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Abstract

We consider a class of of massless gradient Gibbs measures, in dimension greater or equal
to three, and prove a decoupling inequality for these fields. As a result, we obtain de-
tailed information about their geometry, and the percolative and non-percolative phases
of their level sets, thus generalizing results obtained in [24], to the non-Gaussian case.
Inequalities of similar flavor have also been successfully used in the study of random inter-
lacements [27], [21]. A crucial aspect is the development of a suitable sprinkling technique,
which relies on a particular representation of the correlations in terms of a random walk
in a dynamic random environment, due to Helffer and Sjöstrand. The sprinkling can be
effectively implemented by studying the Dirichlet problem for the corresponding Poisson
equation, and quantifiying in how far a change in boundary condition along a sufficiently
“small” part of the boundary affects the solution. Our results allow for uniformly convex
potentials, and extend to non-convex perturbations thereof.
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0 Introduction

A considerable effort has recently gone into understanding various strongly correlated oc-
cupation fields and their associated percolation phase transition, originating in the works
[26] and [27], see also [21], on random interlacements, leading up to a series of recent ar-
ticles [9], [8] [22], and [25], which provide a very detailed picture of the geometry in the
(strongly) supercritical regime, for a broad class of models and under a rather general set
of assumptions. A common feature among all of these works is their crucial reliance on the
availability of a so-called decoupling inequality, which is a certain way to quantify the de-
cay of correlations, for models with long-range dependence, with far-reaching consequences.
The purpose of this work is to derive such a correlation inequality for convex gradient in-
terface models (and non-convex perturbations thereof), in all dimensions d ≥ 3, see for
instance [11], [29] for an introduction to the subject, thus generalizing results obtained
in [24], see also [20], to the anharmonic case.

Let us explain the essence of the decoupling technique more precisely. Suppose that
µ is a gradient Gibbs measure on Zd, d ≥ 3, obtained as the weak limit of a sequence
of finite volume approximations, with 0-boundary conditions (i.e., zero tilt), and ϕ the
corresponding canonical field, see Section 1 for precise definitions. For now, the reader
may think of the interaction potential V = V (∇ϕ) as being a uniformly convex two-body
interaction. Formally, µ is a probability measure on Ω = RZd

, with

(0.1) dµ(ϕ) ∝ e−β
∑

x∼y V (ϕx−ϕy)dϕ, with c ≤ V ′′ ≤ c′, for some c, c′ ∈ (0,∞).

We will typically set β = 1 and omit it from the notation, but our setup will allow more
generally for (finite-range) multi-body interactions, subject to a suitable random walk
representation condition, in order to eventually handle the case of non-convex perturbations
(for which β becomes relevant). For a massless µ as in (0.1), it has been known at least
since the work of Naddaf and Spencer [19] that correlations have slow polynomial decay,
i.e. Eµ[ϕxϕy] ∼ |x − y|2−d, as |x − y| → ∞. More generally, if f = f((ϕx)x∈S) and
g((ϕy)y∈S′) are two local observables, with f, g ∈ L∞(Ω), S = B(x, L), the ℓ∞-box around
x and S ′ = B(x′, L), with |x − x′| = RL, for some large R, then one cannot hope for a
better bound than

(0.2) Covµ(f, g) ∼ R−(d−2)

(see for instance Prop. 1.1 in [20] for a precise statement in the Gaussian case V (η) = η2).
In particular, if one thinks of R as a being large, but fixed, and sending L→∞, this does
not decay at all.

As we now explain, the situation can become drastically different, if at least one of
the observables depends monotonically on some external parameter, and one is willing
to adjust this parameter a bit, an idea often referred to as sprinkling in the literature.
Specifically, suppose that f = fh = 1Ah, where Ah(ϕ) is an increasing event, measurable
with respect to the occupation variables (1{ϕx ≥ h}x∈S) at level h, for some h ∈ R, then
our main results, cf. Theorem 2.1 and 4.6 below, imply that

(0.3) Eµ[f
hg] ≤ Eµ[f

h−ε] · Eµ[g] + ‖g‖L∞ · δS,S′(ε)

and the error term δS,S′(·) can for instance be made as small as e−L
α
, if ε > R−β, for some

α, β > 0 (under the assumptions preceding (0.2)). Note that (0.3) is quite sharp, for if g
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is increasing in ϕ, then the left-hand side of (0.3) is bounded from below by Eµ[f
h] ·Eµ[g],

due to the FKG-inequality (which holds for µ as in (0.1)).
We now describe the mechanism behing our sprinkling technique. The inequality (0.3)

amounts to saying that the conditional law Eµ[f
h|FS′], where FS′ = σ(ϕx, x ∈ S ′), is

suitably close to Eµ[f
h−ε]. In the Gaussian case, see [24], and also [20], this comparison is

made reasonably straightforward by harnessing the fact that the Gaussian free field (GFF)
in Λ ⊆ Zd with Λ ⊃ S ′ admits the decomposition

GFF on Λ \ S ′ with b.c. ψ

law
= GFF on Λ \ S ′ with 0 b.c. + harmonic extension of ψ to Λ \ S ′,

(0.4)

which readily yields an explicit formula for conditional distributions (due to the Gibbs
nature of µ, conditioning on FS′ manifests itself as a boundary condition). A considerable
effort is devoted to finding a suitable replacement for this Markovian structure of the GFF
(incidentally, similar issues were faced in [18] for the analysis of fluctuations in a bounded
domain in dimension 2, cf. in particular Theorem 1.2 therein). One is naturally led to
wonder how close the GFF and the anharmonic model really are, see Remark 5.5, 2), for
more on this.

Our approach for general µ, developed in Section 2, see in particular Proposition 2.4,
is based on an interpolation argument, by which the field ϕ|∂iS′ (∂iS

′ stands for the inte-
rior boundary of S ′), felt in Λ \ S ′ as a boundary condition upon conditioning on FS′, is
progressively replaced by an independent copy ϕ̃|∂iS′. This interpolation has undesirable
properties, since ϕ̃ is signed, thus blending it in will generically not act monotonically to-
wards producing a desired (upper, in our case) bound for Eµ[f

h|FS′]. The idea is that this
problem can be controlled by introducing a balancing effect, by which the field on ∂Λ, the
outer boundary of Λ, is given a slight “push” upward by ε, which is carried through Λ due
to the gradient nature of ϕ. Crucially, the competing influence of the varying boundary
conditions along ∂iS

′ and ∂Λ can be quantified using the Helffer-Sjöstrand representa-
tion [15], which has already enjoyed great success in the analysis of this model in the past,
cf. for instance [19], [12], [7], and [13]. This representation allows to effectively rephrase
the problem as studying the effect of varying boundary data on the solution of a certain
discrete elliptic problem in Λ′ = Λ \ S ′ (which the reader should regard as the analogue of
the harmonic extension in the Gaussian case), and, representing this solution probabilisti-
cally, one can achieve the desired balance by controlling a single quantity, ΣΛ = ΣΛ(S, S

′),
which we call (probabilistic) cross-section of S ′, viewed from S, defined as

(0.5) ΣΛ(S, S
′) = sup

x∈S
sup
ϕ,ξ

P
GΛ′ ,ξ
x,ϕ [HS′ < HΛc ]

1−P
GΛ′ ,ξ
x,ϕ [HS′ < HΛc ]

,

where P
GΛ′ ,ξ
x,ϕ denotes the annealed law of the associated random walk (which is a jump

process among random time-varying conductances, cf. Section 1) started at x (with initial
field configuration ϕ and boundary data ξ, which determine the evolution of the environ-
ment) and HK denotes the entrance time of the walk in K ⊂⊂ Zd. The cross section
ΣΛ(S, S

′) can be seen as the correct way to measure the size of the boundary ∂iS
′ relative

to ∂Λ, as seen from S, and it admits suitable bounds as Λ ր Zd in case the environment
is uniformly elliptic, which follows from our assumptions on V in (0.3). While convenient,
this assumption could probably be relaxed, as discussed below in Remark 5.5, 1).
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As it turns out, the interpolation becomes unbalanced, and thus the sprinkling by ε
ineffective, roughly when either ϕ|∂iS′ or ϕ̃|∂iS′ are of the order εΣΛ(S, S

′)−1, which is at

the origin of the error term δS,S′ appearing in (0.3). Note that sharp upper bounds on the
cross-section ΣΛ, as Λր Zd, are key here because one typically thrives for a regime where
εΣΛ(S, S

′)−1 ≫ 1 (to make the sprinkling effective), while keeping ε as small as possible.
Bounding δS,S′ suitably is the subject of Section 3, and the Brascamp-Lieb inequality [4]

provides a well-needed concentration estimate to this effect (note that controlling the mean
is not an issue because we have zero tilt). For many applications, including those discussed
below, the control on the error term δS,S′ needs to be relatively tight, which will follow

from sufficiently careful comparison estimates between hitting distributions under P
GΛ′ ,ξ
x,ϕ (·)

and those of simple random walk. Our corresponding results are in fact quenched, but
annealed estimates would suffice.

The inequality (0.3), cf. Theorem 2.1, has a host of applications, and in particular,
far-reaching consequences regarding the geometry of the level sets of ϕ. Notably, see
Theorems 4.4, 4.8 and 4.9 below, we identify h+ and h− satisfying −∞ < h− ≤ h+ <∞,
such that

for all h > h+, the connectivity function Pµ[x
>h←→ y], referring to the probability

that x and y are connected by a nearest-neighbor path along which ϕ ≥ h, has

stretched exponential decay in |y − x|,
(0.6)

and, assuming that µ is translation invariant (which does not seem a-priori clear),

for all h < h−, the set {x;ϕx ≥ h} has a unique infinite cluster, on which large

balls obey a shape theorem, and on which simple random walk satisfies

a quenched invariance principle

(0.7)

(we refer the reader to Section 4 for precise statements). Results as in (0.6) are by now
routinely obtained by pairing inequality (0.3) with a suitable static renormalization scheme.
This circle of ideas goes back to [26] and [27]. Moreover, (0.7) follows from our decoupling
inequality (actually an improved version, cf. Theorem 4.6 below), in conjunction with the
recent works [9], [8] [22], and [25]. The thresholds h+ and h− are conjectured to be equal
(and corresponding to the critical point for percolation), which is an open problem, even
for V (η) = η2.

Finally, we extend some of our results, and in particular (0.6), see Theorem 5.4, to
the case where V is perturbed by a sufficiently small non-convex two-body potential g
with compact support (see (5.1), (5.3) for precise definitions) and at zero tilt, i.e. one sets
V = U+g in (0.1), with U uniformly convex. Examples satisfying our assumptions include
e−V (η) = (η2 + 1

2
)e−η

2
, which has a double well, and e−V (η) =

∫
ρ(dκ)e−κη

2
, a ‘log-mixture’

of Gaussians, with ρ compactly supported on (0,∞), at zero tilt, which was studied in [2],
[3] to show in particular that for suitable choice of ρ, the gradient Gibbs states on Z2 are
not uniquely characterized by their tilt, in contrast to the convex case [12].

The key towards obtaining a decoupling inequality for non-convex µ ≡ µβ, which is
a basic observation in many renormalization-group type arguments, and which was used
in [5] in the context of Ginzburg-Landau models, is that one typically gains convexity by
integration. Specifically, the restriction µ̃β of µβ to, say, the even sublattice (Zd is bipartite),
can be described by a convex Hamiltonian, if g is sufficiently small (as parametrized by
β > 0, the inverse temperature). While still retaining a gradient nature in the even spins,
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the effective Hamiltonian describing the even field is not given by a two-body potential
anymore, as integrating an odd variable (note that these are conditionally independent
given the even field) “mixes” the interaction between all neighboring even spins. However,
our methods are sufficiently robust to handle the resulting many-body potentials, and we
obtain a decoupling inequality for µ̃β (at sufficiently small β).

This paper is organized as follows. In Section 1, we introduce our setup and collect
some useful tools regarding Gradient Gibbs measures, including in particular, the Helffer-
Sjöstrand representation, see Lemma 1.2. Sections 2 and 3 are devoted to the implemen-
tation of our sprinkling technique, and the estimate of the arising error term, respectively.
The central results are Proposition 2.4 and Lemma 3.4. Together, the two readily imply
our first version of the decoupling inequality, Theorem 2.1. Section 4 discusses some appli-
cations to the geometry of the level sets of µ. First, we set up a renormalization scheme,
much in the spirit of [27], which leads to stretched exponential decay of the connectivity
function at large heights, see Theorem 4.4. This result is mainly included to later allow for
a slightly different error term in our decoupling inequality, see Theorem 4.6, thus making
it amenable to the setup of the recent works [9], [8] [22], and [25], and yielding a number of
results in the “strongly supercritical regime,” i.e. when h is sufficiently small, see Theorems
4.8 and 4.9. Finally, Section 5 deals with extensions to the non-convex case.

A final note regarding our convention with constants: c, c′, c′′, . . . denote positive con-
stants, possibly depending on d, the dimension of the space, which can change from place to
place. Numbered constants are defined where they first appear and stay fixed throughout.

Acknowledgments. The author thanks Marek Biskup for useful discussions, and the
FIM at ETH Zurich and Alain-Sol Sznitman for their hospitality during the summer of
2016, during which part of this research was completed.

1 Preliminaries

We now introduce the measures of interest, along with some notation. We formulate a
somewhat general set of conditions for gradient Hamiltonians which guarantee a Helffer-
Sjöstrand random walk representation in finite volume, akin to the one developed e.g.
in [7], [13], see also the monograph [11], for nearest-neighbor two-body potentials. In
particular, the specifics of the Hamiltonian are completely irrelevant for the construction
so long as it has the required continuous symmetry with respect to shifts (i.e. a gradient
nature), and satisfies a suitable convexity assumption. Our setup allows for many-body
interactions satisfying a suitable random walk condition, which will prove useful when
treating non-convex perturbations in Section 5, see also Remark 5.2 below.

We consider the lattice Zd, and assume tacitly throughout that d ≥ 3 . We write
Λ ⊂⊂ Zd to denote a finite subset. We assume that there exists Γ ⊂⊂ Zd with the
property that 0 /∈ Γ, Γ = −Γ (= {−x; x ∈ Γ}), and require that all x ∈ Zd can be written
as x =

∑
1≤i≤n yi, for some n ≥ 1 and suitable yi ∈ Γ. The set Zd is endowed with the

(oriented) edge set E = {(x, x + y); x ∈ Zd, y ∈ Γ}, which satisfies E = −E . Given an
edge e ∈ E , we write x(e) and y(e) for its endpoints, such that e = (x(e), y(e)). We
often use x ∼ y instead of (x, y) ∈ E . We write G = (Zd, E ), endowed with its graph
distance | · |, and balls B(x, L) = {y ∈ G; |y − x| ≤ L}, for x ∈ Zd, L ≥ 1. We also use
| · |p to denote the usual ℓp-distance on Zd. For a set Λ ⊂ Zd, we define its outer vertex
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boundary ∂Λ = {z ∈ Zd \Λ; ∃x ∈ Ks.t. (x, z) ∈ E }, let Λ = Λ∪ ∂Λ and ∂iΛ = ∂Λc, where
Λc = Zd \Λ. Given Λ ⊂⊂ Zd, we write GΛ = (Λ∪ ∂Λ, EΛ) for the induced subgraph where
EΛ ⊂ E consists of all edges having at least one endpoint in Λ.

