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Abstract

We study continuous-time (variable speed) random walks in random environments
on Z

d, d ≥ 2, where, at time t, the walk at x jumps across edge (x, y) at time-
dependent rate at(x, y). The rates, which we assume stationary and ergodic with
respect to space-time shifts, are symmetric and bounded but possibly degenerate
in the sense that the total jump rate from a vertex may vanish over finite intervals
of time. We formulate conditions on the environment under which the law of
diffusively-scaled random walk path tends to Brownian motion for almost every
sample of the rates. The proofs invoke Moser iteration to prove sublinearity of
the corrector in pointwise sense; a key additional input is a conversion of certain
weighted energy norms to ordinary ones. Our conclusions apply to random walks
on dynamical bond percolation and interacting particle systems as well as to
random walks arising from the Helffer-Sjöstrand representation of gradient models
with certain non-strictly convex potentials.
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1 Introduction

1.1 Model and assumptions.

The aim of this note is to study long-time behavior of random walks on Z
d, d ≥ 2, in

a class of dynamical random environments given as a family of non-negative random
variables

{

at(e) : e ∈ E(Zd), t ∈ R
}

, (1.1)

where E(Zd) denotes the set of (unordered) nearest-neighbor edges of Zd. For each
sample of these random variables, referred to as conductances, we consider the contin-
uous time Markov chain {Xt : t ≥ 0} on Z

d with the instantaneous generator Lt acting
on functions f : Zd → R as

Ltf(x) :=
∑

y : |y−x|=1

at(x, y)
[

f(y)− f(x)
]

. (1.2)

The variable at(e) = at(x, y), i.e., the jump rate of the walk across edge e = (x, y)
at time t, is assumed to obey at(e) ∈ [0, 1] with at(e) = 0 allowed for non-trivial
finite intervals of time. Our aim is to describe the long-time behavior of such random
walks and, in particular, show that their path distribution, scaled diffusively, tends to
a non-degenerate Brownian motion.

A representative example of the above setting is the variable-speed random walk
on dynamical bond percolation on Z

d. In this case at(e) is, for each e ∈ E(Zd), an
independent copy of a stationary continuous-time process on {0, 1} with joint invariant
distribution (product) Bernoulli(p) for some prescribed p ∈ (0, 1). We interpret at(e) =
1 as the event that edge e is occupied at time t and at(e) = 0 as the event that edge e
is vacant. The random walk then jumps at rate 1 across edges incident with its current
position that are occupied at that instant of time. When the site where the walk is
located has no incident occupied edges, the walk does not move.

It is clear that some mixing properties of the conductances (1.1) in both space and
time are required for the desired convergence to Brownian motion to be possible. We
will work under the following set of technical assumptions:

Assumption 1.1 The family {at(e) : e ∈ E(Zd), t ∈ R} is realized as coordinate
projections on the product space Ω := [0,∞)R×E(Zd) endowed with the product Borel
σ-algebra F and the probability distribution denoted by P. In addition, we assume:

(1) t 7→ at(e) obeys
at(e) ∈ [0, 1] (1.3)

for each e ∈ E(Zd) and each t ∈ R,

(2) letting τs,x : Ω → Ω denote the map

(τs,xa)t(y, z) := at+s(y + x, z + x), (y, z) ∈ E(Zd), t ∈ R, (1.4)

the law P is invariant and jointly ergodic under {τt,x : t ∈ R, x ∈ Z
d},
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(3) denoting, for each e ∈ E(Zd),

Te := inf
{

t ≥ 0:

∫ t

0

ds as(e) ≥ 1
}

(1.5)

we have Te <∞, P-a.s.

We will write E to denote expectation with respect to P.

We remark that joint ergodicity in (2) means that any measurable subset of Ω preserved
by τt,x for all t ∈ R and x ∈ Z

d is a zero-one event under P. The restriction to
conductances bounded by 1 is only a matter of convenience; any uniform constant
upper bound will suffice (and ensure that X is non-explosive). Additional moment
conditions on Te will need to be assumed in the statement of our main result. However,
no assumptions will be made on the dynamics of the conductances and/or the law of
its time reversal (which is stationary but possibly unrelated to P).

Besides dynamical percolation, the setting of Assumption 1.1 accommodates various
other examples of interest. For instance, one can consider the random walk on the
symmetric exclusion process {ηt(x) : x ∈ Z

d}, where ηt(x) is the indicator that site x is
occupied by a particle at time t and the configuration t 7→ ηt evolves by swaps ηt(x) ↔
ηt(y) at endpoints x and y of edges in E(Zd) whenever an independent exponential
clock rings at that edge. We then set, e.g.,

at(e) := cηt(x)ηt(y) whenever e = (x, y) (1.6)

for some c > 0. The walk is thus active only at times when it resides on an occupied
site and the transitions are only between occupied vertices. Other particle systems such
as the voter model or the contact process can of course be considered as well.

Another interesting class of random walks arises in the context of Helffer-Sjöstrand
representations of gradient models with convex, but not uniformly strictly convex, po-
tentials V . The representative examples covered by our theory include

V (η) := β log cosh(η) (1.7)

with any β > 0, or even

V (η) :=

{

1
2
|η|2, if |η| ≤ 1,

|η| − 1
2
, else.

(1.8)

In this case the random environment is a family of diffusions {φ(x) : x ∈ Z
d} evolving

according to the Langevin dynamics

dφt(x) =
∑

y : |y−x|=1

V ′(φt(y)− φt(x)
)

dt+
√
2 dBt(x) , (1.9)
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where {B(x) : x ∈ Z
d} is a family of independent standard Brownian motions. The

random walk jump rates are then given by

at(e) := V ′′(φt(y)− φt(x)
)

whenever e = (x, y). (1.10)

In both (1.7) and (1.8), at(e) is non-negative and bounded yet not bounded away
from zero.

1.2 Main result.

In order to give a statement of our main result, we need some additional notation. Let
D([0,∞)) denote the space of càdlàg functions ω : [0,∞) → R endowed (disregarding
the standard notation for the Skorokhod space) with the norm

‖ω‖D([0,∞)) :=
∑

n≥1

2−n sup
t∈[0,n]

|ω(t)| ∧ 1 . (1.11)

The space of continuous functions C([0,∞)), a set that supports the law of the Brow-
nian motion, is naturally embedded in D([0,∞)) and is, in fact, a closed (and thus
measurable) subset thereof in the topology induced by the above norm. Our main
conclusion regarding the Markov chain {Xt : t ≥ 0} defined via (1.2) is as follows:

Theorem 1.2 Let d ≥ 2 and suppose that Assumption 1.1 holds and, in addition, the
quantity in (1.5) obeys

∃ϑ > 4d : E(T ϑ
e ) <∞, e ∈ E(Zd). (1.12)

Then, for P-a.e. random environment, the law of t 7→ n−1/2Xtn on D([0,∞)) tends, as
n→ ∞, to the law of Brownian motion {Bt : t ≥ 0} with

E(Bt) = 0 and E((v ·Bt)
2) = v · Σv, v ∈ R

d, (1.13)

where Σ = {Σij}di,j=1 is a non-degenerate (deterministic) covariance matrix.

We note that this is a quenched statement (i.e., one for P-a.e. environment). The
corresponding annealed (or averaged) statement follows from the fact that the limiting
covariance Σ is non-random. The covariance actually admits the usual representation

v · Σv = E

(

∑

e : |e|=1

a0(e)
∣

∣v · ψ(0, e, ·)
∣

∣

2
)

, v ∈ R
d, (1.14)

where ψ : R × Z
d × Ω → R

d is the harmonic coordinate constructed in Section 3.
However, unlike for the static situations, the harmonic coordinate is not obtained by
minimizing Dirichlet energy; instead one has to solve the heat equation (3.2) using a
suitable limit procedure.
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1.3 Connections and main ideas.

Theorem 1.2 is an example of a quenched invariance principle which has been a topic of
persistent interest over the past few decades. In the realm of static environments, the
studied examples include uniformly elliptic random conductance models (Kipnis and
Varadhan [25], Boivin [14], Boivin and Depauw [15], Sidoravicius and Sznitman [36]),
the random walk on the supercritical percolation cluster (De Masi, Ferrari, Goldstein
and Wick [18, 19], Sidoravicius and Sznitman [36], Berger and Biskup [9], Mathieu and
Piatnitski [31]), non-elliptic i.i.d. random conductance models (Mathieu [30], Biskup
and Prescott [12], Barlow and Deuschel [8], Andres, Barlow, Deuschel and Hambly [2]),
balanced models (Lawler [29], Guo and Zeitouni [23], Berger and Deuschel [10]), envi-
ronments admitting finite cycle decompositions (Deuschel and Kösters [20]). Recently,
an elliptic regularity-based theory was developed that covers general random conduc-
tance models subject to moment conditions on the conductance tails at zero and infinity
(Andres, Slowik and Deuschel [4]).

Significant advances have occured also for random walks in dynamical random en-
vironments. Here a line of attack focused on Markovian environments under vari-
ous mixing conditions (Boldrighini, Minlos and Pellegrinotti [16], Bandyopadhyay and
Zeitouni [6], Dolgopyat, Keller and Liverani [22], Redig and Völlering [35]) while other
approaches worked under other structural assumptions on the environment such as in-
dependence and directionality (Rassoul-Agha and Seppälainen [34]) or ergodicity and
uniform ellipticity (Andres [1]). Random walks on dynamical percolation have been
studied by Peres, Stauffer and Steif [33] but the objective there were mixing properties
rather than the scaling limit. An annealed invariance principle for random walks on
the symmetric exclusion has been proved by Avena [5].

The sharpest conclusions concerning scaling to Brownian motion for dynamical en-
vironments of the kind (1.1) appear at present in the work of Andres, Chiarini, Deuschel
and Slowik [3]. Indeed, a quenched invariance principle has been shown there to hold
whenever

E
(

at(e)
p
)

<∞ and E
(

at(e)
−q
)

<∞ (1.15)

are true for some p, q > 1 with

1

p− 1
+

1

(p− 1)q
+

1

q
<

2

d
. (1.16)

(Somewhat weaker, albeit harder-to-state, conditions actually suffice.) Although our
rates are bounded (i.e., we can set p := ∞ above), the principal novelty of our work
is that we allow at(e) = 0 with positive probability (which rules out existence of
any q as above). This is quite important in applications; e.g., we can reach previ-
ously unattainable examples such as the random walk on dynamical percolation or the
Helffer-Sjöstrand walks for potentials (2.15), and even (2.14) for any β > 0 (note that
(1.15–1.16) apply only for β sufficiently large).

Our approach is technically based on combining an enhanced version of the methods
of the aforementioned article [3] with an observation from Proposition 4.6 in Mourrat
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and Otto [32]. The latter work proves a heat-kernel estimate (a.k.a. return probability)
for random walks covered by our Assumption 1.1. The former in turn addresses random
walks among random conductances satisfying (1.15–1.16) with the aim of proving that
these scale to Brownian motion. The strategy there is fairly standard: prove that the
key object of stochastic homogenization, the corrector, scales sublinearly in space and
sub-diffusively in time.

The technical approach of [3] (drawing on its precursor [4] for static environments)
is to control the corrector in supremum norm by way of Moser iteration starting only
from a priori estimates in L1-norm. A key point is that the condition on the negative
moment of at(e) from (1.15) is used only in a handful of places, and that typically for
a conversion of a bound on a weighted L2-norm to a bound on an L1-norm, but these
seem absolutely irreplaceable in the whole argument. This is where the said observation
from [32] enters for us as this work shows that, under suitable averaging over time, one
can control the heat kernel using energy norms where the “naked” at(e) is substituted
by the weights

wt(e) :=

∫ ∞

t

ds ks−t as(e) (1.17)

for some positive, polynomially decaying function t 7→ kt. The crucial input from [32,
Proposition 4.6] is that these weighted energy norms can, for solutions of relevant Pois-
son equations, be again bounded by the ordinary energy norms (i.e., those where at(e)
replaces wt(e)).

Under the condition Te < ∞ a.s. we have wt(e) > 0 a.s. and since we will even
require finiteness of some moments of Te, we can count on having suitable moments
of wt(e)

−1. The basic strategy of our proofs is thus to demonstrate that one can
substitute at(e)

−1 by wt(e)
−1 in those few places in the argument of [3] where finiteness

and moments of these quantities are crucially required. However, this would in itself be
an understatement of our contribution. Indeed, we have to carefully adapt the Moser
iteration from [3] which is based on conversion (via an inequality from Kružkov and
Kolodĭı [27]) of certain space-time norms of the corrector into an L∞-norm in time.
This in turn requires generalizing [32, Proposition 4.6] to include arbitrary moments
of the solutions. In addition, we also need to devise an alternative construction, and
prove the a priori L1-estimate, of the corrector. Unlike for [3], these will again hinge
on the aforementioned conversion of the energy norms.

1.4 Remarks and open questions.

We proceed with a couple of remarks and open questions. First off, our aim here has
been to find a way to prove convergence to Brownian motion under some reasonable
(moment) conditions on the environment and so we have not tried to tune these condi-
tions to get optimal control. It is thus of interest to solve:

Problem 1.3 Find out whether sharp moment conditions on Te exist for an invariance
principle to hold for all environments satisfying Assumption 1.1.
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We note that this includes both quenched and annealed statements. To see that we
should hope to get better than (1.12), we note:

Lemma 1.4 Suppose Assumption 1.1 holds and, in addition, assume that P is sepa-
rately ergodic with respect to time shifts {τt,0 : t ∈ R} alone. Then for each q > 0,

E
(

T q+1
e

)

≤
[

E
(

a0(e)
−q
)]

q+1
q . (1.18)

We relegate the (easy) proof to the Appendix.

Remark 1.5 Under the conditions (1.15–1.16) with p := ∞, which requires q > d/2,
we thus get finiteness of moments of Te of order larger than

d
2
+1. We note that this is

less than 4d in all d ≥ 2 so our condition (1.12) is generally quite a bit stronger than
(1.15–1.16).

As we will see in Lemma 2.10, our conditions on Te imply conditions on the negative
moments of w0(e) which then serve as technical input for the rest of the proofs. Noting
that integrability of t 7→ kt and Jensen’s inequality imply

E
(

w0(e)
−q
)

≤ cE
(

a0(e)
−q
)

(1.19)

for some c = c(k) ∈ (0,∞), these moment conditions on w(e)−1 are directly implied
by the corresponding moment conditions on a0(e)

−1. The bounds (1.18–1.19) indicate
that the setting of [3] is naturally included in ours, except that (as was just noted in
Remark 1.5) our conditions are more stringent than those in [3]. We take this as a
suggestion for potential improvements of our techniques.

Another aspect left out in our study are environments where at(e) is unbounded
from above. These include some very interesting cases; in fact, our initial motivation
was to understand a specific model where t 7→ at(e) is zero except for some random
times when it has a Dirac-delta singularity. Our proofs require boundedness of at in a
number of places and we do not know how to overcome these restrictions.

Yet another aspect where our study falls short is our choice of time-parametrization
of the walk. Indeed, our choice of the generator (1.2) corresponds to the so-called
variable-speed random walk but other parametrizations, e.g., the constant-speed ran-
dom walk, are of interest as well. In particular, we would like to solve:

Problem 1.6 Extend our conclusions to discrete-time random walks among (discrete)
time dependent random conductances subject to (analogues of) Assumption 1.1.

A somewhat unexpected feature of time-dependent random environments is that dif-
ferent time-parametrizations are not directly related and so our proofs do not shed any
light on those either. We consider this to be one of the most challenging open problems
of this subject area.

As an attentive reader has surely noticed, our results are stated under the restriction
to spatial dimensions d ≥ 2. This is dictated by the fact that the parameters space-time
Sobolev inequalities behave differently in d = 1 than in d ≥ 2. Although we think that
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these differences can be overcome, we have decided to skip the d = 1 case in order
to avoid having to deal with annoying provisos and keep the paper to a manageable
length. Under the moment conditions (1.15–1.16), the one-dimensional case has been
addressed in [21].

Finally, although we work with elliptic regularity techniques, we have not touched
the subject of heat-kernel estimates; i.e., Gaussian-type upper/lower bounds on the
probability pt,s(x, y) that the walk conditional on being at x at time t is at y at a later
time s. Unlike for the static environments, such bounds are much less regular and
various pathologies may arise (cf Huang and Kumagai [24]). As already mentioned,
for our class of environments upper bounds on the diagonal term pt,s(x, x) have been
derived in Mourrat and Otto [32]. In analogy with the static case, we expect that our
proof of the invariance principle with non-degenerate diffusion matrix should imply an
on-diagonal lower bound. However, we have not been able to conclude this rigorously.

1.5 Outline.

The remainder of the paper is organized as follows. In Section 2 we develop the
functional-theoretical tools underpinning the proofs in later sections. This, in par-
ticular, includes the introduction of Sobolev inequalities and conversion of the Dirichlet
energies mentioned above. In Section 3, we then construct the harmonic coordinate,
which one can think of as an embedding of Zd on which the random walk is a martingale.
The change in the embedding is expressed by the said corrector, which is a fundamental
quantity in all standard treatments of random conductance models (see, e.g, recent re-
views by Biskup [11] and Kumagai [28]). The above mentioned a priori L1-estimates on
the corrector are also derived here using methods of independent interest. In Section 4
we give a proof of the main result subject to a pointwise sublinearity estimate on the
corrector. This estimate is then substantiated in Sections 5–6 by combining the a priori
L1-bounds with Moser iteration. The Appendix collects some estimates that would be
a distraction in the main line of a proof.

Let us make the following convention about the use of constants. We denote by
c, c′, . . . positive and finite constants which can change from place to place. Numbered
constants c1, c2, . . . become fixed whenever they first appear. Their dependence on all
parameters will always be explicit.

2 Sobolev inequalities and weighted energies

Here we introduce the necessary functional-theoretical tools for our later proofs. A
reader preferring to avoid technicalities until they are actually used may consider skip-
ping this section and returning to it only while reading the rest of the paper.
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2.1 The ℓ1-Sobolev inequality.

The control of the corrector in stochastic homogenization seems to always require a kind
of coercive-type estimate for its Dirichlet energy in terms of a suitable norm. Histori-
cally this was done (e.g., in Sidoravicius and Sznitman [36], drawing on Delmotte [17]
and Barlow [7]) via the Poincaré inequality. This is easy and elegant in uniformly
elliptic cases but becomes less so when one deals with non-elliptic environments and,
particularly, wishes to work under moment assumptions on the conductances only. In
this line of thought, Andres, Deuschel and Slowik [4] devised a powerful approach based
on Sobolev inequalities which we will follow here as well. The starting point of this
approach is:

Lemma 2.1 (ℓ1-Sobolev inequality) For each d ≥ 2 there is c = c(d) ∈ (0,∞) such
that any f : Zd → R with finite support,

(

∑

x∈Zd

∣

∣f(x)
∣

∣

d
d−1

)
d−1
d ≤ c(d)

∑

(x,y)∈E(Zd)

∣

∣f(x)− f(y)
∣

∣ . (2.1)

Proof. This is very standard, but we give a proof as it is short and instructive and, also,
as we will reuse the argument in the next lemma. First off we use Jensen’s inequality
to get

∑

x∈Zd

∣

∣f(x)
∣

∣

d
d−1 =

∫ ∞

0

ds
∑

x∈Zd

∣

∣f(x)
∣

∣

1
d−11{|f(x)|>s}

≤
(

∑

x∈Zd

∣

∣f(x)
∣

∣

d
d−1

)1/d
∫ ∞

0

ds
∣

∣{x ∈ Z
d : |f(x)| > s}

∣

∣

d−1
d .

