describe X by “plumbing”.
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There is a useful analogy with the case when we add 1-handles
to B2 to construct surfaces. The interesting situation then is the
nonorientable one when we have “framings” 0, 1 modulo 2.

Example. S2 × S2]CP
2

is diffeomorphic to CP2]2CP
2
.

One way to see this uses complex geometry. Let V ⊂ CP3 be
the quadric surface defined by z0z1 = z2z3. Then the map
(s, t) 7→ [1, st , s, t ] for s, t ∈ C ∪ {∞} shows that V is
diffeomorphic to the S2 × S2.
Consider the projection from the point [1, 0, 0, 0] of V to a

plane. This becomes well-defined on the blow up S2 × S2]CP
2
.

On the other hand there are two lines {s = 0}, {t = 0} on V
which are collapsed to points by the projection. Studying the
situation you see that the inverse map becomes well-defined on
the blow-up of P

ˉ
2 at two points.
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The “real” version of this is

S1 × S1]RP2 = RP2]2RP2.

The proof is the same. On the other hand we can see this
directly using “handle slides” .
In a similar vein, “Kirby calculus” gives a systematic way to
manipulate handle and surgery descriptions of 4 and 3
manifolds.

For all this see the book of Gompf and Stipsicz.
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Cobordism

A cobordism W between n-manifolds M0,M1 is an
(n + 1)-manifold with boundary the disjoint union M0 tM1.
There are oriented and an unoriented versions of the theory.
We allow M0 to be empty, then we say M1 is null cobordant.
In either case we get a cobordism ring Ω∗ =

⊕
n≥0Ωn with

operations given by disjoint union (or connected sum) and
products. The group Ωn is the set of equivalence classes of
n-manifolds, under the equivalence relation defined by
cobordism.
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The notion can be motivated by considering a family of
“equations” ft(x) = 0. As t varies continuously the solutions
sets can change as manifolds, but they are cobordant.
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Basic example: RP2 is not null cobordant.
In fact if M = ∂W we claim that the Euler characteristic of M is
0 modulo 2. This follows from Poincaré duality and the exact
sequence of (W ,M).
From now on we concentrate on the oriented case.
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Let W be a cobordism from M0 to M1. A Morse function on W
is a smooth function f :W → [0, 1] with

f (Mi) = i ;

gradf non-vanishing on Mi ;

Non-degenerate critical points in the interior of W .

Considering the sets f−1(−∞, c] we see that M1 is obtained
from M0 by a sequence of surgeries.
Conversely it is easy to see that if M ′ is obtained from M by a
surgery then M ′ is cobordant to M.
So cobordiem is the equivalence relation generated by surgery.
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Section 4 Cobordism, Pontrayagin-Thom and characteristic
classes.
The reference for this section is the book of Milnor and Stasheff.
This is a big topic and we will not be able to cover too much.
One basic point that emerges is that cobordism can be
translated into homotopy questions which can largely be
reduced to homology.
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We begin with characteristic classes. These are bound up with
the topology of Lie groups, but the only groups we we really
need to consider are O(n),SO(n),U(n).
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It is useful to have the general notion of a principle bundle
P → B with structure group G.

If G = O(n) this is the same as considering real vector
bundles with fibre Rn and Euclidean metrics on the fibres.

If G = SO(n) this is the same as considering real vector
bundles with fibre Rn together with Euclidean metrics and
an orientation on the fibres.

If G = U(n) this is the same as considering complex vector
bundles with fibre Cn together with Hermitian metrics and
an orientation on the fibres.

In fact the metrics will play no real role. We could equally well
consider the consider the groups GL(n,R),SL(n,R),GL(n,C).
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Such a bundle can be specified by an open cover B =
⋃
αUα

and transition functions

gαβ : Uα ∩ Uβ → G,

such that gαγ = gαβgβγ on Uα ∩ Uβ ∩ Uγ .
Consider the case when B = Sn. It is an easy fact that we can
take a cover U1,U2 by enlarged hemispheres so that U1 ∩ U2 is
a tubular neighbourhood of the equator Sn−1.
It is similarly an easy fact that the bundle, up to isomorphism, is
determined by the homotopy class of the transition function

g : Sn−1 → G.

