MATH 275 C

Homework 3

Note: unless stated otherwise, all Brownian motions below are implicitly assumed to start at the origin.

1. Let X be a real valued random variable with standard normal distribution as law and Y a random variable independent of X with law defined by

$$P[Y=1] = p$$
 and $P[Y=-1] = 1 - p$, $(0 \le p \le 1)$.

We define Z := XY. What is the law of Z? Is the vector (X, Z) a Gaussian vector?

- **2.** Let W be a Brownian motion on [0, 1] and define the *Brownian bridge* $X = (X_t)_{0 \le t \le 1}$ by $X_t = W_t tW_1$.
 - a) Show that X is a Gaussian process and calculate its mean and covariance functions. Sketch a typical path of X.
 - **b**) Show that X does **not** have independent increments.
- **3.** Let $(B_t)_{t\geq 0}$ be a Brownian motion and denote by $\mathcal{G}_t := \sigma(B_u, u \leq t), t \geq 0$. Define $\widetilde{R}_0 f(x) = f(x)$ and

$$\widetilde{R}_t f(x) = \frac{1}{\sqrt{2\pi t}} \int_0^\infty f(y) \left[\exp\left(-\frac{1}{2t}(y-x)^2\right) + \exp\left(-\frac{1}{2t}(y+x)^2\right) \right] dy, \quad t > 0$$

Define the process $(X_t)_{t\geq 0}$ by $X_t := |B_t|$. Show that

$$E[f(X_{t+h}) \mid \mathcal{G}_t] = \widetilde{R}_h f(X_t)$$
 P-a.s. for $f \in b\mathcal{B}(\mathbb{R})$ and $t, h \ge 0$.

- **4.** Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ for each $n \in \mathbb{N}$.
 - a) Show that if the sequence $(X_n)_{n \in \mathbb{N}}$ converges in distribution to a random variable X, then the limits $\mu := \lim_{n \to \infty} \mu_n$ and $\sigma^2 := \lim_{n \to \infty} \sigma_n^2$ exist and $X \sim \mathcal{N}(\mu, \sigma^2)$.

- b) Show that if (X_n)_{n∈ℕ} is a Gaussian process indexed by ℕ and converges in probability to a random variable X as n goes to infinity, then it converges also in L² to X.
- **5.** Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0})$, we define for any (\mathcal{F}_t) -stopping time τ the σ -field

$$\mathcal{F}_{\tau} := \left\{ A \in \mathcal{F} \mid A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \right\}.$$

Let S, T be two (\mathcal{F}_t) -stopping times. Show that

- **a**) if $S \leq T$, then $\mathcal{F}_S \subseteq \mathcal{F}_T$ and in general, $\mathcal{F}_{S \wedge T} = \mathcal{F}_S \cap \mathcal{F}_T$.
- **b**) $\{S < T\}, \{S \le T\}$ belong to $\mathcal{F}_S \cap \mathcal{F}_T$. Moreover, for any $A \in \mathcal{F}_S, A \cap \{S < T\}$ and $A \cap \{S \le T\}$ belong to $\mathcal{F}_{S \wedge T}$.
- **6.** Let (Ω, \mathcal{F}, P) be a probability space and $(B_t)_{t\geq 0}$ be a Brownian motion.
 - a) Show that for *P*-almost all ω , the path $B_{\cdot}(\omega)$ changes its sign infinitely many times on any interval $[0, t], t \ge 0$.
 - **b**) For any $\omega \in \Omega$ we define the set

$$Z(\omega) := \left\{ t \in [0, \infty) \, \middle| \, B_t(\omega) = 0 \right\}.$$

Show that for *P*-almost all ω , the set $Z(\omega)$ is closed, has Lebesgue measure 0 and has 0 as an accumulation point. *Hint*: for the last part, consider E[Leb(Z)].

Due: Monday May 22nd at the beginning of class.