(2.2)

By the isoperimetric inequality in Z
d, for any finite Λ ⊂ Z

d, we have |Λ| d−1
d ≤ c(d)|∂Λ|,

where ∂Λ is the set of edges with exactly one endpoint in Λ. Using this for Λ := {x ∈
Z
d : |f(x)| > s} in (2.2), shows

(

∑

x∈Zd

∣

∣f(x)
∣

∣

d
d−1

)
d−1
d ≤ c(d)

∫ ∞

0

ds
∑

x,y∈Zd

|x−y|=1

1{|f(x)|>s≥|f(y)|}. (2.3)

Performing the integral and using that
∣

∣|a| − |b|
∣

∣ ≤ |a− b| now yields (2.1).

We note (as our proof above attests) that the ℓ1-Sobolev inequality is equivalent
to the isoperimetric inequality. The restriction to f with finite support is sometimes
inconvenient and one might wish to work instead in a finite box. The following lemma
addressing this setting will be quite useful. No surprise, it is still based on isoperimetry
but this time in a finite box:
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Lemma 2.2 For d ≥ 2 there is c′ = c′(d) ∈ (0,∞) such that for any f : Zd → R, any
n ≥ 1 and any translate B of [0, n]d ∩ Z

d,

∑

x∈B

∣

∣f(x)− f̄B
∣

∣ ≤ c′(d) |B|1/d
∑

(x,y)∈E(Zd)
x,y∈B

∣

∣f(x)− f(y)
∣

∣, (2.4)

where f̄B := |B|−1
∑

x∈B f(x).

Proof. Replacing f by −f if needed, we may assume without loss of generality that

∣

∣{x ∈ B : f(x) > f̄B}
∣

∣ ≤
∣

∣{x ∈ B : f(x) < f̄B}
∣

∣ . (2.5)

Let Λ denote the set on the left-hand side. Since
∑

x∈B(f(x)− f̄B) = 0, we have

∑

x∈B

∣

∣f(x)− f̄B
∣

∣ = 2
∑

x∈Λ

(

f(x)− f̄B
)

. (2.6)

Jensen’s inequality along with the argument in (2.2) then show

∑

x∈Λ

(

f(x)− f̄B
)

≤ |Λ|1/d
∫ ∞

0

ds
∣

∣{x ∈ Λ: f(x)− f̄B > s}
∣

∣

d−1
d . (2.7)

Since |Λ| ≤ 1
2
|B|, the isoperimetric inequality in B yields |Λ′| d−1

d ≤ c̃(d)|∂BΛ′| for any
Λ′ ⊂ Λ, where ∂BΛ′ is the set of edges in ∂Λ′ that have both endpoints in B. Using this
as in (2.3) and plugging the result into (2.6) yields the claim with c′(d) := 21−1/dc̃(d).

2.2 Sobolev inequalities with weighted energies.

Our next goal will be a conversion of the ℓ1-Sobolev inequality into a more useful form.
Given any Lebesgue measurable ζ : R → [0,∞), for any measurable f : R × Z

d → R,
with the value at (t, x) denoted by ft(x), any B ⊂ Z

d and any p, q ∈ (0,∞), define the
norms

‖f‖p,q;B,ζ :=

(

∫

dt ζ(t)
(

∑

x∈B

∣

∣ft(x)
∣

∣

p
)q/p

)1/q

. (2.8)

Recalling our notation E(Zd) for the set of unordered edges (with each edge included
only once) in Z

d and writing E(B) for the set of edges in E(Zd) with at least one
endpoint in B, we will use the notation ‖f‖p,q;E(B),ζ to denote the corresponding object
for functions f : R× E(Zd) → R; just replace sum over x ∈ B by sum over e ∈ E(B).

For any B ⊂ Z
d, any t ∈ R, any f : R× Z

d → R and any collection of non-negative
weights {wt(e) : e ∈ Z

d} we define

Ew
t,B(ft) :=

∑

(x,y)∈E(B)

wt(x, y)
[

ft(y)− ft(x)
]2
. (2.9)
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The notation Ea
t,B(ft) will be reserved for the specific situation when the weights are

given by the conductances at(e). Assuming in addition that t 7→ wt(e) is Borel measur-
able for each e, we then define the integrated forms of these via

Ew,ζ
B (f) :=

∫

dt ζ(t)Ew
t,B(ft), (2.10)

reserving Ea,ζ
B (f) again for the case when the weights are given by the conductances.

If B = Z
d, we denote the above energies simply by Ew

t (ft) and Ew,ζ(f). We now claim
the validity of the following family of inequalities:

Lemma 2.3 (Sobolev inequalities) For each d ≥ 2, each α ∈ (1, 2d−1
d−2

) and each
β ∈ (0, 2) there is c0 = c0(d, α, β) ∈ (0,∞) such that for r, s defined by

α− 1

α

d− 1

d
+

1

r
=

1

2
and

1

s
+

1

2
=

1

β
, (2.11)

the inequality
‖f‖α d

d−1
,β;B,ζ ≤ c0‖w−1/2‖r,s;E(B),ζ Ew,ζ

B (f)1/2 (2.12)

holds for any finite B ⊂ Z
d and any measurable f : R× Z

d → R.

The quantity 2d−1
d−2

should henceforth be interpreted as infinity when d = 2. We re-
mark that Andres, Chiarini, Deuschel and Slowik [3] derive (2.12) for the particular case
when ζ(t) := T−11[0,T ](t) and wt(e) replaced by at(e). However, their parametrization
is different from ours.

Remark 2.4 The norm (2.8) is asymmetric in the sense that it puts integration with
respect to the spatial variables before that with respect to time and so the reader may
wonder whether setting the norms up the opposite way may give us any advantage. To
address this issue, define

‖f‖∼p,q;B,ζ :=

(

∑

x∈B

(

∫

dt ζ(t)
∣

∣ft(x)
∣

∣

p
)q/p

)1/q

. (2.13)

Then a similar calculation to the one in the proof of Lemma 2.3 below shows that, for
each α ∈ (1, 2d−1

d−2
) and each β ∈ (1, 2),

‖f‖∼
β,α d

d−1
;B,ζ

≤ c‖w−1/2‖∼r,s;E(B),ζ Ew,ζ
B (f)1/2 (2.14)

holds for any finite B ⊂ Z
d and any measurable f : R × Z

d → R. In particular, both
ways to define space-time norms seem more or less equally powerful.

Proof of Lemma 2.3. Let Ẽ(B) denote the set of ordered edges with at least one
endpoint in B. Pick α and β from the allowed ranges. The ℓ1-Sobolev inequality along
with the fact that

|xα − yα| ≤ α(xα−1 + yα−1)|x− y|, x, y > 0, α > 0, (2.15)
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and simple symmetrization show

(

∑

x∈B

∣

∣ft(x)
∣

∣

α d
d−1

)
d−1
αd

β

≤ c
(

∑

(x,y)∈Ẽ(B)

∣

∣ft(x)
∣

∣

α−1∣
∣ft(x)− ft(y)

∣

∣

)β/α

. (2.16)

Let p be defined by

p(α− 1) = α
d

d− 1
(2.17)

and notice that then 1
p
+ 1

2
+ 1

r
= 1 by the first equality in (2.11). Hölder’s inequality

with indices (p, 2, r) then bounds the right-hand side of (2.16) by

c
(

∑

x∈B

∣

∣ft(x)
∣

∣

α d
d−1

)
β
pα
(

∑

(x,y)∈E(B)

wt(x, y)
∣

∣ft(x)− ft(y)
∣

∣

2
)

β
2α
(

∑

(x,y)∈E(B)

wt(x, y)
−r/2

)
β
rα

,

(2.18)
where the constant c arises from rewriting the first sum from that over edges to that
over sites and where the sums are now over unordered edges again. Now multiply the
resulting inequality by ζ(t) and integrate over t. Since the second equality in (2.11)
ensures that (pd−1

d
, 2α/β, sα/β) are Hölder conjugate indices, another use of Hölder’s

inequality yields

∫

dt ζ(t)
(

∑

x∈B

∣

∣ft(x)
∣

∣

α d
d−1

)
d−1
αd

β

≤ c

(

∫

dt ζ(t)
(

∑

x∈B

∣

∣ft(x)
∣

∣

α d
d−1

)
d−1
αd

β
)

1
p

d
d−1
[

Ew,ζ
B (f)1/2‖w−1/2‖r,s;E(B),ζ

]β/α

. (2.19)

This now readily implies (2.12).

Our later applications make it convenient to introduce normalized versions of the
above norms. Assuming ζ to be integrable and denoting by ‖ζ‖L1 its L1-norm is with
respect to Lebesgue measure, we thus set

|||f |||p,q;B,ζ := |B|−1/p‖ζ‖−1/q

L1 ‖f‖p,q;B,ζ . (2.20)

For the case q := ∞ we get

|||f |||p,∞;B,ζ := esssup

(

t 7→
( 1

|B|
∑

x∈B

∣

∣ft(x)
∣

∣

p
)1/p

)

, (2.21)

where the essential supremum is with respect to the Lebesgue measure on supp ζ . We
will write ‖f‖p,q;E(B),ζ and |||f |||p,q;E(B),ζ to denote the corresponding norms for functions
indexed by edges of Zd. For later reference, we note that, by Jensen’s inequality,

|||f |||p,q;B,ζ is increasing in p and q for all p, q > 0. (2.22)

The norms |||f |||p,q;B,ζ will be used heavily in Sections 5-6. The following form of (2.12)
is tailored to the purposes of that section.
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Corollary 2.5 For each d ≥ 2, each α ∈ (1, 2d−1
d−2

) and each β ∈ (0, 2) and for r, s
and c0 as in Lemma 2.3, defining

p̂ = p̂(α) :=
α

2

d

d− 1
and q̂ := q̂(β) =

β

2
, (2.23)

the bound

|||f 2|||p̂,q̂;B,ζ ≤ c20 |B| 2d Ew,ζ
B (f)

|B| |||w−1||| r
2
, s
2
;E(B),ζ . (2.24)

holds for all finite B ⊂ Z
d and all measurable f : R× Z

d → R.

Proof. An application of (2.12) yields

|||f 2|||α
2

d
d−1

,β
2
;B,ζ = ‖ζ‖−2/β

L1 |B|− 2
α

d−1
d ‖f‖2

α d
d−1

,β;B,ζ

≤ c20 ‖ζ‖
−2/β

L1 |B|− 2
α

d−1
d Ew,ζ

B (f) ‖w−1/2‖2r,s;E(B),ζ

= c20 |B|2[− 1
α

d−1
d

+ 1
2
+ 1

r
] Ew,ζ

B (f)

|B| |||w−1||| r
2
, s
2
;E(B),ζ .

(2.25)

Now (2.11) implies 1
2
+ 1

r
= 1− α−1

α
d−1
d

= 1− d−1
d

+ 1
α
d−1
d

and so

− 1

α

d− 1

d
+

1

2
+

1

r
= 1− d− 1

d
=

1

d
. (2.26)

Using this in (2.25), the claim follows.

Our application of the above norm in Moser iteration requires a comparison between
various instances of the norm (2.8). This is the content of the following lemma.

Lemma 2.6 (Interpolation) Suppose p, q, p1, p2, q1, q2 ∈ (0,∞) and θ ∈ (0, 1) are such
that

1

p
=

θ

p1
+

1− θ

p2
and

1

q
=

θ

q1
+

1− θ

q2
. (2.27)

Then, for all measurable f : [0,∞)× Z
d → R and all finite B ⊂ Z

d,

‖f‖p,q;B,ζ ≤ ‖f‖θp1,q1;B,ζ ‖f‖1−θ
p2,q2;B,ζ. (2.28)

In particular, for all q, q1 ∈ (0,∞) with q1 < q and all p, p1, p2 ∈ (0,∞) satisfying the
first condition of (2.27) with θ := q1

q
, we have

|||f |||p,q;B,ζ ≤ |||f |||
q1
q

p1,q1;B,ζ |||f |||
1− q1

q

p2,∞;B,ζ. (2.29)

Proof. Writing |ft(x)|p = |ft(x)|θp|ft(x)|(1−θ)p in (2.8) and invoking Hölder’s inequality
with conjugate exponents (p1

θp
, p2
(1−θ)p

) yields

‖f‖p,q;B,ζ ≤
(

∫

dt ζ(t)
(

∑

x∈B

∣

∣ft(x)
∣

∣

p1
)θq/p1(∑

x∈B

∣

∣ft(x)
∣

∣

p2
)(1−θ)q/p2

)1/q

. (2.30)
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Hölder’s inequality with conjugate exponents ( q1
θq
, q2
(1−θ)q

) then readily gives (2.28). The

inequality (2.29) follows from (2.20) and (2.28) by noting that |||f |||p2,q2;B,ζ → |||f |||p2,∞;B,ζ

as q2 → ∞.

2.3 Edge weights and their growth.

Throughout the rest of this paper, the edge weights wt(e) we will work with always
take the form (1.17). The choice of the function k : [0,∞) → (0,∞) underlying (1.17)
is tied to the choice of the function ζ : R → (0,∞) governing the above norms by
certain conditions we will now spell out. Other than having to obey the restricted set
of constraints listed in (2.31–2.33), the functions k and ζ can be chosen arbitrarily for
the purposes we have in mind.

We assume that the function ζ : R → [0,∞) is supported in [0,∞) and is bounded,
non-increasing, continuously differentiable with both t 7→ ζ(t) and t 7→ tζ(t) Lebesgue
integrable. We also assume that ‖ζ‖L1 > 0 and

inf
t∈[0,2]

ζ(t) > 0 and ‖ζ ′/ζ‖∞ <∞. (2.31)

The function k : [0,∞) → (0,∞) is Borel measurable with both t 7→ kt and t 7→ tkt
Lebesgue integrable on [0,∞). Moreover, setting

Kt := kt +

∫ ∞

t

ds (s− t)ks, t ≥ 0, (2.32)

there exists a constant c1 ∈ (0,∞) such that for each s ≥ 0,

∫ s

0

dt ζ(t)Ks−t ≤ c1ζ(s). (2.33)

Remark 2.7 The condition (2.33) is needed for the conversions of Dirichlet forms men-
tioned in the Introduction, see in particular Lemmas 2.11 and 6.1 below.

That a pair of functions ζ, k satisfying the above requirements exists is ensured by:

Lemma 2.8 Let µ > 4 and ν ∈ (2, µ − 2). Then kt := (1 + t)−µ and ζ(t) :=
2ν(1 + t)−ν

1[0,∞)(t) obey the above conditions and, in particular, (2.31–2.33). In fact,
for all r ≥ 1, we have

∫ s

0

dt ζ(t/r)Ks−t ≤ c1ζ(s/r), for s ≥ 0. (2.34)

Proof. The integrability conditions are immediate from the fact that µ > 2 and ν > 2;
(2.31) is checked directly. For (2.34) we note that Kt ≤ c(1 + t)−µ̃ where µ̃ := µ − 2
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and then observe
∫ s

0

dt
(

1 + (s− t)
)−µ̃

(1 + t/r)−ν

≤ cs−µ̃

∫ s/2

0

dt (1 + t/r)−ν + c(s/r)−ν

∫ s/2

0

dt (1 + t)−µ̃

≤ c̃
1

r
s−µ̃ + c̃(s/r)−ν.

(2.35)

Since µ̃ > ν and ν > 1 (and r ≥ 1), both terms on the right are now less than a
constant times (s/r)−ν . This proves (2.34) for s ≥ r; in the complementary range of s
values the claim is checked directly.

Unless specified otherwise, we will henceforth always tacitly assume that ζ and k are
a pair of functions satisfying (2.31–2.33). Some (but not all) calculations will require
adapting our setting to diffusive scaling of space and time, i.e., choosing ‖f‖p,q;B,ζ in
(2.8) with B replaced by

Br := [−r, r]d ∩ Z
d for r ≥ 1 (2.36)

and ζ replaced by

ζr(t) :=
1

r2
ζ(t/r2), for r ≥ 1, (2.37)

with ζ as above. It is then natural to require (2.34), instead of just (2.33), to hold.
(Note that (2.34) is tantamount to saying that (2.33) holds for all pairs (ζr, k), r ≥ 1.)
When needed, the condition (2.34) will always be mentioned explicitly.

The diffusive scaling of time naturally underlies the following property that will be
repeatedly used in the sequel:

Lemma 2.9 For each p > p̃ ≥ 1 there is c = c(p, p̃, ζ) ∈ (0,∞) such that for all
f ∈ Lp(P),

∥

∥

∥
sup
n≥1

∫ ∞

0

dt ζn(t)f ◦ τt,0
∥

∥

∥

Lp̃(P)
≤ c‖f‖Lp(P) (2.38)

In particular, the integrals converge absolutely for all n ≥ 1.

Proof. Dominating f by |f |, we may assume without loss of generality that f ≥ 0. The
assumed properties of ζ ensure that ζn(t) = − 1

n2

∫∞
tn2 ds ζ

′(s). Using that −ζ ′ is greater
or equal to zero and Tonelli’s Theorem yields

∫ ∞

0

dt ζn(t)f ◦ τt,0 =
∫ ∞

0

ds (−ζ ′(s)) 1
n2

∫ n2s

0

dtf ◦ τt,0 . (2.39)

Denoting h := supn≥1
1
n

∫ n

0
dt f ◦ τt,0, straightforward monotonicity considerations show

that the supremum over n of the quantity on the right is at most

h
[

∫ 1

0

ds (−ζ ′(s)) + 2

∫ ∞

1

ds (−ζ ′(s))s
]

. (2.40)
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The boundedness and integrability of ζ imply that both integrals are finite. Jensen’s
inequality and the Maximal Ergodic Theorem in turn ensure ‖h‖Lp̃(P) ≤ c‖f‖Lp(P) for
some c = c(p, p̃) ∈ (0,∞) independent of f . The claim follows.

In order to use the Sobolev inequalities (2.24), we will need a uniform bound on the
norms of the weights w appearing on the right-hand side. This is the content of:

Lemma 2.10 Under Assumption 1.1 and the moment bound (1.12) with some ϑ > 0,
and for k, ζ satisfying (2.34) in addition to (2.31–2.33) the following holds: For each
e ∈ E(Zd), the family {wt(e) : t ∈ R} defined in (1.17) is stationary with respect to
time-shifts. Moreover, if kt ≥ 1 ∨ t−µ is true for all t ≥ 0 and some µ > 0, then

E
(

w0(e)
−ϑ/µ

)

<∞ (2.41)

and, in addition,
sup
n≥1

max
m∈[n,2n]

|||w−1||| r
2
, s
2
;E(Bm),ζn <∞ P-a.s. (2.42)

is satisfied for all 1 ≤ r ≤ s < 2ϑ/µ.