So studying equivalence classes of G bundles over Sn is the
same as studying the homotopy group πn−1(G).
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Example 0

Take n = 1 and G = O(1) = ±1. Then π0(G) is a set with two
elements.
Application Consider an embedded circle C in a 2-manifold.
The normal bundle is determined by an element in
{0, 1}–depending whether the bundle is trivial or a Möbius
band. This is the same as the (mod 2) self-intersection number
C.C.
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Example 1

Take n = 2 and G = S1 = U(1) = SO(2). Then π1(G) = Z.
Application Consider an embedded 2-sphere Σ in an oriented
4-manifold. The normal bundle is determined by an integer.
This is the same as the self-intersection number Σ.Σ.
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Now take n = 4 and G = SO(3). We need a digression. Recall
that SU(2) is the group of complex unitary 2× 2 matrices with
determinant 1. Simple algebra shows that these have the form

(
z w
−w z

)

with |z|2 + |w |2 = 1. Thus SU(2) can be identified with the
3-sphere S3.
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Now let V be the set of 2× 2 skew-Hermitian matrices with
trace 0. This is a 3-dimensional real vector space. The group
SU(2) acts on V by v 7→ gvg−1. You can check that this action
preserves orientation and a Euclidean metric on V . So we get
a homomorphism SU(2)→ SO(3). You can check that this is
surjective and has kernel the centre{±1} of SU(2). The
conclusion is that SO(3) = S3/± 1.
Thus we have

π1(SO(3)) = Z/2;

π2(SO(3)) = 0;

π3(SO(3)) = Z.
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Thus SO(3) bundles over S4 are classified by an integer.
Application
The normal bundle of an embedded 4-sphere in an (oriented)
7-manifold is determined by an integer.

Note that this is not given by a self-intersection number.
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Now take n = 4 and G = SO(4). We construct a surjective
group homomorphism

SU(2)× SU(2)→ SO(4).

Let Ṽ = V ⊕ R1. This is the set of matrices of the form
for z,w ∈ C. So Ṽ is a 4-dimensional real vector space. You
can check that (g1, g2)(v) = g1vg−1

2 defines an action of
SU(2)× SU(2) on Ṽ which preserves a Euclidean metric and
orientation. Thus we get a homomorphism to SO(4) which you
can check is surjective with kernel (1, 1), (−1,−1).
This construction can also be expressed using quaternions.
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It follows that
π1(SO(4) = Z/2, π2(SO(4)) = 0, π3(SO(4) = Z⊕ Z. So SO(4)
bundles over S4 are classified by a pair of integers (k1, k2).
Application. Let Σ be an embedded 4-sphere in an 8-manifold.
The normal bundle is determined by a pair (k1, k2). The
self-intersection number is k1 − k2.
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Now consider SO(d) bundles over S4 for d ≥ 5. The fibration

SO(d − 1)→ SO(d)→ Sd−1

gives a long exact homotopy sequence

. . . π4(S
d−1)→ π3(SO(d − 1))→ π3(SO(d))→ 0.

If d ≥ 6 this shows that π3(SO(d)) = π3(SO(d − 1)). The
interesting case is when d = 5. One finds that the map
Z = π4(S4)→ π3(SO(4)) = Z⊕ Z takes 1 to (1, 1). It follows
that π3(SO(d)) = Z for d ≥ 5. So SO(d) bundles over S4 are
determined by a single integer, for d ≥ 5.

