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We are given data (a time-series) from a high-dimensional,
multiscale deterministic or stochastic system.

We want to fit the data to a "simple" low-dimensional,
coarse-grained stochastic system.

The available data is incompatible with the desired model at small
scales.

Many applied statistical techniques use the data at small scales.

This might lead to inconsistencies between the data and the
desired model fit.

Additional sources of error (measurement error, high frequency
noise) might also be present.
Problems of this form arise in, e.g.

◮ Molecular dynamics.
◮ Econometrics.
◮ Oceanic Transport.
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Data-Driven Coarse Graining

We want to use the available data to obtain information on how to
parameterize small scales and obtain accurate reduced,
coarse-grained models.

We want to develop techniques for filtering out observation error,
high frequency noise from the data.

We investigate these issues for some simple models.
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Consider a high dimensional dynamical system Zt with state
space Z.

Assume that the system has two-characteristic time scales, write
Z = X ⊕ Y with dim(X ) ≪ dim(Y).

Assume that a coarse-grained equation for the dynamics in X
exists:

dXt = F(Xt) dt + Σ(Xt) dWt.

Goal: obtain F(·), Σ(·) from a time series of the slow variable
Xt = P Zt, P : Z → X .

In this lecture: assume that the functional form of the
coarse-grained drift and diffusion coefficients are known:

dXt = F(Xt; θ) dt + Σ(Xt; θ) dWt,

with θ ∈ Θ ⊂ R
d.

Goal: estimate these parameters from observations.
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Homogenization for SPDEs with Quadratic
Nonlinearities
D. Blomker, M. Hairer, G.P., Nonlinearity 20 1721-1744 (2007), M. Pradas

Gene, D. Tseluiko, S. Kalliadasis, D.T. Papageorgiou, G.P. Phys. Rev. Lett 106,

060602 (2011).

Consider the singularly perturbed SPDE

∂tu =
1
ε2Lu +

1
ε

B[u, u] + J u +
1
ε
ξ, (1)

where N := N (L) with dim(N ) = 1, H = N ⊕N⊥ and PN ξ = 0.

Then for ε≪ 1, PNu ≈ X(t) · e(x) where X(t) is the solution of the
amplitude (homogenized) equation

dXt = (AXt − BX3
t ) dt +

√
σ2

a + σ2
b X2

t dWt. (2)
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There exist formulas for the constants A, B, σ2
a , σ

2
b but they involve

knowledge of the spectrum of L, J , the covariance operator of the
noise and the nonlinearity B[·, ·].
The form of the amplitude equation (2) is universal for all SPDEs
with quadratic nonlinearities.

Goal: assuming knowledge of the functional form of the amplitude
equation, estimate the coefficients A, B, σ2

a, σ
2
b from a time series

of PNu.
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Thermal Motion in a Two-Scale Potential
A.M. Stuart and G.P., J. Stat. Phys. 127(4) 741-781, (2007).

Consider the SDE

dxε(t) = −V ′
(

xε(t),
xε(t)
ε

;α

)
dt +

√
2σ dW(t), (3)

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T]; Rd), the solution of the
homogenized equation:

dX(t) = −AV ′(X(t))dt +
√

2ΣdW(t).
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Figure: Bistable potential with periodic fluctuations
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The coefficients A, Σ are given by the standard homogenization
formulas.

Goal: fit a time series of xε(t), the solution of (3), to the
homogenized SDE.

Problem: the data is not compatible with the homogenized
equation at small scales.

Model misspecification.
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Deriving dynamical models from paleoclimatic records
F. Kwasniok, and G. Lohmann, Phys. Rev. E, 80, 6, 066104 (2009)
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Fit this data to a bistable SDE

dx = −V ′(x; a) dt + σẆ, V(x) =

4∑

j=1

ajx
j. (4)

Estimate the coefficients in the drift from the palecolimatic data
using the unscented Kalman filter.

the resulting potential is highly asymmetric.
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Estimation of the Eddy Diffusivity from Noisy
Lagrangian Observations
C.J. Cotter and G.P. Comm. Math. Sci. 7(4), pp. 805-838 (2009).