Let ΩΛ = ΩΛ, for Λ ⊂⊂ Zd, and Ω = RZd
, endowed with their canonical σ-algebras FΛ,

resp. F , and canonical coordinates ϕx : Ω→ R, ω 7→ ω(x), for x ∈ Zd. We write

(1.1) ∇ϕ(e) = ϕy − ϕx, if e = (x, y), e ∈ E

for the corresponding discrete gradients. We will also consider Ω̂Λ = {0, 1}Λ, Ω̂ = Ω̂Zd ,

endowed with canonical σ-algebras F̂Λ, F̂ , and canonical coordinates Yx, x ∈ Zd.
We consider a family {VX}X∈B of potentials indexed by unit balls in G, i.e. B =

{B(x, 1); x ∈ Zd}, and VX : RE (X) → R+, where E (X) = {e ∈ E ; x(e) = x}, if X =
B(x, 1), are the edges emanating from x. For each Λ ⊂⊂ Zd a Hamiltonian HΛ(ϕ) is
specified in terms of the potentials {VX}X∈B as

(1.2) HΛ(ϕ) =
∑

X∈B:X∩Λ 6=∅
VX((∇ϕ(e))e∈E (X)).

Our interactions are subject to the following conditions. For a ∈ Zd, let X+a = {x+a; x ∈
X} and τa(VX) : RE (a+X) → R+ be defined as τa(VX)((∇ϕ(e))e∈E (a+X)) = VX((∇ϕ(e +
a))e∈E (X)), with e+a = (x+a, y+a) if e = (x, y). Denoting by C2,α the space of C2-functions
with α-Hölder second derivatives, and abbreviating ∂x = ∂/∂ϕx, ∂

2
x,y = ∂2/∂ϕx∂ϕy we

require that there exist c0 ∈ [1,∞) and α > 0 such that, for all X ∈ B,

smoothness: VX ∈ C2,α(RE (X),R+),(1.3)

symmetry: VX(η) = VX(−η), η ∈ RE (X),(1.4)

translation invariance: VX+a = τa(VX), a ∈ Zd,(1.5)

uniform convexity: c−1
0 ≤ −

∑

X∈B:X⊃{x,y}
∂2x,yVX((∇ϕ(e))e∈E (X)) ≤ c0, (x, y) ∈ E ,

and ∂2x,yVX((∇ϕ(e))e∈E (X)) = 0, for all x 6= y with (x, y) /∈ E .

(1.6)

Remark 1.1. The potential VX allows for a joint interaction between the gradients of ϕ
along all edges joining x to its neighbors in G. Choosing Γ = {x; |x|1 = 1} (with | · |1 the
usual ℓ1-norm on Zd), and defining, for X = B(x, 1),

(1.7) VX((∇ϕ(e))e∈E (X)) =
1

2

∑

e:x(e)=x

V (∇ϕ(e)),

for symmetric V ∈ C2,α(R,R+) with c−1
0 ≤ V ′′ ≤ c0, yields a potential satisfying (1.3)-

(1.6), a special case the reader may wish to focus on at first reading. In view of (1.2), (1.7)
yields the usual two-body Hamiltonian considered in the introduction, cf. (0.1) and (1.12)
below. �

From (1.6), (1.2), one sees that for Λ ⊂⊂ Zd, x ∈ Λ,

(1.8) c−1
0 ≤ −∂2x,yHΛ(ϕ) ≤ c0, if (x, y) ∈ EΛ, and ∂

2
x,yHΛ(ϕ) = 0, if (x, y) /∈ E , x 6= y.
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Moreover, the gradient nature of HΛ implies that, for any x, HΛ(ϕ) = HΛ((ϕy−ϕx)y), and
thus, differentiating with respect to ϕx, that

∑
x
∂HΛ(ϕ)
∂ϕx

= 0, hence, in view of (1.8), for all
x ∈ Λ,

(1.9) ∂2x,xHΛ(ϕ) = −
∑

y:y∼x
∂2x,yHΛ(ϕ).

In particular, (1.9) yields that, for any f : Ω→ R with f(x) = 0, for x /∈ Λ,

(1.10) 〈f, ∂2HΛ(ϕ)f〉ℓ2 =
1

2

∑

x 6=y
(−∂2x,yHΛ(ϕ))(f(y)− f(x))2.

We now introduce the measures of interest. Given ξ ∈ Ω, we define Hξ
Λ : ΩΛ → R as

(1.11) Hξ
Λ(ϕΛ) = HΛ(ϕ)|ϕ=ξ on Λc .

We will often omit the subscript Λ in ϕΛ, minding that Hξ
Λ is viewed as a function on ΩΛ.

Associated to Hξ
Λ is a (Gibbs) probability measure µξΛ,β on (ΩΛ,FΛ) at inverse temperature

β > 0 and with boundary condition ξ, defined as

(1.12) µξΛ,β(dϕ) =
1

Zξ
Λ,β

e−βH
ξ
Λ(ϕ)

∏

x∈Λ
dϕx

where dϕx denotes Lebesgue measure on R and Zξ
Λ,β is a suitable normalizing constant

(that the relevant integral converges follows from uniform convexity of Hξ
Λ(ϕ), see (1.10)

and (1.8), together with Taylor’s formula, implies that

(1.13) lim inf
|ϕ|2→∞

|Hξ
Λ(ϕ)|/|ϕ|22 > 0.

With the exception of Section 5, where β > 0 will be a perturbative parameter, we will
set β = 1 and omit it from the notation. We write EµξΛ,β

for expectation with respect to

µξΛ,β and denote by 〈·, ·〉ξΛ,β the scalar product in L2(µξΛ,β). Occasionally, we will tacitly

identify µξΛ,β with the corresponding measure νξΛ,β on (Ω,F), defined such that µξΛ,β(A) =

νξΛ,β(A× ξΛc), for A ∈ FΛ.

We recall several useful properties of the measures µξΛ,β, which will be used throughout.

From the Gibbsian nature of µξΛ,β, cf. (1.2) and (1.12), one infers that, for Λ ⊂⊂ Zd and
S ′ ⊂ Λ, recalling that FS′ = σ(ϕx, x ∈ S ′),

(1.14) EµξΛ,β
(·|FS′) = Eµξ∨ϕ

Λ\S′,β
(·), µξΛ,β-a.s.,

where

(1.15) ξ ∨ ϕ =

{
ξx, x /∈ Λ

ϕx, x ∈ S ′.

The right-hand side of (1.14) defines a regular conditional probability for the measure µξΛ,β
conditioned on ϕx, x ∈ S ′, denoted by µξΛ,β(·|ϕx, x ∈ S ′). Moreover, µξΛ,β satisfies the
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following domain Markov property. Namely, with ∂
(2)
i S ′ = {x ∈ S ′; dG(x, S

′c) ≤ 2}, using
(1.2) and the fact that VX ∈ FX , one has that

the fields (ϕx)x∈Λ\S′ and (ϕx)x∈S′\∂(2)i S′ are (conditionally)

independent under µξΛ,β(·|ϕx, x ∈ ∂
(2)
i S ′).

(1.16)

We now review the Helffer-Sjöstrand representation for the covariances under the measure
µξΛ,β. One naturally associates to µξΛ,β(dϕ) the second order differential operator

(1.17) LξΛ
def.
= eβH

ξ
Λ(ϕ)

∑

x∈Λ

∂

∂ϕx

[
e−βH

ξ
Λ(ϕ)

∂

∂ϕx

]

with domain

(1.18) Dom(LξΛ) = {f ∈ C2(ΩΛ,R); sup
ϕ∈ΩΛ

|∂f(x, ϕ)|e−ε
∑

x |ϕx| <∞, for some ε > 0},

with the notation ∂f(x, ϕ) = ∂f(ϕ)/∂ϕx, for x ∈ Λ. We also set the ∂f(x, ϕ) = 0, for
f ∈ C1(ΩΛ,R), x /∈ Λ, which will be used throughout the paper. The point of the definition
(1.17) is that LξΛ is symmetric with respect to µξΛ,β, i.e.,

(1.19) 〈f,−LξΛg〉ξΛ,β =
∑

x∈Λ
〈∂f(x, ϕ), ∂g(x, ϕ)〉ξΛ,β = 〈−LξΛf, g〉ξΛ,β, for f, g ∈ Dom(LξΛ),

which follows from integration by parts and (1.18), (1.13). Rewriting LξΛ =
∑

x∈Λ[
∂2

∂ϕ2
x
−

∂Hξ
Λ(ϕ)

∂ϕx

∂
∂ϕx

], cf. (1.17), one may view LξΛ as the generator of the finite-dimensional diffusion
process described by the stochastic differential equation

(1.20)

{
dΦt(x) = −∂Hξ

Λ(Φt, x)dt+
√
2dBt(x), x ∈ Λ

Φt(x) = ξx, x /∈ Λ,

where (Bt(y))t≥0, y ∈ Λ, are independent Brownian motion. Due to assumption (1.6), the
drift coefficients in (1.20) satisfy the growth assumptions of classical SDE theory (see for
instance [16], Ch.5, Thm. 2.9), which yields that (1.20) has a (unique) strong solution, for
given initial condition. We denote by PΛ,ξ

ϕ the canonical law on C0(R+,Ω ∩ {ϕ|Λc = ξ})
of the solution to (1.20) with starting point Φ0 = ϕ, and by EΛ,ξ

ϕ the corresponding
expectation.

Let F,G ∈ Dom(LξΛ)(⊂ L2(µξΛ,β)). We wish to compute CovµξΛ,β
(F,G) = EµξΛ,β

[FG̃],

with G̃ = G − EµξΛ,β
[G]. Proceeding as in the proof of Lemma 2.1 in [7], but under the

general assumption (1.3), (1.6) above replacing (2.2), (2.3) in [7] (the precise form of the
Hamiltonian HΛ is irrelevant in the proof), one deduces that the equation

(1.21) −LξΛU = G̃

has a unique classical solution U ∈ C3,α∩Dom(LξΛ) satisfying EµξΛ,β
[U ] = 0, where Dom(LξΛ)

is the domain of the closed self-adjoint extension of −LξΛ to L2(µξΛ,β). Thus,

(1.22) CovµξΛ,β
(F,G) = EµξΛ,β

[F (−LξΛU)] =
∑

x∈Λ
EµξΛ,β

[∂F (x, ϕ)∂U(x, ϕ)],
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where the last step follows from (1.17) and integration by parts. One seeks a probabilistic
representation for ∂U(x, ϕ). Note that, defining

(1.23) aξx,y(ϕ) = −[∂x∂yHΛ(ϕ)]|ϕ=ξ on Λc , for (x, y) ∈ EΛ,

and with the convention ∂U(x, ϕ) = 0, x /∈ Λ, one has, for x ∈ Λ,

∂x(−LξΛ)U = −∂x
∑

y∈Λ
[∂2yU − (∂yH

ξ
Λ)(∂yU)]

= −LξΛ(∂xU) +
∑

y∈Λ
(∂x∂yH

ξ
Λ)(∂yU)

(1.9)
= −LξΛ(∂xU)−

∑

y:(x,y)∈EΛ

aξx,y(ϕ)(∂yU − ∂xU).
(1.24)

Thus, introducing the operator Qξ,ϕ
Λ , acting on functions f : Λ ∪ ∂Λ→ R as

(1.25) (Qξ,ϕ
Λ f)(x) =

∑

y:(x,y)∈EΛ

aξx,y(ϕ)(f(y)− f(x)),

one obtains from (1.21) and (1.24) that u(x, ϕ) = ∂U(x, ϕ) solves the boundary value
problem

(1.26)

{
(−L

ξ
Λ)u(x, ϕ) = ∂G̃(x, ϕ), x ∈ Λ, ϕ ∈ ΩΛ,

u(x, ϕ) = 0, x ∈ Λc, ϕ ∈ ΩΛ,

where we have defined

(1.27) L
ξ
Λf(x, ϕ) = (LξΛf(x, ·))(ϕ) + (Qξ,ϕ

Λ f(·, ϕ))(x), x ∈ Λ, ϕ ∈ ΩΛ

with domain

(1.28) Dom(L ξ
Λ) = {f : Zd × ΩΛ → R; f(x, ·) ∈ Dom(LξΛ), x ∈ Λ, f(y, ·) = 0, y ∈ Λc}.

The operator Qξ,ϕ
Λ is the generator of a pure jump process on GΛ, since c−1

0 ≤ aξx,y(ϕ) =
aξx,y(ϕ) ≤ c0 for all (x, y) ∈ EΛ, as follows from (1.25), (1.23) and (1.8). Hence, using
the symmetry of aξx,y(ϕ), one deduces from, (1.27), (1.19) and (1.25) that for all f, g ∈
Dom(L ξ

Λ),

E(f, g) def.
=

∑

x∈Λ
〈f(x, ·), (−L

ξ
Λg)(x, ·)〉ξΛ,β

=
∑

x∈Λ
〈∂f(x, ϕ), ∂g(x, ϕ)〉ξΛ,β +

1

2

∑

e∈EΛ

aξx(e),y(e)(ϕ)∇f(e, ϕ)∇g(e, ϕ)
(1.29)

where ∇f(e, ϕ) = f(y, ϕ) − f(x, ϕ) if e = (x, y), for f ∈ Dom(L ξ
Λ), induces a Dirichlet

form on the Hilbert space L2(κΛ⊗µξΛ,β), with κΛ the counting measure on Λ. Thus, see for

instance [10], the closure of L
ξ
Λ in L2(κΛ ⊗ µξΛ,β) is the generator of a symmetric Markov

process (Xt,Φt)t≥0 on Λ × ΩξΛ, where ΩξΛ = Ω ∩ {ϕ|Λc = ξ}. We denote by PGΛ,ξ
x,ϕ the

canonical law of this process with starting point (X0,Φ0) = (x, ϕ) ∈ Λ×ΩξΛ on D(R+,Λ)×
C0(R+,Ω

ξ
Λ), endowed with its canonical σ-algebra, where D(R+,Λ) denotes the space of

right-continuous trajectories on Λ. Because of the specific form of the generator L
ξ
Λ , cf.
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(1.27), one can construct the process (Xt,Φt)t≥0 by first generating the “environment”
(Φt)t, solution of the Langevin equation (1.20), and then constructing the jump process
(Xt)t with time-dependent transition rates

(1.30) aΛ(Φ) = {aξx,y(Φt); t ≥ 0, (x, y) ∈ EΛ},

with aξx,y(·) as defined in (1.23). We use

(1.31) HK = inf{t > 0;Xt ∈ K}, τK = HKc , for K ⊂ Zd,

to denote the entrance time in K, resp. exit time from K. Having identified L
ξ
Λ as a

generator, returning to the boundary value problem (1.26), we deduce that u admits the
following probabilistic representation. Recall the convention ∂f(y, ϕ) = 0 for y /∈ Λ and
f : Zd × ΩΛ → R.

Lemma 1.2 (Helffer-Sjöstrand representation formula).

The solution u : Zd × ΩΛ → R of (1.26) can be expressed as

(1.32) u(x, ϕ) = EGΛ,ξ
x,ϕ

[ ∫ τΛ

0

∂G̃(Xt,Φt)dt
]
, x ∈ Λ, ϕ ∈ ΩΛ.

Moreover, for any F,G ∈ Dom(LξV ), one has

(1.33) CovµξΛ,β
(F,G) =

∑

x∈Λ

∫ ∞

0

dtEx,µξΛ,β
[∂F (x,Φ0)∂G(Xt,Φt)1{t < τΛ}],

where Px,µξΛ,β
[·] =

∫
µξΛ,β(dϕ)P

GΛ,ξ
x,ϕ [·] is the law of (Xt,Φt)t with initial distribution (X0,Φ0) ∼

δx ⊗ µξΛ,β.

Proof. The representation (1.32) follows from an application of the optional stopping the-
orem, mimicking the proof of Prop. 2.2. in [7], and (1.33) is an immediate consequence of

(1.32), (1.22), recalling that G− G̃ = EµξΛ,β
[G], and applying Fubini’s theorem.

An immediate consequence of Lemma 1.2 is a comparison estimate for moments of
ϕ under µξΛ,β with moments of the corresponding Gaussian free field on G. Let µξ,∗Λ,β be

obtained from (1.12) by setting HΛ(ϕ) =
1
2c0

∑
e∈EΛ

(∇ϕ(e))2 in (1.11), (1.12), with c0 from
(1.6).

Lemma 1.3 (Brascamp-Lieb inequality for exponential moments).