Simon Donaldson Manifold theory



Introduction
Surgery

Now we develop the theory more systematically.
Let E → B be a real rank d vector bundle over a compact base.
For each x ∈ B we can find a neighbourhood U and sections si

which form a basis for the fibre over each point of U. Multiply by
a cut-off function, equal to 1 on a smaller neighbourhood U ′, to
get sections defined over all of B.
Using compactness we get a finite collection of sections
σ1, . . . σN which generate all fibres of E . Thus for each x in B
we have a surjective evaluation map ex : RN → Ex whose
kernel is a (N − d)-dimensional subspace of RN . The
annihiliator in the dual space is a d-dimensional subspace of
RN . So we get a map

f : B → Gr(d ,N),

to the Grassmann manifold of d-dimensional subspace of Rn.
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There is a tautological bundle U over the Grassmann manifold.
Let H be its dual. One finds that E is canonically isomorphic to
f ∗(H).
(If we use metrics we do not need to distinguish between U,H.)
If f ′ : B → Gr(d ,N ′) is a map defined by other choices one
shows that f , f ′ become homotopic when we embed
Gr(d ,N),Gr(d ,N ′) in some suitably large Grassmannian
Gr(d ,N ′′).
Conclusion: isomorphism classes of real vector bundles over B
are in 1-1 correspondence with homotopy classes of maps
B → Gr(d ,∞). In practice we can always replace∞ by some
large N.
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What we have constructed is the classifying space BG for
G = O(d).
The construction applies equally well to SO(d) (oriented
subspaces) and U(d). (In the complex case we do need to
distinguish between U,H.)
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From this point of view, characteristic classes for a group G are
just cohomology classes c ∈ H∗(BG). Then for any bundle
E → B we get a class f ∗(c) ∈ H∗(B), (independent of the
choice of f ).
Example Take G = U(1) = SO(2) = S1. Then BG = CP∞ and
H∗(BG) is freely generated as a ring by a single class h ∈ H2.
For an S1 bundle L→ B we get a characteristic class
c1(L) ∈ H2(B;Z). This is the first Chern class. In fact one can
show that this gives a 1-1 correspondence between such
isomorphism classes of such bundles and H2(B;Z). This
extends what we saw in the case B = S2.
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Now let E → B be a complex vector bundle of rank d . We form
the projective bundle P(E), with fibres CPd−1. There is a
tautological line bundle over P(E): let H be its dual. Then we
get a first Chern class h ∈ H2(P(E)) of H. Now we have a map

μ : H∗(CPd−1)⊗ H∗(B)→ H∗(P(E)).

Lemma The map μ is an isomorphism of additive groups.
One can prove this by an inductive argument using
Mayer-Vietoris and a suitable finite covering of B. Alternatively,
it follows easily from the “Serre spectral sequence”.
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By the lemma we can write hd ∈ H2d (P(E)) in the form

hd = −
∑

cih
d−i ,

for certain classes ci ∈ H2i(B). This is one way to define the
Chern classes ci(E) for i = 1, . . . , d .
There are various formulae one can establish. For example
c(E ⊕ E ′) = c(E)c(E ′) where c(E) = 1+ c1(E) + c2(E) + . . . .
In particular c(E ⊕ R) = c(E).
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There is a completely parallel discussion for real vector
bundles, using co-efficients Z/2, since H∗(RP∞,Z/2 is Z2[h] for
h ∈ H1. We get Stiefel-Whitney classes wi(E) ∈ Hi(B;Z/2).
The class w1(E) vanishes if and only if E can be oriented.
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If E → B is a real vector bundle we define the Pontrayagin
classes pi(E) ∈ H4i to be c2i(E ⊗R C).

If E → B is an oriented real vector bundle of even rank 2k there
is another important characteristic class, the Euler class. Let
E0 ⊂ E be the complement of the zero-section. Then one
shows that there is a Thom class τ ∈ H2k (E ,E0) which is
characterised by the fact that on each fibre it restricts to the
generator of H2k (R2k ,R2k \ {0}) chosen by the orientation.
Then the Euler class e(E) ∈ H2k (B) is the pull back of τ by the
zero section B →W . (When B is a smooth manifold and one
works with real co-efficients then the Thom class can be
represented by a compactly supported closed 2k -form on E
with integral 1 over each fibre.)
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In the case when B is a smooth oriented n-manifold the Euler
class of E → B can be defined geometrically as follows. One
takes a generic section s of E meeting the zero section
transversally in a (n − 2k)-dimensional submanifold Z ⊂ B then
e(E) is the Poincaré dual of [Z ] ∈ Hn−2k (B).
Example : for an oriented manifold M2k the Euler class
e(TM) ∈ H2k (M) = Z is given by counting (with signs) the zeros
of a generic vector field which gives the Euler characteristic
χ(M).
Remark: One way to see that the count of zeros of a vector
field gives

∑
(−1)idimHi is to consider a Morse function.