Consider the dynamics of a passive tracer

dx
dt

= v(x, t), (5)

where v(x, t) is the velocity field. We expect that at sufficiently long
length and time scales the dynamics of the passive tracer
becomes diffusive:

dX
dt

=
√

2KdW
dt

(6)

We are given a time series of noise observations:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (7)

Goal: estimate the Eddy Diffusivity K from the noisy Lagrangian
data (7).
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Econometrics: Market Microstructure Noise
S. Olhede, A. Sykulski, G.P. SIAM J. MMS, 8(2), pp. 393-427 (2009)

Observed process Yt:

Yti = Xti + εti , ti = i∆t, i = 0, . . .N − 1. (8)

Where Xt is the solution of

dXt = (µ− νt/2) dt + σtdBt, dνt = κ (α− νt) dt + γν
1/2
t dWt, (9)

Goal: Estimate the integrated stochastic volatility of Xt from the
noisy observations Yt.

Work of Ait-Sahalia et al: Estimator fails without subsampling.
Subsampling at an optimal rate+averaging+bias correction leads
to an efficient estimator.

We have developed an estimator for the integrated stochastic
volatility in the frequency domain.
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The Maximum Likelihood Estimator

We are given a one dimensional SDE model

dXt = b(Xt; θ) dt +
√

2σ dWt, X0 = x. (10)

where the constant diffusion coefficient σ and the parameters
θ ∈ Θ ∈ R

N are unknown.

We are given a set of discrete equidistant observations {Xtj}J−1
j=0

with δ = tj+1 − tj.

Our goal is to estimate the diffusion coefficient and the
parameters θ.
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Consider first the estimation of the diffusion coefficient. We will
use the quadratic variation of the process:

σ̂J =
1

2Jδ

J−1∑

j=0

(
Xj+1 − Xj

)2
, (11)

where Xj := X(j−1)δ .
The diffusion coefficient is a local property of the path. The
quadratic variation estimator (11) converges to the diffusion
coefficient in the limit as the distance between subsequent
observations goes to 0 while the number of observations becomes
infinite, while keeping the window of observation [0, (J − 1)δ = T]
fixed.
This is called the high frequency limit. We have (Prakasa Rao
1999)

lim
N→+∞

2N∑

j=1

(
XjT2−N − X(j−1)T2−N

)2
= 2σT a.s. (12)
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More generally, when the diffusion coefficient is not constant, we
have (Karatzas and Sreeve)

lim
∆t→0

∑

tk6t

(
Xtk+1 − Xtk

)2
= 2

∫ t

0
σ(Xs) ds,

in probability.

We will prove a (much) weaker version of (12).

Proposition

Let {Xj}J−1
j=0 be a sequence of equidistant observations of (10) with

∆t = δ and (J − 1)δ = T fixed. Assume that the drift b(x; θ) is bounded.
Then

|Eσ̂J − σ| 6 C
(
δ + δ1/2). (13)

In particular,
lim

J→+∞
|Eσ̂J − σ| = 0. (14)
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Proof. We have

Xj+1 − Xj =

∫ (j+1)δ

jδ
b(Xs; θ) ds +

√
2σ∆Wj,

where ∆Wj = W(j+1)δ − Wjδ. We substitute this into (11) to obtain

σ̂J = σ
1
δJ

J−1∑

j=0

(∆Wj)
2 +

1
δJ

J−1∑

j=0

IjMj +
1
δJ

J−1∑

j=0

I2
j ,

where

Ij :=

∫ (j+1)δ

jδ
b(Xs; θ) ds

and Mj :=
√

2σ∆Wj. We note that E(∆Wn)
2 = δ. Furthermore, from the

boundedness of b(x; θ) and using the Cauchy-Schwarz inequality we
get

EI2
j 6 δ

∫ (j+1)δ

jδ
E
(
b(Xs; θ)

)2
ds 6 Cδ2.
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Consequently:

∣∣Eσ̂J − σ
∣∣ 6

1
2δ

EI2
j +

1
δ

E

∣∣∣IjMj

∣∣∣

6 Cδ +
C
δ

(
1
α

EI2
j + αEM2

j

)

6 C
(
δ + δ1/2

)
.