Proof. The stationarity of t 7→ wt(e) is clear from (1.17) and the assumed stationarity
of t 7→ at(e). The definition (1.5) and monotonicity of t 7→ kt ensure that, for any
e ∈ E(Zd),

w0(e) ≥ kTe (2.43)

and so (2.41) directly follows from (1.12) and the assumed bound on kt. For (2.42), we
first note that, if r ≤ s, then (2.22) implies

∣

∣

∣

∣

∣

∣w−1/2
∣

∣

∣

∣

∣

∣

s

r,s;E(Bn),ζn
≤
∣

∣

∣

∣

∣

∣w−1/2
∣

∣

∣

∣

∣

∣

s

s,s;E(Bn),ζn
≤ ‖ζ‖−1

L1

1

|E(Bn)|
∑

x∈Bn

hn ◦ τ0,x , (2.44)

where

hn :=

∫ ∞

0

dt ζn(t)
∑

z : |z|=1

wt

(

(0, z)
)−s/2

. (2.45)

Under s < 2ϑ/µ, (2.41) implies that w0(e)
−s/2 ∈ Lp(P) for some p > 1. Lemma 2.9 and

stationarity of t 7→ wt then show supn≥1 |hn| ∈ L1(P). Bounding hn in (2.44) by the
supremum, the claim follows from the Spatial Ergodic Theorem.

2.4 Conversion of Dirichlet energies.

The usual way a regularity argument starts with the use of Sobolev inequality to bound
the desired norm of a function by its Dirichlet energy. For a solution to Poisson or heat
equation, the Dirichlet energy is in turn bounded by a lower-order norm, thus gaining
regularity. Unfortunately, our Sobolev inequality outputs a weighted Dirichlet energy
and so we need an additional step in which we bound this Dirichlet energy by the
ordinary one to which the rest of the argument can be applied.

Recall the definition of the (finite volume) Dirichlet energy in (2.9). The bound that
achieves the stated goal is then as follows:
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Lemma 2.11 Suppose t 7→ at(e) are measurable and take values in [0, 1]. Let B ⊂ Z
d

be finite and set B := B ∪ ∂B. If u : R× Z
d → R solves (weakly) the heat equation

∂

∂t
u(t, x) = Ltu(t, x) + f(t, x), t ∈ R, x ∈ B, (2.46)

for some bounded measurable f : R× Z
d → R, then for each t ∈ R,

Ew
t,B(ut) ≤ 48d2

∫ ∞

t

ds Ks−t Ea
s,B

(us) + 24d

∫ ∞

t

dsKs−t

∑

x∈B

∣

∣fs(x)
∣

∣

2
, (2.47)

where Kt is as in (2.32).

Proof. We follow the calculation in the proof of Proposition 4.6 in Mourrat and
Otto [32]. The definition of the weights wt(e) in (1.17) gives

Ew
t,B(ut) =

∫ ∞

t

ds ks−t

∑

x∈B

∑

y∈Zd

(x,y)∈E(Zd)

as(x, y)
[

u(t, x)− u(t, y)
]2
. (2.48)

Writing u(t, x) = u(s, x)+ [u(t, x)−u(s, x)] and using that (a+ b+ c)2 ≤ 3a2+3b2+3c2

and that at(x, y) ≤ 1 then shows

Ew
t,B(ut) ≤

∫ ∞

t

ds ks−t

(

3Ea
s,B

(u) + 12d
∑

x∈B

[

u(t, x)− u(s, x)
]2

)

. (2.49)

Concerning the second term in the parentheses, here (2.46) and (a + b)2 ≤ 2a2 + 2b2

yield

[

u(t, x)− u(s, x)
]2

=
[

∫ t

s

dr
[

fr(x) + Lru(r, x)
]

]2

=

[

∫ t

s

dr

(

fr(x) +
∑

y∈Zd

(x,y)∈E(Zd)

ar(x, y)
[

u(r, y)− u(r, x)
]

)

]2

≤ 2(s− t)

∫ s

t

dr

(

∣

∣fr(x)
∣

∣

2
+ 2d

∑

y∈Zd

(x,y)∈E(Zd)

ar(x, y)
[

u(r, y)− u(r, x)
]2
)

,

(2.50)
where the last inequality follows by Cauchy-Schwarz and the bound at(x, y) ≤ 1. Plug-
ging this in (2.49) and invoking the definition of Kt, we get (2.47).

Remark 2.12 The argument (2.50) uses crucially that the lattice gradient is a bounded
operator. This is what makes the above proof fail in the continuum setting.

Recall the definitions of Bn and ζn from (2.36) and (2.37). Then we have:
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Corollary 2.13 For at and u as in Lemma 2.11, if (2.34) holds (in addition to (2.31)-
(2.33)), then for each n ≥ 1,

Ew,ζn
Bn

(u) ≤ 48d2c1 Ea,ζn
Bn

(u) + 24dc1‖f‖22,2,Bn,ζn . (2.51)

Moreover, under Assumption 1.1, if u and f are such that u(t, x, ·) = u(0, 0, ·)◦ τt,x and
f(t, x, ·) = f(0, 0, ·) ◦ τt,x for each x ∈ Z

d, each t ∈ R, and (2.46) holds, then

E

(

∑

e=e1,...,ed

w0(e)
∣

∣u(0, e, ·)− u(0, 0, ·)
∣

∣

2
)

≤ 48d2c1E

(

∑

e=e1,...,ed

a0(e)
∣

∣u(0, e, ·)− u(0, 0, ·)
∣

∣

2
)

+ 24dc1E
(

|f(0, 0, ·)|2
)

.

(2.52)

Proof. In light of (2.47), the first conclusion follows directly from (2.33). For (2.52)
take expectation of (2.51) (this eliminates the integrals over time), divide by |Bn| and
take n→ ∞.

We remark that, in the derivations underlying the Moser iteration, we will need to
rederive variants of these estimates for powers of the solutions multiplied by suitable
mollifiers. Besides illustrating the main ideas of our proofs, the above simpler versions
will be used to define, and derive a priori L1-estimates, of the corrector in the next
section.

3 Construction of the corrector

The next task is the construction and derivation of the needed properties of the har-
monic coordinate and the associated corrector. The natural setting for our proof is
to require a certain moment condition for the weights wt defined in (1.17), see (3.1)
below. We will verify immediately that this condition is met under the assumptions of
Theorem 1.2.

Note that, whenever Assumption 1.1 holds, the family {wt(e) : t ∈ R} is stationary
with respect to time-shifts for each e ∈ E(Zd), as can be seen from (1.17) and the
assumed stationarity of t 7→ at(e). This will be used frequently below. Recall also that
the functions k, ζ are assumed to satisfy (2.31–2.33); k enters through the definition
of the weights w and, although ζ does not appear explicitly in the following theorem,
it will be used in its proof. Let Lp,loc(R) denote the space of measurable f : R → R

whose p-th power is locally integrable with respect to the Lebesgue measure and P.
The main conclusion of this section is now as follows:

Theorem 3.1 Suppose the law of the conductances P obeys Assumptions 1.1, (2.34)
holds and, with wt as defined in (1.17), there exists q > 1 such that

E
(

w0(e)
−q
)

<∞, for all e ∈ E(Zd). (3.1)
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Then there exists a measurable function ψ : R × Z
d × Ω → R

d such that the follow-
ing holds:

(1) ψ is a weak solution to the family of the ODEs

∂

∂t
ψ(t, x, ·) + Ltψ(t, x, ·) = 0, t ∈ R, x ∈ Z

d, (3.2)

where Lt is the generator defined in (1.2), and Ltψ(t, x, a) := (Ltψ(t, ·, a))(x),

(2) ψ satisfies the cocycle conditions in space-time: for each t, s ∈ R and each x, y ∈ Z
d,

ψ(t, x, ·) ◦ τs,y = ψ(t + s, x+ y, ·)− ψ(s, y, ·) (3.3)

with ψ(0, 0, ·) = 0,

(3) ψ is of finite specific energy in the sense that

E

(

∑

x : |x|=1

a0(0, x)
∣

∣ψ(0, x, a)
∣

∣

2
)

<∞ , (3.4)

(4) defining the corrector by χ(t, x, ·) := ψ(t, x, ·)− x and letting p := 2/(1 + 1/q) > 1,

χ(t, x, ·) ∈ Lp(P), χ(·, x, ·) ∈ Lp,loc(R)⊗ Lp(P) and Eχ(t, x, ·) = 0 (3.5)

holds for each x ∈ Z
d and each t ∈ R.

Remark 3.2 Theorem 3.1 fits the setting of Theorem 1.2 for the choice kt := (1 + t)−µ

with any µ ∈ (4, ϑ/2) because (2.41) implies (3.1) with q := ϑ/µ > 1. Such a choice
of µ can be made since ϑ

2
> 4 when ϑ > 4d (and d ≥ 2).

From Theorem 3.1 and Lemma 2.8 we thus immediately obtain:

Corollary 3.3 Under the assumptions of Theorem 1.2, there exists a measurable func-
tion ψ : R× Z

d × Ω → R
d satisfying (1–4) in Theorem 3.1 above.

The strategy of our proof of Theorem 3.1 is as follows: similarly to all existing
constructions of the harmonic coordinate, we will solve a suitably perturbed version of
(3.2) and then control removal of the perturbation. As usual, the latter step will be
done using functional analytic methods. In [3], which is closest to our setting, even the
former step was based on functional analytic tools (namely, the Lax-Milgram lemma)
but here we will proceed by more probabilistic arguments.

Let pt,s(x, y), for t ≤ s and x, y ∈ Z
d, denote the transition probability of the

random walk X between times t and s; i.e.,

pt,s(x, y) := P (Xs = y|Xt = x). (3.6)

We begin by noting the following fact about uniformly elliptic situations:
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Lemma 3.4 Let ǫ ∈ (0, 1) and suppose, for the moment, that the conductances t 7→
at(e) are Lebesgue measurable and taking values in [ǫ, 1/ǫ]. Let g : R × Z

d → R be
bounded and measurable. Then

h(t, x) := −
∫ ∞

t

ds e−ǫ(s−t)
∑

y∈Zd

pt,s(x, y)g(s, y) (3.7)

is well defined with t 7→ h(t, x) continuously differentiable for each x ∈ Z
d. Moreover, h

obeys
∂

∂t
h(t, x)− (ǫ− Lt)h(t, x) = g(t, x) (3.8)

at each t ∈ R and x ∈ Z
d.

Proof. Since g is bounded, the sum in (3.7) converges absolutely and is bounded
uniformly in s, hence the integral over s converges absolutely as well and h is well-
defined. The transition probability admits the representation

pt,s(x, y) = δ(x, y)e−
∫ s
t
duπu(x) +

∫ s

t

du πu(x)e
−

∫ u
t
dr πr(x)

∑

z : z∼x

au(x, z)

πu(x)
pu,s(z, y), (3.9)

where δ(x, y) = 1 if x = y and vanishes otherwise, z ∼ x means that (x, z) ∈ E(Zd)
and πu(x) :=

∑

z:z∼x au(x, z). Thus, the function t, x 7→ pt,s(x, y) obeys the differential
equation

∂

∂t
pt,s(x, y) + Ltp

t,s(·, y)(x) = 0. (3.10)

Since the conductances are nearest-neighbor and uniformly bounded, the sum of the
derivatives (with respect to t) of the terms in (3.7), as well as the resulting integral,
converge absolutely. Standard criteria permit us to exchange the time derivative with
the integral over s and the sum over y. The result then boils down to a simple calculation
which we leave to the reader.

Given a sample of the conductances {at(e) : e ∈ E(Zd), t ∈ R} satisfying Assump-
tion 1.1, we will apply Lemma 3.4 to the function g given by (t, x) 7→ −V (t, x, ·) where

V (t, x, a) :=
∑

z : |z|=1

at(x, x+ z)z. (3.11)

However, in order to have the required ellipticity, the random walk will be driven by
the collection of perturbed conductances {aǫt(e) : t ∈ R, e ∈ E(Zd)}, where

aǫt(e) := ǫ+ at(e), e ∈ E(Zd). (3.12)

Writing pt,sǫ (x, y, a) for the transition probability of the random walk among conduc-
tances aǫt(e), Lemma 3.4 then ensures that

ϕǫ(t, x, ·) :=
∫ ∞

t

ds e−ǫ(s−t)
∑

y∈Zd

pt,sǫ (x, y, ·)V (s, y, ·) (3.13)
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obeys

∂

∂t
ϕǫ(t, x, ·) + (ǫ− ǫ∆− Lt)ϕǫ(t, x, ·) = −V (t, x, ·), t ∈ R, x ∈ Z

d. (3.14)

Here ∆ is the discrete Laplacian on Z
d acting as ∆f(x) :=

∑

y:y∼x[f(y)− f(x)] and Lt

is the generator derived from the “bare” conductances at(e) as in (1.2). The effect of
the term ǫ∆ is to make the generator uniformly elliptic; the term ǫ (times identity)
then represents killing of the walk at uniform rate ǫ.

Our aim is to show that ϕǫ(t, x, ·) − ϕǫ(0, 0, ·) converges, as ǫ ↓ 0, to the desired
corrector χ(t, x, ·) in a suitable sense. This will be done via a sequence of lemmas. First
we note that ϕǫ satisfies the cocycle conditions in space-time:

Lemma 3.5 For each ǫ > 0, each t ∈ R and each x ∈ Z
d,

ϕǫ(t, x, ·) = ϕǫ(0, 0, ·) ◦ τt,x. (3.15)

In particular, for each t, s ∈ R and each x, y ∈ Z
d,

ϕǫ(t+ s, x+ y, ·)− ϕǫ(s, y, ·) = ϕǫ(t, x, ·) ◦ τs,y − ϕǫ(0, 0, ·) ◦ τs,y. (3.16)

and so t, x 7→ ϕǫ(t, x, ·)− ϕǫ(0, 0, ·) satisfies (3.3) for every ε > 0.

Proof. (3.15) follows from (3.13) and the identities V (t, x, ·) = V (0, 0, ·) ◦ τt,x and
pt,s(x, y, ·) = p0,s−t(0, y − x, ·) ◦ τt,x. The second line follows from (3.15) and τt+s,x+y =
τs,y ◦ τt,x.

Next we observe the validity of some a priori estimates:

Lemma 3.6 Under Assumption 1.1, for each ǫ > 0,

ǫE
∣

∣ϕǫ(0, 0, ·)
∣

∣

2 ≤ d (3.17)

and
∑

i=1,...,d

E

(

a0(ei)
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

2
)

≤ d . (3.18)

Proof. Recall that ϕǫ is bounded; by (3.14) and the definition of V the same applies to
its time derivative as well. This justifies exchanges of limits and expectations in

E

(

ϕǫ(0, 0, ·) ·
∂

∂t
ϕǫ(0, 0, ·)

)

= lim
t↓0

1

t
E

(

ϕǫ(0, 0, ·) ·
(

ϕǫ(t, 0, ·)− ϕǫ(0, 0, ·)
)

)

= lim
t↓0

1

t
E

(

ϕǫ(0, 0, ·) ·
(

ϕǫ(−t, 0, ·)− ϕǫ(0, 0, ·)
)

)

= −E

(

ϕǫ(0, 0, ·) ·
∂

∂t
ϕǫ(0, 0, ·)

)

,

(3.19)

where the middle equality follows from (3.15) and invariance of P under τt,0. We thus
have

E

(

ϕǫ(0, 0, ·) ·
∂

∂t
ϕǫ(0, 0, ·)

)

= 0. (3.20)
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Taking the inner product of (3.14) at x = 0 and t = 0 with ϕǫ(0, 0, ·) and then taking
expectation yields, on account of (3.20),

ǫE|ϕǫ(0, 0, ·)|2 +
∑

i=1,...,d

E

(

aǫ0(ei)
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

2
)

= −E
(

V (0, 0, ·) · ϕǫ(0, 0, ·)
)

=
∑

i=1,...,d

E

(

a0(ei) ei ·
(

ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
)

)

≤
[

d
∑

i=1,...,d

E

(

a0(ei)
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

2
)

]1/2

,

(3.21)

where we used (3.15) and simple symmetrization for the second term on the left hand
side and also to obtain the middle equality, and then invoked the Cauchy-Schwarz
inequality along with a0(e) ≤ 1 to get the last inequality. Since aǫ0(e) ≥ a0(e), foregoing
the term ǫE|ϕǫ(0, 0, ·)|2 ≥ 0 yields (3.18) and, by plugging that in on the right-hand
side of (3.21), also (3.17).

These bounds have the following consequences:

Lemma 3.7 Under the assumptions of Theorem 3.1, for p := 2/(1 + 1/q) with q as
in (3.1), the following holds uniformly on compact sets of (t, x) ∈ R× Z

d :

ǫϕǫ(t, x, ·) −→
ǫ↓0

0 in Lp(P) (3.22)

and
sup
0<ǫ<1

E
∣

∣ϕǫ(t, x, ·)− ϕǫ(0, 0, ·)
∣

∣

p
<∞. (3.23)

Proof. As p ∈ (1, 2), the first part of the claim follows immediately from (3.17), Hölder’s
inequality and (3.15). For the second part we first use (3.16) and (3.14) with the result

(

E
∣

∣ϕǫ(t, x, ·)− ϕǫ(0, 0, ·)
∣

∣

p
)1/p

≤ ǫt
(

E
∣

∣ϕǫ(0, 0, ·)
∣

∣

p
)1/p

+
(

|x|1 + 2d(1 + ǫ)t
)

max
i=1,...,d

(

E
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

p
)1/p

. (3.24)

The first term on the right is bounded thanks to (3.17). For the expectations in the
second term, we invoke the weights wt(e) from (1.17) and Cauchy-Schwarz to get

E
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

p

≤
(

E
(

w0(ei)
− p

2−p

)

)
2−p
2

(

E

∑

i=1,...,d

w0(ei)
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

2
)p/2

. (3.25)
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Since p
2−p

= q, the first term on the right-hand side is bounded thanks to (3.1). Using

(2.52), (3.14), (3.15) and the identity (a+b+c)2 ≤ 3a2+3b2+3c2, the second expectation
on the right is no larger than

48d2c1
∑

i=1,...,d

E

(

a0(ei)
∣

∣ϕǫ(0, ei, ·)− ϕǫ(0, 0, ·)
∣

∣

2
)

+ 72dc1

[

ǫ2E
(

|ϕǫ(0, 0, ·)|2
)

+ ǫ2E
(

|∆ϕǫ(0, 0, ·)|2
)

+ E
(

|V (0, 0, ·)|2
)

]

. (3.26)

By (3.17–3.18), (3.15) and the fact that |V | ≤ 2d, this is bounded uniformly in ǫ ∈
(0, 1).