Example If Σ2k is a submanifold of M4k then the Euler class of
the normal bundle is the self-intersection number Σ.Σ.
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To match up with the previous discussion of SO(d) bundles
over S4 d ≥ 3

If d 6= 4 we have an integer invriant given by p1;

If d = 4 we have two integer invariants given by p1, e. In
terms of the previous discussion one finds that
e = k1 − k2, p1 = 2(k1 + k2), so the only constraint is that
2e = p1 modulo 4.
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What does this have to do with cobordism? Suppose M is an
oriented manifold of dimension 4k and
a1 + 2a2 + 3a3 + ∙ ∙ ∙ = k . write pi for pi(TM). Then the class
pa1

1 pa2
2 . . . is in the top dimension so we can evaluate to get an

integer. These are called Pontrayagin numbers. For example:

when k = 1 we have a number p1;

when k = 2 we have p2
1, p2;

when k = 3 we have p3
1, p2p1, p3.
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Let W be a (4k + 1)-dimensional cobordism from M0 to M1.
Then the restriction of TW to TMi is TMi ⊕ R. This means that
the Pontrayagin classes of TW restrict to those of TMi and
hence the Pontrayagin numbers of Mi are equal. So for each
decomposition k = a1 + 2a2 + . . . we get a map Pa : Ω4k → Z,
where Ω4k is the oriented cobordism group. If Nk is the number
of decompositions we have a map P : Ω4k → ZNk .
Theorem of Thom The Ωn ⊗Q are zero for n not divisible by 4
and P : Ω4k ⊗Q→ QNk is an isomorphism. Futhermore,
generators of Ω4k ⊗Q are given by products of projective
spaces CP2m.
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We do not have time to say much about the proof of this
Theorem but we try explain some of the ideas. We begin with a
digression.
Let Mn+k be a compact manifold. We consider a submanifold
Z ⊂ M of dimension n with a trivialisation of the normal bundle.
If Z0,Z1 are two such, we say Z0,Z1 are framed cobordant if
there is a submanifold W ⊂ M × [0, 1] with boundary Z0 t Z1

and with a trivialisation of the normal bundle of W which
restrictions to the given trivialisations on the Zi . This defines an
equivalence relation and set of equivalence classes is denoted
Ωn(M).
Pontrayagin’s Theorem Ωn(M) can be identified with
cohomtopy group [M,Sk ].
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In one direction suppose we have Z ⊂ M with a tubular
neighbourhood N = Z × Bk . We define f0 : N → Bk to be the
projection. Now regard Sk as Bk with boundary collapsed to a
point∞ Composing with collapsing map we get f : N → Sk and
we extend to M by defining f (x) =∞ for x ∈ M \ N.
In the other direction given a homotopy class of maps M → Sk

we choose a smooth representative f and take a regular value
y ∈ Sk . Then Z = f−1(y) is a framed submanifold of M.

Simon Donaldson Manifold theory



Introduction
Surgery

In particular if M = Sn+k we identify the framed cobordism
group with πn+k (Sk ). The “limit”as k →∞ gives the stable
homotopy groups of spheres. A basic fact from homotopy
theory is that these are all finite, for k ≥ 1.
Example Take n = 1, k = 2 so we are considering framed
1-dimensional submanifolds of S3. It is not hard to see that all
cobordism classes can be represented by a standard circle with
some framing of the normal bundle, determined by an integer
since π1(SO(2)) = Z. This corresponds to the Hopf invariant
π3(S2) = Z.
Now take n = 1, k ≥ 3. We again take a standard circle but the
framings are given by π1(SO(k)) = Z/2. This corresponds to
πk+1(Sk ) = Z/2 for k ≥ 3.
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Thom’s construction is a little more complicated. Suppose we
have a submanifold Z n ⊂ Rn+k ⊂ Sn+k . At each point of Z the
normal bundle determines a point in Grk (Rn+k ). Recall that we
have a tautological bundle U → Grk (Rn+k ). Let N be a tubular
neighbourhood of Z and let NU be a tubular neighbourhood of
the zero section in U. Then there is an obvious way to define a
map f0 : N → NU . Define the Thom space T (U) to be the
space obtained from U by collapsing the complement of NU to
a point. Then we get a map f : Sn+k → T (U) in the same
fashion as before.
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Any manifold Z n can be embedded in Rn+k for k ≥ n + 1. The
basic fact is that this construction sets up a 1-1 correspondence