In the above we used Cauchy’s inequality with α = δ1/2.
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From now on we will assume that we have already estimated the
diffusion coefficient. To simplify the notation, we will set

√
2σ = 1:

dXt = b(Xt; θ) dt + dWt. (15)

Now we estimate the unknown parameters in the drift θ ∈ Θ from
discrete observations. We denote the true value by θ0.
We will use the maximum likelihood estimator(MLE).
The Likelihood function is defined as the Radon-Nikodym
derivative of the law of the process Xt with respect to the Wiener
measure, i.e. the law of Brownian motion:

dPX

dPW
= exp

(
1
2

∫ T

0
(b(Xs; θ))

2 ds −
∫ T

0
b(Xs; θ) dXs

)

=: L
(
{Xt}t∈[0,T]; θ,T

)
(16)

The maximum likelihood estimator MLE is defined as

θ̂ = argmaxθ∈ΘL
(
{Xt}t∈[0,T]; θ,T

)
. (17)
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We assume that the diffusion process (15) is stationary.

The MLE (17) is asympotically unbiased: in the limit as the
window of observation becomes infinite, T → +∞, the MLE θ̂
converges to the true value θ0.

Assume that there are N parameters to be estimated,
θ = (θ1, . . . θN). The MLE is obtained by solving the (generally
nonlinear) system of equations

∂L
∂θi

= 0, i = 1, . . . ,N. (18)

The solution of this system of equations can be expressed in
terms of functionals (e.g. moments) of the observed path
{Xt}t∈[0,T]

θ̂ = F({Xt}t∈[0,T]).
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Example
(MLE for the stationary OU process). Consider the stationary OU
process

dXt = −αXt dt + dWt (19)

with X0 ∼ N
(
0, 1

2α

)
. The log Likelihood function is

log L =
α2

2

∫ T

0
X2

t dt + α

∫ T

0
Xt dXt.

Equation (18) becomes ∂ log L
∂α = 0 from which we obtain

α̂ = −
∫ T

0 Xt dXt∫ T
0 (Xt)2 dt

=: − B1({Xt}t∈[0,T])

M2({Xt}t∈[0,T])
(20)

where we have used the notation

Bn({Xt}t∈[0,T]) =

∫ T

0
(Xt)

n dXt, M2({Xt}t∈[0,T]) :=

∫ T

0
(Xt)

n dt, n = 1, 2, . . .

(21)
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Given a set of discrete equidistant observations {Xj}J−1
j=0 ,

Xj = X(j−1)∆t, ∆Xj = Xj+1 − Xj, formula (20) can be approximated
by

α̂ = −
∑J−1

j=0 Xj ∆Xj
∑J−1

j=0 |Xj|2 ∆t
. (22)

The MLE (20) becomes asymptotically unbiased in the large
sample limit J → +∞, ∆t fixed.
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Example

Consider the following generalization of the previous example:

dXt = αb(Xt) dt + dWt, (23)

where b(x) is such that the equation has a unique ergodic solution.
The log Likelihood function is

log L =
α2

2

∫ T

0
b(Xt)

2 dt − α

∫ T

0
b(Xt) dXt.

The MLE is

α̂ =

∫ T
0 b(Xt) dXt∫ T

0 (b(Xt))2 dt
.

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 25 / 150



0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000

T

α̂

Figure: MLE for the OU processes.

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 26 / 150



Example
(MLE for a stationary bistable SDE) Consider the SDE

dXt =
(
αXt − βX3

t

)
dt + dWt (24)

This SDE is of the form dXt −−V ′(Xt) dt + dWt with V(x) = α
2 x2 − β

4 x4

and is ergodic with invariant distribution ρ(x) = Z−1e−
1
2 V(x). Our goal is

to estimate the coefficients α and β from observations using the
maximum likelihood approach. The log likelihood function reads

log L =
1
2

∫ T

0

(
αXt − βX3

t

)2
dt −

∫ T

0

(
αXt − βX3

t

)
dXt

=:
1
2
α2M2 +

1
2
β2M6 − αβM4 − αB1 + βB3,

using notation (21). Equations (18) become

∂ log L
∂α

(α̂, β̂) = 0,
∂ log L
∂β

(α̂, β̂) = 0.
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Example
(MLE for a stationary bistable SDE contd.) This leads to a linear
system of equations

(
M2 −M4

M4 −M6

)(
α̂

β̂

)
=

(
B1

B3

)
,

The solution of which is

α̂ =
B1M6 − B3M4

M2M6 − M2
4

, β̂ =
B1M4 − B3M2

M2M6 − M2
4

. (25)

When we have a discrete set of observations {Xj}J−1
j=0 the integrals

in (25) have to be approximated by sums.
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Figure: MLE estimators for a bistable potential.
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The rigorous justification of the MLE is based on Girsanov’s
theorem

The proof of asymptotic consistency and normality use the law of
large numbers and central limit theorems for square integrable
martingales.