We now set
χǫ(t, x, ·) := ϕǫ(t, x, ·)− ϕǫ(0, 0, ·) (3.27)

and note:

Proposition 3.8 Under the assumptions of Theorem 3.1, and with p := 2/(1+1/q) >
1 for q as in (3.1), there is a sequence ǫn ↓ 0 and a measurable function χ : R×Z

d×Ω →
R

d such that for each x ∈ Z
d,

χǫn(·, x, ·) −→
n→∞

χ(·, x, ·) weakly in Lp,loc(R)⊗ Lp(P) (3.28)

and, for each t ∈ R,

χǫn(t, x, ·) −→
n→∞

χ(t, x, ·) weakly in Lp(P). (3.29)

Moreover, on a set of full P-measure, χ is normalized so that χ(0, 0, ·) = 0, obeys the
cocycle conditions

χ(t+ s, x+ y, ·)− χ(t, x, ·) = χ(s, y, ·) ◦ τt,x, t, s ∈ R, x, y ∈ Z
d, (3.30)

and t 7→ χ(t, x, ·) is continuous and weakly differentiable with

∂

∂t
χ(t, x, ·) + Ltχ(t, x, ·) = −V (t, x, ·) (3.31)

for all x ∈ Z
d and all t ∈ R.

The bounds of Lemma 3.7 will readily allow us to take weak limits as ε ↓ 0. A
slightly subtle point, see Lemma 3.9 below, is to choose a version of the resulting
limiting process which has continuous trajectories. Once this is achieved, the proof of
Proposition 3.8 will quickly follow.

We start with a few observations. We are henceforth tacitly working under the
assumptions of Proposition 3.8. Let r be the Hölder conjugate of p; the fact that p > 1
(and the fact that Ω is a standard Borel space, hence separable) ensures that the dual
space Lr(R)⊗Lr(P) is separable. In light of the uniform bound (3.23), Cantor’s diagonal
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argument ensures the existence of a sequence ǫn ↓ 0 and functions φ : R×Ω → R
d and

ρ : Zd ×Ω → R
d such that for any ξ ∈ Lr(R)⊗Lr(P) with compact support in the first

coordinate,
∫

dtE
(

ξ(t, ·) · χǫn(t, 0, ·)
)

−→
n→∞

∫

dtE
(

ξ(t, ·) · φ(t, ·)
)

(3.32)

and, for any ξ ∈ Lr(P) and any x ∈ R
d,

E
(

ξ · χǫn(0, x, ·)
)

−→
n→∞

E
(

ξ · ρ(x, ·)
)

. (3.33)

Standard arguments give

φ ∈ Lp,loc(R)⊗ Lp(P) and ρ(x, ·) ∈ Lp(P) (3.34)

for every x ∈ Z
d. A key point in what follows is:

Lemma 3.9 The process {φ(t, ·) : t ∈ R} admits a version {φ̃(t, ·) : t ∈ R} which
has P-a.s. continuous sample paths. Moreover, on a set of full P-measure, this version
obeys

φ̃(t, ·) = −
∫ t

0

ds
(

V (s, 0, ·) + (L0ρ)(0, ·) ◦ τs,0 +
∑

z: |z|=1

as(0, z)φ̃(s, ·) ◦ τ0,z
)

, (3.35)

for all t ∈ R.

Proof. Consider the auxiliary process Ξε(t, ·) defined as

Ξε(t, ·) := χǫ(t, 0, ·)−
∫ t

0

ds (Lsχǫ)(s, 0, ·). (3.36)

First note that, since χǫ(0, 0, ·) vanishes, (3.14) and (3.15) yield that

Ξε(t, ·) +
∫ t

0

ds [(ε− ε∆)ϕǫ](s, 0, ·) = −
∫ t

0

ds V (s, 0, ·), (3.37)

Hence

E

∣

∣

∣

∣

Ξǫ(t, ·) +
∫ t

0

ds V (s, 0, ·)
∣

∣

∣

∣

≤ (2 + 4d)|t|ǫE|ϕǫ(0, 0, ·)|, (3.38)

for all t. On account of (3.22) and with ǫn as defined above (3.32), we thus get, for any
bounded interval I ⊂ R and with λI denoting the Lebesgue measure on I,

∥

∥

∥

∥

Ξǫn(·, ·) +
∫ ·

0

ds V (s, 0, ·)
∥

∥

∥

∥

L1(λI⊗P)

−→
n→∞

0 . (3.39)

In particular, −
∫ ·
0
ds V (s, 0, ·) is a weak limit in Lp(λI ⊗ P) of the sequence Ξǫn(·, ·).
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Now pick any ξ ∈ Lr(R) ⊗ Lr(P) with compact support in the first variable. We
then claim the validity of

lim
n→∞

∫

dtE
(

ξ(t, ·) · Ξǫn(t, ·)
)

=

∫

dtE

(

ξ(t, ·) ·
[

φ(t, ·) +
∫ t

0

ds
(

(L0ρ)(0, ·) ◦ τs,0 +
∑

z:|z|=1

as(0, z)φ(s, ·) ◦ τ0,z
)

]

)

.

(3.40)

Indeed, we first note the rewrite

(Lsχǫ)(s, 0, ·) = (L0χǫ)(0, 0, ·) ◦ τs,0 +
∑

z:|z|=1

as(0, z)
(

χǫ(s, 0, ·) ◦ τ0,z
)

. (3.41)

Abbreviating

ξ̃(·) :=
∫

dt

∫ t

0

ds
∑

z : |z|=1

a0(0, z)
[

ξ(t, ·) ◦ τ−s,z − ξ(t, ·) ◦ τ−s,0

]

, (3.42)

the convergence statement (3.33) along with Fubini and the invariance of P under
space-time shifts show

∫

dtE

(

ξ(t, ·) ·
[

∫ t

0

ds
(

(L0χǫn)(0, 0, ·) ◦ τs,0
)

]

)

= E
[

ξ̃(·) · χǫn(0, 0, ·)
]

−→
n→∞

E
[

ξ̃(·) · ρ(0, 0, ·)
]

=

∫

dtE

(

ξ(t, ·) ·
[

∫ t

0

ds
(

(L0ρ)(0, ·) ◦ τs,0
)

]

)

,

(3.43)

where to get the second line we also noted that ξ̃ ∈ Lq(λR⊗P), by invariance of P under
time-shifts, Jensen’s inequality, boundedness of as(e) and the fact that ξ has compact
support in the t-variable. A similar computation applies to the term involving χǫ(s, 0, ·)
on the right of (3.41). Indeed, setting

ξ̂(s, ·) :=
∫

dt
(

1[0,t](s)− 1[−t,0](s)
)

∑

z : |z|=1

a0(0, z)
[

ξ(t, ·) ◦ τ0,z − ξ(t, ·)
]

(3.44)

we get

∫

dtE

(

ξ(t, ·) ·
[

∫ t

0

ds
(

∑

z : |z|=1

as(0, z)
(

χǫ(s, 0, ·) ◦ τ0,z
)

)]

)

=

∫

dsE
[

ξ̂(s, ·) · χǫn(s, 0, ·)
]

−→
n→∞

∫

dsE
[

ξ̂(s, ·) · φ(s, ·)
]

=

∫

dtE

(

ξ(t, ·) ·
[

∫ t

0

ds
(

∑

z : |z|=1

as(0, z)
(

φ(s, 0, ·) ◦ τ0,z
)

)]

)

,

(3.45)
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using (3.32) instead. In light of (3.36) and (3.41), (3.43–3.45) yield (3.40).
The weak limit in (3.40) being unique (as implied by the Hahn-Banach theorem),

(3.39) implies that, on a set of full λR ⊗ P-measure, −
∫ t

0
ds V (s, 0, ·) agrees with the

term in square brackets on the right-hand side of (3.40). It follows that φ̃ defined as

φ̃(t, ·) := −
∫ t

0

ds
(

V (s, 0, ·) + (L0ρ)(0, ·) ◦ τs,0 +
∑

z: |z|=1

as(0, z)φ(s, ·) ◦ τ0,z
)

, (3.46)

equals φ on a set of full λR⊗P-measure. But this also implies that we can substitute φ̃
for φ in (3.45) which shows that φ̃ obeys (3.35) λR ⊗ P-almost everywhere. As φ̃ has
P-a.s. continuous sample paths, a routine use of Fubini’s Theorem shows that (3.35)
extends to all t ∈ R on a set of full P-measure.

We are now ready to complete:

Proof of Proposition 3.8. Letting ρ be as defined in (3.33) and writing φ̃ for the con-
tinuous version of φ as constructed in the proof of Lemma 3.9, we set

χ(t, x, ·) := ρ(x, ·) + φ̃(t, ·) ◦ τ0,x (3.47)

and proceed to check the desired properties. The convergence statements (3.28–3.29)
follow directly from (3.32–3.33) while (3.30) is a consequence of (3.16). With the help
of an analogue of (3.40) (formulated for φ̃) and (3.30), the equality (3.35) translates
into

χ(t, x) = ρ(x)−
∫ t

0

ds
(

V (s, 0, ·) + (Lsχ)(s, x, ·)
)

. (3.48)

Hereby (3.31) readily follows (with the derivative even in Lebesgue sense).

Proof of Theorem 3.1. Let χ be as constructed in Proposition 3.8 and set

ψ(t, x, ·) := x+ χ(t, x, ·). (3.49)

Then (3.2) follows from (3.33) while (3.3) from (3.32). The identity (3.4) is a conse-
quence of (3.18) and the fact that weak convergence in Lp contracts Lp′-norms. The
integrability conditions in (3.5) follow readily from (3.28–3.29). Since Eχǫ(t, x, ·) = 0
for each ǫ > 0, this implies also the last condition in (3.5).

We finish by a lemma that will be useful in some definitions below:

Lemma 3.10 For each x ∈ Z
d, there is a random variable C(x, ·) > 0 with P(C(x, ·) <

∞) = 1 such that
∣

∣χ(t, x, ·)
∣

∣ ≤ C(x, ·)
(

1 + |t|
)

, t ∈ R. (3.50)

Proof. Pick r ∈ (0, (2d)−1). Using fact that as(e) ≤ 1 in Lemma 3.9 then shows, for
each t ∈ R,

E

(

sup
0<s<r

∣

∣φ̃(t+ s, ·)− φ̃(t, ·)
∣

∣

)

≤ cr

1− 2dr
(3.51)
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where c ∈ (0,∞) is a constant related to the L1-norm of ρ(x, ·) for |x| = 1. Since the
increments of t 7→ φ̃(t, ·) are also stationary due to (3.30), the ergodic theorem implies

C1(·) := sup
t∈R

|φ̃(t, ·)|
1 + |t| <∞, P-a.s. (3.52)

As χ(t, x, ·) = ρ(x, ·)+φ̃(t, ·)◦τ0,x, cf. (3.47), the claim follows with the choice C(x, ·) :=
|ρ(x, ·)|+ C1(·) ◦ τ0,x.

4 Proof of invariance principle

The goal of this section is to give a proof of the main result, which involves showing
that the corrector constructed in Section 3 is sublinear in a strong (L∞) sense. We
proceed by first showing a corresponding statement on average (i.e., in L1-sense, with
respect to the norms introduced in Section 2), see Proposition 4.1 below. This result is
then boosted to a sublinearity result in L∞-sense in Theorem 4.6, which is proved by
obtaining a maximal inequality using a Moser iteration approach, see Proposition 4.7,
whose proof is deferred to Section 5. Conditionally on Proposition 4.7, the proof of
Theorem 1.2 is completed at the end of the present section.

We will occasionally invoke the Maximal Ergodic Theorem for commuting measure
preserving transformations throughout the section. We refer to Krengel [26, Section
6.2] for further details.

4.1 Sublinearity on average.

We begin with an a priori estimate on the L1-norm of the corrector which constitutes
a version of “sublinearity on average.” This will serve as a starting point for the Moser
iteration developed in the next section. Recall the definitions of Bn and ζn from (2.36),
(2.37), with ζ satisfying (2.31–2.33), and the norms ‖ · ‖p,q;B,ζ from (2.8). The desired
statement is as follows:

Proposition 4.1 Let χ be the corrector constructed in Theorem 3.1. Then

lim
n→∞

1

nd+1
‖χ‖1,1;Bn,ζn = 0, P-a.s. (4.1)

Although we could in principle follow the proof of Proposition 3.3 in [3], we found
a different argument. We begin with two lemmas, both of which are formulated for
rectangles of the form

Rn :=
(

[a1n, b1n)× · · · × [adn, bdn)
)

∩ Z
d , (4.2)

where a1, . . . , ad, b1, . . . , bd ∈ R are numbers that obey ai < bi, i = 1, . . . , d. With-
out further mention, we assume in the remainder of Section 4.1 that χ is the object
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constructed in Theorem 3.1, and we implicitly work under the assumptions of that
theorem.

The starting point of the proof is the following observation:

Lemma 4.2 For any sequence {Rn} as above,

1

nd+1

∫ ∞

0

dt
1

n

∫ n

0

ds ζn(t)
∑

x∈Rn

∣

∣χ(t, x, ·)− χ(t + s, x, ·)
∣

∣ −→
n→∞

0, P-a.s. (4.3)

Proof. The cocycle property gives

∫ n

0

ds
∣

∣χ(t, x, ·)− χ(t + s, x, ·)
∣

∣ ≤
n−1
∑

k=0

(

∫ 1

0

ds
∣

∣χ(s, 0, ·)
∣

∣

)

◦ τk+t,x (4.4)

and, introducing

f := sup
n≥1

1

nd+1

n−1
∑

k=0

∑

x∈Rn

(

∫ 1

0

ds
∣

∣χ(s, 0, ·)
∣

∣

)

◦ τk,x , (4.5)

the quantity in (4.3) is thus bounded by

1

n

∫ ∞

0

dt ζn(t)f ◦ τt,0 . (4.6)

In light of Lemma 2.9, it suffices to show that f ∈ Lp(P) for some p > 1. This follows

from the Maximal Ergodic Theorem for space-time shifts and
∫ 1

0
ds|χ(s, 0, ·)| ∈ Lp(P),

as implied by Jensen’s inequality and the middle condition in (3.5).

For the rest of the proof, we will work with the quantity

χ̃n(t, x, ·) :=
∫ ∞

0

du ζn(u)χ(t+ u, x, ·), (4.7)

where the integral converges absolutely thanks to Lemma 3.10 and our assumption of
integrability of t 7→ (1 + |t|)ζ(t). We then have:

Lemma 4.3 For any {Rn} as above,

1

nd+2

∑

x∈Rn

∫ n

0

ds χ̃n(s, x, ·) −→
n→∞

0, P-a.s. (4.8)

For the proof we will need the following fact:

Lemma 4.4 Suppose p ≥ 1 is such that (3.5) holds. For each ǫ > 0 there is a
measurable hǫ : Ω → R

d with hǫ ∈ Lp(P) such that for all x ∈ Z
d,

E

∣

∣

∣

∫ 1

0

dt
(

hǫ − hǫ ◦ τt,x − χ(t, x, ·)
)

∣

∣

∣

p

−→
ǫ↓0

0. (4.9)
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We note that in earlier constructions of the corrector (including the one in [3]) the
property in Lemma 4.4 follows more or less directly. Although we also obtain χ(t, x, ·)
as a limit of the quantities ϕǫ(0, 0, ·) ◦ τt,x − ϕǫ(0, 0, ·), this limit is only in the weak
sense and we do not presently see a way to boost it to a strong convergence as required
above.

An alternative approach would be to regard x 7→ χ(0, x, ·) as an element of the
L2-space of cocycle vector fields with inner product (u, v) := E

∑

e : |e|=1 a0(e)u(e, ·) ·
v(e, ·) and show that it can be approximated by a potential field; i.e., one of the form
hǫ−hǫ ◦ τt,x. Even if the existence of these approximations could be checked, we would
still not know how to proceed as we no longer have a direct way to convert weighted
L2-norms into L1-norms. (Indeed, the energy conversion applies only to solutions of
the inhomogenous heat equation.) Our proof of Lemma 4.4, which we defer to the
Appendix, proceeds by a direct argument inspired (with some necessary corrections)
by derivations in Biskup and Spohn [13].

Proof of Lemma 4.3. Fix p > 1 as appearing above (3.5). The conclusion of Lemma 4.4
holds and, given ǫ > 0, let hǫ be as in (4.9). Define

χ̃n,ǫ(t, x, ·) :=
∫ ∞

0

du ζn(u)

∫ 1

0

ds
[

χ(t + s+ u, x, ·)−
(

hǫ ◦ τt+s+u,x − hǫ
)

]

(4.10)

where the integrals again converge absolutely by Lemma 3.10 and the assumed integra-
bility conditions on ζ . Abbreviating also

h̃n,ǫ :=

∫ ∞

0

du ζn(u)

∫ 1

0

ds hǫ ◦ τs+u,0, (4.11)

which converges absolutely by the last clause of Lemma 2.9, it is now easy to check

1

nd+2

∑

x∈Rn

∫ n

0

ds χ̃n(s, x, ·) =
1

nd+2

∑

x∈Rn

n−1
∑

t=0

χ̃n,ǫ(t, x, ·)

+
1

nd+2

∑

x∈Rn

n−1
∑

t=0

h̃n,ǫ ◦ τt,x −
|Rn|
nd+1

‖ζ‖L1 hǫ(·). (4.12)

Since hǫ ∈ Lp(P) for p > 1, the same holds true for
∫ 1

0
ds hǫ ◦ τs,0, and Lemma 2.9

gives us that supn≥1 |h̃n,ǫ| ∈ L1(P). The Spatial Ergodic Theorem then shows that the
second term on the right tends to zero as n → ∞. The same also applies trivially to
the last term, and so we just need to control the first term on the right.