For all Λ ⊂⊂ Zd, ν ∈ ΩΛ, setting ϕ̂ = ϕ− EµξΛ,β
[ϕ], one has

(1.34) EµξΛ,β

[
e〈ν,ϕ̂〉ℓ2(Λ)

]
≤ e

1
2
var

µ
ξ,∗
Λ,β

(〈ν,ϕ〉ℓ2(Λ))

Proof. On account of (1.33), the proof of (1.34) is analogous to that of (4.13) in [11]. We
omit the details.
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Remark 1.4. The Gibbsian specification of HΛ in terms of {VX}X will enter when dis-
cussing the limit Λր Zd below. But Lemma 1.2 continues to hold if one replaces (1.2) and
conditions (1.3)-(1.6) by requiring that HΛ : Ω→ R be measurable with respect to FΛ∪B,
where B ⊃ ∂Λ is a finite set, and satisfy the following requirements: HΛ ∈ C2,α, for some
α > 0 (smoothness), HΛ(ϕ) = HΛ(ϕ+ C), for all C ∈ R (gradient structure), where, with
hopefully obvious notation, ϕ+C is obtained from ϕ by shifting all coordinates by C and
c−1
0 ≤ −∂2x,yHΛ(ϕ) ≤ c0, if (x, y) ∈ GΛ, ∂2x,yHΛ(ϕ) = 0 if (x, y) /∈ E , x 6= y (convexity). �

We now introduce a suitable class of infinite-volume measures (or equilibrium states,
in the jargon of statistical mechanics). We will consider weak limits of measures µξΛ,β as

GΛ ր G = (Zd, E ). Henceforth, in writing (Λn)n≥0 ր Zd, we always refer to an increasing
sequence of finite subsets of Zd whose union is Zd. Let M1(Ω) be the set of probability
measures on Ω, and define Wβ = Wβ({VX}X) as

Wβ = {µ ∈M1(Ω); there exists (Λn)n≥0 ր Zd,

with GΛn connected, for all n ≥ 0 s.t. µ0
Λn,β

w→ µ}.
(1.35)

To see that Wβ 6= ∅, note that, denoting by g∗(x, y) the Green function of (continuous-time,
with exponential holding times of parameter 1) simple random walk on G = (Zd, E ), see
(1.37) below, and g∗Λ(x, y) that of simple random walk on GΛ killed upon hitting ∂Λ, one
has for instance, using (1.34), minding that Eµ0GΛ,β

[ϕx] = 0, for all x, due to (1.4), that

(1.36) sup
Λ

sup
x

Eµ0Λ,β
[eϕx ] ≤ e

c
2
g∗Λ(x,x) ≤ e

c
2
g∗(0,0) <∞

(since d ≥ 3, and G has bounded geometry), from which one easily deduces that the family
{µ0

Λ,β; Λ ⊂⊂ Zd} (tacitly viewed as measures on (Ω,F)) is tight.
We conclude this section with some elements of potential theory for simple random

walk on G. We denote by P ∗
x the law of continuous-time simple random walk on G, started

at x, write (Zt)t≥0 for the corresponding canonical process and

(1.37) g∗(x, y) = E∗
x

[ ∫ ∞

0

dt1{Zt = y}
]
, x, y ∈ Zd,

for its Green function. For U ⊂⊂ Zd, we define the equilibrium measure of U as

(1.38) e∗U(y) = P ∗
y [H̃U =∞]1y∈U ,

with H̃U = inf{t > 0;Zt ∈ U and ∃ s ∈ (0, t) s.t. Zs 6= Z0} the hitting time of U , and the
capacity of U

(1.39) cap∗(U) =
∑

y∈U
e∗U(y),

which satisfies the variational principle (see for instance [28], Prop.1.9)

(1.40) cap∗(U) =
1

inf{E∗(ν); ν a prob. meas., supp(ν) ⊂ U}
where

(1.41) where E∗(ν) =
∑

x,y

ν(x)g∗(x, y)ν(y) = 〈ν,G∗ν〉ℓ2(G),

with G∗ν(x) =
∑

y G
∗(x, y)ν(y) the energy associated to the measure ν. The unique

minimizer in (1.40) is ν = ē∗U = e∗U/cap
∗(U), i.e.

(1.42) cap∗(U) = E∗(ē∗U)
−1.
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2 Sprinkling

We proceed to the first and main result of this paper, which is a decoupling inequality for
measures µ ∈ Wβ, cf. (1.35), stated below in Theorem 2.1. This result is proved over the
next two sections. The main issue, as explained in the introduction, see also Remark 2.3
below, consists of finding a suitable way to “sprinkle the field,” and is presented in this
section, cf. Proposition 2.4.

We begin by introducing a key quantity that will eventually control the entire sprinkling
technique. Recall the definition of PGΛ,ξ

x,ϕ above (1.30). Given Λ ⊂⊂ Zd and a target set
S ′ ⊂⊂ Λ, setting Λ′ = Λ \ S ′, we define the (probabilistic) cross-section of S ′ with respect
to x inside Λ as

ΣΛ(x, S
′) = sup

ξ∈Ω
sup
ϕ∈Ωξ

Λ′

P
GΛ′ ,ξ
x,ϕ [HS′ < HΛc ]

1−P
GΛ′ ,ξ
x,ϕ [HS′ < HΛc]

, for x ∈ Λ, and

ΣΛ(S, S
′) = sup

x∈S
ΣΛ(x, S

′), for S ⊂ Λ

(2.1)

(recall that HK , K ⊂ Zd, refers to the entrance time in K for the random walk X·, cf.
(1.31)). The killing outside Λ will soon be removed by letting Λ ր Zd, and the resulting
quantity Σ(S, S ′), see (2.2) below, will later play a pivotal role. Note that ΣΛ(S, S

′) <∞
whenever S ∩ S ′ = ∅.

Henceforth, in writing µ ∈ W , we mean that µ ∈ Wβ=1({VX}X), cf. (1.35), for some
family {VX}X of potentials satisfying (1.3) - (1.6). The parameter β = 1 will be omitted
from all notation. Finally, if Ah ⊂ Ω satisfies Ah ∈ σ(1{ϕx ≥ h}; x ∈ S), h ∈ R, then

there exists a unique event A ⊂ Ω̂S such that Ah = {(1{ϕx ≥ h})x∈S ∈ A}, for all h ∈ R.

Conversely, if A ⊂ Ω̂S is given, we define Ah = {(1{ϕx ≥ h})x∈S ∈ A}, h ∈ R.

Theorem 2.1. (ε > 0, h ∈ R, µ ∈ W )

Let (Λn)n≥0 be an increasing sequence of finite subsets of Zd such that µ0
Λn

w→ µ, and
suppose ∅ 6= S, S ′ ⊂⊂ Zd are disjoint. Then, with

(2.2) Σ = Σ(S, S ′, (Λn)n≥0)
def.
= lim inf

n→∞
ΣΛn(S, S

′),

one has, for all increasing Ah ∈ σ(1{ϕx ≥ h}; x ∈ S) and all bounded continuous functions
f : Ω→ [0,∞) satisfying f ∈ σ(ϕx; x ∈ S ′),

(2.3) Eµ[1Ah · f ] ≤ µ(Ah−ε) · Eµ[f ] + δS,S′(ε,Σ) · ‖f‖L∞(Ω),

where

(2.4) δS,S′(ε,Σ) = c1|S| exp
{
|∂iS ′| − c2

[
cap∗(S ′)

σ∗(S, S ′)2|∂iS ′| ·
ε

Σ

]2}
,

and

(2.5) σ∗(S, S ′) = sup
x∈S

supy∈S′ g∗(x, y)

infy∈S′ g∗(x, y)
.
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Remark 2.2. 1) (Sharpness of (2.3)). In case f is increasing in ϕ, a companion lower bound
to (2.3) can be obtained from the FKG-inequality, which is an immediate consequence of
(1.33), yielding Eµ[1Ah · f ] ≥ µ(Ah) · Eµ[f ] (note that µ(Ah) ≤ µ(Ah−ε)).
2) (Error term). The size of δS,S′(ε,Σ), cf. (2.4), hinges on a careful balance between the
sprinkling parameter ε > 0, the geometry of S, S ′, and their relative size, as measured by
the cross section Σ, which enters as an “invisibility” condition for the walk P

GΛ′
x,ϕ, see (2.1):

the smaller Σ is, the better the error term δS,S′. This is reminiscent of the Gaussian case,
cf. the discussion following (0.4), and also [24], (2.30) and (2.31), where one could roughly
afford to choose ε > 0 as

ε ≈ sup
x∈S

E∗
x[ϕZH

S′ 1{HS′ <∞}].

3) A somewhat different error term, more desirable for certain applications, is derived
below in Theorem 4.6. Its proof relies however on Theorem 2.1.
4) An analogue of (2.3) holds if Ah is replaced by a decreasing event Bh satisfying the
same measurability assumptions as Ah. In that case, defining the ‘flipped’ event B =
{ωf ; ω ∈ B}, where ωf is obtained from ω ∈ {0, 1}S by changing all the entries, noting

that µ(Bh) = µ(B
−h

), which follows because ϕ and −ϕ have the same law under µ, cf.

(1.4), and applying Theorem 2.1 to the increasing event B
−h
, one obtains

(2.6) Eµ[1Bh · f ] ≤ µ(Bh+ε) · Eµ[f ] + δS,S′(ε,Σ) · ‖f‖L∞(Ω).

The proof of Theorem 2.1 hinges on two key results, Proposition 2.4 and Lemma 3.4.
The former, of independent interest, contains the gyst of the decoupling argument for
conditional distributions of gradient measures. Its proof is the main object of this section,
and makes crucial use of the Helffer Sjöstrand representation. The decoupling gives rise
to a certain error term, which eventually leads to (2.4) above, and needs to be controlled.
This is done in Section 3. Together, the two results will readily imply Theorem 2.1. Its
proof is found at the end of Section 3.

We now investigate certain conditional distributions of µ ∈ W . Throughout the re-
mainder of this section, we assume that S, S ′,Λ ⊂⊂ Zd satisfy

S ∪ S ′ ⊂ Λ, S ∩ S ′ = ∅, A ∈ σ(Yx; x ∈ S) is increasing, and h ∈ R.(2.7)

Consider

Zh(ϕS′)
def.
= µ0∨ϕ

Λ\S′(A
h),(2.8)

where 0∨ ϕ specifies the boundary condition for Λ′ = Λ \ S ′, cf. (1.15), which vanishes on
Λc and equals ϕ on S ′. As explained around (1.14), Zh(ϕS′) represents a choice of regular
conditional distribution, i.e.

Zh(ϕS′) = Eµ0Λ(A
h|ϕx, x ∈ S ′).(2.9)

Assume henceforth that ω = (ϕ, ϕ̃) ∈ Ω × Ω is distributed under Q0
Λ(= µ0

Λ ⊗ µ̃0
Λ) as

two independent copies of the field ϕ under µ0
Λ. Roughly speaking, we aim to show that

for a suitably defined (good) event G = G(ε, S, S ′,Λ) ⊂ Ω × Ω, one has {Zh(ϕS′) >
Zh−ε(ϕ̃S′)} ⊂ Gc, in such a way that G has high probability whenever S ′ is sufficiently
invisible, i.e. whenever the cross-section ΣΛ(S, S

′) is sufficiently small. This is essentially
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the content of Proposition 2.4 below. The control for the probability of Gc in terms of Σ
is deferred to the next section.

The proof involves an interpolation argument relying on the Helffer-Sjöstrand represen-
tation, which we set up next. For t ∈ [0, 1], we define the (random) interpolated boundary
condition ξω(t) = (ξωx (t))x, for ω = (ϕ, ϕ̃), x ∈ (Λ′)c = Λc ∪ S ′, and ε > 0, as

(2.10) ξωx (t) =

{
tε, x ∈ Λc

(1− t)ϕx + t(ϕ̃x + ε), x ∈ S ′,

noting that ξω(0) = 0∨ϕ and ξω(1) = (0∨ ϕ̃)+ ε (where, with hopefully obvious notation,
one adds ε to each component of ξω(1)), and consider the function, for ω = (ϕ, ϕ̃)

(2.11) F
ω
Λ : [0, 1]→ R, t 7→ µ

ξω(t)
Λ\S′ (A

h).

To keep the notation light, we will often omit the superscript ω from ξω(t).

Remark 2.3. It is plain to see that F ω
Λ ∈ C1[0, 1] and we will soon show, cf. (2.14), that

it is in fact increasing for “most” ω (in a sense to be made precise). This is not at all
evident since the possible decrease in value of the boundary condition along S ′ in (2.10)
acts against the desired monotonicity (Ah is increasing in ϕ). The idea is that this can
typically, i.e. for “most” ω, be controlled by the following balancing mechanism: since the
boundary condition ξω(·) only decreases along a sufficiently small portion of the boundary,
S ′, as will be quantified in terms of the cross-section Σ, the corresponding error can be
absorbed by a slight global upward push of the field, parametrized by ε. �

Recall the definition of PGΛ,ξ
x,ϕ , cf below (1.29). For M > 0, let

Gc
Λ,M ≡ Gc

Λ,M,S,S′(ω) =
⋃

t∈Q∩[0,1]

⋃

(x,ϕ′)∈S×QΛ′

{
E

GΛ′ ,ξω(t)
x,ϕ′

[
ϕXτ

Λ′ − ϕ̃Xτ
Λ′

∣∣XτΛ′ ∈ ∂iS ′] > M
}
,

(2.12)

(part of Ω× Ω), where τΛ′ = H(Λ′)c , cf. (1.31), and

(2.13) Mε,ΣΛ
= ε(Σ−1

Λ (S, S ′) + 1), cf. (2.1) for the definition of ΣΛ.

Note thatMε,ΣΛ
> 0 by (2.7). The following proposition comprises the desired “quenched”

monotonicity statement for the function F ω
Λ defined in (2.10), (2.11).

Proposition 2.4. ((2.7), ε > 0,M ≤Mε,ΣΛ
),

(2.14)
dF ω

Λ (t)

dt
≥ 0, for all t ∈ [0, 1] and ω ∈ GΛ,M .

Moreover,

(2.15) {Zh(ϕS′) > Zh−ε(ϕ̃S′)} ⊂ Gc
Λ,M .

Proof. First, note that (2.15) is an immediate consequence of (2.14). Indeed, the latter im-
plies that F ω

Λ (0) ≤ F ω
Λ (1) for all ω ∈ GΛ,M . Due to the gradient nature of the Hamiltonian,

13



cf. (1.2), with a straightforward change of variables, one sees that µψ+εΛ\S′(Ah) = µψΛ\S′(Ah−ε),
for any boundary condition ψ, and thus

(2.16) F
ω
Λ (1)

(2.11)
= µ

ξω(1)
Λ\S′ (A

h)
(2.10)
= µ

(0∨ϕ̃)+ε
Λ\S′ (Ah) = µ0∨ϕ̃

Λ\S′(A
h−ε)

(2.8)
= Zh−ε(ϕ̃S′).

Similarly, (2.10) and (2.11) imply that Zh(ϕS′) = F ω
Λ (0). Thus, (2.15) follows.