Ωn = πn+k (T (U)).

Thus the computation of the cobordism groups Ωn is translated
into a homotopy problem.
Now Thom’s theorem is proved by homotopy theory. The basic
input is that Hn(Grk (Rn+k );Q) (k ≥ n + 1) is generated by
products of the Pontrayagin classes pi ∈ H4i . (Notice that the
Euler class, when k is even, lies in Hk and k > n.)
Then one uses arguments comparing homology and homotopy
and the finiteness of certain homotopy groups. See Milnor and
Stasheff for details.
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The signature

Let M be an oriented manifold of dimension 4k . We have a
cup-product H2k × H2k → Z . Taking real co-efficients, this
defines a nondegenerate quadratic form on H2k (M;R). Thus
we can write b2k = b2k

+ + b2k
− where b2k

± are the dimensions of
maximal positive/negative subspaces. The signature σ(M) is
defined to be a b2k

+ − b2k
− .
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Lemma

If M = ∂W then σ(M) = 0. Consider the exact sequence in real
cohomology:

. . .H2k (W )→ H2k (M)→ H2k+1(W ,M) . . .

By Lefschetz duality the last term is the dual of the first. One
easily sees that the seciond map is the adjoint of the first. This
implies that if I ⊂ H2k (M) is the image of the first map then I is
its own anhilliator with respect to the quadratic form. Thus I is
an isotropic subspace for the form, of dimension
(1/2)dimH4k (M). It follows that the signatre is zero.
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This shows that the signature is a cobordism invriant and
defines a homomorphism σ : Ω4k → Z.
Thom’s theorem implies that for each dimension 4k the
signature is given by some universal linear combination of the
Pontrayagin numbers.
Examples k = 1 We have σ(CP2) = 1 and p1(CP2) = 3. So the
formula is σ = p1/3.
k = 2. Suppose the formula is

σ = Ap2
1 + Bp2

We have σ(CP4) = σ(CP2 × CP2) = 1. Calculations show that
for CP4 we have p2

1 = 52 = 25 , p2 = 10 and for CP2 × CP2

we have p2
1 = 232 = 18 , p2 = 32 = 9. So

25A+ 10B = 1 18A+ 9B = 1.

The formula is σ = 1
45(7p2 − p2

1).
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The general case. Let f (t) = t
tanh t . This is an even function of t .

Take an arbitrary number of variables ti and consider
F =

∏
i f (ti). This can be written in terms of the elementary

symmetric functions in t2
i i.e.

S1 =
∑

t2
i S2 =

∑
t2
i t2

j . . .

Let F =
∑

k Fk where Fk has total degree 2k in the ti . Define a
polynomial Lk by Fk = Lk (S1,S2, . . . ).
Hirzebruch’s Signature Theorem For a manifold M of
dimension 4k

σ(M) = 〈Lk (p1, p2, . . . ), [M]〉.