Let F := σ(at(e) : t ∈ R, e ∈ E(Zd)) be the σ-algebra generated by the con-
ductances and enlarge the probability space to include independent random variables
T,X1, . . . , Xd, independent of F , with T uniform on [0, 1) and Xi uniform on [ai, bi)
for each i = 1, . . . , d. Writing ⌊Xn⌋ to abbreviate the vector (⌊X1n⌋, . . . , ⌊Xdn⌋) and

28



denoting |R̄| :=
∏d

i=1(bi − ai), we get

∣

∣

∣

∣

1

nd+2

∑

x∈Rn

n−1
∑

t=0

χ̃n,ǫ(t, x, ·)−
|R̄|
n

E

(

χ̃n,ǫ

(

⌊Tn⌋, ⌊Xn⌋, ·)
∣

∣

∣
F
)

∣

∣

∣

∣

≤ 1

nd+2

∑

(x,y)∈E(Rn)

n−1
∑

t=0

∣

∣χ̃n,ǫ(t, y, ·)− χ̃n,ǫ(t, x, ·)
∣

∣ ≤ 1

n

∫ ∞

0

ζn(u)f ◦ τu,0 , (4.13)

where

f := sup
n≥1

1

nd+1

∑

(x,y)∈E(Rn)

n−1
∑

t=0

∫ 1

0

ds
∣

∣

∣
χ(0, y − x, ·) + (hǫ − hǫ ◦ τ0,y−x)

∣

∣

∣
◦ τs+t,x. (4.14)

and where the last step follows by invoking the definition of χ̃n,ǫ along with the cocycle
property. The Maximal Ergodic Theorem for space-time shifts gives f ∈ Lp̃(P) for
some p̃ ∈ (1, p) and Lemma 2.9 then ensures that (4.13) converges, as n → ∞, to
zero P-a.s. Thus, if we can show

lim
n→∞

1

n
E

(

χn,ǫ

(

Tn, ⌊Xn⌋, ·)
∣

∣

∣
F
)

= 0, P-a.s. (4.15)

the claim will follow.
The advantage of working in this “continuum” representation is that it makes tele-

scoping arguments more manageable. Indeed, by the cocycle property we can write

χ̃n,ǫ

(

⌊Tn⌋, ⌊Xn⌋, ·) =
n−1
∑

k=0

χ̃n,ǫ

(

⌊T (k + 1)⌋ − ⌊Tk⌋, ⌊X(k + 1)⌋ − ⌊Xk⌋, ·
)

◦ τ⌊Tk⌋,⌊Xk⌋

(4.16)
Now note that ⌊T (k + 1)⌋ − ⌊Tk⌋ ∈ {0, 1} while ⌊X(k + 1)⌋ − ⌊Xk⌋ has ℓ∞-norm
bounded by some r ∈ N independent of n. Introducing

gǫ := sup
n≥1

∑

t=0,1

∑

z : |z|∞≤r

∣

∣χ̃n,ǫ(t, z, ·)
∣

∣, (4.17)

and denoting Λk := {0, . . . , k} × Rk, we thus have

1

n

∣

∣

∣

∣

E

(

χ̃n,ǫ

(

Tn, ⌊Xn⌋, ·)
∣

∣

∣
F
)

∣

∣

∣

∣

≤ 1

n

n−1
∑

k=0

1

kd

∑

(t,x)∈Λk

gǫ ◦ τt,x. (4.18)

Lemma 2.9 and (3.5) ensure that gǫ ∈ Lp̃(P) for p̃ ∈ (1, p). By the Spatial Ergodic
Theorem, the normalized second sum on the right converges to Egǫ and so does the
Cezaro average over k = 0, . . . , n − 1. But (2.38), Jensen’s inequality along with the
cocycle property and the triangle inequality for the Lp̃-norm show

Egǫ ≤ ‖gǫ‖Lp̃(P) ≤ c
∑

z : |z|∞≤r

[

E

∣

∣

∣

∫ 1

0

ds
(

hǫ − hǫ ◦ τs,x − χ(s, x, ·)
)

∣

∣

∣

p
]1/p

(4.19)
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for some c ∈ (0,∞) depending only on p, p̃, d and ζ . Lemma 4.4 then gives Egǫ → 0
as ǫ ↓ 0 thus proving (4.15) as desired.

As an immediate consequence we get:

Corollary 4.5 For any {Rn} as above,

1

nd+1

∫ ∞

0

dt ζn(t)
∑

x∈Rn

χ(t, x, ·) −→
n→∞

0, P-a.s. (4.20)

Proof. This follows by combining (4.3) with (4.8).

We are now ready to give:

Proof of Proposition 4.1. We adapt part of the argument from page 227 in Sido-
ravicius and Sznitman [36]. (The argument cannot be used directly as it relies on
square integrability of the corrector as well as separate ergodicity.) Denote χ̄B(t, ·) :=
|B|−1

∑

x∈B χ(t, x, ·) and, given L ≥ 1, let {Rn,i : i = 1, . . . , m(n)} be the enumeration
of sets of the form (⌊n(z/L+ [0, 1/L)d)⌋ ∩Z

d with z ∈ Z
d that have a non-empty inter-

section with Bn. Denote B̃n :=
⋃m(n)

i=1 Rn,i. Then Lemma 2.2 and a routine (by now)
use of Cauchy-Schwarz inequality show

‖χ‖1,1;Rn,i,ζn ≤ ‖χ̄Rn,i
‖1,1;Rn,i,ζn + c

n

L

(

‖w−1‖1,1;E(Rn,i),ζn Ew,ζn
Rn,i

(χ)
)1/2

. (4.21)

Now sum this over i = 1, . . . , m(n) and apply Cauchy-Schwarz inequality one more time
to get

‖χ‖1,1;Bn,ζn ≤
m(n)
∑

i=1

‖χ̄Rn,i
‖1,1;Rn,i,ζn + c

n

L
‖w−1‖1/2

1,1;E(B̃n),ζn
Ew,ζn
B̃n

(χ)1/2 . (4.22)

Corollary 4.5 and the fact that m(n) is at most order Ld ensures

1

nd+1

m(n)
∑

i=1

‖χ̄Rn,i
‖1,1;Rn,i,ζn −→

n→∞
0, P-a.s. (4.23)

Lemma 2.10 in turn gives

sup
n≥1

1

nd
‖w−1‖1,1;E(B̃n),ζn

<∞, P-a.s. (4.24)

Since χ solves (3.31) with V bounded, (2.51) and (3.4) also show

sup
n≥1

1

nd
Ew,ζn
B̃n

(χ) <∞, P-a.s. (4.25)

The claim now follows from (4.22) by taking n→ ∞ followed by L→ ∞.
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4.2 Sublinearity everywhere and proof of main result.

Recall the definition of the corrector from the previous section. Our next goal is to
boost the L1-sublinearity to an L∞-version. Define the diffusive space-time cylinder

Q(n) :=
{

(x, t) : x ∈ Bn, 0 ≤ t ≤ n2
}

. (4.26)

We now claim that the corrector is sublinear on diffusive scale of space and time:

Theorem 4.6 Suppose Assumption 1.1 holds and assume, in addition, (1.12). Then

lim
n→∞

max
(t,x)∈Q(n)

|χ(t, x, ·)|
n

= 0, P-a.s.. (4.27)

Recalling the notation ||| · |||p,q;B,ζ for the normalized norms from (2.20), the key point
of the proof of this claim is the following proposition valid for general solutions to the
heat equation. We state it in a form which will be sufficient to deduce Theorem 1.2. A
more general version of the following result can be found in Corollary 5.9.

Proposition 4.7 (L1 to L∞ bootstrap) Suppose Assumption 1.1 as well as the mo-
ment bound (1.12) hold. Assume also that (2.31) are valid. There exist functions k, ζ
satisfying (2.31)-(2.34) and constants γ1 ∈ (0,∞) and c, c′ ∈ (1,∞) (all depending on d
and the choice of k, ζ) such that, if u : R×Z

d×Ω → R
d is a (measurable) weak solution

to
∂

∂t
u(t, x, ·) + Ltu(t, x, ·) = Ltf, (4.28)

for some bounded f : R×Z
d×Ω → R satisfying |f(y)−f(x)| ≤ 1

n
for all (x, y) ∈ E(Bn)

and all n ≥ 1, then for all r ∈ (2d, ϑ
2
),

max
(t,x)∈Q(n)

|u(t, x)| ≤ cW (r)γ1|||u|||γ2(n,u)1,1;B2n,ζn
(4.29)

where 1 ≤ γ2(n, u) ≤ c′ and ζn is defined in (2.37) and

W (r) := sup
n≥1

max
m∈[n,2n]

∣

∣

∣

∣

∣

∣w−1
∣

∣

∣

∣

∣

∣

r,r;E(B2n),ζn
(4.30)

satisfies
W (r) <∞, for all r ∈ (2d, ϑ/2). (4.31)

Deferring the proof of Proposition 4.7 to Section 5, let us show how it implies our
main result. We begin with:

Proof of Theorem 4.6. Since the corrector obeys the equation (3.31), this is immediate
from Lemma 2.10, Proposition 4.1, Proposition 4.7 and the boundedness of V .

Next we note the standard fact:
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Lemma 4.8 Suppose Assumption 1.1 and, given a sample of a = {at(e) : e ∈ Z(Zd), t ∈
R}, let {Xt : t ≥ 0} be a sample of the random walk. The process t 7→ τt,Xta on Ω is
then Markov with a unique stationary measure P. Moreover, the process is ergodic in
the sense that, for any function f ∈ L1(P), we have

1

t

∫ t

0

dt f(τt,Xta) −→
t→∞

Ef (4.32)

for P-a.e. a ∈ Ω and P 0-a.e. sample of {Xt : t ≥ 0}.

Proof. The stationarity and reversibility of P is verified easily by a standard generator
calculation and the limit in (4.32) exists by the Ergodic Theorem. The only item where
caution is needed is ergodicity which ensures that the limit value in (4.32) is constant
P-a.s., and thus equal to Ef . This boils down to showing that any event A ⊂ Ω which
is invariant under the Markov shift t 7→ τt,Xta is a zero-one event.

We build on an argument in Andres [1, Proposition 2.1]. Let A be as above. For
each t ≥ 0, we then have 1A =

∑

x∈Zd p0,t(0, x)1A ◦ τt,x P-a.s. and so

0 = 1Ac1A =
∑

x∈Zd

1Acp0,t(0, x)1A ◦ τt,x . (4.33)

Taking expectation and dropping all but one term from the sum yields

E
(

1Acp0,t(0, x)1A ◦ τt,x
)

= 0, x ∈ Z
d, t ≥ 0. (4.34)

Since at(e) ≤ 1 implies p0,t(0, 0) ≥ e−2dt, choosing x = 0 gives E(1Ac1A ◦ τt,0) = 0 for
all t ≥ 0. Applying τ−t,0 under expectation and swapping the roles of A and Ac then
shows 1A ◦ τt,0 = 1A P-a.s. for each t ∈ R, i.e., A is time-shift invariant P-a.s.

Next pick a neighbor e of the origin and apply (4.34) to x := e. Injecting the
restriction Te < t into the expectation, we thus get

E
(

1{Te<t}1Acp0,t(0, e)1A ◦ τt,e
)

= 0. (4.35)

But time-shift invariance of A shows 1A ◦ τt,e = 1A ◦ τ0,e P-a.s. and, on {Te < t}, we
have

p0,t(0, e) ≥ e−2dt

∫ t

0

ds as(e) ≥ e−2dt. (4.36)

It follows that E(1{Te<t}1Ac1A ◦ τ0,e) = 0. Taking t→ ∞ and using that Te <∞ P-a.s.
(by Assumption 1.1(3)) we now again get 1A ◦ τ0,e = 1A P-a.s. Hence A is invariant
with respect to all space-time shifts a.s.; ergodicity of P then implies that P(A) ∈ {0, 1}
as desired.

We are now ready to give the:

Proof of Theorem 1.2. Let ψ be the harmonic coordinate constructed in Theorem 3.1
and let {Xt : t ≥ 0} be a sample of the random walk. Let Ft := σ(Xs : 0 ≤ s ≤ t). The
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equation (3.2) then implies that {ψ(t, Xt, ·),Ft}t≥0 is a martingale. Letting v ∈ R
d, the

quadratic variation process of t 7→ v · ψ(t, Xt, ·) is given by

〈

v · ψ(t, Xt, ·)
〉

t
=

∫ t

0

ds f ◦ τs,Xs(a) , (4.37)

where

f(a) := E0

(

∑

z : |z|=1

a0(0, z)
[

v · ψ(0, z, ·)
]2
)

. (4.38)

In light of (3.4) and Lemma 4.8, the conditions of the Lindeberg-Feller Martingale
Functional Central Limit Theorem are satisfied. Hence t 7→ n−1ψ(tn2, Xtn2 , ·) scales
as n→ ∞ to a Brownian motion with variance as in (1.14).

In order to complete the proof of convergence of t 7→ n−1Xtn2 to Brownian motion,
it suffices to show that, for P-a.e. realization of the environment,

sup
0≤s≤t

1√
t

∣

∣ψ(s,Xs, ·)−Xs

∣

∣ −→
t→∞

0, in P 0-probability . (4.39)

This is shown by noting that, for any M ≥ 1 and any ǫ > 0,

P 0
(

sup
0≤s≤t

∣

∣ψ(s,Xs, ·)−Xs

∣

∣ > ǫ
√
t
)

≤ P 0
(

sup
0≤s≤t

∣

∣ψ(s,Xs, ·)
∣

∣ > M
√
t
)

+ 1{max(s,x)∈Q(M
√
t) |χ(s,x,·)|>ǫ

√
t}. (4.40)

For any fixed M ≥ 1 and ǫ > 0, Proposition 4.7 ensures that the indicator is zero for t
sufficiently large P-a.s. On the other hand, in the limit as t→ ∞ followed by M → ∞,
the probability on the right tends to zero by the above convergence of t 7→ n−1ψ(Xtn2)
to Brownian motion. This implies (4.39).

In order to show that the limiting covariance Σ is non-degenerate suppose that
v · Σv = 0 for some v ∈ R

d. Then (1.14) and the cocycle conditions imply Lt(v ·
ψ)(t, x, ·) = 0 for all t and x and thus by the differential equation, see (3.2), the
function t 7→ v · ψ(t, x, ·) = 0 is constant for each x ∈ Z

d. However, Assumption 1.1(3)
ensures that t 7→ at(e) is positive eventually and so this means that v · ψ(0, x, ·) = 0
P-a.s. If v 6= 0, this violates the sublinearity of χ from Theorem 4.6 and so we must
have v = 0 after all.

5 Maximal inequality via Moser iteration

The aim of this section is give a proof of the maximal inequality for the corrector stated
in Proposition 4.7. The proof is based on Moser-iteration technique whose main input
is the “one-step estimate” stated in Proposition 5.2 below. In this section we provide
the proof of Proposition 4.7 conditional on the one-step estimate; this estimate is then
proved in Section 6.
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5.1 Cut-offs and the one-step estimate.

Let us start with the statement of the one-step estimate. This will require working under
spatial and temporal mollifiers (or smooth cut-offs), denoted by η and ξ respectively,
that will be assumed to obey the following conditions:

Definition 5.1 Given finite sets B1 ⊂ B2 ⊂ Z
d, and parameters δ ∈ (0, 1), ρ ≥ 1 and

M ≥ 1, we say that the (cut-off) functions κ1, κ2 : [0,∞) × Z
d → [0, 1] are (B1, B2)-

adapted with parameters (δ, ρ,M) if, for i = 1, 2, these functions take the form

κi(t, x) = ξi(t)ηi(x), t ≥ 0, x ∈ Z
d, (5.1)

with ξi : [0,∞) → [0, 1] and ηi : Z
d → [0, 1] satisfying

supp(ηi) ⊂ Bi for i = 1, 2 and η2(x) = 1 for x ∈ B1, (5.2)

and

ξi ∈ C1 for i = 1, 2 and ξ1(t) ≤Mξ2(t)
ρ, |

.

ξ1(t)| ≤ δMξ2(t)
ρ, t ≥ 0. (5.3)

The spatial mollifier ηi should be thought of as a “smooth” version of the indicator
of 1Bi

. Note that the conditions in (5.2) imply η1 ≤ η2. An explicit construction of
functions ηi and ξi is provided below in Lemma 5.5.

In order to state the one-step estimate, we need some more notation. Given e ∈
E(Zd) (and recalling that edges are unoriented), specify one of its endpoints as its
initial vertex xe and the other as ye (the choice will not matter in the sequel). Then
abbreviate

∇f(e) := f(ye)− f(xe). (5.4)

In what follows, we will write ‖·‖ℓp(K) to denote the ℓ
p-norm with respect to the counting

measure, for any K ⊆ Z
d (or, if functions on edges are considered, K ⊆ E(Zd)) and any

p > 0. We denote by L∞(R+) the set of Lebesgue-a.e. bounded functions supported
in [0,∞). Recall also the notation p̂(α) := α

2
d

d−1
and q̂(β) := β

2
for the “Sobolev

exponents” from (2.23), and the normalized norms ||| · |||p,q;B,ζ from (2.20). We assume
throughout that ζ satisfies (2.31–2.33) and we are interested in weak solutions to the
inhomogenous equation

∂

∂t
u(t, x) + Ltu(t, x) = Ltf(t, x), t ≥ 0, x ∈ Z

d. (5.5)

We are only interested in the specific case f(t, x) = x, see (3.31) and (3.11), for which
a (weak) solution to (5.5) has been constructed in Proposition 3.8, but the following
results only require that ‖∇f‖ℓ∞(E) be finite. The “one-step estimate” is now the
content of:

Proposition 5.2 (One-step Moser iteration) Let d ≥ 2 and suppose Assumption 1.1
holds. For all α ∈ (2, 2d−1

d−2
), all β ∈ (0, 2) and all q > 1 and p defined by

1

p
:=

θ

p̂(α)
+ 1− θ, where θ :=

q̂(β)

q
∈ (0, 1) , (5.6)
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there is c2 = c2(d, α, β, q) ∈ (0,∞) such that the following holds for any weak solution u
of inhomogenous heat equation (5.5): For all finite B1 ⊂ B2 ⊂ Z

d, all δ > 0, all
ρ ∈ [1, p ∧ q), all M ≥ 1, all λ1 ≥ 2 and all (B1, B2)-adapted functions κ1, κ2 with
parameters (δ, ρ,M) we have

||| κ2/λ1

1 u |||λ1p, λ1q; B1,ζ ≤ (A1,2)
1/λ1 ||| κ2/λ2

2 u |||γλ2p, λ2q; B2,ζ
, (5.7)

where λ2 := λ1/ρ,

γ :=

{

1− 2
λ1
, if ||| ξ2ρ2 |u|λ1 |||1,1;B1,ζ < 1,

1 otherwise
(5.8)

(in particular, γ ∈ [0, 1]) and the prefactor A1,2 takes the explicit form

A1,2 := c2(λ
2
1M)2 ‖ζ‖L1

(

1∨|||w−1 ||| r
2
, s
2
; B1,ζ

) |B2|
|B1|

[

(Γ+δ)

(

1

inft∈Σ1 ζ(t)
+ |B1|

2
d

)

]

(5.9)

with r, s related to α, β as in (2.11), Σ1 := supp(ξ1) and

Γ := ‖∇f‖2ℓ∞(E) +
∥

∥(∇f)(∇η1)
∥

∥

ℓ∞(E)
+ ‖∇η1‖2ℓ∞(E) + ‖

.

ζ/ζ‖L∞(R+) . (5.10)

Here f : Zd → R is the function on the right of (5.5).

The proof also exhibits the following estimate, which we record for later purposes:

Corollary 5.3 For the setting, notations and under the conditions of Proposition 5.2,

∣

∣

∣

∣

∣

∣κ21|u|λ1
∣

∣

∣

∣

∣

∣

1/λ1

1,∞; B1,ζ
≤ (A1,2)

1/λ1 ||| κ2/λ2

2 u |||γλ2p, λ2q ;B2,ζ
. (5.11)

Remark 5.4 The allowed range of α implies that p̂(α) ∈ ( d
d−1

, d
d−2

) and, in particular,
that p̂(α) > 1. It follows that p defined in (5.6) satisfies p > 1. As a consequence,
ρ ∈ (1, p ∧ q) can always be found so that λ2 < λ1 (as will be desired).