We now show (2.14). Since dF ω
Λ (t)/dt is continuous, it is enough to prove (2.14) for

t ∈ Q ∩ [0, 1], which we assume from now on. With Λ′ = Λ \ S ′, write

(2.17) HΛ′(ϕ|ξ) def.
= HΛ′((ϕx)x∈Λ′, (ξx)x/∈Λ′),

with HΛ′ as defined in (1.2). We view HΛ′(·|ξ) as a map ΩΛ′ → R. Then, denoting by 〈·〉λ
integration with respect to Lebesgue measure on ΩΛ′ , it follows by dominated convergence
from (1.12), with ξ(t) = ξω(t) as in (2.10), that

dF ω
Λ

dt
=

d

dt

[〈1Ah(ϕ′)e−HΛ′ (ϕ′|ξ(t))〉λ(dϕ′)

〈e−HΛ′ (ϕ′|ξ(t))〉λ(dϕ′)

]
= Cov

µ
ξ(t)

Λ′

(
1Ah(·), −dHΛ′(·|ξ(t))

dt

)
.(2.18)

By convolution with a suitable mollifier, we can arrange for (Fδ)δ>0 to be a family smooth
approximations of the function F ≡ 1Ah , such that

Fδ, ∂xFδ, ∂
2
x,yFδ ∈ C∞(ΩΛ′) ∩ L∞(λ), x, y ∈ Λ′, sup

δ
‖Fδ‖∞ ≤ 1,

Fδ → F ptw. as δ → 0, and ∂xFδ ≥ 0, x ∈ S, ∂xFδ = 0, x ∈ Λ′ \ S,
(2.19)

where ∂x denotes partial derivative with respect to ϕx (regarding boundedness, taking kδ a
(suitably rescaled) standard mollifier with compact support, and setting Fδ = kδ ∗ F , one
has for instance ‖∂xFδ‖∞ = ‖(∂xkδ) ∗ F‖∞ ≤ ‖(∂xkδ)‖1 < ∞, using Young’s inequality.)
The non-negativity of ∂xFδ is due to the fact that Ah(·) is increasing. To keep the notation

light, we will often write 〈·〉ψ(t)Λ′ below to denote expectation with respect to µ
ξ(t)
Λ′ . Clearly,

by (2.19) and dominated convergence,

〈(F − Fδ)2〉ξ(t)Λ′ = (Z
ξ(t)
Λ′ )−1〈e−HΛ′ (·|ξ(t))(F − Fδ)2〉λ(dϕ′) → 0, as δ → 0.(2.20)

We now apply the Helffer-Sjöstrand formula, cf. Lemma 1.2, to the right-hand side of
(2.18). Note that Fδ ∈ Dom(L

ξ(t)
Λ′ ), by (2.19), cf. (1.18), and also G(·) =

−dHΛ′ (·|ξ(t))
dt

∈
Dom(L

ξ(t)
Λ′ ), as follows from (2.24) below, on account of (1.2) and (1.6). Thus,

Cov
µ
ξ(t)

Λ′
(Fδ, G)

(1.33)
=

∑

x∈Λ′

∫ ∞

0

dsE
x,µ

ξ(t)

Λ′
[∂Fδ(x,Φ0) · ∂G(Xs,Φs)1{s < τΛ′}]

Fubini
=

∑

x∈S

〈
∂Fδ(x, ϕ

′) ·EGΛ′ ,ξ(t)
x,ϕ′

[ ∫ τΛ′

0

ds ∂G(Xs,Φs)
]〉ξ(t)

Λ′
,

(2.21)

where the summation is over x ∈ S due to (2.19), 〈·〉ξ(t)Λ′ governs the field ϕ′, and recall
that Φs = (Φs(x))x∈Λ′, s ≥ 0, is the (unique strong) solution of the SDE’s (1.20) with
boundary condition Φs(x) = ξx(t) for all x ∈ ∂Λ′ and initial data (Φ0)|Λ′ = ϕ′, (Xs)s≥0 is
the jump process on GΛ′ with generator (1.25) and dynamic conductances given by (1.30)
(with Λ′ in place of Λ, and ξ = ξ(t)), and P

x,µ
ξ(t)

Λ′
denotes the joint evolution of (Xs,Φs)s≥0
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with initial condition X0 = x and Φ0 distributed according to µ
ξ(t)
Λ′ . The application of

the Fubini-Tonelli theorem in (2.21) is justified, for the relevant integrand is bounded in
absolute value by

sup
x′∈Λ′
‖∂x′Fδ‖∞ · ∂G(Xs,Φs)1{s < τΛ′},

the first supremum is finite by (2.19), and it follows from (2.25) below, with the help of
(1.6), that the iterated integral E

x,µ
ξ(t)

Λ′
[
∫ τΛ′
0

ds|∂G(Xs,Φs)|] converges (note that Ex,µξ(t)
Λ′

[τΛ′ ]

is finite by uniform ellipticity, since GΛ′ is a finite graph). We next separately consider the
function

(2.22) u(x, ϕ′) = E
GΛ′ ,ξ(t)
x,ϕ′

[ ∫ τΛ′

0

ds ∂G(Xs,Φs)
]
, x ∈ Λ′, ϕ′ ∈ ΩΛ′ ,

appearing on the right-hand side of (2.21). By (1.32), (1.26) (note that ∂G(x, ϕ) =

∂G̃(x, ϕ), where G̃ := G − 〈G〉ψ(t)Λ′ ), u, extended to 0 outside Λ′, is a classical solution
to the boundary value problem

(2.23)

{
−L

ξ(t)
Λ′ u(x, ϕ′) = ∂G(x, ϕ′), x ∈ Λ′, ϕ′ ∈ ΩΛ′ ,

u(x, ϕ′) = 0, x /∈ Λ′, ϕ′ ∈ ΩΛ′ .

The source term ∂G(x, ϕ′) can be computed explicitly as follows. First, observe that

(2.24) G(ϕ′) =
−dHΛ′(ϕ′|ξ(t))

dt

(2.17)
= −

∑

y/∈Λ′

∂HΛ′(ϕ′|ξ)
∂ξy

∣∣∣
ξ=ξ(t)

· ξ̇y(t),

where dot denotes derivative with respect to t. Consequently, for x ∈ Λ′,

∂G(x, ϕ′) =
∂G(ϕ′)

∂ϕ′
x

= −
∑

y/∈Λ′

∂2HΛ′(ϕ′|ξ)
∂ϕ′

x∂ξy

∣∣∣
ξ=ξ(t)

· ξ̇y(t)(2.25)

which, on account of (1.2), vanishes unless x ∈ X for some X ∈ B with X ∩ (Λ′)c 6= ∅.
As we now explain, u(x, ϕ′), x ∈ Λ′, can be viewed as an L

ξ(t)
Λ′ -harmonic function, i.e. a

solution to the bare Laplace equation L
ξ(t)
Λ′ u = 0 (without source term), but with non-

vanishing boundary condition. Due to the particular form of (2.25), and keeping in mind
that u vanishes on the boundary, cf. (2.23) (which, along with the last equality in (1.24),

is why the action of Q
ξ(t),ϕ′

Λ′ can be expressed as in the second line below, with a summation

over Λ′ rather than Λ
′
), one has, for x ∈ Λ′, ϕ′ ∈ ΩΛ′ ,

0
(2.23)
= −L

ξ(t)
Λ′ u(x, ϕ′)− ∂G(x, ϕ′)

(1.25)
=

(1.27)
−Lξ(t)Λ′ u(x, ϕ

′)−
[∑

y∈Λ′

∂2HΛ′(ϕ′)

∂ϕ′
x∂ϕ

′
y

∣∣∣
ϕ′=ξ(t) on (Λ′)c

u(y, ϕ′)

]
− ∂G(x, ϕ′)

(2.25)
= −Lξ(t)Λ′ u(x, ϕ

′)−
∑

y∈Λ′

∂2HΛ′(ϕ′)

∂ϕ′
x∂ϕ

′
y

∣∣∣
ϕ′=ξ(t) on (Λ′)c

[u(y, ϕ′) + ξ̇y(t)1y/∈Λ′].

(2.26)

Thus, defining

(2.27) ũ(x, ϕ′) = u(x, ϕ′) + ξ̇x(t)1x/∈Λ′,
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and observing that L
ξ(t)
Λ′ u = L

ξ(t)
Λ′ ũ, since L

ξ(t),
Λ′ is a differential operator on ΩΛ′ , cf. (1.17),

it follows from (2.26) and (2.23) that ũ satisfies

(2.28)

{
−L

ξ(t)
Λ′ ũ(x, ϕ′) = 0, x ∈ Λ′, ϕ′ ∈ ΩΛ′ ,

ũ(x, ϕ′) = ξ̇x(t), x /∈ Λ′, ϕ′ ∈ ΩΛ′ .

Hence, for all x ∈ Λ′, ϕ′ ∈ ΩΛ′ ,

(2.29) u(x, ϕ′)
(2.27)
= ũ(x, ϕ′) = E

GΛ′ ,ξ(t)
x,ϕ′ [ξ̇Xτ

Λ′ (t)]

(the last equality follows for instance by verifying, on account of (2.28), that Ms =
ũ(Xs∧τΛ′ ,Φs∧τΛ′ ), s ≥ 0, is a uniformly integrable martingale with respect to the natural
filtration associated to the process (X·,Φ·), and applying the optional stopping theorem).

Returning to (2.21), with (2.22), (2.29), one obtains, for all t ∈ Q∩ [0, 1] and ω ∈ GΛ,M

(recall this is the randomness governing the boundary condition ξ(t) = ξω(t), cf. (2.10)),
keeping in mind that ∂Fδ(x, ϕ

′) is non-negative, see (2.19), and that Λ′ = Λ \ S, so that
X· exits Λ′ either through ∂Λ or ∂iS

′,

Cov
µ
ξ(t)

Λ′
(Fδ, G) =

∑

x∈S

〈
∂Fδ(x, ϕ

′)E
GΛ′ ,ξ(t)
x,ϕ′ [ξ̇Xτ

Λ′ (t)]
〉ξ(t)
Λ′

(2.10)
=

∑

x∈S

〈
∂Fδ(x, ϕ

′)
[
εP

GΛ′ ,ξ(t)
x,ϕ′ [XτΛ′ ∈ ∂Λ]−

∑

y∈∂iS′

(ϕy − ϕ̃y − ε) ·PGΛ′ ,ξ(t)
x,ϕ′ [XτΛ′ = y]

]〉ξ(t)
Λ′

(2.13)

≥
∑

x∈S

〈
∂Fδ(x, ϕ

′)P
GΛ′ ,ξ(t)
x,ϕ′ [XτΛ′ ∈ ∂iS ′] ·

[
Mε,ΣΛ

− E
GΛ′ ,ξ(t)
x,ϕ′ [ϕXτ

Λ′ − ϕ̃Xτ
Λ′ |XτΛ′ ∈ ∂iS ′]

]〉ξ(t)
Λ′

(2.12)

≥ (Mε,ΣΛ
−M)

∑

x∈S

〈
∂Fδ(x, ϕ

′)P
GΛ′ ,ξ(t)
x,ϕ′ [XτΛ′ ∈ ∂iS ′]

〉ξ(t)
Λ′

(2.19)

≥ 0,

(2.30)

since M ≤ Mε,ΣΛ
by assumption. The third line in (2.30) explains the specific choice of

the cut-off parameter Mε,ΣΛ
in (2.13). Finally, returning to F ω

Λ , it follows that

dF ω
Λ

dt

(2.18)
= Cov

µ
ξ(t)

Λ′
(F,G) ≥ Cov

µ
ξ(t)

Λ′
(Fδ, G)−

∣∣∣Covµξ(t)
Λ′

(F − Fδ, G)
∣∣∣

(2.30)

≥ −‖F − Fδ‖L2(µ
ξ(t)

Λ′ )
‖Gc‖L2(µ

ξ(t)

Λ′ )
,

(2.31)

where Gc = G−E
µ
ξ(t)

Λ′
[G], using Cauchy-Schwarz in the last step. The claim (2.14) follows

by letting δ → 0 in (2.31), using (2.20).

3 Comparison estimates and the error term

The successful application of Proposition 2.4 hinges on a suitable bound on the probability
of Gc

Λ,M , cf. (2.12), as Λ ր Zd, which is derived in this section, see Lemma 3.4 below. It
relies on suitable estimates for hitting probabilities of random walks among time-dependent
conductances, in terms of the corresponding quantities for simple random walk, which we
derive first, see Lemma 3.1. This lemma is of independent interest, so we state it in
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reasonable generality. Its tailored version is stated thereafter in Corollary 3.2. We will also
need to compare entrance distributions, which is done in Lemma 3.3, in order to obtain
the desired bound on the error term in Lemma 3.4. Theorem 2.1 then follows readily from
Proposition 2.4 and Lemma 3.4. The proof can be found at the end of this section.

We consider a space A of environments on G = (Zd, E ), defined as

(3.1) A = {a : R+ × E ; at(e) = at(−e), c−1
0 ≤ at(e) ≤ c0, for all t ≥ 0, e ∈ E },

and write P a
x , x ∈ Zd, a ∈ A, for the canonical law of the continuous-time jump process

with generator

(3.2) L
a
t f(x) =

∑

y:y∼x
at(x, y)(f(y)− f(x)),

acting on bounded functions f : Zd → R. We write (Xt)t≥0 for the corresponding canonical
process. The total jump rate

∑
e:x(e)=x at(e) out of x at time t ≥ 0 is not normalized, and

the process (Xt)t≥0 is usually referred to as variable-speed random walk (among dynamic
conductances). Recall that P ∗

x refers to the law of (continuous-time) simple random walk
on G, which corresponds to the environment a ∈ A with a(t, x) = |Γ|−1, for all t, x (by
possibly redefining c0, we may assume that c0 ≥ |Γ|). Denoting by pa(x, y; t) = P a

x [Xt = y]
the corresponding heat kernel, one has from [13], Props. B.3 and B.4, that for all a ∈ A,

pa(x, y; t) ≥ c

1 ∨ td/2 , if |x− y| ≤
√
t(3.3)

pa(x, y; t) ≤ c′

1 ∨ td/2 e
− |x−y|

1∨
√
t , for t ≥ 0, x, y ∈ Zd.(3.4)

(In fact one has Gaussian upper bounds in the long-time regime, see [6], Prop. 4.2.) The
constants c, c′ depend on d, Γ and c0 as appearing in (3.1), but are otherwise uniform in
a. From these heat kernel estimates, one classically deduces for the corresponding Green
function ga(x, y) =

∫∞
0
P a
x [Xt = y]dt, first by restricting the integral to t ≥ |x − y|2 and

using (3.3) to obtain a lower bound, or splitting the integral at t = 1 and using (3.4) to
obtain an upper bound, that

(3.5)
c

1 ∨ |x− y|d−2
≤ ga(x, y) ≤ c′

1 ∨ |x− y|d−2
, for a ∈ A, x, y ∈ Zd.

The next lemma yields a comparison estimate for hitting probabilities of P a
x with those

of simple random walk, and will be used in several instances below. The rationale of its
proof is that, in spite of the nuisance due to the dynamic environment a, given bounds as
in (3.5) for the Green function, one can often afford to develop an “approximate” potential
theory, by which g∗(·, ·) replaces the kernel ga(·, ·).

Lemma 3.1. (a ∈ A) There exists c3 ∈ (1,∞), such that, for all U ⊂⊂ Zd, defining

(3.6) σ∗
x(U) =

supy∈U g
∗(x, y)

infy∈U g∗(x, y)
,

one has, for all x /∈ U ,
(
c3σ

∗
x(U)

)−1
P ∗
x [HU <∞] ≤ P a

x [HU <∞] ≤
(
c3σ

∗
x(U)

)
P ∗
x [HU <∞].(3.7)
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Proof. First, note that P ∗
x [HU <∞] admits straightforward upper and lower bounds based

on potential theory for simple random walk. Recalling (1.38) and (1.39), by last-exit
decomposition for the simple random walk, see for instance [17], Prop. 4.6.4, one has
P ∗
x [HU <∞] =

∑
y∈U g

∗(x, y)e∗U(y), and therefore, in view of (3.6),

σ∗
x(U)

−1 sup
y∈U

g∗(x, y) · cap∗(U) ≤ P ∗
x [HU <∞] ≤ σ∗

x(U) inf
y∈U

g∗(x, y) · cap∗(U).(3.8)

We now show (3.7), starting with the upper bound. Abbreviating, for a ∈ A, y ∈ U ,
x /∈ U ,

(3.9) νax(y) = P a
x [HU <∞, XHU

= y] and ν̄ax(y) = νax(x, y)/P
a
x [HU <∞],

and writing, whenever HU < ∞, (θHU
a) ∈ A for the environment defined via (θsa)t(e) =

as+t(e), for s, t ≥ 0, e ∈ E , using the strong Markov property at time HU , we obtain, for
all z ∈ U , x /∈ U ,

ga(x, z) = Ea
x

[ ∫ ∞

0

dt1{Xt=z}
]
=

∑

y∈U
Ea
x

[
1{HU<∞,XHU

=y} · E
θHU

a
y

[ ∫ ∞

0

dt1{Xt=z}
]]

(3.5)

≥ c4
∑

y∈U
νax(y)g

∗(y, z).