It is an exercise to see that this gives the right answer when
k = 1, 2 using

f (t) = 1+
1
3

t2 −
1

45
t4 + . . . .
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Exotic spheres

We assume here knowledge of the quaternions. They form a
4-dimensional non-commutative field H. The usual construction
allows us to define projective spaces HPn and HP1 = S4. Then
HP2 is an oriented 8 manifold with homology Z in dimensions
0, 4, 8. The generator in H4 is represented by an embedded
4-sphere Σ = HP1 ⊂ HP2 and Σ.Σ = 1. We have HP2 = Σ ∪ R8

and the boundary of a tubular neighbourhood N of Σ is a
7-sphere. The fibration ∂N → S4 is the quaternionic Hopf
fibration p : S7 → S4 defined by p(Z0,Z1) = [Z0,Z1]. All of this
is completely analogous to the real and complex cases.
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Now consider the normal bundle ν of Σ = S4 in HP2. This is an
SO(4) bundle over S4 and so is determined by a pair of
integers (k1, k2), as discussed above. Calculations show that ν
corresponds to the pair (1, 0), so p1(HP2,Σ) = 2. Thus p2

1 = 4
and the signature formula gives p2(HP2) = 7. (i.e
1 = 1

45(7.7− 4)).
Let k1, k2 be integers such that k1 − k2 = 1. Let E → S4 be the
corresponding oriented R4 bundle, X = X (k1, k2) be the unit
ball bundle and Y = ∂X = Y (k1, k2) ⊂ E be the unit sphere
bundle. Thus Y is a 7-manifold which fibres over S4 with fibre
S3. When k1 = 1, k2 = 0 we see from the discussion above that
Y is the sphere S7.
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Whatever pair (k1, k2) we take with k1 − k2 = 1 the 7-manifold
Y is a homotopy 7-sphere. This follows easily from the Serre
spectral sequence for the fibration

S3 → Y → S4.

(The only potentially interesting differential is
d4 : H3(S3)→ H4(S4) and one sees that this is given by the
Euler class, which we have supposed to be 1. One can equally
well use the long exact homotopy sequence.)
Fixing a pair (k1, k2) with k1 − k2 = 1, we consider the
Pontrayagin class p1 of the tangent space to E evaluated on
S4. Since p1(TS4) = 0 we get p1 = 2(k1 + k2).
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Suppose that Y is diffeomorphic to S7. Then we can attach a 7
ball to X to get a closed 8-manifold M8. When k1 = 1, k2 = 0
this recovers HP2. In the general case the putative manifold M
must look homologically like HP2, in that H4(M) is generated by
the class of the 4-sphere. Thus p2

1(M) = 4(k1 + k2)
2 and

σ(M) = 1. The signature theorem gives

1 =
1

45
(7p2 − 4(k1 + k2)

2).

Thus 4(k1 + k2)
2 = −45 = 4mod7. Writing k1 + k2 = 1+ 2k2 we

see that we must have k2 = 0,−1 mod7.
On the contrary, take (say) k2 = 1, k1 = 2. Then
4(k1 + k2)

2 = 1mod7. So we conclude that the 7-manifold Y is
homotopy equivalent, but not diffeomorphic to S7.
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All this is from the famous paper of Milnor (1956). Milnor also
shows by an explicit construction that Y is homeomorphic to S7.
The main point is that the Pontrayagin numbers and the
signature are integers but Hirzebruch’s formula involves rational
numbers. This, and related ideas, lead to a large body of
results in late 20th. century differential topology (also related to
results in homotopy theory).
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Section 5

The h-cobordism theorem.

References for this section are Milnor Lectures on the
h-cobordism theorem, Rourke Introduction to piecewise linear
topology and Kosinski Differential manifolds.

We begin with a fundamental result of Whitney. For simplicity
we do not give the sharpest statement.
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Theorem Suppose that p + q = n and that Pp,Qq are
connected submanifolds of Mn intersecting transversally in a
finite number of points. Suppose the homological intersection
number P.Q is zero. Under the assumptions

M is simply connected;

p, q ≥ 3;

there is an isotopy of M taking P to a submanifold disjoint from
Q.
(An isotopy is a smooth map H : M × [0, 1]→ M such that for
each t ∈ [0, 1] the map ht : M → M defined by ht(x) = H(x , t) is
a diffeomorphism.)
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We can essentially reduce to the case when P,Q meet in two
points x , y with local intersection numbers ±1. Choose arcs
γP , γQ in P,Q respectively running from x to y . Since M is
simply connected the composite bounds a disc ι : B2 → M.
We show that ι can be chosen to be an embedding and to
extend to an embedding of a “standard model” U in M.
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To construct the standard model start with two curves in the
plane:

ΓP = {y = x2 − 1},

ΓQ = {y = 1− x2}.

