Spectral shift function of the Schrödinger operator in the large coupling constant limit

A. B. Pushnitski and M. V. Ruzhansky

1. Introduction. Let H_0 and H be selfadjoint operators in a Hilbert space. If the difference $H - H_0$ is a trace class operator, then there exists a function $\xi \in L^1(\mathbb{R})$ such that the following trace formula due to I. M. Lifshitz and M. G. Krein holds true:

$$\text{Tr}(\phi(H) - \phi(H_0)) = \int_{-\infty}^{\infty} \xi(\lambda)\phi'(\lambda)d\lambda, \quad \forall \phi \in C_{0}^\infty(\mathbb{R}).$$

The function $\xi(\lambda) = \xi(\lambda; H, H_0)$ is called the spectral shift function for the pair H_0, H. A detailed exposition of the spectral shift function theory can be found in the book [9]; see also the survey [3].

Let us consider the (selfadjoint) Laplace operator Δ in $L^2(\mathbb{R}^d)$, $d \geq 1$. Define the operator $H_0 = h(-\Delta)$, where the function $h : [0, +\infty) \to \mathbb{R}$ satisfies

$$h \in C^2(\mathbb{R}), \quad h(0) = 0, \quad h'(r) > 0 \quad \forall r > 0,$$

there exists the limit $\lim_{r \to +\infty} r^{-m}h(r) = h_\infty > 0, \quad m > 0$. (1)

Next, let the perturbation V be the operator of multiplication by a real valued potential $V(x)$, which satisfies the estimate

$$|V(x)| \leq \frac{C}{(1 + |x|)^l}, \quad l > d.$$ (2)

Let $H = H_0 + V$. The most important case is the Schrödinger operator, which corresponds to the choice $h(r) = r$. However, we consider a fairly wide class of functions h in order to demonstrate the dependence of our results on the symbol of the (pseudo)differential operator H_0.

1
Although the difference $H - H_0$ is not of the trace class, condition (2) ensures that the difference of sufficiently high powers of the resolvents of H and H_0 is of the trace class. This allows one to define the spectral shift function $\xi(\lambda; H, H_0)$ on the basis of the invariance principle (cf. [3]).

Various results about the high energy ($\lambda \to +\infty$) or semiclassical ($h(r) = h_\infty r$, $h_\infty \to 0$) asymptotic behaviour of the spectral shift function $\xi(\lambda; H_0 + \alpha V, H_0)$ are known. In the present paper we address the question of the asymptotic behaviour of the spectral shift function $\xi(\lambda; H_0 + \alpha V, H_0)$ in the large coupling constant limit: $\alpha \to +\infty$.

2. Results. It turns out that the asymptotic behaviour of the spectral shift function depends heavily on the sign of the potential V. For non-positive potentials one has

Theorem 1 Let h satisfy conditions (1). Let $H_0 = h(-\Delta)$ in $L^2(\mathbb{R}^d)$, $d \geq 1$. Assume that the potential $V \leq 0$ satisfies estimate (2) for $l > \max\{d, 2m\}$. Then for almost all $\lambda \in \mathbb{R}$ the following asymptotic formula holds true:

\[
\xi(\lambda; H_0 + \alpha V, H_0) = -\alpha^{d/(2m)} C_1 (1 + o(1)), \quad \alpha \to +\infty,
\]

\[
C_1 = (2\pi)^{-d} h_\infty^{-d/(2m)} \text{vol}\{x \in \mathbb{R}^d \mid |x| < 1\} \int_{\mathbb{R}^d} |V(x)|^{d/(2m)} \, dx.
\]

(3)

Let us now discuss the case of non-negative potentials. In this case one has to consider potentials with power asymptotics at infinity. Let \mathbb{S}^{d-1} be the unit sphere in \mathbb{R}^d. Assume that for some non-negative function $\Psi \in C(\mathbb{S}^{d-1})$ one has

\[
\sup_{\omega \in \mathbb{S}^{d-1}} |V(\rho \omega) - \Psi(\omega)\rho^{-l}| = o(\rho^{-d}), \quad \rho \to \infty.
\]