(3.10)

Moreover, noting that, by (3.5), ga(x, z) ≤ c5g
∗(x, z) ≤ c5 supy∈U g

∗(x, y) for all z ∈ U ,
x /∈ U , it follows from (3.10), multiplying on both sides by νax(z) and summing over z ∈ U ,
recalling the definition of E∗(·) in (1.41), that

(3.11) c5 sup
y∈U

g∗(x, y)P a
x [HU <∞] ≥ c4E

∗(νax) = c4E
∗(ν̄ax)P

a
x [HU <∞]2,

and therefore, since ν̄x is a probability measure supported on U , cf. (3.9),

P a
x [HU <∞]

(3.11)

≤ c supy∈U g
∗(x, y)

E∗(ν̄ax)
≤ c supy∈U g

∗(x, y)

inf{E∗(ν); ν a prob. meas., supp(ν) ⊂ U}
(1.40)
= c sup

y∈U
g∗(x, y) · cap∗(U)

(3.8)

≤ cσ∗
x(U)P

∗
x [HU <∞].

This is the asserted upper bound in (3.7). For the lower bound, define the random variable
W (ν), for ν any probability measure supported on U , as

(3.12) W (ν) =
∑

y∈U
ν(y)

∫ ∞

0

dt
1{Xt = y}
g∗(x, y)

.

Clearly, W (ν) is non-negative and HU < ∞ if W (ν) > 0. Hence, by the Paley-Zygmund
inequality, for x /∈ U ,

(3.13) P a
x [HU <∞] ≥ P a

x [W (ν) > 0] ≥ Ea
x[W (ν)]2

Ea
x[W (ν)2]

.

We consider the first and second moment separately. For the former, one has the lower
bound

(3.14) Ea
x [W (ν)] =

∑

y∈U
ν(y)

ga(x, y)

g∗(x, y)

(3.5)

≥ c,
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since ν is normalized by assumption. To get an upper bound on the second moment,
observe that, with FXs = σ(Xt; t ≤ s),

Ea
x[W (ν)2]

(3.12)
= Ea

x

[ ∑

y,z∈U
ν(y)ν(z)

∫ ∞

0

ds

∫ ∞

0

dt
1{Xs = y}1{Xt = z}

g∗(x, y)g∗(x, z)

]

= 2
∑

y,z∈U

ν(y)ν(z)

g∗(x, y)g∗(x, z)
Ea
x

[ ∫ ∞

0

ds1{Xs=y}E
a
x

[ ∫ ∞

s

dt1{Xt=z}

∣∣∣FXs
]]

simple

≤
Markov

2
∑

y,z∈U

ν(y)ν(z)

g∗(x, y)g∗(x, z)

∫ ∞

0

dsEa
x

[
1{Xs=y} sup

a′∈A
ga

′
(y, z)

]

(3.5)

≤ c
∑

y,z∈U

ν(y)ν(z)

g∗(x, z)
g∗(y, z)

(1.41)

≤ cE∗(ν)

infz∈U g∗(x, z)
.

(3.15)

Returning to (3.13), using (3.14), (3.15) and optimizing over ν yields

P a
x [HU <∞] ≥ c′ infz∈U g∗(x, z) supν E

∗(ν)−1
(1.40),(3.8)

≥ c′σx(U)−1P ∗
x [HU <∞],

which is the desired lower bound.

The following annealed estimate is tailored to our purposes. This brings into play the
measure PGΛ,ξ

x,ϕ from the Helffer-Sjöstrand representation, cf. below (1.29).

Corollary 3.2. (Λ, S ′ ⊂⊂ Zd, Λ ⊃ S ′, Λ′ = Λ \ S ′)

There exist c5, c6 (independent of Λ and S ′) and Λ0(x, S
′) ⊂⊂ Zd with x ∈ Λ0(x, S

′) such
that, for all x ∈ Zd \ S ′, ξ ∈ Ω, ϕ ∈ ΩξΛ′, if Λ ⊃ Λ0(x, S

′),

(3.16) c5σ
∗
x(S

′)−1P ∗
x [HS′ <∞] ≤ PGΛ′ ,ξ

x,ϕ [HS′ < HΛc ] ≤ c6σ
∗
x(S

′)P ∗
x [HS′ <∞],

Proof. By the discussion leading to (1.30), and recalling the definition of PΛ′,ξ
ϕ below (1.20),

we see that for bounded, measurable f on D(R+,Λ),

(3.17) EGΛ′ ,ξ
x,ϕ [f((Xt)t≥0)] =

∫
dPΛ′,ξ

ϕ (Φ)EaΛ′ (Φ)
x [f((Xt)t≥0)],

with aΛ′(Φ) as in (1.30), and P
aΛ′ (Φ)
x is the law of the random walk on GΛ′ among the

dynamic conductances aΛ′(Φ), killed when first exiting Λ′. We will apply Lemma 3.1

directly to P
aΛ′ (Φ)
x .

For a ∈ A, cf. (3.1), denote by PΛ,a
x , x ∈ Λ, the law of the variable-speed random walk

on G killed when first exiting Λ. Then, since

(3.18) PΛ,a
x [HS′ <∞] = P a

x [HS′ < τΛ] = P a
x [HS′ <∞]− P a

x [τΛ ≤ HS′ <∞]

for all x ∈ Λ \ S ′, and, by the strong Markov property at time HS′ ∧ τΛ(= τΛ′),

P a
x [τΛ ≤ HS′ <∞] = P a

x [XτΛ′ ∈ ∂Λ, HS′ ◦ τΛ′ <∞]

=
∑

y∈∂Λ
Ea
x

[
1{Xτ

Λ′=y}P
θτ

Λ′ a
y [HS′ <∞]

]
≤ sup

y∈∂Λ,a∈A
P a
y [HS′ <∞]

(3.7)

≤ c(S ′)dG(∂Λ, S
′)2−d,

(3.19)
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for all Λ ⊃ Λ1(S
′) (using in the last step that supx∈∂Λ σ

∗
x(S

′) < 10 for suitable Λ1(S
′), and

all Λ ⊃ Λ1(S
′)), we deduce from (3.18) and (3.19), that for all x /∈ S, all Λ ⊃ Λ2(x, S

′)

and all a ∈ A, 1
2
≤ PΛ,a

x [HS′<∞]

P a
x [HS′<∞]

≤ 1. From this, it follows that (3.7) has the following

finite-volume version. Namely, for all a ∈ A, x /∈ S ′, Λ ⊃ Λ2(x, S
′),

(3.20) (2c3σ
∗
x(S

′))−1P ∗
x [HS′ <∞] ≤ PΛ,a

x [HS′ <∞] ≤ c3σ
∗
x(S

′)P ∗
x [HS′ <∞].

The claim (3.16) now follows by extending aΛ′(Φ) to an environment a(Φ) on E by declaring
each edge in E \EΛ′ to have, say, conductance 1 for all t ≥ 0, thus obtaining that a(Φ) ∈ A,
due to (1.23) and (1.6), so (3.20) yields PΛ′,ξ

ϕ (dΦ)-a.s. bounds on P
Λ,a(Φ)
x [HS′ < ∞] =

P
aΛ′ (Φ)
x [HS′ < HΛc ], for x /∈ S and Λ ⊃ Λ2(x, S

′), and (3.16) follows upon integrating over
Φ, using (3.17).

We will also need the following comparison inequality for hitting distributions. In what
follows we write

(3.21) νS
′

x (y) = P ∗
x [HS′ <∞, XHS′ = y], for S ′ ⊂ Zd, x, y ∈ Zd.

Lemma 3.3. (Λ, S ′ ⊂⊂ Zd, Λ ⊃ S ′, Λ′ = Λ \ S ′)

For all x ∈ Λ′, ξ ∈ Ω, ϕ ∈ ΩξΛ′, and f : S ′ → [0,∞),

(3.22) EGΛ′ ,ξ
x,ϕ [f(XτΛ′ )1{XτΛ′ ∈ S ′}] ≤ c7〈G∗νS

′
x , f〉ℓ2(S′),

where (G∗νS
′

x )(y) =
∑

z g
∗(y, z)νS

′
x (z), cf. below (1.41).

Proof. Recalling the quenched law P
aΛ′ (Φ)
x defined in (3.17), and using Lemma 3.1 with

U = {y} (noting that σ∗
x({y}) = 1, cf. (3.6)), we have, for y ∈ S ′, x ∈ Λ′, PΛ′,ξ

ϕ (dΦ)-a.s.,

P aΛ′ (Φ)
x [XτΛ′ = y] = P aΛ′ (Φ)

x [Hy <∞] ≤ sup
a∈A

P a
x [Hy <∞]

(3.7)

≤ c3P
∗
x [Hy <∞]

= c3(ν
S′
x (y) + P ∗

x [HS′ < Hy <∞])
strong
=

Markov
c3

(
νS

′
x (y) +

∑

z 6=y
νS

′
x (z)P ∗

z [Hy <∞]
)

≤ c
∑

z∈S′

νS
′

x (z)g∗(z, y) = (G∗νS
′

x )(y),

(3.23)

where we used in the last line that g∗(y, y) > 1 and

P ∗
z [Hy <∞] = g∗(z, y)Py[H̃y =∞] ≤ g∗(z, y),

by last exit decomposition in y. From (3.23), and since f ≥ 0 by assumption, we deduce

that E
aΛ′ (Φ)
x [f(XτΛ′ )1{XτΛ′ ∈ S ′}] is bounded by the right-hand side of (3.22), and the

claim follows by averaging over Φ, see (3.17).

In the next lemma, we derive a suitable (i.e. sufficiently sharp, for the purposes we
have in mind, cf. Lemma 4.1 and Corollary 4.2 in the next section) upper bound for
the probability of the ‘bad’ event Gc

Λ,M defined in (2.12). The proof relies on a careful
application of the exponential Brascamp-Lieb inequality, see Lemma 1.3, together with the
previously derived comparison estimates, Corollary 3.2 and Lemma 3.3.

In what follows let (Λn)n≥0 be any increasing sequence of finite sets exhausting Zd,
and recall that under Q0

Λ, the field ω = (ϕ, ϕ̃) is distributed as two independent copies of
ϕ under µ0

Λ. We stress that the constants c2, c3 appearing below are independent of the
choice of (Λn)n≥0.
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Lemma 3.4. (∅ 6= S, S ′ ⊂⊂ Zd, S ∩ S ′ = ∅)
For any sequence (Mn)n≥0, with Mn > 0 for all n, denotingM∞ = lim supnMn, and letting

(3.24) σ∗ ≡ σ∗(S, S ′) = sup
x∈S

σ∗
x(S

′), (cf. (3.6) for the definition of σ∗
x(S

′)),

one has

(3.25) lim inf
n→∞

Q0
Λn
[Gc

Λn,Mn
] ≤ c1|S|2|∂iS

′| exp
{
− c2

(cap∗(S ′)M∞
(σ∗)2|∂iS ′|

)2}
.

Proof. Let Λ ⊃ S ∪ S ′ be a finite subset of Zd. We will later take Λ = Λn and let n→∞.
First, in view of (2.12), note that, for M > 0,

Gc
Λ,M ⊂

⋃

t,(x,ϕ′)

({
E

GΛ′ ,ξ(t)
x,ϕ′ [ϕXτ

Λ′ |XτΛ′ ∈ ∂iS ′] >
M

2

}
∪
{
E

GΛ′ ,ξ(t)
x,ϕ′ [ϕ̃Xτ

Λ′ |XτΛ′ ∈ ∂iS ′] < −M
2

})
.

We first dispense with the ω = (ϕ, ϕ̃)-dependence coming from the boundary condition
ξ(t) = ξω(t), cf. (2.10). Using the lower bound from (3.16), along with (3.22), it follows
that, whenever Λ ⊃ Λ3(S, S

′) =
⋃
x∈S Λ0(x, S

′), a finite subset of Zd, and for all f : S ′ → R,

with f+ = f ∨ 0, ℓ2 = ℓ2(∂iS
′), noting that P

GΛ′ ,ξ(t)
x,ϕ′ [XτΛ′ ∈ ∂iS ′] = P

GΛ′ ,ξ(t)
x,ϕ′ [HS′ < HΛc ],

(3.26) E
GΛ′ ,ξ(t)
x,ϕ′ [fXτ

Λ′ |XτΛ′ ∈ ∂iS ′] ≤ c7σ
∗
x(S

′)〈G∗νS
′

x , f
+〉ℓ2

c5P ∗
x [HS′ <∞]

≤ c8σ
∗〈G∗ν̄S

′
x , f

+〉ℓ2,

where ν̄S
′

x (·) = νS
′

x (·)/P ∗
x [HS′ < ∞] is the normalized entrance distribution, a probability

measure for every x, cf. (3.21). Note that (3.26) is uniform in ξ(t) (and hence in t) and

ϕ′. Substituting (3.26) for f = ϕ, along with the lower bound E
GΛ′ ,ξ(t)
x,ϕ′ [fXτ

Λ′ |XτΛ′ ∈ ∂iS ′] ≥
−c8σ∗〈G∗ν̄S

′
x , f

−〉ℓ2, obtained similarly, into the previous display, and using that ϕ̃ has the
same law as −ϕ̃ under Q0

Λ, which is due to the symmetry of VX , cf. (1.4), and the fact
that Q0

Λ imposes 0-boundary condition, one arrives at

(3.27) Q0
Λ[G

c
Λ,M ] ≤ 2|S| sup

x∈S
µ0
Λ

(
〈G∗ν̄S

′
x , ϕ

+〉ℓ2 > c9M/σ∗), for Λ ⊃ Λ3(S, S
′) ,

where c9 = 1/2c8. Consider a fixed x ∈ S. By letting K range over all possible outcomes of
the set {y ∈ ∂iS ′; ϕy ≥ 0} and writing (G∗ν̄S

′
x )|K (·) = 1{·∈K}G

∗ν̄S
′

x (·), one readily obtains,
for x ∈ S and λ > 0,

(3.28) µ0
Λ

(
〈G∗ν̄S

′
x , ϕ

+〉ℓ2 > c9M/σ∗) ≤ 2|∂iS
′|e−λc9

M
σ∗ sup

K⊂∂iS′
Eµ0Λ

[
eλ〈(G

∗ ν̄S
′

x )|K ,ϕ〉ℓ2
]
.