The prefactor A1,2 collects all dependencies on the cut-off functions as well as the
norm |||w−1 ||| r

2
, s
2
; B1,ζ , which we will control via Lemma 2.10. Our choices of parameters

will eventually ensure that the term in square brackets on the right-hand side of (5.9)
is of order unity, and so A1,2 is basically order-(λ21M)2. Both λ1 and M will change
through iterations, but in such a way that the overall product of prefactors of the type
(A1,2)

1/λ1 arising from subsequent iterations remains bounded.

Proposition 5.2 is where the principal novel ingredients of the present work enter the
proof of Moser iteration; the rest is more or less just an adaptation of the arguments
in [3]. Deferring the proof of Proposition 5.2 to Section 6, we now proceed to discuss
these adaptations and give the proof of Proposition 4.7.

5.2 Iteration.

The fact that λ1 in Proposition 5.2 can be rather arbitrary, and ρ can be set to a
quantity in excess of one (see Remark 5.4), offers the possibility to apply the inequality
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in (5.7) iteratively to bound high-(p, q)-norms of the solution to the Poisson equation
by low-(p, q)-norms thereof. As we also need to keep the quantity in (5.10) bounded,
this means that the underlying domains, and thus also the mollifiers, will have to vary
throughout the iteration. The discrete nature of the underlying lattice (and the need to
keep the gradients of η bounded) only allows us to run the iteration a limited number of
times, albeit increasing with the size of the initial domain. Another iterative argument
will thus have to be invoked afterwards to convert the high-(p, q)-norm to the maximum
over the space-time box Q(n). This will then readily yield Proposition 4.7.

Let us begin by introducing the needed notation. We will consider underlying
domains that depend on two adjustable real-valued parameters σ and σ′ which satisfy

1 ≤ σ′ < σ ≤ 2. (5.12)

These parameters are introduced only for the sake of the second iteration and they will
remain unchanged throughout the first iteration. Given n ≥ 1, consider a decreasing
sequence of boxes (Bn,k)k≥0 such that

Bn,k := B(0, σkn), where σk := σ′ + 2−k(σ − σ′). (5.13)

We then have

Bn := B(0, n) ⊆ Bσ′n ⊆ Bn,k ⊆ Bn,k−1 ⊆ Bσn ⊆ B2n, k ≥ 0. (5.14)

Next we introduce the cut-off functions (depending implicitly on the choice of σ and
σ′)

κn,k(t, x) := ξn,k(t)ηn,k(x) (5.15)

as follows: For all k ≥ 0, the function ηn,k : Z
d → [0, 1] satisfies

supp(ηn,k) ⊂ Bn,k, ηn,k = 1 on Bn,k+1 and ‖∇ηn,k‖ℓ∞ ≤ 1

(σk − σk+1)n
. (5.16)

(This can be achieved by interpolating linearly between Bn,k+1 and Bc
n,k.) Denoting

b(t) :=















1, if t ≤ 0

exp
(

1− 1
1−t2

)

, if t ∈ (0, 1)

0, if t ≥ 1,

(5.17)

the function ξn,k : [0,∞) → [0, 1] is defined as

ξn,k(t) := b

(

(t/n2)− τk
∆σ,σ′

)

= b

(

t− τkn
2

(τk +∆σ,σ′)n2 − τkn2

)

, (5.18)

where

∆σ,σ′ :=
σ − σ′

2
and τk := σ′ +∆σ,σ′

∞
∑

ℓ=k+1

δℓ with δℓ :=
6

π2
ℓ−2. (5.19)
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As seen from the rewrite in (5.18), ξn,k equals 1 on [0, τkn
2] and then drops smoothly

to 0 over the interval [τkn
2, (τk +∆σ,σ′)n2]. Observe in addition that δℓ ∈ [0, 1) are such

that
∑

ℓ≥1 δℓ = 1 and that k 7→ τk is decreasing with τ0 = σ+σ′

2
and limk→∞ τk = σ′.

For later purposes we also record that for all n, k ≥ 0,

ξn,k(t) = 1, for t ≤ σ′n2 (5.20)

ξn,k(t) = 0, for t ≥ σn2. (5.21)

Note that ηn,k, ξn,k, τk all depend implicitly on the choice of σ′ and σ satisfying (5.12).

To see that the above choices are reasonable, we note:

Lemma 5.5 For all σ′, σ satisfying (5.12), all n, k ≥ 1 and all ρ ≥ 1, the func-
tions κn,k, κn,k−1 defined by (5.15), (5.16) and (5.18) are (Bn,k, Bn,k−1)-adapted with
parameters ( 1

n2 , ρ,Mk), where

Mk := (1 ∨∆−1
σ,σ′‖

.

b‖∞)eρ/δk . (5.22)

Proof. The conditions (5.2) hold on account of (5.16) (in particular, note that ηn,k−1 = 1
on Bn,k). As for (5.3), first note that ξn,k ∈ C∞. It thus remains to show that

ξn,k(t) ≤Mkξn,k−1(t)
ρ and

∣

∣

.

ξn,k(t)
∣

∣ ≤ 1

n2
Mkξn,k−1(t)

ρ, t ≥ 0. (5.23)

For t ≥ (τk +∆σ,σ′)n2 we have ξn,k(t) =
.

ξn,k(t) = 0 and so these bounds hold trivially.
In the range t ≤ τk−1n

2, we have ξρn,k−1(t) = 1 and so the first bound is immediate,
while the second follows from

∣

∣

.

ξn,k(t)
∣

∣ ≤ ∆−1
σ,σ′n

−2‖
.

b‖∞ . (5.24)

It remains to deal with the case t
n2 ∈ (τk−1, τk + ∆σ,σ′). For t

n2 in this interval, we
observe

1

ξn,k−1(t)ρ
(5.18)
= b

(

(t/n2)− τk−1

∆σ,σ′

)−ρ

≤ sup
s∈(0,1−δk)

[

b(s)−ρ
]

= e
ρ

1−(1−δk)2
−ρ ≤ eρ/δk ,

(5.25)

and soMkξn,k−1(t) ≥ 1∨∆−1
σ,σ′‖

.

b‖∞. The first bound in (5.23) then follows immediately
since ξn,k ≤ 1 while the second is obtained by invoking (5.24) one more time.

Lastly, we recall the definition (2.37) of ζn, n ≥ 1, obtained from ζ , cf. (2.31–2.33),
by a (diffusive) rescaling. Let

c3 = c3(ζ) := 1 ∨ ‖ζ‖L1 ∨ ‖
.

ζ/ζ‖L∞(R+) ∨
(

inf
t∈[0,2]

ζ(t)
)−1

. (5.26)

A recursive application of Proposition 5.2 then yields:
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Proposition 5.6 (Moser iteration) Suppose Assumption 1.1 and (2.34) hold. For all
d ≥ 2, all α ∈ (2, 2d−1

d−2
), all β ∈ (0, 2), all q > 1 and p as defined in (5.6), there is

c4 = c4(α, β, q, d) ∈ [1,∞) such that, for all ρ ∈ [1, p ∧ q), all integers n ≥ 1, k > N ,
where

N := N(ρ) = inf{k ≥ 1; ρk > 2} − 1, (5.27)

and all weak solutions u of (5.5) with f on the right-hand side satisfying ‖∇f‖ℓ∞(E) ≤ 1
n
,

we have

∣

∣

∣

∣

∣

∣κ
2/ρk

n,k u
∣

∣

∣

∣

∣

∣

ρkp, ρkq; Bn,k,ζn
≤
[

c5W

(σ − σ′)4

]

∑k
ℓ=1 ρ

−ℓ

e3ρ
∑k

ℓ=1 ℓ
2ρ−ℓ ∣

∣

∣

∣

∣

∣κ2n,0 u
∣

∣

∣

∣

∣

∣

γ̄(n,k)

p′, q′; Bσn,ζn
, (5.28)

where p′ = p′(ρ) = ρNp, q′ = ρNq, c5 := c4(c3)
2c2, with c3 given by (5.26) and c2 as in

Proposition 5.2,
W := 1 ∨ sup

n≥1
sup

m∈[n,2n]
|||w−1 ||| r

2
, s
2
; Bm,ζn (5.29)

and where γ̄(n, k) ∈ (0, 1] is defined as

γ̄(n, k) :=

k
∏

ℓ=N+1

γn,ℓ, with γn,ℓ :=

{

1− 2ρ−ℓ, if ||| ξ2ρn,ℓ−1|u|ρ
ℓ |||1,1;Bn,ℓ,ζn < 1,

1, else.
(5.30)

Proof. Let n ≥ 1, k > N be integers. In view of (2.34), ζn satisfies conditions (2.31–
2.33), hence we may apply Proposition 5.2 for the choices ζ := ζn, B1 := Bn,k, B2 :=
Bn,k−1, so that B1 ⊂ B2 by (5.13), the mollifiers κ1 := κn,k and κ2 := κn,k−1, which
are (Bn,k, Bn,k−1)-adapted with parameters ( 1

n2 , ρ,Mk) by Lemma 5.5, and λ1 := ρk,
which satisfies λ1 > 2 by (5.27) and since k > N . Noting that γn,k as defined in (5.30)
corresponds precisely to γ in (5.8), the one-step estimate (5.7) reads

∣

∣

∣

∣

∣

∣κ
2/ρk

n,k u
∣

∣

∣

∣

∣

∣

ρkp, ρkq; Bn,k ,ζn
≤ (An,k)

1/ρk
∣

∣

∣

∣

∣

∣κ
2/ρk−1

n,k−1 u
∣

∣

∣

∣

∣

∣

γn,k

ρk−1p, ρk−1q; Bn,k−1,ζn
(5.31)

where

An,k := c2ρ
4kM2

k ‖ζn‖L1

(

1 ∨ |||w−1 ||| r
2
, s
2
; Bn,k,ζn

)

× |Bn,k−1|
|Bn,k|

[

(

Γn,k +
1

n2

)(

1

inft∈Σn,k
ζn(t)

+ |Bn,k|
2
d

)

]

, (5.32)

with

Γn,k := ‖∇f‖2ℓ∞(E) + ‖(∇f)(∇ηn,k)‖ℓ∞(E) + ‖∇ηn,k‖2ℓ∞(E) + ‖
.

ζn/ζn‖L∞(R+) (5.33)

and Σn,k := supp(ξn,k). As we will now demonstrate, An,k is bounded uniformly in n
by a quantity whose growth in k can be controlled.

Clearly, ‖ζn‖L1 = ‖ζ‖L1 ≤ c3, while 1∨ |||w−1 ||| r
2
, s
2
; Bn,k,ζn ≤W on account of (5.29)

and (5.14). Similarly, |Bn,k−1|/|Bn,k| ≤ |B2n|/|Bn| is bounded uniformly in n and k.
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Regarding the term in the large brackets in (5.32), by the assumption on ∇f and (5.16),

and since ‖
.

ζn/ζn‖L∞(R+) = ‖
.

ζ/ζ‖L∞(R+)/n
2, we obtain, recalling also (5.13) and (5.26),

Γn,k ≤
1

n2

(

1 + ‖
.

ζ/ζ‖L∞(R+) + (σk − σk+1)
−1 + (σk − σk+1)

−2
)

≤ 4c32
2(k+1)

n2(σ − σ′)2
. (5.34)

Finally, (5.12) and (5.21) show Σn,k ⊂ [0, 2n2] and so

(

inf
t∈Σn,k

ζn(t)
)−1

≤ n2
(

inf
t∈[0,2]

ζ(t)
)−1

≤ c3n
2, (5.35)

whilst |Bn,k|
2
d ≤ |B2n|

2
d ≤ cn2. Recalling that Mk ≤ c(σ−σ′)−1eρk

2
, cf. Lemma 5.5 and

(5.19), and noting that there is a numerical constant c such that 22kρ4k ≤ ceρk
2
holds

for all ρ ≥ 1 and all k ≥ 0, we thus obtain

An,k ≤ c2(c3)
2c4

W

(σ − σ′)4
e3ρk

2

, (5.36)

where c4 = c4(α, β, q, d) ≥ 1 collects the various numerical prefactors in the above
estimates.

Substituting (5.36) into (5.31) and using that An,k ≥ 1 while γn,k ≤ 1, the claim
(5.28) readily follows by induction over k (starting at k = N + 1), noting also for the
very last step that Bσn/Bn,N ≤ c(d), which can be absorbed by adapting the constant
c4, and extending the arising sums over ℓ to start at 1 (rather than N + 1; the term in
square brackets on the right-hand side of (5.28) is greater or equal to 1).

Following up on Corollary 5.3, one also has the following bound:

Corollary 5.7 Under the setting and assumptions of Proposition 5.6, for all n ≥ 1,
k > N , all ρ ∈ [1, p∧ q) and all weak solutions u of (5.5), with f on the right satisfying
‖∇f‖ℓ∞(E) ≤ 1

n
,

∣

∣

∣

∣

∣

∣κ2n,k|u|ρ
k ∣

∣

∣

∣

∣

∣

1/ρk

1,∞ ; Bn,k , ζn
≤
[

c5
W e3ρk

2

(σ − σ′)4

]1/ρk
∣

∣

∣

∣

∣

∣κ
2/ρk−1

n,k−1 u
∣

∣

∣

∣

∣

∣

γn,k

ρk−1p, ρk−1q ;Bn,k−1, ζn
. (5.37)

Proof. We use the same setting as in the proof of Proposition 5.6 but invoke (5.11)
instead of (5.7), and then apply (5.36).

5.3 Proof of maximal inequality.

Our next task is to “upgrade” the bound (5.28) to an estimate on the maximum of
the solution u over the space-time cylinder Q(n). First we state (in Lemma 5.8) a
rather immediate consequence of Proposition 5.6 which bounds the maximum of u in
the space-time cylinder Bσ′n × [0, σ′n2] in terms of the (p′, q′)-norm (for p′, q′ as above)
of u cut off outside of a slightly larger cylinder with spatial base Bσn. Keeping all
dependencies on σ, σ′ explicit is crucial as these will be subsequently varied to replace
the (p′, q′)-norm by the (1, 1)-norm.
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Lemma 5.8 Suppose Assumption 1.1 and (2.34) hold. For all d ≥ 2 there is c6 =
c6(d, ρ) ∈ (0,∞) such that for all α ∈ (2, 2d−1

d−2
), all β ∈ (0, 2), all q > 1 and p as defined

in (5.6), and for all integers n ≥ 1, all ρ ∈ (1, p ∧ q) and all weak solutions u of (5.5)
with f on the right-hand side satisfying ‖∇f‖ℓ∞(E) ≤ 1

n
we have

max
(t,x)∈[0,σ′n2]×Bσ′n

∣

∣ u(t, x)
∣

∣ ≤ c6

[

c5W

(σ − σ′)4

]
1

ρ−1
∣

∣

∣

∣

∣

∣κ2n,0 u
∣

∣

∣

∣

∣

∣

γ̄ ′(ρ,n)

p′, q′; Bσn, ζn
, (5.38)

where p′ = ρNp, q′ = ρNq, κn,0 is defined in (5.15), W is as in (5.29), c5 is the constant
from Proposition 5.6 and γ̄ ′(ρ, n) := γ̄

(

n, (⌈log logn/ log ρ⌉) ∨ (N + 1)
)

for γ̄ (·, ·) as
defined in (5.30) and with N = N(ρ) given by (5.27).

Proof. Let k ≥ N + 2, with N = N(ρ) given by (5.27). For any k, the function κ
2/ρk

n,k

is equal to 1 on Bn,k+1 × [0, τkn
2] ⊃ Bσ′n × [0, σ′n2], cf. (5.16) and (5.20). Using that

supp(ζn) ⊃ [0, σ′n2] by (5.12) and (2.31), and applying Corollary 5.7 and Proposition 5.6
(the latter for index k − 1 (> N)), we thus get

max
(t,x)∈[0,σ′n2]×Bσ′n

∣

∣ u(t, x)
∣

∣ ≤ max
(t,x)∈[0,σ′n2]×Bσ′n

∣

∣ (κ
2/ρk

n,k u)(t, x)
∣

∣

≤ max
t∈[0,σ′n2]

[

∑

x∈Bn,k

∣

∣(κ2n,kũ
ρk)(t, x)

∣

∣

]1/ρk

(2.21)

≤ |Bn,k|1/ρ
k∣

∣

∣

∣

∣

∣κ2n,kũ
ρk
∣

∣

∣

∣

∣

∣

1/ρk

1,∞;Bn,k

(5.37)

≤ |Bn,k|1/ρ
k

[

c5W e3ρk
2

(σ − σ′)4

]1/ρk
∣

∣

∣

∣

∣

∣κ
2/ρk−1

n,k−1 u
∣

∣

∣

∣

∣

∣

γn,k

ρk−1p,ρk−1q;Bn,k−1,ζn

(5.28)

≤ |B2n|1/ρ
k

[

c5W

(σ − σ′)4

]

∑k
ℓ=1 ρ

−ℓ

e3ρ
∑k−1

ℓ=1 ℓ2ρ−ℓ ∣

∣

∣

∣

∣

∣κ2n,0 u
∣

∣

∣

∣

∣

∣

γ̄(n,k)

p, q; Bσn,ζn
.

(5.39)
Choosing k := ⌈log logn/ log ρ⌉∨(N(ρ)+2) ensures that |B2n|1/ρ

k ≤ c̃(ρ) uniformly in n.

The claim follows upon defining c6(ρ) = c̃(ρ) exp(3ρ2(ρ+1)
(ρ−1)3

) by noting that
∑∞

ℓ=1 ℓ
2ρ1−ℓ =

ρ2(ρ+ 1)(ρ− 1)−3 and
∑∞

ℓ=1 ρ
−ℓ = (ρ− 1)−1 for all ρ > 1.

The replacement of the (p, q)-norm by the (1, 1)-norm is the subject of the following
lemma, which is more or less drawn from [3]. The proof of Proposition 4.7 will then
quickly follow, using also Lemma 2.10 to bound W .