(4)

Theorem 2 Let h satisfy conditions (1). Let $H_0 = h(-\Delta)$ in $L^2(\mathbb{R}^d)$, $d \geq 1$. Assume that the potential $V \geq 0$ is bounded and satisfies the condition (4) with some function
\[\Psi \in C(S^{d-1}), \Psi \geq 0, \text{ and some } l \geq d. \text{ Then for all } \lambda > 0 \text{ the following asymptotic formula holds true:} \]

\[
\xi(\lambda; H_0 + \alpha V, H_0) = \alpha^{d/l} C_2 (1 + o(1)), \quad \alpha \to +\infty,
\]

\[
C_2 = (2\pi)^{-d} d^{-1} \int_{\|p\|^2 < \lambda} (\lambda - h(\|p\|^2))^{-d/l} dp \int_{S^{d-1}} \Psi^{d/l}(\hat{x}) d\hat{x}.
\] (5)

Theorem 1 with \(h(r) = r \) has been proven by the first author in [5]. The case of general \(h \) can be easily dealt with by combining the techniques of [5] and [6]. Theorem 2 is a joint result of the authors [6].

The main ingredients of the proof of Theorem 2 are a representation for the spectral shift function from [4], the asymptotic formula for the spectrum of pseudodifferential operators \([1, 2]\), the variational quotients technique, and several facts about the boundary value problems for elliptic pseudodifferential equations. All the difficulties of the proof appear already in the case \(h(r) = r \); the generalization to the case of arbitrary \(h \) is not difficult.

3. Discussion. 1. For \(\lambda < 0 \) under the hypothesis of Theorem 1 the spectral shift function \(\xi(\lambda) \) is the negative of the number of eigenvalues of the operator \(H_0 + \alpha V \) in the interval \((-\infty, \lambda) \). Therefore, for \(\lambda < 0, V \leq 0 \) and \(h(r) = r \), formula (3) turns into the well known Weyl asymptotic formula for the counting function for the spectrum of the Schrödinger operator (cf. [7, Theorem XIII.80]).

2. It is clear from (3) that the order of the leading term of the asymptotics of the spectral shift function depends on the growth order of the symbol \(h \) at infinity but does not depend of the potential \(V \). For \(V \geq 0 \) the situation is opposite and the roles of the coordinate and momentum variables are reversed.

3. Asymptotic coefficients \(C_1 \) and \(C_2 \) can be interpreted in terms of the phase space volume. Indeed, one readily checks that

\[
C_1 = \lim_{\alpha \to +\infty} \alpha^{-d/(2m)} \text{vol}\{(x, p) \in \mathbb{R}^{2d} \mid h(\|p\|^2) + \alpha V(x) < \lambda < h(\|p\|^2)\},
\]

\[
C_2 = \lim_{\alpha \to +\infty} \alpha^{-d/l} \text{vol}\{(x, p) \in \mathbb{R}^{2d} \mid h(\|p\|^2) < \lambda < h(\|p\|^2) + \alpha V(x)\}.
\]
4. The paper [5] contains a statement (Theorem 1.7) about potentials \(V\) of a variable sign. More precise results can be obtained by combining the techniques of papers [5], [6] and [8]. Let us note briefly that in the case of a potential \(V\) of variable sign and \(l \neq 2m\) the leading term of the asymptotics of the spectral shift function is \(Ca^\nu\), where \(\nu = \max\{d/(2m), d/l\}\), and constant \(C\) can be explicitly expressed in terms of the potential \(V\).

5. Finally we note that condition (1) can be relaxed in several directions.

Literature

A. B. Pushnitski, University of Loughborough, A.B.Pushnitski@lboro.ac.uk
M. V. Ruzhansky, Imperial College, University of London, mrvb@ic.ac.uk