The Brascamp-Lieb bound (1.34) (note that ϕ is centered) then yields, for x ∈ S and
K ⊂ ∂iS

′,

(3.29) Eµ0Λ

[
eλ〈(G

∗ ν̄S
′

x )|K ,ϕ〉ℓ2
]
≤ e

1
2
λ2var∗Λ(ψK(x)), with ψK(x) = 〈(G∗ν̄S

′
x )|K , ϕ〉ℓ2,

where var∗Λ denotes variance with respect to the law µ∗
Λ under which ϕ is distributed as a

centered Gaussian field with covariances Eµ∗Λ [ϕxϕy] = c10g
∗
Λ(x, y), for all x, y, and g

∗
Λ is the
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Green function of simple random walk on G killed outside Λ. To bound var∗Λ(ψK(x)), we
will harness the fact that, for all x, z ∈ Zd,

∑

y

νS
′

x (y)g∗(y, z)
(3.21)
= E∗

x[g
∗(XHS′ , z)1{HS′ <∞}] = g∗(x, z)− g∗Zd\S′(x, z) ≤ g∗(x, z),

where the penultimate step follows from the strong Markov property at time HS′. Since
ψK(x) is a centered Gaussian under µ∗

Λ, we obtain, for all x ∈ S, K ⊂ ∂iS
′, and Λ ⊃

Λ3(S, S
′),

var∗Λ(ψK(x)) = Eµ∗Λ [ψK(x)
2] = c10

∑

y,z∈K
(G∗ν̄S

′
x )(y)(G∗ν̄S

′
x )(z)g∗Λ(y, z)

≤ c10
∑

y,z,v,w∈∂iS′

g∗(y, v)ν̄S
′

x (v)g∗(z, w)ν̄S
′

x (w)g∗Λ(y, z)

≤ c10
∑

y,z∈∂iS′

g∗(x, y)g∗(x, z)

P ∗
x [HS′ <∞]2

g∗Λ(y, z) ≤ c11

[ σ∗|∂iS ′|
cap∗(S ′)

]2
,

(3.30)

using in the last step that g∗Λ(·, ·) ր g∗(·, ·) ≤ c′, as Λ ր Zd, together with the fact that,
for all x ∈ S, cf. above (3.8),

sup
y∈∂iS′

g∗(x, y)

P ∗
x [HS′ <∞]

= sup
y∈∂iS′

g∗(x, y)∑
z∈S′ g∗(x, z)e∗S′(z)

≤ σ∗
x(S

′)

cap∗(S ′)
.

Substituting (3.30) into (3.28), (3.29), optimizing over λ, we get, for all x ∈ S, any (Λn)n≥0

as appearing in the lemma, and any sequence Mn > 0, for all n, letting n→∞,

lim inf
n

µ0
Λn

(
〈G∗ν̄S

′
x , ϕ

+〉ℓ2 > c9Mn/σ
∗) ≤ 2|∂iS

′|e
−c12( cap

∗(S′)M∞
(σ∗)2|∂iS′| )2

,

with c12 = c29/2c11. In view of (3.27), this yields (3.25).

With Proposition 2.4 and Lemma 3.4 at hand, we proceed to the proof of the decoupling
inequality, Theorem 2.1.

Proof of Theorem 2.1. Let Λ ⊂⊂ Zd satisfy the conditions in (2.7). Applying Proposi-
tion 2.4 and minding that f ≥ 0 is measurable with respect to FS′ = σ(ϕx, x ∈ S ′), we
obtain, for all M ≤ Mε,ΣΛ

,

Eµ0Λ
[1Ah · f ] = Eµ0Λ

[
Eµ0Λ

[1Ah |FS′] · f
]

(2.9)
= EQ0

Λ
[Zh(ϕS′) · f(ϕ)]

(2.15)

≤ EQ0
Λ
[Zh−ε(ϕ̃S′) 1GΛ,M

· f(ϕ)] + EQ0
Λ
[f(ϕ) · 1Gc

Λ,M
]

(2.9)

≤ µ0
Λ(A

h−ε)Eµ0Λ [f ] + ‖f‖L∞(Ω) ·Q0
Λ[G

c
Λ,M ],

(3.31)

using independence of ϕ and ϕ̃ in the last step. Hence, (2.3) follows at once with Λ = Λn,
M =Mn =Mε,ΣΛn

, cf. (2.13), upon letting n→∞ in (3.31) and using (3.25), noting that
M∞ = lim supnMn = ε(Σ−1 + 1), on account of (2.13) and (2.2). �
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Remark 3.5. Although this will not be needed below, let us point out that one can derive
a better bound in Lemma 3.4, by estimating the variance in (3.30) more carefully. Indeed,
taking for simplicity S ′ = BL = B(0, L), with SL = ∂iBL, one has

∑

y,z∈SL

g∗Λ(y, z) ≤ c
∑

y∈SL

L∑

n=1

|{z ∈ SL; |z − y| = n}|n−(d−2) ≤ c′
∑

y∈SL

L∑

n=1

1 = O(Ld), as L→∞

which is far better than the crude bound |∂iS ′|2 = O(L2d−2). In particular (for this choice
of S ′), since cap∗(BL) ≥ cLd−2, this gives var∗Λ(ψK(x)) ≤ c(σ∗)2 ·O(Ld−2(d−2)), and the last
term is bounded uniformly if d ≥ 4. �

4 Applications

We now explore some of the consequences of Theorem 2.1, by investigating connected
components of level sets of ϕ, and deduce, among other things, the results (0.6), (0.7),
mentioned in the introduction. We will ultimately show that our decoupling inequality
(2.3) can be made to fit the general framework of [8], [9], [22] and [25], but, as it turns
out, this requires improving on the error term δS,S′(ε,Σ) in a certain sense. To this end,
we first show in Theorem 4.4 below that connected components of sites where ϕ exceeds a
sufficiently large height decay rapidly as a function of their diameter. This result, which is
interesting in its own right, involves a by now standard renormalization argument, akin to
the one developed in [27] or [24], by which Theorem 2.1 is used as one-step renormalization,
see Lemma 4.1. The only issue, which is key in passing from one length scale Ln to the
next, is to keep the sprinkling parameter ε as small as possible while retaining good control
on the error term on the right-hand side of (2.3), which translates into considering sets
S, S ′ with sufficiently small cross section Σ.

The resulting decoupling inequalities are stated below in Corollary 4.2. These are
sufficiently strong to prove the desired connectivity function of upper level-sets E>h =
{x ∈ Zd; ϕx ≥ h}, decay stretched exponentially as a function of distance, at large heights
h. Using this supplementary information, we will retroactively ensure that, up to a small
error (in terms of |S|, |S ′|), one can prevent (ϕ, ϕ̃) to land in Gc

Λ,M in Lemma 2.4, and
thus avoid the use of Lemma 3.4 altogether. The resulting inequality is stated below in
Theorem 4.6. It provides the crucial tool which enables us to resort to [8], [9], [22] and
[25], to deduce a host of results regarding the geometry of E>h, when h is sufficient small,
see Theorems 4.8, 4.9 and Remark 4.10 below.

We now introduce the renormalization scheme, and consider a sequence of length scales

(4.1) Ln+1 = 100 · Rn, n ≥ 0, with R ≥ 1002.

We will encounter families of events Am which are naturally indexed by the leaves m ∈
T (n) of a binary tree of depth n. This requires a small amount of notation. Denote by
Tn =

⋃
0≤k≤n T

(k), T (k) = {0, 1}k the canonical binary tree of depth n. For m ∈ T (k), we

write m0 and m1 for the children of m in T (k+1). A map τ : Tn → Zd will be called proper
embedding with base x if τ(∅) = x,

(4.2) τ(m) ∈ Ln−kZd for m ∈ T (k), 0 ≤ k ≤ n
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and, with the notation B̃τ(m) = B(τ(m), 10Ln−k), if m ∈ T (k), one has, for all 0 ≤ k < n,
m ∈ T (k) and i = 1, 2,

(4.3) B̃τ(mi) ⊂ B̃τ(m) and dG(B̃τ(m0), B̃τ(m1)) ≥ Ln−k/100,

with dG denoting graph distance on G. The set of all proper embeddings of Tn with base x
will be denoted by Ξn,x. A sequence (Aτ,m)m∈T (n) of events (each part of Ω̂) will be called
τ -adapted if

(4.4) Aτ,m ∈ σ(Yx, x ∈ B̃τ(m)), for all m ∈ T (n).

Finally, we suppose, cf. above Theorem 2.1, that µ ∈ W . A first consequence of Theo-
rem 2.1 and the above choices is the following

Lemma 4.1 (One-step renormalization). (x0 ∈ Zd, n ≥ 0, τ ∈ Ξn+1,x0, h ∈ R, R ≥ c13)

For all ε ≥ εn = c14[2
2n/Rn+1]1/2, and all families (Aτ,m)m∈T (n+1) of increasing, τ -adapted

events

(4.5) µ
[ ⋂

m∈T (n+1)

Ahτ,m

]
≤ µ

[ ⋂

m∈T (n)

Ah−ετ,0m

]
µ
[ ⋂

m∈T (n)

Ah−ετ,1m

]
+ δn,

where δn = e−c15
√
R

n+1

.

Proof. We apply Theorem 2.1 with Ah =
⋂
m∈T (n) Ahτ,0m, f = 1⋂

m∈T (n) A
h
τ,1m

, so that, in

particular, Eµ[1Ahf ] = µ[
⋂
m∈T (n+1) Ahτ,m]. Accordingly, we set S =

⋃
m∈T (n) B̃τ(0m), S

′ =⋃
m∈T (n) B̃τ(1m). By adaptedness, cf. (4.4), A ∈ σ(Yx, x ∈ S), and f(ϕ) ∈ σ(ϕx, x ∈ S ′).

Moreover, inductively, by (4.3), we see that S ⊂ B̃τ(0), while S ⊂ B̃τ(1), and therefore

(4.6) 100Ln+1 ≥ dG(S, S
′) ≥ Ln+1/100.

We now derive a suitable upper bound for the cross-section Σ = Σ(S, S ′, (Λk)k≥0) defined
in (2.2). By possibly passing to a subsequence, we may assume that Σ = limk Σ(S, S

′,Λk)
and that the limit is monotone. Hence, for all Λk ⊃

⋃
x∈S Λ0(x, S

′), cf. Corollary 3.2,
x ∈ S, and R ≥ c, setting Λ′

k = Λk \ S, noting that σ∗
x(S

′) ≤ c for all x ∈ S, which follows
from (3.5), (3.6) and (4.6), and using that W : x 7→ x

1−x is continuous and increasing
on [0, 1), we infer that for all R ≥ c,

Σ
(2.1)

≤ lim
k

sup
x∈S

W
(
sup
ϕ,ξ

P
GΛ′

k
,ξ

x,ϕ [HS′ < HΛc
k
]
) (3.16)

≤ sup
x∈S

W
(
c6σ

∗
x(S

′)P ∗
x [HS′ <∞]

)

≤W
(
c16P

∗
x [HS′ <∞]

)
≤ 2c16c17

( 2

R

)n+1

,

(4.7)

using (4.1), (4.6) in the last step, along with the estimate

P ∗
x [HS′ <∞] ≤ c17dG(S, S

′)−(d−2)2n,

which follows from (3.8), (3.5) and the fact that cap(·) is subadditive (note that this
last bound also implies that c16P

∗
x [HS′ < ∞] ≤ 1/2, whenever R ≥ c, which is implied

in the last step of (4.7)). The claim (4.5) then follows immediately from (2.3), upon
noticing that, for R ≥ c, since Σ−1 ≥ c18(

R
2
)n+1 by (4.7), and |∂iS ′| ≤ |S ′| = |S| = c192

n,
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σ∗(S, S ′) ≤ c20, the error term δS,S′(ε,Σ) defined in (2.4) can be bounded, whenever ε2 ≥
ε2n = |S|100d−1c20/(c2c

2
18cap

∗(B100)(R/2)
n+1), as follows:

δS,S′(ε,Σ) ≤ c1 exp
{
2|S| − c2ε2n

cap∗(B100)

c202n100d−1
c218

(R
2

)2(n+1)}

= c1 exp
{
2|S|

(
1−

(R
4

)n+1)}
≤ c1 exp

{
− c219

2
Ld0
√
R
n+1

}
≡ δn,

whenever R ≥ c.

Lemma 4.1 can be iterated, yielding the following

Corollary 4.2 (Decoupling inequalities I). (x0 ∈ Zd, n ≥ 0, τ ∈ Ξn,x0, h0 ∈ R, R ≥ c13)

For all families (Aτ,m)m∈T (n) of increasing, τ -adapted events, with h+n = h0 +
∑

0≤k<n εn,
h+∞ = limn h

+
n and εn as defined above (4.5),

(4.8) µ
[ ⋂

m∈T (n)

Ah
+
∞
τ,m

]
≤ µ

[ ⋂

m∈T (n)

Ah
+
n
τ,m

]
≤

∏

m∈T (n)

(
µ[Ah0τ,m] + δ̄(R)

)
,

where

(4.9) δ̄(R)
def.
=

∑

n≥0

(δn)
1

2n+1 .

Proof. The first inequality in (4.8) is due to monotonicity. The second one follows from

µ
[ ⋂

m∈T (n)

Ah
+
n
τ,m

]
≤

∏

m∈T (n)

(
µ[Ah0τ,m] +

∑

k<n

(δk)
1

2k+1

)
,

which is easily shown by induction over n, using (4.5). The fact that δ̄(·) is finite is plain
from the definition of δn below (4.5).

Remark 4.3. As for Theorem 2.1, cf. Remark 2.2, 4), (4.8) has the following comple-
ment. Under the assumptions of Corollary 4.2, for any family (Aτ,m)m∈T (n) of decreasing,
τ -adapted events, setting h−n = h0 −

∑
0≤k<n εn, h

−
∞ = limn h

−
n , one has

(4.10) µ
[ ⋂

m∈T (n)

Ah
−
∞
τ,m

]
≤ µ

[ ⋂

m∈T (n)

Ah
−
n
τ,m

]
≤

∏

m∈T (n)

(
µ[Ah0τ,m] + δ̄(R)

)
.

This follows by considering the flipped events Aτ,m = {ωf ;ω ∈ Aτ,m}, cf. Remark 2.2, 4),

noting that µ[
⋂
m∈T (n) Ahτ,m] = µ[

⋂
m∈T (n) A

−h
τ,m], for all n ≥ 0 and h ∈ R, and applying (4.8)

to the events Aτ,m, m ∈ T (n), with the sequence (−h−n )n≥0. �

We are now ready to state our first result regarding the geometry of E>h = {x ∈
Zd; ϕx ≥ h}. For K,K ′ ⊂ Zd, we denote by {K >h←→ K ′} ⊂ Ω the event that E>h contains
a nearest-neighbor path in G intersecting both K and K ′.

Theorem 4.4. (µ ∈ W )

h+ = h+(µ)
def.
= inf

{
h ∈ R; there exist c(h), c′(h) and ρ(h) > 0 s.t.

µ(x
>h←→ y) ≤ c(h)e−c

′(h)|x−y|ρ , for all x, y ∈ Zd
}
<∞.

(4.11)
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With Corollary 4.2 at hand, the proof is similar to Theorem 4.1 in [27], using a certain
set of so-called cascading events. We include the short proof for completeness.

Proof. Let x ∈ Zd. One defines the set Ξ∗
n,x, for n ≥ 0, consisting of all proper embeddings

τ ∈ Ξn,x, cf. (4.2) and (4.3), with the additional property that, for every 1 ≤ k < n andm ∈
T (k), B(τ(m0), Ln−k−1)∩B(τ(m), Ln−k) 6= ∅ and B(τ(m1), Ln−k−1)∩B(τ(m), 3Ln−k/2) 6=
∅. On account of (4.1), Ξ∗

n,x is not empty, and moreover |Ξ∗
n,x| ≤ (c21R

d−1)2
n
. Consider

the events Eh
L,y = {BL(y)

>h↔ ∂B2L(y)}, for y ∈ Zd, L ≥ 1 and define Ahτ,m = Eh
L0,τ(m),

for m ∈ T (n), τ ∈ Ξ∗
n,x. Since any path connecting BL(y) to ∂B2L(y) must intersect both

∂iBL(y) and also ∂iB3L/2(y), one obtains inductively that Eh
Ln,x ⊂

⋃
τ∈Ξ∗

n

⋂
m∈T (n) Ahτ,m, for

all n ≥ 0, h ∈ R, and thus, for R ≥ c13, n ≥ 0, h0 ∈ R, using (4.8),

(4.12) µ[Eh+∞
Ln,x

] ≤ |Ξ∗
n,x| · µ

[ ⋂

m∈T (n)

Ah
+
n
τ,m

]
≤

[
c21R

d−1
(
sup
z∈Zd

µ[Eh0
L0,z

] + c22e
−c15

√
R
)]2n

,

where we used that δ̄(R) ≤ c22e
−c15

√
R, which follows readily from (4.9) and the definition

of δn below (4.5). Now, first choose R ≥ c13 such that c21c22R
d−1e−c15

√
R ≤ 1/4, and then

h0 large enough such that
(
µ[Eh0

L0,z
] ≤ (4c21R

d−1)−1, for all z, by considering, for instance,

the maximum of ϕ in a box around z of radius L0 (= 100), which has to exceed h0 on
the event Eh0

L0,z
, applying a union bound, and using the Brascamp-Lieb inequality (1.34).

