MATH 275 C

Homework 1

Notation: if X is a Markov chain on a states space S with transition probabilities $P = (p_{x,y})_{x,y\in S}$, we denote by $p_{x,y}(n)$, $n \ge 0$, the n-step transition probabilities, i.e.

$$p_{x,y}(0) = \delta_{x,y}, \quad p_{x,y}(1) = p_{x,y}, \quad p_{x,y}(n+1) = \sum_{z \in S} p_{x,z}(n) p_{z,y},$$

and note that $p_{x,y}(n) = P_x[X_n = y]$.

- A fair six-sided die is rolled repeatedly. Let Y_n denote the outcome of the n-th roll. We assume that Y_n, n ≥ 1 are independent. Which of the following stochastic processes (X_n)_{n∈N} are Markov chains? For those that are, determine the state space S, the transition matrix P and in a) additionally the n-step transition probabilitities.
 - a) Let X_n denote the largest number shown up in n rolls.
 - **b**) Let X_n denote the number of sixes in n rolls.
 - c) Let X_n denote the number of rolls at time n since the most recent six.
- 2. Let (X_n)_{n≥0} be a homogeneous Markov chain with countable state space E and transition probability (p_{x,y})_{x,y∈E}. Let C ⊆ E be such that E\C is finite. Define p_{x,C}(n) = ∑_{y∈C} p_{x,y}(n) (see notation above). Suppose that for each x ∈ E\C there exists an n(x) such that p_{x,C}(n(x)) > 0. Let H_C = inf{n ≥ 0 | X_n ∈ C}, ε = inf{p_{x,C}(n(x)) : x ∈ E\C}, and N = sup{n(x) | x ∈ E\C}. Show that for all k ≥ 1 and y ∈ E,

 $P_u(H_C > kN) \le (1 - \varepsilon)^k.$

Hint: use the Markov property and induction over k.

3. We use the same notation as in Exercise 2. Let F_n = σ(X₀,...,X_n), n ≥ 0, be the canonical filtration, and A, B ⊆ E with A ∩ B = Ø. Suppose that E\(A ∪ B) is finite and P_x(H_{A∪B} < ∞) > 0 for all x ∈ E\(A ∪ B).

a) Show that the function h defined as $h(x) = P_x(H_A < H_B)$, $x \in E$, is *P*-harmonic outside $A \cup B$, i.e. it satisfies

$$h(x) = \sum_{y \in E} p_{x,y} h(y) \quad \text{for all } x \in E \backslash (A \cup B) \tag{(\star)}.$$

Hint: condition on \mathcal{F}_1 .

- **b**) Use exercise 2 to show that $P_x(H_{A\cup B} < \infty) = 1$.
- c) Show that if a function h on E satisfies (\star), then

$$E_{\mu}[h(X_{n \wedge H_{A \cup B}}) \mid \mathcal{F}_{n-1}] = h(X_{(n-1) \wedge H_{A \cup B}}),$$

hence $(h(X_{n \wedge H_{A \cup B}}))_{n \geq 0}$ is a martingale.

Optional: Use this to show that $h(x) = P_x(H_A < H_B)$ is the only solution of (\star) that is 1 on A and 0 on B.

Remark: the function h from part a) is called P-harmonic because one can introduce the (discrete) Laplacian

$$\Delta_P = P - \mathrm{Id}_P$$

where Id denotes the identity operator and $Pf(x) = \sum_{y \in E} p_{x,y}f(y)$, for suitable $f : E \to \mathbb{R}$ (say, with compact support), whence (*) asserts that $(\Delta_P h)(x) = 0$, for $x \in E \setminus (A \cup B)$. Along with c), it thus follows that h is the unique solution to the Dirichlet problem

$$\Delta_P h = 0$$
: on $E \setminus (A \cup B)$, with boundary condition $h(x) = \begin{cases} 1, & x \in A \\ 0, & x \in B. \end{cases}$

Due: Friday April 14th at the beginning of class.