Here is present a heuristic derivation of (16) which is based on the
Euler-Marayama discretization of (15):

Xn+1 − Xn = b(Xn; θ)∆t + ∆Wn, (26)

where Xn = X(n∆t) and ∆Wn = Wn+1 − Wn =: ξn. We have that
ξn ∼ N (0,

√
∆t), independent.

Our goal is to calculate the Radon-Nikodym derivative of the law
of the discrete-time process {Xn}N−1

n=0 and the discretized Brownian
motion.
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We rewrite (26) in the form

∆Xn = bn ∆ + ξn, (27)

where bn := b(Xn; θ), ∆ := ∆t. The distribution function of the
discretized Brownian motion is

pN
W =

N−1∏

i=0

1√
2π∆

exp

(
− 1

2∆
(∆Wi)

2
)

(28)

=
1

(
√

2π∆)N/2
exp

(
− 1

2∆

N−1∑

i=0

(∆Wi)
2

)
. (29)

Similarly, for the law of the discretized process {Xn}N−1
n=0 we can

write

pN
X =

1

(
√

2π∆)N/2
exp

(
− 1

2∆

N−1∑

i=0

(∆Xi)
2

)
. (30)
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The ratio of the laws of the two possesses is

dP
N
X

dPN
W

=
pN

X

pN
W

= exp

(

− 1
2∆

N−1∑

i=0

(
(∆Xi)

2 − (∆Wi)
2)
)

= exp

(

− 1
2∆

N−1∑

i=0

(
(∆Xi)

2 − (∆Xi − bi∆)2)
)

= exp

(
1
2

N−1∑

i=0

(bi)
2∆ −

N−1∑

i=0

bi∆Xi

)

.

Passing now (formally) to the limit as N → +∞, ( T → +∞) while
keeping ∆ fixed we obtain (16).
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The MLE (17) depends on the path {Xt}t∈[0,T] (or, rather, on the
discrete observations {Xj}J−1

j=0 ).

We want to prove that, in the large sample limit J → +∞, ∆t fixed,
and for appropriate assumptions on the diffusion process Xt, the
MLE converges to the true value θ0.

We also want to obtain information about the fluctuations around
the limiting value θ0.

Assuming that Xt is stationary we can prove that the MLE θ̂
converges in the limit as T → +∞ (assuming that the entire path
{Xt}t∈[0,T] is available to us) to θ0.

Furthermore, we can prove asympotic normality of the maximum
likelihood estimator,

√
T
(
θ̂ − θ0

)
→ N (0, σ2), (31)

for a variance σ2 that can be calculated.
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Theorem

Let Xt be the stationary OU process

dXt = −αXt dt + dWt, X0 ∼ N
(

0,
1

2α

)

and let α̂ denote the MLE (20). Then

lim
T→+∞

√
T|α̂− α| = N (0, 2α) (32)

in distribution.
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We will use the following result from probability theory.

Theorem

(Slutsky) Let {Xn}+∞
n=1 , {Yn}+∞

n=1 be sequences of random variables
such that Xn converges in distribution to a random variable X and Yn

converges in probability to a constant c 6= 0. Then

lim
n→+∞

Y−1
n Xn = c−1X,

in distribution.
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Proof of Theorem 6. First we observe that

α̂ = −
∫ T

0 Xt dXt∫ T
0 X2

t dt
= α−

∫ T
0 Xt dWt∫ T
0 X2

t dt
.

Consequently:

α̂− α = −
∫ T

0 Xt dWt∫ T
0 X2

t dt
=

1√
T

1√
T

∫ T
0 Xt dWt

1
T

∫ T
0 X2

t dt

Law
= − 1√

T

W
(

1
T

∫ T
0 X2

t dt
)

1
T

∫ T
0 X2

t dt
,

where the scaling property of Brownian motion was used: we have
that, in law ∫ T

0
f (s) dW(s) = W

(∫ T

0
f 2(s) ds

)
. (33)
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The process Xt is stationary. We use the ergodic theorem for
stationary Markov processes to obtain

lim
T→+∞

1
T

∫ T

0
X2

t dt = EX2
t =

1
2α

a.s. (34)