With these choices, and noting that h+∞ < ∞, cf. above (4.8), it follows from (4.12) that

µ[Eh+∞
Ln,x

] ≤ 2−2n , for all n ≥ 0, and this implies readily that µ(x
≥h+∞←→ y) has stretched

exponential decay in |x− y|, thus yielding (4.11).

Remark 4.5. (Level-sets of |ϕ|). By adapting the arguments of [23], Section 4, one can

show an analogue of Theorem 4.4, whereby µ(x
>h←→ y), the connectivity function of the

one-sided level set E>h = {x ∈ Zd; ϕx > h}, is replaced by that of {x ∈ Zd; |ϕx| > h}. �

We now use the fact our decoupling inequality provides a tool to control excursion sets
above high levels to avoid “falling out of” the event Gc

Λ,M in (2.12), thus avoiding the use
of Lemma 3.4 altogether and obtaining a different error term in (2.3). A similar procedure
was already necessary in the Gaussian case, see [8].

Theorem 4.6. (µ ∈ W )

There exists K,α, c23 ∈ (0,∞) such that, for all ε ∈ (0, 1/2), L ≥ 1, h ∈ R, x1, x2 ∈ Zd

satisfying

(4.13) |x1 − x2| ≥ ε−KL,

all increasing events A ∈ σ(Yx, x ∈ B(x1, 10L)), and bounded f ≥ 0 satisfying f ∈
σ(ϕx, x ∈ B(x2, 10L)), one has

(4.14) µ(1Ah · f) ≤ µ(Ah−ε) · µ(f) + c23‖f‖∞e−L
α

Proof. Let

(4.15) ϕ̂ = ϕ− ϕ̃,
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with ω = (ϕ, ϕ̃) having law µ ⊗ µ. Denote by P̂ the law of ϕ̂. Then, defining Êh
L,x to

be the event that B(x, L) is connected to ∂B(x, 2L) by a path in {x ∈ Zd; ϕ̂x ≥ h}, and
mimicking the proof of Theorem 4.4 with these events, one deduces that the quantity ĥ+,
defined as in (4.11), but with P̂ instead of µ, is finite (in words, ĥ+ is smallest such that

level sets of ϕ̂ have stretched exponential connectivity decay, for any height h > ĥ+). The

proof is identical to that of Theorem 4.4, one merely needs to observe that P̂[Êh0
L0,0

] → 0
as h0 →∞, for any fixed value of L0 ∈ R.

Next, consider two sets S, S ′ with

(4.16) S = B(x1, 10L), S
′ ⊂ B(x2, 20L).

We seek an upper bound for Σ(S, S ′) uniform in L ≥ 1. First note that for σ∗(S, S ′) as
defined in (2.5), one has, on account of (3.5) and (4.16), with x, y below ranging over all
points in B(x1, 10L) and B(x2, 20L), respectively, using that x 7→ 1+x

1−x is increasing in [0, 1)
and that ε ≤ 1/2,

(4.17) σ∗ ≤ c
supx,y |x− y|2−d
infx,y |x− y|2−d

≤ c
(|x1 − x2| − c′L)2−d
(|x1 − x2|+ c′L)2−d

(4.13)

≤ c
(1 + c′εK

1− c′εK
)d−2

≤ c′′.

Then, for suitable Λ̂ = Λ̂(S, x2, L) ⊂⊂ Zd and all finite Λ ⊃ Λ̂, x ∈ S, and ϕ ∈ ΩξΛ, ξ ∈ Ω,
one has, using last-exit decomposition for P ∗

x [HS′ <∞], cf. above (3.8), and Corollary 3.2,
with Λ′ = Λ \ S,

PGΛ′ ,ξ
x,ϕ [HS′ < HΛc ]

(3.16)

≤
(4.17)

cP ∗
x [HS′ <∞] ≤ c · dist(S, S ′)−(d−2)cap(B(x2, 20L))

≤ c′(ε−K − 50)−(d−2).

(4.18)

Thus, for all K sufficiently large, it follows from (2.1), (4.18), in view of assumption (4.13),
that supΛ⊃Λ̂ΣΛ(S, S

′) ≤ 1
10
∧ cεK(d−2), for all S, S ′ satisfying (4.16), and we may thus

arrange, by choosing K large enough, that
(4.19)

Mε,ΣΛ(S,S′)
(2.13)
= ε(Σ−1

Λ (S, S ′) + 1) ≥ c′ε1−K(d−2) ≥ ĥ+ + 1, for all ε ∈ (0, 1/2), Λ ⊃ Λ̂.

Fix such K. With a slight abuse of notation, suppose henceforth that ω = (ϕ, ϕ̃) is

distributed according to Q0
Λ(= µ0

Λ⊗µ0
Λ), and assume that Λ̂ has been chosen large enough

to satisfy Λ̂ ⊃ B(x2, 100|x2 − x1|). Let Cx denote the connected component of x inside

{y ∈ Zd;ϕy − ϕ̃y ≥ ĥ+ + 1} (which might be empty), and define the random set

(4.20) S
′ = B(x2, 10L) ∪

⋃

x∈∂iB(x2,10L)

∂Cx,

(with the convention that ∂∅ = ∅). By definition of S ′, and for any S ′ as in (4.16), all

Λ ⊃ Λ̂, on the event {S ′ = S ′}, the field ϕ− ϕ̃ satisfies (ϕ− ϕ̃)|∂iS′ < ĥ+ + 1, hence, with

Λ′ = Λ \ S ′,

E
GΛ′ ,ξ
x,ϕ′ [ϕXτ

Λ′ − ϕ̃Xτ
Λ′ |XτΛ′ ∈ ∂iS ′] < ĥ+ + 1,

for any x ∈ S, and ϕ′ ∈ ΩξΛ, ξ ∈ Ω, and therefore, in view of (4.19), (2.12),

(4.21) {S ′ = S ′} ⊂ GΛ,ĥ++1,S,S′,

27



for any S ′ ⊂ B(x2, 20L), Λ ⊃ Λ̂. Applying Proposition 2.4, we deduce from (2.15) and
(4.21) that Zh(ϕS′)1S ′=S′ ≤ Zh−ε(ϕ̃S′)1S ′=S′, with Zh(·) as defined in (2.8). Thus, observ-
ing that f(ϕ) · 1{S ′=S′} is measurable with respect to FS′ ≡ σ(ϕx, ϕ̃x, x ∈ S ′), cf. (4.20),

we obtain, for all Λ ⊃ Λ̂,

µ0
Λ(1Ah · f) = EQ0

Λ
(1Ah(ϕ) · f(ϕ))

≤
∑

S′⊂B(x2,20L)

EQ0
Λ
[EQ0

Λ
[1Ah(ϕ)|FS′]

︸ ︷︷ ︸
=Zh(ϕS′)

·1S ′=S′f(ϕ)] + EQ0
Λ
(f(ϕ) · 1S ′∩B(x2,20L)c 6=∅)

≤ µ0
Λ(A

h−ε) · µ0
Λ(f) + ‖f‖∞ ·Q0

Λ(S
′ ∩ B(x2, 20L)

c 6= ∅).

(4.22)

Finally, (4.14) follows from (4.22) by taking Λ ր Zd along a suitable sequence, and ob-

serving that, by definition of ĥ+, cf. the discussion following (4.15),

Q0
Λ(S

′ ∩ B(x2, 20L)
c 6= ∅)

→ P̂[B(x2, 10L)↔ ∂iB(x2, 20L) inside {y ∈ Zd; ϕ̂y ≥ ĥ+ + 1}] ≤ ce−L
α

,

for all L ≥ 1 and suitable α > 0.

With Theorem 4.6 at hand, we have the necessary tool to apply the recent results of
[8], [9], [22] and [25], which allow for correlated percolation fields with suitably quantified
correlations. Their common feature is their reliance on a certain set of assumptions for
the occupation field, called P1-P3 and S1-S2, which can be found for instance in [22],
p.2. Among these, crucial condition P3, which quantifies the correlations, will follow from
Theorem 4.6 above.

Let τz : Ω → Ω, (τzω)(·) = ω(· + z), for ω ∈ Ω, z ∈ Zd, denote the canonical shifts.
From now on until the end of this Section, we assume that

(4.23) µ ∈ W satisfies µ(τ−1
z (A)) = µ(A), for all A ∈ F .

Note that shift-invariance of µ does not seem a-priori clear. Moreover, we assume for
simplicity that

V = {VX}X is given by the two-body potentials of (1.7).(4.24)

(this is not necessary, but simplifies certain duality arguments we are about to make). For
h ∈ R and r ∈ [1,∞], we denote by S>h

r the random set consisting of all sites of E>h in
connected components of ℓ1-diameter at least r. We say that h ∈ R is strongly supercritical
for µ if there exists ∆(h) > 0 such that

(4.25) µ(S>h
L ∩ B(0, L) = ∅) ≤ e−(logL)1+∆(h)

and

µ
[
there exist components in S>h

L/10 ∩B(0, L), which

are not connected in E>h ∩B(0, 2L)
]
≤ e−(logL)1+∆(h)

(4.26)

and the critical parameter

(4.27) h− = sup{h ∈ R; h is strongly supercritical for µ}

(with the convention sup ∅ = −∞).
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Remark 4.7. 1) It is not hard to see, using (4.23), (4.25) and (4.26), that S>h
∞ is non-

empty and connected with probability 1, whenever h is strongly supercritical for µ. In
particular, this implies that h− ≤ h+(<∞), using (4.11). Moreover, using the decoupling
inequality (4.8), adapting the arguments in the proof of Theorem 4.4, one can show that
for all sufficiently small h, with A<h∗ (x) denoting the event that 0 is connected to x by a
∗-nearest-neighbor path of vertices in {y ∈ Zd;ϕy < h}, the probability µ(A<h∗ (x)) decays
stretched exponentially in |x|. Along with standard duality arguments, this readily yields
that such h is in fact strongly supercritical for µ, and h− < −∞ follows.
2) By the preceding remark, one has the string of inequalities −∞ < h− ≤ h∗ ≤ h+ <∞,
where h∗ denotes the critical parameter for percolation of E>h. It is an open question to
determine whether h− = h∗ = h+. �

In what follows we tacitly view E>h as a graph, by drawing an edge between any two
vertices x, y ∈ E>h which are neighbors in Zd, and denote by ρ(·, ·) the graph distance on
E>h (with the convention that ρ(x, y) =∞ if x, y belong to different connected components
of E>h). Theorem 4.6 has many applications, see Remark 4.10 below, but we highlight the
following two results.

Theorem 4.8. (Chemical distance).

For all h < h−, there exist c(h), c′(h), c′′(h) ∈ (0,∞) such that

(4.28) µ

[ ⋂

x,y∈S>h
L ∩B(0,L)

{ρ(x, y) ≤ cL}
]
≥ 1− c′e−c′′(logL)1+∆(h)

.

The next theorem concerns simple random walk on the percolation cluster S>h
∞ , in the

regime h < h− of strong supercriticality. We endow S>h
∞ with edge weights

µx,y =

{
1, if x, y ∈ S>h

∞ , x ∼ y

0, else
µx =

∑

y

µx,y

and let X = (Xn)n≥0, resp. Y = (Yt)t≥0 be the discrete-time, resp. (constant speed)
continuous-time simple random walk on S>h

∞ . That is, X is the Markov chain on S>h
∞

with transition probabilities µx,y/µx, and Y is the jump process on S>h
∞ with generator

L f(x) =
∑

y
µx,y
µx

(f(y)− f(x)). The (quenched) laws of X and Y with starting point at x

will be denoted by QX
S>h
∞ ,x

, resp. QY
S>h
∞ ,x

.

Theorem 4.9. For all h < h−, the following hold:
1) (Quenched invariance principle). For any T ∈ (0,∞), the law of (Bn(t))0≤T , with

Bn(t)
def.
= n−1/2{X⌊tn⌋ + (tn − ⌊tn⌋)(X⌊tn⌋+1 − X⌊tn⌋)} on (C[0, T ],FT ), the space of con-

tinuous functions from [0, T ] to Rd, endowed with its canonical σ-algebra, under QX
S>h
∞ ,x

,

converges weakly to the law of an isotropic Brownian motion with zero drift and positive
diffusion constant.
2) (Quenched heat kernel estimates). There exist random variables (Tx(ϕ))x∈Zd satisfying

Tx < ∞, µ(·|0 ∈ S>h
∞ )-a.s, with tails µ(Tx ≥ r) ≤ c(h)e−c

′(h)(log r)1+∆(h)
, x ∈ Zd, such that,

µ(·|0 ∈ S>h
∞ )-a.s, for all x, y ∈ S>h

∞ and t ≥ Tx,

qt(x, y) ≤ c(h)t−d/2e−c
′(h) ρ(x,y)

2

t , for all t ≥ ρ(x, y)

qt(x, y) ≥ c′′(h)t−d/2e−c
′′′(h) ρ(x,y)

2

t , for all t ≥ ρ(x, y)3/2
(4.29)
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where qt(x, y) stands for either Q
Y
S>h
∞ ,x

[Yt = y]/µy or p⌊t⌋(x, y)+p⌊t⌋+1(x, y), with pn(x, y) =

QX
S>h
∞ ,x

[Xn = y], n ≥ 0.

Proof of Theorems 4.8 and 4.9. Theorem 4.8 follows from Theorem 2.3 in [9], Theorem
4.9, 1) from Theorem 1.1 in [22] and 2) from Theorem 1.6 in [25], provided the conditions
S1-S2 and P1-P3 appearing, for instance, in Section 1.1 of [25], can be verified for the
family (Pu)u∈(u0,∞), for (fixed, but arbitrarily small) u0 ∈ (0, 1), where Pu is defined as the
law of E>h−−u under µ.

Condition S1 (local uniqueness) follows immediately from the definition of h− in (4.25)-
(4.27). Property P2 requires the function u ∈ (u0,∞) 7→ µ(0 ∈ S>h−−u

∞ ) to be continuous
and positive. Positivity is immediate, cf. Remark 4.7, 1) and continuity follows from the
same argument as in the Bernoulli case, cf. the proof of Theorem (8.8) in [14]. Condi-
tions P1 (ergodicity of Pu under lattice shifts) and P2 (monotonicity of u 7→ Pu(G), for

increasing, measurable G ⊂ Ω̂) follow immediately from the ergodicity of µ and the fact
that E>h−−u ⊃ E>h−−u′, for u > u′. Finally, the crucial property P3 (decoupling), requires
that

there exist integers RP , LP ∈ (1,∞), and εP , χP ∈ (0, 1), along with a function

fP : Z+ → R satisfying fP (L) ≥ e(logL)
εP , for all L ≥ LP , such that, for all L ≥ 1,

and x1, x2 ∈ Zd with |x1 − x2| ≥ RL, all increasing events Ai ∈ σ(Yx, x ∈ B(xi, 10L)),

decreasing events Bi ∈ σ(Yx, x ∈ B(xi, 10L)), i = 1, 2, all û, u ∈ (u0,∞) with

û ≤ u/(1 +R−χP ), and all R ≥ RP ,

Pû[A1 ∩A2] ≤ Pu[A1]P
u[A2] + e−fP (L), and Pu[B1 ∩ B2] ≤ Pû[B1]P

û[B2] + e−fP (L).