Lemma 5.9 For the setting of Lemma 5.8, there are c7 = c7(α, β, ρ, p, q, d, c3(ζ)),
c8 = c8(ρ, p, q), and c9 = c9(α, β, ρ, p, q, d, c3(ζ)),

max
(t,x)∈[0,n2]×Bn

∣

∣u(t, x)
∣

∣ ≤ c7W
c8
∣

∣

∣

∣

∣

∣ 1[0,2n2] u
∣

∣

∣

∣

∣

∣

γn(u)

1, 1; B2n,ζn
. (5.40)

where 1[0,2n2] abbreviates the indicator of t ∈ [0, 2n2], and γn(u) satisfies 1 ≤ γn(u) ≤ c9
(and γn(u) also implicitly depends on the same set of parameters as c9).
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Proof. Define σ̄i := 2−2−i for i ≥ 0, which is increasing in i with σ̄0 = 1 and limi→∞ σ̄i =
2. Abbreviate

|||f |||∞,i := max
(t,x)∈[0,σ̄in2]×Bσ̄in

∣

∣ f(t, x)
∣

∣. (5.41)

Our goal is to estimate |||u|||∞,0 by the right-hand side of (5.40). We will apply (5.38)

repeatedly with σ′ := σ̄i−1 and σ := σ̄i. We will write κ
(i)
n,0 for the mollifier with these

choices of σ′ and σ, and let γ̄ ′
i := γ̄ ′

i (ρ, n) denote the quantity defined below (5.38) for
this pair, recalling the dependence of this quantity on σ and σ′ via the cut-off function
ξ appearing in (5.30). (Since n will remain fixed, we will suppress it whenever possible.)
Using (2.22) and (2.29) with θ := θ(p, q, ρ) = 1 − 1

p′∨q′ (∈ (0, 1)), where p′ = ρNp and

q′ = ρNq, we then have for each i ≥ 0,

∣

∣

∣

∣

∣

∣ (κ
(i)
n,0)

2 u
∣

∣

∣

∣

∣

∣

p′, q′; Bσ̄in
,ζn

≤
∣

∣

∣

∣

∣

∣ (κ
(i)
n,0)

2 u
∣

∣

∣

∣

∣

∣

p′∨q′, p′∨q′; Bσ̄in
,ζn

≤
∣

∣

∣

∣

∣

∣ (κ
(i)
n,0)

2 u
∣

∣

∣

∣

∣

∣

1−θ

1, 1; Bσ̄in
,ζn

∣

∣

∣

∣

∣

∣ (κ
(i)
n,0)

2 u
∣

∣

∣

∣

∣

∣

θ

∞,i

≤ c
∣

∣

∣

∣

∣

∣ 1[0,2n2]u
∣

∣

∣

∣

∣

∣

1−θ

1, 1; B2n,ζn
||| u |||θ∞,i

(5.42)

for some c = c(p, q, d) ∈ [1,∞), where the second line follows from supp(κ
(i)
n,0) ⊂

[0, σ̄in
2]×Bσ̄in ⊂ [0, 2n2]×B2n and the fact that |B2n|/|Bσ̄in| ≤ |B2n|/|Bn| is bounded

uniformly in n and i. Inserting (5.42) into (5.38) while noting that σ̄i − σ̄i−1 = 2−i

yields, for all i ≥ 1,

||| u |||∞,i−1 = max
(t,x)∈[0,σ̄i−1n2]×Bσ̄i−1n

∣

∣ u(t, x)
∣

∣

≤ c
[

24iW
]

1
ρ−1

∣

∣

∣

∣

∣

∣ 1[0,2n2]u
∣

∣

∣

∣

∣

∣

(1−θ)γ̄ ′
i

1, 1; B2n,ζn
||| u |||θγ̄

′
i

∞,i

(5.43)

for some c ∈ [1,∞) depending on the parameters p, q, and ρ but not on n or i. Iterating
(5.43), we obtain, for all m ≥ 2 and some constant c ∈ [1,∞) depending on the full set
of parameters α, β, ρ, p, q, d, c3(ζ),

max
(t,x)∈[0,n2]×Bn

∣

∣ u(t, x)
∣

∣ = ||| u |||∞,0

≤
[

cW
1

ρ−1
]1+

∑m
k=1(

∏k
i=1 γ̄

′
i )θ

k[

2
4

ρ−1
]1+

∑m
k=2(

∏k−1
i=1 γ ′

i )kθ
k

×
∣

∣

∣

∣

∣

∣ 1[0,2n2]u
∣

∣

∣

∣

∣

∣

1+
∑m

k=1(
∏k

i=1 γ̄
′
i )(1−θ)k

1, 1; B2n,ζn
||| u |||(

∏m
i=1 γ̄

′
i )θ

m

∞,m .

(5.44)

Now, since γ̄ ′
i ≤ 1 for all i ≥ 1, see (5.30) and below (5.38), and ||| u |||∞,m is bounded

uniformly in m (e.g., by the maximum of u over [0, 2n2] × B2̄n, which is finite by our
assumptions on u) the last term on the right of (5.44) tends to 1 as m→ ∞. The claim
(5.40) follows from (5.44) by letting m → ∞ (the sums in the exponents all converge)
and letting γn(u) = 1 +

∑∞
k=2(

∏k−1
i=1 γ

′
i )kθ

k.

We are now ready to prove the desired maximal inequality:
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Proof of Proposition 4.7. The claim will follow by applying Lemma 5.9 for suitable
choice of the parameters. Fix d ≥ 2 and ϑ > 4d as appearing in (1.12) and any
r ∈ (2d, ϑ

2
). Let s := r and let α and β be defined by (2.11) in terms of r and s. Note

in particular that β ∈ (0, 2) and α < 2d−1
d−2

, as follows plainly from (2.11). Moreover,
since r > 2d,

1

α

(2.11)
=
(1

2
+

1

r
− 1

d

) d

d− 1
<

1

2

(

1− 1

d

) d

d− 1
=

1

2
,

as required by Lemmas 5.8–5.9. Having selected α and β, the parameters p and q are
defined by (5.6) (and are both larger than 1, as noted in Remark 5.4), and we choose
ρ = 1

2
(1 + (p ∧ q)). The claim (4.29) is then an immediate consequence of (5.40). The

(crucial!) fact that W (r) < ∞ can be arranged, cf. (4.31), follows from Lemma 2.10
by choosing kt := 2µ(1+ t)−µ with any µ ∈ (4, 2ϑ/r) (note that 2ϑ/r > 4 by our choice
of r) and ζ(t) as in Lemma 2.8, with ν := µ/2.

6 Proof of one-step estimate

Ouf final task is the proof of the one-step estimate in Proposition 5.2. The proof
hinges on three ingredients. The first one is the weighted Sobolev inequality proved in
Lemma 2.3 which bounds a suitable norm of f by the weighted Dirichlet form Ew

t (f).
The second ingredient is a comparison of the weighted Dirichlet form with its “bare”
counterpart Ea

t (f). Lemma 2.11 provides such comparison when the argument is ut,
the solution to the Poisson equation (2.46), inside a box; unfortunately, since we need
to consider powers of the solution and invoke different (smoother) spatial and temporal
truncations, we will have to prove the needed bound again. This is the content of
(rather long) Lemma 6.1. The final ingredient is a bound on the resulting “bare”
Dirichlet energy in terms of a suitable norm of the solution. This is done in the second
subsection; the proof of Proposition 4.7 is presented right afterwards.

6.1 Dirichlet energy comparison.

We begin by a comparison of the Dirichlet energies for powers of the solution of the
inhomogeneous Poisson equation (2.46) mollified by spatial and temporal cut-off func-
tions. While necessarily more involved, the mechanism behind the proofs is similar to
that of Lemma 2.11.

Let us introduce some more Dirichlet forms which will recurrently show up in what
follows. Recall E w

t (·) and E w,ζ(·) from (2.9) and (2.10), with weights w as defined in
(1.17). For f : E(Zd) → R and recalling our notation xe and ye for (arbitrarily ordered)
endpoints of edge e, define

av(f)(e) :=
1

2

(

f(xe) + f(ye)
)

, e ∈ E(Zd). (6.1)
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Using our earlier notation∇f(e) := f(ye)−f(xe) for the gradient of f , for all g, h : Zd →
R, the discrete product rule reads

∇(gh) = av(g)∇h+ av(h)∇g. (6.2)

Given η : Zd → [0, 1] with finite support and any g : Zd → R, let

Ea
t,η2(g) :=

∑

e∈E(Zd)

av(η2)(e)at(e)
∣

∣∇g(e)
∣

∣

2
(6.3)

and, similarly to (2.10), for any f : [0,∞)×Z
d → R with compact (space-time) support,

define

E a,ζ
η2 (f) :=

∫ ∞

0

dt ζ(t)Ea
t,η2(ft). (6.4)

Recall the definition of the norms ‖ · ‖p,q;B,ζ in (2.8). We then have:

Lemma 6.1 (Conversion of Dirichlet forms) Suppose Assumption 1.1 and (2.33) hold
and let c1 be the constant from (2.33). There is c10 = c10(d) ∈ (0,∞) such that the
following holds: Let u be a (weak) solution the equation (5.5) with ∇f bounded uniformly
on E := E(Zd). Fix B ⊂ Z

d finite and suppose η : Zd → [0, 1] obeys suppη ⊂ B. Let
ξ : [0,∞) → [0, 1], with the value at t denoted by ξt, be a C1-function with compact
support. Then for all λ ≥ 1,

Ew,ζ(ξηũλ) ≤ c1c10λ
2

[

E a,ζ
η2 (ξũλ) + ‖∇f‖2ℓ∞(E)

∥

∥ξ2|u|2λ−2
∥

∥

1,1;B,ζ

+ ‖∇η‖2ℓ∞(E)

∥

∥ξ2|u|2λ
∥

∥

1,1;B,ζ
+
∥

∥(
.

ξ)2|u|2λ
∥

∥

1,1;B,ζ

]

, (6.5)

where ũλ := sign(u)|u|λ and where
.

ξ denotes the derivative of ξ.

Remark 6.2 The precise form of (6.5) is tailored to our future purposes, in the sense
that the Dirichlet form E a,ζ(ξũλ) naturally comes out of a later energy estimate, see
Lemma 6.4 below. It is important that these two quantities be matched.

In the proof we will need:

Lemma 6.3 For all a, b ∈ R and all λ ≥ 1, with ãλ := sign(a)|a|λ, we have
(

|a|2λ−2 + |b|2λ−2
)

(b− a)2 ≤ 8(b̃λ − ãλ)2. (6.6)

Proof. Suppose first that a and b have the same sign. In this case, (b−a)2 = (|b|− |a|)2
as well as (b̃λ − ãλ)2 = (|b|λ − |a|λ)2 and so (6.6) can be recast as

(

|a|2λ−2 + |b|2λ−2
)

(|b| − |a|)2 ≤ 8(|b|λ − |a|λ)2. (6.7)

This is proved by setting x := |a|/|b| (assuming |a| ≤ |b|) and noting that 1−xλ ≥ 1−x
for x ∈ [0, 1] and λ ≥ 1 (in fact the inequality even holds with 2 instead of 8 on the
right-hand side).

43



Suppose now that a and b have opposite signs. By symmetry, it is enough to consider
the case a ≥ 0, b < 0, in which, using that (a + |b|)2 ≤ 2a2 + 2|b|2,

(

|a|2λ−2 + |b|2λ−2
)

(b− a)2 =
(

a2λ−2 + |b|2λ−2
)

(a+ |b|)2 ≤ 8(a ∨ |b|)2λ

≤ 8
(

a2λ + |b|2λ
)

≤ 8
(

aλ + |b|λ
)2

= 8
(

ãλ − b̃λ
)2
.

(6.8)

The claim follows.

Proof of Lemma 6.1. We build on the argument from the proof of Lemma 2.11 which we
hereby invite the reader to inspect first. To start, using the discrete product rule (6.2),
the definition of the weights w in (1.17) along with the inequality (a+ b)2 ≤ 2a2 + 2b2

and the bound av(η)2 ≤ av(η2), and minding that ξ is a function of t alone, we obtain
for all t ≥ 0 that

Ew
t (ξtηũ

λ
t ) = ξ2t

∫ ∞

t

ds ks−t

∑

e

as(e)
(

∇(ηũλt )(e)
)2

≤ 2

∫ ∞

t

ds ks−t

[

∑

e

as(e)
(

ξt av(η)∇ũλt
)2
(e) + ξ2t

∑

e

as(e)
(

av(ũλt )∇η
)2
(e)

]

≤ 2Ew
t,η2(ξtũ

λ
t ) + 2d‖k‖L1‖∇η‖2∞ξ2t

∥

∥|ut|2λ
∥

∥

ℓ1(B)
,

(6.9)
where Ew

t,η2(·) is the quantity from (6.3) with wt in place of at and where ‖ · ‖L1 abbrevi-

ates the L1-norm on [0,∞). Note that (2.33) implies ‖k‖L1 ≤ c1. In view of (2.10) and
(6.4), multiplying by ζ(t) on both sides of (6.9) and integrating over t, it thus suffices
to show a bound of the form (6.5) for Ew,ζ

η2 (ξũλ) in place of Ew,ζ(ξηũλ).

Using that av(η2) ≤ 2av(η)2, we write, for all t ≥ 0,

Ew
t,η2(ξtũ

λ
t ) =

∫ ∞

t

ds ks−t

∑

e

(

asav(η
2)
)

(e)
(

ξt∇ũλt (e)
)2

≤ 2

∫ ∞

t

ds ks−t

∑

e

(

asav(η
2)
)

(e)
(

ξs∇ũλs (e)
)2

+ 4

∫ ∞

t

ds ks−t

∑

e

as(e)
(

ξtav(η)∇ũλt − ξsav(η)∇ũλs
)

(e)2.

(6.10)

Multiplying the first integral on the right by ζ(t) and integrating over t, we get

∫ ∞

0

dt ζ(t)
(

∫ ∞

t

ds ks−t

∑

e

(

asav(η
2)
)

(e)
(

ξs∇ũλs (e)
)2
)

=

∫ ∞

0

ds Ea
s,η2(ξsũ

λ
s )
(

∫ s

0

dt ζ(t)ks−t

)

, (6.11)

which in light of the definition of Kt in (2.32) and (2.33) is at most c1E a,ζ
η2 (ξũλ). Hence,

this term contributes directly to the first term on the right-hand side of (6.5). Concern-
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ing the second integral on the right of (6.10), the discrete product rule (6.2) implies

ξtav(η)∇ũλt − ξsav(η)∇ũλs
= −ξtav(ũλt )∇η + ξsav(ũ

λ
s )∇η +

(

ξt∇(ηũλt )− ξs∇(ηũλs )
)

.
(6.12)

In conjunction with the inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, this yields

∫ ∞

t

ds ks−t

∑

e

as(e)
(

ξtav(η)∇ũλt − ξsav(η)∇ũλs
)

(e)2 ≤ 3
[

I
(1)
t + I

(2)
t + I

(3)
t

]

,

(6.13)
where

I
(1)
t :=

∫ ∞

t

ds ks−t

∑

e

as(e)ξ
2
t (av(ũ

λ
t )∇η)(e)2,

I
(2)
t :=

∫ ∞

t

ds ks−t

∑

e

as(e)ξ
2
s (av(ũ

λ
s )∇η)(e)2,

I
(3)
t :=

∫ ∞

t

ds ks−t

∑

e

as(e)
(

ξs∇(ηũλs )− ξt∇(ηũλt )
)

(e)2.

(6.14)

We will now show separately that, upon multiplication with ζ(t) and integration over t,

each of the three terms I
(1)
t , I

(2)
t , I

(3)
t in (6.13) is bounded by the right-hand side of

(6.5).

Using that as ≤ 1, we immediately get I
(1)
t ≤ 2d‖k‖L1‖∇η‖2∞ξ2t ‖|ut|2λ‖ℓ1(B) for all

t ≥ 0. Since ‖k‖L1 ≤ c1, this shows

∫ ∞

0

dt ζ(t)I
(1)
t ≤ 2dc1‖∇η‖2ℓ∞(E)

∥

∥ξ2|u|2λ
∥

∥

1,1;B,ζ
. (6.15)

Some more care is needed to bound
∫∞
0

dt ζ(t)I
(2)
t . Exchanging the order of integration

and using (2.33) along with as(e) ≤ 1 again, we obtain

∫ ∞

0

dt ζ(t)I
(2)
t =

∫ ∞

0

ds
(

∫ s

0

dt ζ(t)ks−t

)

∑

e

as(e)ξ
2
s (av(ũ

λ
s )∇η)2(e)

≤ 2dc1‖∇η‖2∞
∥

∥ξ2|u|2λ
∥

∥

1,1;B,ζ
.

(6.16)

It remains to derive a suitable bound on I
(3)
t which is considerably more involved. First,

the assumption as(e) ≤ 1 and elementary symmetrization arguments yield

I
(3)
t ≤ 4d

∫ ∞

t

ds ks−t

∑

x

(

ξsũ
λ
s (x)− ξtũ

λ
t (x)

)2
η(x)2 (6.17)

with the summation effectively only over a finite set since η has finite support. We now
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use that u solves (5.5) along with the fact that ∂tũ
λ
t = λ|ut|λ−1∂tut to get

ξsũ
λ
s (x)− ξtũ

λ
t (x) =

∫ s

t

dr
d

dr
(ξrũ

λ
r (x))

=

∫ s

t

dr
.

ξrũ
λ
r (x) +

∫ s

t

dr ξrλ|ur(x)|λ−1(Lrf)(x)

−
∫ s

t

dr ξrλ|ur(x)|λ−1(Lrur)(x).

(6.18)

Substituting (6.18) into (6.17), using the Cauchy-Schwarz inequality and the standard
inequality (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, we thus get

I
(3)
t ≤ 12d

[

Ât + B̂t + Ĉt

]

, (6.19)

where

Ât :=

∫ ∞

t

ds ks−t(s− t)
∑

x

(

∫ s

t

dr η(x)2(
.

ξr)
2|ur(x)|2λ

)

,

B̂t :=

∫ ∞

t

ds ks−t(s− t)
∑

x

(

∫ s

t

dr λ2η(x)2ξ2r |ur(x)|2λ−2(Lrf)(x)
2
)

Ĉt :=

∫ ∞

t

ds ks−t(s− t)
∑

x

(

∫ s

t

dr λ2η(x)2ξ2r |ur(x)|2λ−2(Lrur)(x)
2
)

.

(6.20)

The following consequence of our basic assumptions on ζ and k will be useful for bound-
ing all three quantities in (6.20): For any measurable g : R → [0,∞), the definition of
Kt in (2.32) and condition (2.33) imply

∫ ∞

0

dt ζ(t)

(
∫ ∞

t

ds ks−t(s− t)
(

∫ s

t

dr g(r)
)

)

=

∫ ∞

0

dr g(r)

(
∫ r

0

dt ζ(t)
(

∫ ∞

r−t

du ku u
)

)

≤
∫ ∞

0

dr g(r)
(

∫ r

0

dt ζ(t)Kr−t

)

≤ c1

∫ ∞

0

dr g(r)ζ(r).

(6.21)

Indeed, applying this with g(r) := (
.

ξr)
2|ur(x)|2λ (which is indeed non-negative) yields

∫ ∞

0

ζ(t) Ât dt ≤ c1
∥

∥(
.

ξ)2|u|2λ
∥

∥

1,1;B,ζ
, (6.22)

which in light of λ ≥ 1 is bounded by a corresponding term on the right-hand side of
(6.5). For the term B̂t we use ar(e) ≤ 1 to bound (Lrf)

2 ≤ 4d2‖∇f‖2ℓ∞(E). Then (6.21)
shows

∫ ∞

0

dt ζ(t) B̂t ≤ 4d2c1λ
2 ‖∇f‖2∞

∥

∥ξ2|u|2λ−2
∥

∥

1,1;B,ζ
. (6.23)
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In order to bound Ĉt, we first use the Cauchy-Schwarz inequality, at ≤ 1, η(x)2 ≤
av(η2)(e) and Lemma 6.3 to get

∑

x

η(x)2|ur(x)|2λ−2(Lrur)(x)
2

=
∑

x

|ur(x)|2λ−2η(x)2
(

∑

e=(x,y)

ar(e)
[

ur(y)− ur(x)
]

)2

≤ 2d
∑

x

|ur(x)|2λ−2
∑

e=(x,y)

(

av(η2)ar
)

(e)
[

ur(y)− ur(x)
]2

≤ 2d
∑

e=(x,y)

(

av(η2)ar
)

(e)
[

|ur(y)|2λ−2 + |ur(x)|2λ−2
]

(∇ur)2(e).