Let X = N (0, σ2) with σ2 = 1
2α . We can write X = W(σ2). We use

now the Hölder continuity of Brownian motion to conclude that,
almost surely,

∣∣∣∣W
(

1
T

∫ T

0
X2

t dt

)
− X

∣∣∣∣ =

∣∣∣∣W
(

1
T

∫ T

0
X2

t dt

)
− W

(
1

2α

)∣∣∣∣

6 Hö l(W)

∣∣∣∣
1
T

∫ T

0
X2

t dt − 1
2α

∣∣∣∣
α

,

with α < 1/2.
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We use (34) to obtain

lim
T→+∞

1
T

∫ T

0
Xt dWt = N

(
0,

1
2α

)
, (35)

in distribution. We combine (34) with (35) and use Slutsky’s
theorem to conclude that

lim
T→+∞

√
T|α̂− α| = N (0, 2α) (36)

in distribution.
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Thermal Motion in a Two-Scale Potential

Consider the SDE

dxε(t) = −∇V

(
xε(t),

xε(t)
ε

;α

)
dt +

√
2σ dW(t),

Separable potential, linear in the coefficient α:

V(x, y;α) := αV(x) + p (y) .

p(y) is a mean-zero smooth periodic function.

xε(t) ⇒ X(t) weakly in C([0,T]; Rd), the solution of the
homogenized equation:

dX(t) = −αK∇V(X(t))dt +
√

2σKdW(t).
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The matrix K is given by

K =

∫

Td

(
I + ∇yφ(y)

)(
I + ∇yφ(y)

)T
µ(dy).

Here φ : T
d → R

d and ρ : T
d → R

+ solve

−L0φ = −∇yp(y),

−L∗
0ρ = 0.

The operator L0 is the generator of the T
d−valued process

dy = −∇yp(y) dt +
√

2σ dW.

Diffusion is depleted:

1

ZẐ
|ξ|2 6 〈ξ,Kξ〉 6 |ξ|2 ∀ξ ∈ R

d.
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In one dimension

dxε(t) = −αV ′(xε(t))dt − 1
ε

p′
(

xε(t)
ε

)
dt +

√
2σ dW(t).

The homogenized equation is

dX(t) = −AV ′(X(t))dt +
√

2Σ dW(t).

The depletion of (A,Σ) over (α, σ) is apparent from the formulae
(L is the period of p(y)):

A =
αL2

ZẐ
, Σ =

σL2

ZẐ

Z =

∫ L

0
e−

p(y)
σ dy, Ẑ =

∫ L

0
e

p(y)
σ dy.
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A and Σ decay to 0 exponentially fast in σ → 0.

The homogenized coefficients satisfy (detailed balance):

A
α

=
Σ

σ
.

⇒ The invariant measure is the Gibbs measure

µ(dx) = ρ(x)dx =
1

ZV
e−

α

σ
V(x) dx, ZV =

∫

R

e−
α

σ
V(x) dx.

ρ(x) is the weak–L1 limit of the invariant distribution of the
unhomogenized equation:

ρε(x) =
1
Zε

e−
α

σ
V(x)− 1

σ
p( x

ε
), Zε =

∫

R

e−
α

σ
V(x)− 1

σ
p( x

ε
) dx.

This follows from properties of periodic functions.
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Figure: Vε(x) and V(x).
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We are given a path of

dxε(t) = −αV ′(xε(t)) dt − 1
ε

p′
(

xε(t)
ε

)
dt +

√
2σ dβ(t).

We want to fit the data to

dX(t) = −ÂV ′(X(t))dt +
√

2Σ̂ dβ(t).

It is reasonable to assume that we have some information on the
large–scale structure of the potential V(x).

We do not assume that we know anything about the small scale
fluctuations.
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We fit the drift and diffusion coefficients via maximum likelihood
and quadratic variation, respectively.

For simplicity we fit scalars A,Σ in

dx(t) = −A∇V(x(t))dt +
√

2ΣdW(t).

The Radon–Nikodym derivative of the law of this SDE wrt Wiener
measure is

L = exp

(
− 1

Σ

∫ T

0
A∇V(x) dx(s) − 1

2Σ

∫ T

0
|A∇V(x(s))|2 ds

)
.

This is the maximum likelihood function.

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 45 / 150



Let x denote {x(t)}t∈[0,T] or {x(nδ)}N
n=0 with nδ = T.