Let V ⊂ R2 be an open neighbourhood of
{|y | ≤ 1− x2, |x | ≤ 1} and let V0 ⊂ V be a small
neighbourhood of the (ΓP ∪ ΓQ)∩V . Consider V ×Rp−1×Rq−1

and let P̃ = ΓP × Rp−1 × {0}, Q̃ = ΓQ × {0} × Rq−1. Let U be a
neighbourhood of V × {0} × {0} and (with a slight abuse of
notation) P̃, Q̃ ⊂ U.
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We want to embed U in M, taking P̃, Q̃ to P,Q.
If we do this it is not hard to construct the desired isotopy,
working within the image of U.
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To construct the embedding of U, let V0 ⊂ V be a
neighbourhood of the two arcs with a smooth “inner boundary”
γ and let U0 ⊂ U be a neighbourhood of V0 × {0} × {0}.

Choose embedded arcs in P,Q joining x , y .

Now we have an embedding of ΓP ∪ ΓQ mapping to these
arcs.

By a local study, we can extend this to an embedding ι of
V0, taking P̃, Q̃ to P,Q. (This uses the fact that the
intersection numbers at x , y are opposite.)
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Now ι(γ) is a loop in M disjoint from P,Q. Since π1(M) is trivial
this bounds a disc D.

Since n ≥ 4 we can suppose D is immersed.

Since n ≥ 5 we can suppose D is embedded.

Since p, q ≥ 3 we can suppose that D does not meet P,Q.

In fact we can suppose that D meets ι(V0) only in ι(γ).
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So we have an embedded disc D ⊂ M with normal bundle
trivialised over the boundary.
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The obstruction to extending this over this disc lies in
π1(SO(n − 2)) = Z/2 since n > 4.
We still apparently have a problem in Z/2. But further thought
shows that we can change our trivialisation over the boundary
to remove this.
Now use this trivialisation of the normal bundle to extend to an
embedding of U.
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The h-cobordism theorem addresses the question: How can we
show that a pair of manifolds are diffeomorphic?
So far the only approach we have is by careful inspection and
good fortune—recall for example our discussion of the Poincaré
homology sphere.
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Let M0,M1 be (oriented) n-manifolds. An h-cobordism between
M0,M1 is an oriented cobordism W n+1 from M0 to M1 such that
the inclusions M0 ⊂W ,M1 ⊂W are homotopy equivalences.
We say that M0,M1 are h-cobordant.
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Smale’s h-cobordism theorem

If M0,M1 are simply connected n-manifolds, with n ≥ 5 then
any h-cobordism W from M0 to M1 is diffeomorphic to a
product. In particular M0,M1 are diffeomorphic.
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Corollary

“The high dimensional Poincaré conjecture”
If n ≥ 5 and Mn+1 is homotopy equivalent to Sn+1 then M is
homeomorphic to Sn+1.
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To prove the h-cobordism theorem it suffices to show that there
is a Morse function on W with no critical points.

There are different, equivalent languages: Morse functions or
handle decompositions. We will use a hybrid approach.
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Choose a Morse function f on W . The “Witten complex” now
describes the relative homology H∗(W ,M0) = 0.
There cannot be a single critical point, because that would give
the wrong homology. So the simplest case to consider is when
there are just two critical points with adjacent indices.
To fix ideas and give the main idea suppose that n = 6 and we
have critical points w3,w4 of index 3, 4. (Critical points of very
small or high index involve some extra tricks and
complications.)
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To get the homology right the number of flow lines from w4 to
w3, counted with signs must be ±1.
We must have f (w4) > f (w3. Say f (w4) = 3/4, f (w3) = 1/4.
Then M = f−1(1/2) is a 6-manifold.
In M there are a pair of embedded 3-spheres with trivial normal
bundles:

P: the points that flow up to w4;

Q: the points that flow down to w3.

