Homework 1

Notation: if X is a Markov chain on a states space S with transition probabilities $P=$ $\left(p_{x, y}\right)_{x, y \in S}$, we denote by $p_{x, y}(n), n \geq 0$, the n-step transition probabilities, i.e.

$$
p_{x, y}(0)=\delta_{x, y}, \quad p_{x, y}(1)=p_{x, y}, \quad p_{x, y}(n+1)=\sum_{z \in S} p_{x, z}(n) p_{z, y},
$$

and note that $p_{x, y}(n)=P_{x}\left[X_{n}=y\right]$.

1. A fair six-sided die is rolled repeatedly. Let Y_{n} denote the outcome of the n-th roll. We assume that $Y_{n}, n \geq 1$ are independent. Which of the following stochastic processes $\left(X_{n}\right)_{n \in \mathbb{N}}$ are Markov chains? For those that are, determine the state space S, the transition matrix P and in a) additionally the n-step transition probabilitities.
a) Let X_{n} denote the largest number shown up in n rolls.
b) Let X_{n} denote the number of sixes in n rolls.
c) Let X_{n} denote the number of rolls at time n since the most recent six.
2. Let $\left(X_{n}\right)_{n \geq 0}$ be a homogeneous Markov chain with countable state space E and transition probability $\left(p_{x, y}\right)_{x, y \in E}$. Let $C \subseteq E$ be such that $E \backslash C$ is finite. Define $p_{x, C}(n)=\sum_{y \in C} p_{x, y}(n)$ (see notation above). Suppose that for each $x \in E \backslash C$ there exists an $n(x)$ such that $p_{x, C}(n(x))>0$. Let $H_{C}=\inf \left\{n \geq 0 \mid X_{n} \in C\right\}$, $\varepsilon=\inf \left\{p_{x, C}(n(x)): x \in E \backslash C\right\}$, and $N=\sup \{n(x) \mid x \in E \backslash C\}$. Show that for all $k \geq 1$ and $y \in E$,

$$
P_{y}\left(H_{C}>k N\right) \leq(1-\varepsilon)^{k} .
$$

Hint: use the Markov property and induction over k.
3. We use the same notation as in Exercise 2. Let $\mathcal{F}_{n}=\sigma\left(X_{0}, \ldots, X_{n}\right), n \geq 0$, be the canonical filtration, and $A, B \subseteq E$ with $A \cap B=\emptyset$. Suppose that $E \backslash(A \cup B)$ is finite and $P_{x}\left(H_{A \cup B}<\infty\right)>0$ for all $x \in E \backslash(A \cup B)$.
a) Show that the function h defined as $h(x)=P_{x}\left(H_{A}<H_{B}\right), x \in E$, is $P-$ harmonic outside $A \cup B$, i.e. it satisfies

$$
h(x)=\sum_{y \in E} p_{x, y} h(y) \quad \text { for all } x \in E \backslash(A \cup B)
$$

Hint: condition on \mathcal{F}_{1}.
b) Use exercise 2 to show that $P_{x}\left(H_{A \cup B}<\infty\right)=1$.
c) Show that if a function h on E satisfies (\star), then

$$
E_{\mu}\left[h\left(X_{n \wedge H_{A \cup B}}\right) \mid \mathcal{F}_{n-1}\right]=h\left(X_{(n-1) \wedge H_{A \cup B}}\right),
$$

hence $\left(h\left(X_{n \wedge H_{A \cup B}}\right)\right)_{n \geq 0}$ is a martingale.
Optional: Use this to show that $h(x)=P_{x}\left(H_{A}<H_{B}\right)$ is the only solution of (\star) that is 1 on A and 0 on B.

Remark: the function h from part a) is called P-harmonic because one can introduce the (discrete) Laplacian

$$
\Delta_{P}=P-\mathrm{Id},
$$

where Id denotes the identity operator and $\operatorname{Pf}(x)=\sum_{y \in E} p_{x, y} f(y)$, for suitable $f: E \rightarrow \mathbb{R}$ (say, with compact support), whence ($*$) asserts that $\left(\Delta_{P} h\right)(x)=0$, for $x \in E \backslash(A \cup B)$. Along with c$)$, it thus follows that h is the unique solution to the Dirichlet problem

$$
\Delta_{P} h=0: \text { on } E \backslash(A \cup B), \quad \text { with boundary condition } h(x)= \begin{cases}1, & x \in A \\ 0, & x \in B\end{cases}
$$

Due: Friday April 14th at the beginning of class.

