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Introduction

Introduction

What does field theory “normally” look like?
Advantages and disadvantages?
Field theory for reaction diffusion processes.
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Introduction φ4 theory

φ4 theory

Basic ingredients of a field theory
Continuous, local degrees of freedom φ(x).
Parameterisation by a few couplings, say r , u.
Build Hamiltonian (energy), motivated by some effective theory, by
symmetries, mean field ideas, lowest order expansions etc., say

H[φ] =

∫
ddx

1
2

rφ2(x) +
1
2
(∇φ(x))2 +

u
4!
φ4(x)

Use Hamiltonian in Boltzmann factor, exp (−H/(kbT )).
Add external (source) field j(x) for generating moments.

Absorb kbT and write path integral:

Z[j ] =
∫
Dφ exp

(
−

∫
ddx

1
2

rφ2(x) +
1
2
(∇φ(x))2 +

u
4!
φ4(x) − j(x)φ(x)

)
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Introduction φ4 theory

φ4 theory I
Diagrams

Perturbative expansion of the partition sum:

Z[j ] =
∫
Dφ exp

(
−

∫
ddx 1

2 rφ2(x) + 1
2 (∇φ(x))2 + u

4!φ
4(x) − j(x)φ(x)

)
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Introduction φ4 theory

φ4 theory II
Diagrams

Expand diagramatically for small u, for example:

〈φφ〉c = + + + + . . .

Effective Hamiltonian (right symmetries etc).
Exact partition sum.
Perturbative treatment of interaction.
Physics of diagrams?
Special attention needed for infinities (characterise long range
behaviour).
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Introduction φ4 theory

φ4 theory
The bare propagator

〈φφ〉c,0 = =
1

k2 + r
In real space:〈

φ(x)φ(x ′)
〉

c,0 = |x − x ′|−(d−2)G
(
|x − x ′|

√
r
)

and in d = 1, 3 scaling function G is an exponential.
The “mass” r cuts off the correlation, i.e. it provides a characteristic
length, ξ = 1/

√
r .
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Introduction φ4 theory

φ4 theory
The meaning of mass r

Renormalised mass (inverse full propagator at k = 0)

r ′ =

 + + + + + . . .


−1

(k = 0)

to be used in a simplified theory (using only the simplest diagrams),
incorporating some of the effect of the interaction.

Here: Interaction reduces correlation length (increases mass).

Very useful — But where is the physics?
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Introduction φ4 theory

Non-equilibrium field theories

Extension to non-equilibrium “straight forward” (Martin, Siggia,
Rose, Janssen, De-Dominicis).
Boltzmann factor exp (−H/(kbT )) turns into integrand giving rise
to a δ-function.
Effective action replaces Hamiltonian.

Why is this method not widely used in complexity?
Requires Langevin or Fokker-Planck equation as starting point.
Focus on long range, long time (which might still be very helpful).
Focus on asymptotes (which might not be so helpful).
Effective theories in, effective theories out. Physics gone!
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Introduction φ4 theory

The Answer: Second Quantisation

Use the language of
second quantisatio† |n〉
to describe complex

systems!
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Introduction φ4 theory

Key features

Scheme goes back to Doi (1976) and Peliti (1985).
Use creation and annihilation operators to represent particle
interaction in master equation.
Field theory arises as a Legendre transform of the time evolution
operator (Liouvillian).
Degrees of freedom remain discrete, even space can remain
discrete.
Diagrammatic expansion, couplings etc. retain physics (not an
effective theory).
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Introduction Creation and Annihilation Operators

Creation and Annihilation Operators
J Cardy, Lecture notes, 1998, 2006

The key ingredient in the construction of the field theory are the
creation and annihilation (ladder) operators that differ only slightly from
those “normally” used in Quantum Mechanics:

a†(x) |nx〉 = |nx + 1〉
a(x) |nx〉 = nx |nx − 1〉

|nx〉 is a configuration with nx at site x. These “coherent states” are
eigenstates of the particle number operator

a†(x)a(x) |nx〉 = nx |nx〉

|0〉 is the empty system.
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Introduction Creation and Annihilation Operators

From master equation to creation/annihilation I
J Cardy, Lecture notes, 1998, 2006

Particles hoping with rate D from 1 to 2:

d
dt

P(n1, n2; t) = D(n1 + 1)P(n1 + 1, n2 − 1) − Dn1P(n1, n2)

The “average configuration” is

|ψ〉 (t) =
∑
n1,n2

P(n1, n2; t)a†n1
1 a† n2

2 |0〉
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Introduction Creation and Annihilation Operators

From master equation to creation/annihilation II
J Cardy, Lecture notes, 1998, 2006