This follows from Theorem 4.6 and Remark 2.2, upon letting h = h− − û, for û ∈ (u0,∞),
A ≡ A1, f = 1

A
h−−û

2

, with A1, A2 as above, setting R = ε−K , letting ε vary in (0, (u0
2
)2]

and definind RP = RP (u0) = (4u−2
0 )K (so that R ≥ RP for all ε ≤ (u0

2
)2), choosing LP

sufficiently large such that fP (L) = Lα − log(c23) ≥ L, which satisfies fP (L) > e(logL)
1/2

,
for all L ≥ LP and suitable LP ≥ 1, and setting χP = (2K)−1, which yields, for all
û, u ∈ (u0,∞) with û ≤ u/(1 +R−χP ),

u− û ≥ uR−χP

1 +R−χP
≥ u0

√
ε

2
≥ ε, whenever

√
ε ≤ u0

2

and therefore h − ε = h− − û − ε ≥ h− − u, so that µ(Ah−ε1 ) ≤ µ(A
h−−u
1 ) = Pu[A1], as

desired. �

Remark 4.10. 1) (Shape Theorem) By standard methods, (4.28) is known to imply that,
upon suitable rescaling, large balls in S>h

∞ (endowed with the metric ρ) have an asymptot-
ically deterministic shape; for a precise statement, see for instance Theorem 2.5 in [9].
2) The heat kernel bounds in Theorem 4.9 continue to hold if one replaces ρ by the usual
ℓ1-graph distance on Zd, and the exponent 3/2 in (4.29) can be replaced by 1 + ε, for any
ε > 0 (with Tx and all constants depending on ε). Further results which follow directly
from the fact that the law of S>h

∞ , for h < h−, satisfies the conditions S1-S2 and P1-P3,
include (quenched) Harnack inequalities on S>h

∞ and bounds on gradients of the heat kernel,
for all h < h−, see [25] Section 1.3. �.

30



5 Non-convex perturbations

We now explain how to apply our sprinkling technique to a certain class of non-convex
potentials. As will soon become clear, most of the necessary work is implicitly contained in
the framework chosen in Section 1, see in particular (1.2) and (1.3)-(1.6). Specifically, we
consider non-convex modifications of a uniformly convex two-body potential, see (5.1) and
(5.3) for precise definitions, and show an analogue of Theorem 4.4 for such Hamiltonians,
at sufficiently high temperature, cf. Theorem 5.4 below. Accordingly, in what follows, β,
the inverse temperature, will play the role of a perturbative parameter.

Our starting point is G = (Zd, E ), where E refers from now on to the usual nearest-
neighbor edge structure. Recall EΛ stands for the set of edges having at least one endpoint
in Λ. We consider the family of measures µ0

Λ,β, for β > 0, Λ ⊂⊂ Zd, defined as in (1.11),
(1.12), with

(5.1) HΛ(ϕ) =
1

2

∑

e∈EΛ

V (∇ϕ(e)),

where V : R→ R is of the form

(5.2) V = U + g,

and

U, g ∈ C2,α(R,R+), for some α > 0, U, g are even functions,

c−1 ≤ U ′′ ≤ c, supp(g) ⊂ R is compact, and V (η) ≥ Aη2 − B, η ∈ R,
(5.3)

for some c ∈ (0, 1) and A > 0, B ∈ R.
We now consider the restriction of µ0

Λ,β to the “even” field, to which we will eventually

apply the results of Section 2. Let Zde = {x ∈ Zd;
∑

1≤i≤d xi is even}, be the even sublattice,

Zdo = Zd \ Zde . We write Γ̃ = {x ∈ Zd; |x|1 = 2}, a subset of Zde , and consider the graph

G̃ = (Zde , Ẽ ), whereby (x, y) ∈ Ẽ if x − y ∈ Γ̃. For Λ ⊂ Zd, we write Λe = Λ ∩ Zde ,

Λo = Λ \ Λe, and ∂̃K denotes the outer vertex boundary of K ⊂ Zde in G̃, i.e. x ∈ ∂̃K if

and only if x− y ∈ Γ̃ for some y ∈ K.
To keep the exposition simple, we will consider sets Λ ∈ F ∗, where F ∗ consists of all

finite subsets Λ of Zd with the property that, if x ∈ Λe and y is a neighbor of x in G, i.e.
|y − x|1 = 1, then x ∈ Λ (dropping this assumption on F ∗ would result in additional one-
body potentials in the representation below). Note that, for Λ ∈ F ∗, we have ∂Λ = ∂̃Λe.
As in (1.35), we consider the set Wβ(V ) of weak limits of measures µ0

Λn,β
, as Λn ր Zd, with

the additional requirement that Λn ∈ F ∗ for all n ≥ 0. We will soon argue that Wβ(V ) is
non-empty at high temperatures, see Lemma 5.3 below.

We define a probability measure µ̃0
Λe,β

on (ΩΛe ,FΛe), for β > 0 and Λ ∈ F ∗, as

(5.4) dµ̃0
Λe,β((ϕx)x∈Λe) =

1

Z̃0
Λe,β

e−H̃Λe,β(ϕe)
∏

x∈Λe

dϕx
∏

y∈Zd
e\Λe

δ0(ϕy),

where ϕe = (ϕx)x∈Zd
e
,

(5.5) H̃Λe,β(ϕe) =
∑

x∈Λe∪∂̃Λe

[
1

2d

∑

y:|y−x|1=1

Ṽβ((ϕy+ei − ϕx)i∈U)
]
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with U = {−d, . . . , d}, ei the standard unit vectors in Zd, e−i = −ei, for 1 ≤ i ≤ d, and

(5.6) Ṽβ((ηi)i∈U) = − log

∫

R

e−β
∑

i∈U
V (ηi−s)ds.

The assumption (5.3) guarantees that the normalizing factor Z̃0
Λe,β

in (5.4) is finite. More-
over, the term in brackets in (5.5) is a function of the (even) gradients (ϕx+z − ϕx)z∈Γ̃.

Hence, by associating to x ∈ Λe ∪ ∂̃Λe the set X = {x} ∪ {z ∈ Zde ; z − x ∈ Γ̃} ≡ BG̃(x, 1),

the unit ball around x in G̃, one sees that H̃Λe,β(ϕe) is a gradient Hamiltonian of the form
(1.2), with

(5.7) VX((ϕx+z − ϕx)z∈Γ̃) =
1

2d

∑

y:|y−x|1=1

Ṽβ((ϕy+ei − ϕx)i∈U), if X = BG̃(x, 1)

(and E (X) = {e ∈ Ẽ ; x(e) = x}; we are tacitly identifying the vertex set Zde with a copy
of Zd). However, as opposed to the potential V entering in (5.1), VX is no longer a two-
body interaction, cf. (5.6). The key features of the measure µ̃0

Λe,β
are summarized in the

following lemma.

Lemma 5.1. (Λ ∈ F ∗, V as in (5.2), (5.3))

(i) For any A ∈ FΛe = σ(ϕx; x ∈ Λe) and β > 0,

(5.8) µ0
Λ,β(A) = µ̃0

Λe,β(A).

(ii) The function VX in (5.7) satisfies (1.3), (1.4) and (1.5). Moreover, there exists c24 > 0
such that, if

√
β‖g′′‖L1(R) < c24, then VX also satisfies (1.6), for suitable c0 ∈ [1,∞).

Proof. We first show (i). Because Λ ∈ F ∗, the set of unordered nearest-neighbor edges in
Zd with at least one endpoint in Λ can be written as

⋃
y∈Λ0

⋃
x:|x−y|1=1{x, y}, and the union

is disjoint. Hence, by symmetry of HΛ(ϕ), see (5.1), we can write, for A ∈ FΛe and β > 0,

µ0
Λ,β(A) = (Z0

Λ,β)
−1

∫
1A(ϕe) exp

[
− β

∑

y∈Λ0

∑

x:|x−y|1=1

V (ϕx − ϕy)
]∏

x∈Λ
dϕx

∏

z /∈Λ
δ0(ϕz)

(5.6)
= (Z0

Λ,β)
−1

∫
1A(ϕe)

[ ∏

y∈Λ0

e−Ṽβ((ϕy+ei
)i∈U)

] ∏

x∈Λe

dϕx
∏

z /∈Λ
δ0(ϕz).

(5.9)

But Ṽβ((ϕy+ei)i∈U) = Ṽβ((ϕy+ei−ϕx)i∈U) for any x, which follows from (5.6), and therefore

(5.10)
∑

y∈Λ0

Ṽβ((ϕy+ei)i∈U) =
∑

y∈Λ0

1

2d

∑

x:|x−y|1=1

Ṽβ((ϕy+ei − ϕx)i∈U)
(5.5)
= H̃Λe,β(ϕe)−B(ϕ),

where

B(ϕ) =
∑

x∈∂̃Λe

1

2d

∑

y∈Zd
o\Λo:|y−x|1=1

Ṽβ((ϕy+ei − ϕx)i∈U).

The boundary term B(·) is a function of ϕ|Λc alone (this is because, if x ∈ ∂̃Λe = ∂Λ and
|y − x|1 = 1 but y /∈ Λ, then distℓ1(y,Λ) = 2). Thus, inserting (5.10) into (5.9), the claim
(5.8) readily follows, in view of (5.4).
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We now argue that (ii) holds. The potential VX defined in (5.7) inherits properties
(1.3), (1.4) from V , see (5.3) and (5.6), and (1.5) is plain. The last part of the assertion
is a direct consequence of Theorem 3.4 and Remark 3.12 in [5], applied with q = 1. Note
in particular that the last part of condition (1.6), which requires ∂2x,yVX = 0 for any x 6= y

with (x, y) /∈ Ẽ , is trivially satisfied, because Ṽβ((ϕy+ei − ϕx)i∈U), for fixed y ∈ Zdo, and x
with |x − y|1 = 1, cf. (5.7), is a function of (ϕy+ei)i∈U, and any two points y + ei, y + ej ,

i 6= j, are neighbors in G̃ by definition, i.e. ei − ej = ei + e−j ∈ Γ̃.

Remark 5.2. In view of Lemma 5.1, the measure µ̃0
Λe,β

can be viewed as the restriction
of µ0

Λ,β to the even field, for β > 0 and Λ ∈ F ∗. Moreover, when β is sufficiently small,
it is within the realm of the setup in Section 1. In particular, for such β, the effective
Hamiltonian (5.5) yields a random-walk representation for covariances of µ̃0

Λe,β
by means

of Lemma 1.2. The corresponding quenched walk is a jump process on the graph G̃ (which
is not isomorphic to G, hence our somewhat general setup). �

We first note that Lemma 5.1 yields tightness at high temperatures.

Lemma 5.3. (Λ ∈ F ∗, V as in (5.2), (5.3))

(5.11) Wβ(V ) 6= ∅, for all
√
β‖g′′‖L1(R) < c24.

Proof. On account of Lemma 5.1, (ii), Lemma 1.3 applies, yielding, for all
√
β‖g′′‖L1(R) <

c24, Λ ∈ F ∗,

(5.12) sup
Λ

sup
x∈Λe

Eµ0Λ,β
[eϕx ] = sup

Λ
sup
x∈Λe

Eµ̃0Λe,β
[eϕx ] <∞.

For x ∈ Λo, write

Eµ0Λ,β
[eϕx ]

(1.14)

≤ sup
|ξ|∞≤1

Eµξ{0},β
[eϕ0 ] + 2dmax

x∈Λe

µ0
Λ,β(|ϕx| > 1),

the first term on the right-hand side is finite by assumption (5.3), the second one is bounded
uniformly in Λ using (5.12). All in all, supΛ∈F ∗ supx∈Λ Eµ0Λ,β

[eϕx ] < ∞, for all β > 0 such

that
√
β‖g′′‖L1(R) < c24, which implies that the family {µ0

Λ,β; Λ ∈ F ∗} is tight, cf. (1.36),
and (5.11) follows.

Finally, we state our main result regarding the connectivity decay of level sets of mea-
sures µβ ∈ Wβ(V ) above large levels and at high temperatures, for the class of non-convex
potentials V considered above. Recall the definition of h+(·) in (4.11).

Theorem 5.4. (V as in (5.2), (5.3),
√
β‖g′′‖L1(R) < c24)

(5.13) h+(µβ) <∞, for all µβ ∈ Wβ(V ).

Proof. Let µ ≡ µβ ∈ Wβ(V ). We remove the β-dependence of all quantities throughout the

proof, keeping in mind that
√
β‖g′′‖L1(R) < c24. Write µ̃ = µ|F̃ , where F̃ = σ(ϕx; x ∈ Zde).

Observe that, if π is a nearest-neighbor path in G = (Zd, E ), the usual Euclidean lattice,

then, by definition of Γ̃, its trace on G̃ (i.e. the ordered sequence of vertices in Zde visited

by π) is a nearest neighbor path in G̃ = (Zde , Ẽ ). Hence, writing x̂ = x, if x ∈ Zde , and
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x̂ = x + e1 if x ∈ Zdo, and introducing the events Ẽh
L,x = {BG̃(x̂, L)

>h←→ ∂BG̃(x̂, 2L)}, for
x ∈ Zd, L ≥ 1, referring to the existence of a nearest-neighbor path of sites in G̃ with
field value exceeding h joining BG̃(x̂, L), the ball of radius L (in the graph distance for G̃)
around x̂, to the boundary of a concentric ball of radius 2L, one obtains

(5.14) µ(x
>h←→ ∂BG(x, 4L+ 1)) ≤ µ(Ẽh

L,x) = µ̃(Ẽh
L,x), for all L ≥ 1, x ∈ Zd.

Now, if (Λn)n≥0 is a sequence of increasing sets in F ∗ such that µ0
Λn

w→ µ, then, by (5.8),

and with a slight abuse of notation, µ̃0
Λe

w→ µ̃. Hence, by Lemma 5.1, (ii), which applies
due to our assumption on β, we infer that Theorem 2.1 applies to µ̃, viewed as a measure
on ΩG̃ (in particular, the reference measure P ∗ appearing in (2.4) refers to the law of simple

random walk on G̃). Thus, mimicking the proof of Theorem 4.4, using the inequality (2.3),

applied to µ̃, we deduce that µ̃(Ẽh
L,x) ≤ ce−c

′Lε
, for some ε > 0 and all L ≥ 1, if h is chosen

sufficiently large. In view of (5.14), the claim follows.

Remark 5.5. 1) (Relaxing the uniform ellipticity condition). Our main result, Theo-
rem 2.1 crucially hinges on two tools: the availability of the Helffer-Sjöstrand representation
(in finite volume) to carry out the sprinkling argument of Section 2, and the Brascamp-
Lieb inequality to bound the arising error term. The latter seems to require the hard lower
bound in (1.6). However, one could attempt to replace the uniform upper bound by a
suitable moment assumption on the conductances aξx,y(Φt), see (1.30), in the spirit of [1],
provided one recovers Lemma 1.2, and adapts the comparison estimates of Section 3, which
requires at the very least an annealed version of (3.5).
2) (Comparison with the GFF). In the interpolation argument, Proposition 2.4, one may
try to replace ϕ̃ by the actual Gaussian free field, and attempt to compare the two objects
directly (see for instance [18] for results in this direction in dimension 2). In view of
(0.4), this leads to the following question (for simplicity, consider µξΛ the uniformly convex
nearest-neighbor gradient interface Hamiltonian, with potential as in (1.7)): can one write

µξΛ(ϕ ∈ ·) = µ0
Λ(ϕ+ ξ̃(ϕ) ∈ ·),

for a function ξ̃ extending ξ to the interior of Λ, such that ξ̃ is close to the discrete harmonic
extension of ξ, with “overwhelming” probability? �
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Leindler theorems, including inequalities for log concave functions, and with an appli-
cation to the diffusion equation. J. Functional Analysis, 22(4):366–389, 1976.

34



[5] C. Cotar and J.-D. Deuschel. Decay of covariances, uniqueness of ergodic component
and scaling limit for a class of ∇φ systems with non-convex potential. Ann. Inst.
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