The flow-line count says that the homological intersection
number P.Q is ±1.
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We construct W from M0 × [0, ε] by attaching a 3-handle and
then a 4-handle. The “handle cancellation theorem” asserts that
if P,Q meet transversally in a single point then W is a product.
In other language: if there is just one flow line from w4 to w3

then we can modify the Morse function f to get one with no
critical points.
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From another point of view: start with M × [1/2− ε, 1/2+ ε].
We get W by attaching a 4-handle to M × (1/2+ ε) along
P × (1/2+ ε) and a 4-handle to M × (1/2− ε) along
Q × (1/2− ε). We need to show that if P,Q meet transversally
in a single point then the result is a product M × [0, 1].

Basic observation: a neighbourhood of P ∪Q ⊂ M is standard,
so it suffices to do this in a standard model.
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For the standard model let g(x) = x3 − 3x , with critical points at
x = ±1. “Suspend” this to the function on R7

F = g(x0) + (x
2
1 + x2

2 + x2
3 )− (x

2
4 + x2

5 + x2
6 ).

We see a model pair of spheres in F−1(0). Deforming g to
x3 + x shows what we need.
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Now in our original set-up, there is no reason why P,Q should
meet in a single point. But by the Whitney theorem [with an
obvious generalisation of the statement we made] we can
deform P (say) to have this property. This deformation does not
affect the handle decomposition picture.
In this way we establish the h-cobordism theorem (in a model
case).
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Very rough outline of the general picture:
To determine whether simply connected manifolds Mn

0 ,M
n
1 are

diffeomorphic (n ≥ 5):
1 See that Mi are homotopy equivalent (homology).
2 See that Mi are cobordant (Pontrayagin classes etc.)
3 See that a cobordism can be modified to be an

h-cobordism (surgery. . . ).
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In practice this has only been done systematically in a few
cases: e.g. simply connected 5-manifolds (Smale, Barden)
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There is an extension of the theory to non simply connected
manifolds, which involves interesting algebra.
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Final Section: 4-manifolds
The only standard algebraic topology invariant of a simply
connected (oriented) 4-manifold X is the intersection form on
H2(X ). This gives numbers b2

+, b
2
−. Manifolds with the same

intersection form are homotopy equivalent, h-cobordant and
even homeomorphic (Freedman).
A class c ∈ H2(X ;Z) is called characteristic if c.α = α2 mod 2
for all α ∈ H2(X ,Z). Let CX be the set of classes c ∈ H2(X )
which are characetristic and with c.c = 4+ 5b+2 − b−2 . This can
be identified with the set of homotopy classes of almost
complex structures on X . The Seiberg-Witten invariant is a map
SW : CX → Z which is an oriented diffeomorphism invariant.
(Really, we should distinguish between the cases b+ > 1 and
b+ ≤ 1—in the latter case the theory is more complicated.)
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Example (Fintushel and Stern)

The K3 surface X is the 4-manifold obtained by fibre sum of two
copies of CP2]9CP2. So X fibres over S2 with 24 singular
fibres. One finds b−(X ) = 19, b+(X ) = 3. Let F ⊂ X be a
smooth fibre so the boundary of a tubular neighbourhood of X
is T 3. Let K be a knot in S3 and Y be the complement of a
tubular neighbourhood, so Y has boundary T 2. Let XK be the
4-manifold obtained from X by removing the neighbourhood of
F and replacing with Y × S1 in such a way that H1(XK ) = 0.
Then XK is simply connected and homotopy equivalent to X .
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For this manifold XK , the map SW vanishes except on multiples
of [F ] and SW (λ[F ]) is the co-efficient of tλ in the normalised
Alexander polynomial of K .
For example, if K is a fibred knot, so we have a monodromy
α : H1(Σ)→ H1(Σ) where Σ is a surface of genus g, then the
normalised Alexander polynomial is t−gdet(α− t1).
In this way (and many others) one gets a huge variety of
distinct h-cobordant, homeomorphic, smooth 4-manifolds.
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