How does |ψ〉 (t) evolve in time? Differentiate and note:∑
n1,n2

D(n1 + 1)P(n1 + 1, n2 − 1)a†n1
1 a† n2

2 |0〉

=
∑
n1,n2

DP(n1 + 1, n2 − 1)a†2a1a† n1+1
1 a† n2−1

2 |0〉

= a†2a1

∑
n1,n2

DP(n1, n2)a
†n1
1 a† n2

2 |0〉

using P(n1,−1) = 0 (no negative occupation) and a1a†n2
2 |0〉 = 0 (no

annihilation at 1 if no particle at 1).
The hopping from 1 to 2 thus becomes

d
dt

|ψ〉 (t) = D
(

a†2a1 − a†1a1

)
|ψ〉 (t)
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Introduction Creation and Annihilation Operators

From master equation to creation/annihilation III
J Cardy, Lecture notes, 1998, 2006

Extension to random walk straight forward

d
dt

|ψ〉 (t) = −
1
2

D
∑

n

∑
m nn of n

(
a†(n) − a†(m)

)(
a(n) − a(m)

)
|ψ〉 (t)

Sum double counts nearest neighbour pairs.
Formal solution:

|ψ〉 (t) = e−Lt |ψ〉 (0)

with

L =
1
2

D
∑

n

∑
m nn of n

(
a†(n) − a†(m)

)(
a(n) − a(m)

)
+ . . .

Another example follows.
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Introduction Creation and Annihilation Operators

A path integral representation

Path integral generated by considering time discretisation:
e−Lt = lim

∆t→0
(1 − Lt)t/∆t

and the Laplace transform

(2π)−1
∫

dφ∗∧dφ e−φ∗φeφa† |0〉 〈0|eφ∗a =
∑

n

(
a†
)n

|0〉 〈0| an

n!
= 1

which allows us (after some tricks, such as the Doi shift φ∗ → 1 + φ∗)
to write the generating functional as a path integral:

Z[j†, j ] = 〈0|exp
(
−

∫
dt L[a†, a] −

∫
ddx ja(x) − j†a†(x)

)
|0〉

=

∫
Dφ†Dφ exp

(
−

∫
dt L[φ†(x, t),φ(x, t)] −

∫
ddx jφ(x, t) − j†φ∗(x, t)

)
At this stage, the field theory in the continuous degree of freedom φ is
still exact, even when the original degree of freedom is discrete. Even
space and time can still be be chosen to be discrete.
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Introduction Building Blocks of a Field Theory

Building a field theory

The Gaussian part of the field theory can be integrated:

Z0=

∫
Dφ†Dφ exp

(
−

∫
dtddx φ†∂tφ+ D∇φ†∇φ+

∫
ddx ja + j†a†

)
gives in k-space:

Z0 = exp
(∫

d̄ω d̄ dk j†(k,ω)(−ıω+ Dk2)−1j(k,ω)

)
and so the connected correlation function is

〈φφ〉c,0 = =
1

−ıω+ Dk2

g.pruessner@imperial.ac.uk (Imperial) Field theory for reaction-diffusion São Paulo, 12/2011 17 / 37



Introduction Building Blocks of a Field Theory

Perturbation Theory

Analysis of non-(bi)linearities proceeds perturbatively in the Gaussian
theory.
Integrals are written in diagrams.
Loops and multiple interactions can be (re)summed into effective
couplings:

+ + + + · · · = 1
1 −

Large scale, long time behaviour if necessary determined by
renormalised field theory, using spurious ultraviolet divergences to
characterise the infrared.
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Branching Random Walk
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Conclusion and Discussion Pros and cons of the field theoretic description

Pros and cons of the field theoretic description

Degrees of freedom remain discrete.
Procedure of writing the path integral generates effective
processes.
Diagrams reflect the physics of the process.
Scheme easily extended to general graphs.
Spatial continuum not necessary.
Boundaries can be dealt with.
Results are easily derived . . . after significant preparatory work.
Might require numerical evaluation of sums.
Irrelevant terms should be dropped for simplicity, but might contain
interesting physics.
Spatially continuous description implies approximation.
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Conclusion and Discussion Pros and cons of the field theoretic description
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Conclusion and Discussion Summary

Summary

Traditional field theoretic methods are powerful but hide the
physics.
Continuum description (degree of freedom and/or space and/or
time) often inadequate.
Second quantisation (Doi, Pelitti, reaction-diffusion) generates
physically tractable field theory.
Provides insight into effective processes and easy access to
relevant observables.
Use it for diffusion, branching, voting etc. on regular lattices and
general graphs.

Thank you!
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