≤ 16d
∑

e

(

av(η2)ar
)

(e)(∇ũλr )(e)2 = 16dEa
t,η2(ũ

λ
r ).

(6.24)

Plugging this in (6.20) and invoking (6.21) then yields
∫ ∞

0

dt ζ(t) Ĉt ≤ 16dλ2
∫ ∞

0

dt ζ(t)

(
∫ ∞

t

ds ks−t(s− t)
(

∫ s

t

dr Ea
r,η2(ξrũ

λ
r )
)

)

≤ 16dc1λ
2

∫ ∞

0

dr Ea
r,η2(ξrũ

λ
r )ζ(r) = 16dc1λ

2E a,ζ
η2 (ξũλ).

(6.25)

It follows from (6.19), (6.22), (6.23) and (6.25) that
∫∞
0
ζ(t)I

(3)
t dt admits the desired

bound. The proof of (6.5) is complete.

6.2 Energy estimate.

Our next step is the so-called energy estimate which bounds the Dirichlet energy of
powers of solution to the inhomogeneous Poisson equation (under truncation with re-
spect to space and time) by a suitable norm thereof. The same calculation also produces
a pointwise estimate (in time) of the ℓ1-norm of the (power of) solution weighted by ζ .
The precise statement is as follows:

Lemma 6.4 (Energy estimate) Suppose Assumption 1.1 and (2.33) hold. There is a
numerical constant c11 ∈ (0,∞) such that for all λ ≥ 1 and for any solution u of (5.5),
we have

max
{

sup
t≥0

[

ζ(t)‖(ξtηũλt )2‖ℓ1(B)

]

, E a,ζ
η2 (ξũλ)

}

≤ c11λ
2

[

‖∇f‖2ℓ∞(E)

∥

∥ξ2|u|2λ−2
∥

∥

1,1;B,ζ
+
∥

∥(∇f)(∇η)
∥

∥

ℓ∞(E)

∥

∥ξ2|u|2λ−1
∥

∥

1,1;B,ζ

+
(

‖∇η‖2ℓ∞(E) + ‖
.

ζ/ζ‖L∞(R+)

)
∥

∥ξ2|u|2λ
∥

∥

1,1;B,ζ
+
∥

∥

∥

dξ2

dt
|u|2λ

∥

∥

∥

1,1;B,ζ

]

.

(6.26)
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Proof. Repeating the argument leading to (5.18) of [3] and using that at ≤ 1 yields an
absolute constant c ∈ (0,∞) such that the bound

− ∂t
∥

∥(ηũλt )
2
∥

∥

ℓ1(B)
+ E a

t,η2(ũ
λ
t )

≤ cλ2
[

‖∇η‖2ℓ∞(E)

∥

∥|ut|2λ
∥

∥

ℓ1(B)
+ ‖∇f‖2ℓ∞(E)

∥

∥|ut|2λ−2
∥

∥

ℓ1(B)

+
∥

∥(∇f)(∇η)
∥

∥

ℓ∞(E)

∥

∥|ut|2λ−1
∥

∥

ℓ1(B)

]

(6.27)

holds for all t ≥ 0 and all λ ≥ 1. Next we observe that, for all s ≥ 0,

∫ ∞

s

dt ζ(t)ξ2t
(

− ∂t‖(ηũλt )2‖ℓ1(B)

)

= ζ(s)ξ2s
∥

∥(ηũλs )
2
∥

∥

ℓ1(B)
+

∫ ∞

s

dt
∥

∥(ηũλt )
2
∥

∥

ℓ1(B)
∂t
(

ζ(t)ξ2t
)

≥ ζ(s)ξ2s
∥

∥(ηũλs )
2
∥

∥

ℓ1(B)
− ‖

.

ζ/ζ‖L∞(R+)

∥

∥ξ2|u|2λ
∥

∥

1,1;B,ζ
−
∥

∥

∥

dξ2

dt
|u|2λ

∥

∥

∥

1,1;B,ζ
.

(6.28)
Multiplying both sides of (6.27) by ζ(t)ξ2t , integrating over t from 0 to infinity, invoking
(6.28) with s = 0 and foregoing the term ζ(0)ξ20‖(ηũλ0)2‖ℓ1(B), we find that E a,ζ

η2 (ξũλ)
is bounded by the right-hand side of (6.26). Repeating the argument, but this time
neglecting the term E a

t,η2(ũ
λ
t ) in (6.27), and integrating from s to infinity, we infer that

ζ(s)‖(ξsηũλs )2‖ℓ1(B) admits the same bound, for all s ≥ 0. Hereby (6.26) follows.

6.3 Proof of one-step estimate.

The proof of Proposition 5.2, which we are about to give, combines the Sobolev inequal-
ity of Corollary 2.5 with Lemmas 6.1 and 6.4. The conversion lemma (Lemma 6.1) will
play a pivotal role in recovering the Dirichlet form that the energy estimate gives us
information about; namely, the one naturally associated to the Poisson equation (5.5),
cf. Remark 6.2(1).

Proof of Proposition 5.2. Abbreviate λ := λ1/2 and note that λ ≥ 1, as will be desired
for applications of the previous two lemmas. In view of (5.6) and the interpolation
inequality (2.29), we have

||| κ2/λ1

1 u |||λ1p, λ1q; B1,ζ = ||| κ1/λ1 u |||2λp,2λq; B1,ζ =
∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

1
2λ

p, q; B1,ζ

≤
∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

θ
2λ

p̂(α), q̂(β); B1,ζ

∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

1−θ
2λ

1,∞; B1,ζ
.

(6.29)

We will now estimate each of the arising norms individually.
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We begin with the second norm on the right of (6.29) as its control is easier. The
energy estimate (6.26) from Lemma 6.4 along with supp(ζ) ⊆ [0,∞) readily yield

∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

1,∞; B1,ζ
≤ sup

t≥0
|B1|−1

∥

∥(ξ1(t)η1ũ
λ
t )

2
∥

∥

ℓ1(B1)

≤
[

inf
t∈supp(ξ1)

ζ(t)
]−1

|B1|−1 sup
t≥0

{

ζ(t)
∥

∥(ξ1(t)η1ũ
λ
t )

2
∥

∥

ℓ1(B1)

}

≤ c11λ
2
[

inf
t∈supp(ξ1)

ζ(t)
]−1

|B1|−1

×
[

Γ
∥

∥

∥
ξ21
(

|u|2λ−2 + |u|2λ−1 + |u|2λ
)

∥

∥

∥

1,1;B1,ζ
+
∥

∥

∥

∣

∣

dξ21
dt

∣

∣ |u|2λ
∥

∥

∥

1,1;B1,ζ

]

,

(6.30)
where Γ is as defined in (5.10). Since the weights κ1, κ2 were assumed to be (B1, B2)-
adapted with parameters (δ, ρ,M), (5.3) shows that, for all t ≥ 0,

∣

∣

∣

dξ21(t)

dt

∣

∣

∣
= 2ξ1(t)|

.

ξ1(t)| ≤ 2δM2ξ2(t)
2ρ. (6.31)

With the help of Jensen’s inequality we in turn get that, for k = 0, 1, 2,

|B1|−1
∥

∥ξ21 |u|2λ−k
∥

∥

1,1;B1,ζ
= ‖ζ‖L1

∣

∣

∣

∣

∣

∣ξ21|u|2λ−k
∣

∣

∣

∣

∣

∣

1,1;B1,ζ

≤ ‖ζ‖L1

∣

∣

∣

∣

∣

∣ξ
2 2λ
2λ−k

1 |u|2λ
∣

∣

∣

∣

∣

∣

1− k
2λ

1,1;B1,ζ
≤ ‖ζ‖L1M2

∣

∣

∣

∣

∣

∣ξ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

1− k
2λ

1,1;B1,ζ
,

(6.32)

where in the last step we used that ξ
2 2λ
2λ−k

1 ≤ ξ21 ≤ M2ξ2ρ2 thanks to ξ1 ∈ [0, 1] and (5.3).
Substituting (6.31) and (6.32) into (6.30), we find

∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

1,∞; B1,ζ
≤ 3c11(λM)2‖ζ‖L1

Γ + δ

infΣ1 ζ

∣

∣

∣

∣

∣

∣ ξ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

γ

1,1;B1,ζ
, (6.33)

where we also invoked the definition of γ from (5.8).
We now turn to the first norm in the second line of (6.29). Using the Sobolev

inequality from Corollary 2.5, whose conditions are met for the allowed range of α and
β, cf. above (5.6), and subsequently applying the energy-conversion Lemma 6.1 yields

∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

p̂(α), q̂(β); B1,ζ

(2.24)

≤ c20|B1|
2
d |||w−1||| r

2
, s
2
,B1,ζ

Ew,ζ(ξ1η1ũ
λ)

|B1|
(6.5)

≤ c20c1c10λ
2|B1|

2
d |||w−1||| r

2
, s
2
,B1,ζ

[Ea,ζ

η21
(ξ1ũ

λ)

|B1|

+ ‖ζ‖L1

(

Γ
∣

∣

∣

∣

∣

∣ ξ21
(

|u|2λ + |u|2λ−2
)
∣

∣

∣

∣

∣

∣

1,1;B1,ζ
+
∣

∣

∣

∣

∣

∣(
.

ξ1)
2|u|2λ

∣

∣

∣

∣

∣

∣

1,1;B1,ζ

)

]

.

(6.34)
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The “bare” Dirichlet energy on the right is now bounded using Lemma 6.4 exactly as
above with the result

Ea,ζ
η21

(ξ1ũ
λ)

|B1|
≤ 3c11(λM)2(Γ + δ)‖ζ‖L1

∣

∣

∣

∣

∣

∣ ξ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

γ

1,1;B1,ζ
. (6.35)

The remaining terms are estimated directly with the help of (6.32) and the bounds on
the mollifiers in (5.3). This yields

∣

∣

∣

∣

∣

∣ (κ1ũ
λ)2
∣

∣

∣

∣

∣

∣

p̂(α), q̂(β); B1,ζ

≤ 5c11(λ
2M)2|||w−1||| r

2
, s
2
,B1,ζ ‖ζ‖L1

[

|B1|
2
d (Γ + δ)

]

∣

∣

∣

∣

∣

∣ ξ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

γ

1,1;B1,ζ
(6.36)

In order to covert the last norm to the desired form, we observe that, since η2 = 1 on
B1 by assumption, cf. (5.2), and minding that p/ρ > 1 and q/ρ > 1, we have

|B1|
|B2|

∣

∣

∣

∣

∣

∣ ξ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

1,1;B1,ζ

(5.1)

≤
∣

∣

∣

∣

∣

∣κ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

1,1;B2,ζ

(2.22)

≤
∣

∣

∣

∣

∣

∣κ2ρ2 |u|2λ
∣

∣

∣

∣

∣

∣

p
ρ
, q
ρ
;B2,ζ

= ||| κ2/λ2

2 u |||2λλ2p,λ2q;B2,ζ
, (6.37)

where we also recalled that λ2 := λ1/ρ = 2λ/ρ. Substituting this into (6.33) and (6.36),
and then these back into (6.29), the claim follows by noting that γ ≤ 1.

We also need to finish:

Proof of Corollary 5.3. This is due to (6.33) (recalling that 2λ = λ1) and (6.37).

Appendix

This short section collects various calculations that were relegated here from the main
text of the paper. Specifically, we give proofs of Lemma 1.4 and Lemma 4.4.

A.1 Moment comparisons.

We begin by a comparison of the ranges of parameters for negative moments of a0(e)
with the positive moments of Te:

Proof of Lemma 1.4. Let q > 0 be such that E(a0(e)
−q) < ∞. (Otherwise there is

nothing to prove.) The assumption of separate ergodicity and the Pointwise Ergodic
Theorem then imply

1

t

∫ t

0

ds as(e)
−q −→

t→∞
E
(

a0(e)
−q
)

. (A.1)
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Next fix M > 0 large. Renewal considerations show

1

t

∫ t

0

ds as(e)
−q −→

t→∞

1

E(Te ∧M)
E

(
∫ Te∧M

0

dtat(e)
−q

)

. (A.2)

It follows that

E

(
∫ Te∧M

0

dt at(e)
−q

)

= E(Te ∧M)E
(

a0(e)
−q
)

. (A.3)

Next we note that Höler’s inequality shows, for any r > 1,

Te ∧M =

∫ Te∧M

0

dt 1 ≤
(

∫ Te∧M

0

dt at(e)dt
)1/r(

∫ Te∧M

0

dt at(e)
− 1

r−1

)
r−1
r

(A.4)

The definition of Te ensures that the first term on the right is at most 1. Raising both
sides of the resulting bound to power r

r−1
and setting r := 1 + 1/q, which is equivalent

to 1
r−1

= q and r
r−1

= q + 1, then gives

E
(

(Te ∧M)q+1
)

≤ E

(
∫ Te∧M

0

dt at(e)
−q

)

. (A.5)

Plugging in (A.3) and bounding E(Te ∧M) by the 1
q+1

-power of E((Te ∧M)q+1) shows

E
(

(Te ∧M)q+1
)

≤
[

E
(

a0(e)
−q
)

]
q+1
q

. (A.6)

Taking M → ∞ and invoking the Monotone Convergence Theorem, the claim follows.

A.2 Approximating corrector by gradients.

Our next task is to complete the proof of Lemma 4.4 showing that the corrector lies in
the closed subspace generated by gradients of Lp-functions. In order to avoid dealing
with complicated summation formulas, we will cast the proof in functional-analytic
notation and language.

Fix p ≥ 1 such that the integrability conditions in (3.5) apply. For each k = 1, . . . , d,
consider the linear operator T̂k : L

p(P) → Lp(P) defined by

T̂kf := f ◦ τ0,êk , (A.7)

with êk the k-th unit vector in Z
d. We also set

T̂d+1f :=

∫ 1

0

dtf ◦ τt,0 (A.8)

for the corresponding time-shift. The operators T̂1, . . . , T̂d+1 commute and they are all
contractions (by Assumption 1.1). For any ǫ > 0 and k = 1, . . . , d+1, the operator (1+
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ǫ− T̂k)
−1 is well defined and can be expressed as

∑

n≥0(1+ ǫ)
−n−1T̂ n

k . Let P̂k : L
p(P) →

Lp(P) be defined by the Lp-limit

P̂kf := lim
n→∞

1

n

n−1
∑

ℓ=0

T̂ ℓ
kf (A.9)

which exists by the Pointwise Ergodic Theorem, see [26, p.9, Thm. 2.3]; the fact that
the convergence is in Lp follows in standard fashion by uniform integrability. Rewriting
T̂ n
k = An+1

k − An
k with An

kf :=
∑n−1

ℓ=0 T̂
ℓ
kf , simple resummation shows

ǫ(1 + ǫ− T̂k)
−1f =

∑

n≥1

nǫ2

(1 + ǫ)n+1

1

n
An

kf . (A.10)

From (A.9) and
∑

n≥1
nǫ2

(1+ǫ)n+1 = 1, we thus have

ǫ(1 + ǫ− T̂k)
−1f

Lp

−→
ǫ↓0

P̂kf, f ∈ Lp(P). (A.11)

for each k = 1, . . . , d+ 1.
Next, consider the (vector) valued functions u1, . . . , ud+1 defined by

uk := χ(0, êk, ·), k = 1, . . . , d, (A.12)

and

ud+1 :=

∫ 1

0

dt χ(t, 0, ·). (A.13)

The cocycle condition then reads

(1− T̂j)uk = (1− T̂k)uj, j, k = 1, . . . , d+ 1, (A.14)

By the cocycle property and (A.9) we also have

P̂kuk = lim
n→∞

χ(0, nêk, ·)
n

, k = 1, . . . , d+ 1. (A.15)

The cocycle property then also gives, for each j 6= k and each t ∈ R,

χ(0, nêk, ·) ◦ τt,ej = χ(0, nêk, ·) + χ(t, ej , ·) ◦ τ0,nêk − χ(t, ej , ·). (A.16)

Upon division by n, the last two terms on the right tend to zero in Lp(P) and so P̂kuk
is invariant under space-time shifts. A completely analogous argument applies to ud+1;
in light of the joint ergodicity of P with respect to the space-time shifts we thus get

P̂kuk = 0, k = 1, . . . , d+ 1. (A.17)

We are now ready to give:
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Proof of Lemma 4.4. Define hǫ by

hǫ :=
d+1
∑

k=1

ǫk−1
k
∏

j=1

(1 + ǫ− T̂j)
−1uk. (A.18)

Pick ℓ = 1, . . . , d + 1 and use (A.14) along with the fact that T̂1, . . . , T̂d+1 commute,
minding also the rewrite 1− T̂ℓ = (1 + ǫ− T̂ℓ)− ǫ, to get

(1− T̂ℓ)hǫ =
d+1
∑

k=1

ǫk−1(1− T̂ℓ)
k
∏

j=1

(1 + ǫ− T̂j)
−1uk

=
d+1
∑

k=1

ǫk−1(1− T̂k)
k
∏

j=1

(1 + ǫ− T̂j)
−1uℓ

=
d+1
∑

k=1

[

ǫk−1
k−1
∏

j=1

(1 + ǫ− T̂j)
−1 − ǫk

k
∏

j=1

(1 + ǫ− T̂j)
−1

]

uℓ

= uℓ − ǫd+1
d+1
∏

j=1

(1 + ǫ− T̂j)
−1uℓ,

(A.19)

where the last line follows by noting that the expression on the line before is a telescopic
sum. Since ‖ǫ(1+ ǫ− T̂j)‖Lp→Lp ≤ 1 for each j = 1, . . . , d+1, the norm of second term

on the last line is at most that of ǫ(1 + ǫ− T̂ℓ)
−1uℓ. But this term converges to P̂ℓuℓ by

(A.11) which vanishes thanks to (A.17). This implies that, for all ℓ = 1, . . . , d+ 1,

(1− T̂ℓ)hǫ −→
ǫ↓0

uℓ, in Lp(P), (A.20)

which is now easily checked to give the desired claim.

Remark A.1 Under the assumption of separate ergodicity — i.e., triviality of P on
events A such that, for at least one k = 1, . . . , d + 1, we have Tk1A = 1A — we have
Pkuℓ = 0 for all k, ℓ = 1, . . . , d + 1. It then suffices to take hǫ := (1 + ǫ − T̂1)u1; cf
Biskup and Spohn [13]. However, unlike erroneously concluded in [13], this does not
suffice for P that are only jointly ergodic where one has to use (A.18) instead.
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