Diffusion coefficient estimated from the quadratic variation:

Σ̂N,δ(x)) =
1

dNδ

N−1∑

n=0

|xn+1 − xn|2,

Choose Â to maximize log L :

Â(x) = −
∫ T

0 〈∇V(x(s)), dx(s)〉
∫ T

0 |∇V(x(s))|2 ds
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In practice we use the estimators on discrete time data and use
the following discretisations:

Σ̂N,δ(x) =
1

Nδ

N−1∑

n=0

|xn+1 − xn|2,

ÂN,δ(x) = −
∑N−1

n=0 〈∇V(xn), (xn+1 − xn)〉∑N−1
n=0 |∇V(xn)|2 δ

,

ÃN,δ(x) = Σ̂N,δ

∑N−1
n=0 ∆V(xn)δ∑N−1

n=0 |∇V(xn)|2 δ
,
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No Subsampling

Generate data from the unhomogenized equation (quadratic or
bistable potential, simple trigonometric perturbation).

Solve the SDE numerically using Euler–Marayama for a single
realization of the noise. Time step is sufficiently small so that
errors due to discretization are negligible.

Fit to the homogenized equation.

Use data on a fine scale δ ≪ ε2 (i.e. use all data).

Parameter estimation fails.
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Subsampling

Generate data from the unhomogenized equation.

Fit to the homogenized equation.

Use data on a coarse scale ε2 ≪ δ ≪ 1.

More precisely

δ := ∆tsam = 2k∆t, k = 0, 1, . . . .

Study the estimators as a function of ∆tsam.

Parameter Estimation Succeeds.
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Figure: Â, Σ̂ vs ∆tsam for quadratic potential with ε = 0.1.
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Figure: B̂ij, i, j = 1, 2 vs ∆tsam for 2d quadratic potential with σ = 0.5, ε = 0.1.
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Conclusions From Numerical Experiments

Parameter estimation fails when we take the small–scale (high
frequency) data into account.

Â, Σ̂ become exponentially wrong in σ → 0.

Â, Σ̂ do not improve as ε→ 0.

Parameter estimation succeeds when we subsample (use only
data on a coarse scale).

There is an optimal sampling rate which depends on σ.

Optimal sampling rate is different in different directions in higher
dimensions.
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Theorem (No Subsampling)

Let xε(t) : R
+ 7→ R

d be generated by the unhomogenized equation.
Then

lim
ε→0

lim
T→∞

Â(xε(t)) = α, a.s.

Fix T = Nδ. Then for every ε > 0

lim
N→∞

ΣN,δ(x
ε(t)) = σ, a.s.

Thus the unhomogenized parameters are estimated – the wrong
answer.
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Theorem (With Subsampling)

Fix T = Nδ with δ = εα with α ∈ (0, 1). Then

lim
ε→0

Σ̂N,δ(x
ε) = Σ in distribution.

Let δ = εα with α ∈ (0, 1), N = [ε−γ ], γ > α. Then

lim
ε→0

ÂN,δ(x
ε) = A in distribution.

Thus we get the right answer provided subsampling is used.
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Let xε
n = xε(nδ). We need to understand the small ε, δ asymptotics

of xε
n. In particular, we can show that

xn+1 − xn = −AV ′(xn)δ +
√

2Σδξn + R(ε, δ),

with ξn i.i.d. N (0, 1) and, for ε, δ ≪ 1,

‖R(ε, δ)‖ 6 C(ε1/2 + εδ1/2−ι + δ3/2),

for ι > 0, arbitrarily small.

To prove this we apply Itô’s formula to the solutions of appropriate
Poisson equations and estimate the various error terms.

We also use the Dambis-Dubins-Schwarz theorem (martingales
as time changed Brownian motions).
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A Fast-Slow System of SDEs
A. Papavasiliou, G.P. A.M. Stuart, Stoch. Proc. Appl. 119(10) 3173-3210

(2009).

Let (x, y) in X × Y. and consider the following coupled systems of
SDEs:

dx
dt

=
1
ε

f0(x, y) + f1(x, y) + α0(x, y)
dU
dt

+α1(x, y)
dV
dt
, (37a)

dy
dt

=
1
ε2 g0(x, y) +

1
ε

g1(x, y) +
1
ε
β(x, y)

dV
dt
. (37b)
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Let (x, y) in X × Y. and consider the following coupled system of
SDEs:

dx
dt

=
1
ε

f0(x, y) + f1(x, y) + α0(x, y)
dU
dt

+α1(x, y)
dV
dt
, (38a)

dy
dt

=
1
ε2 g0(x, y) +

1
ε

g1(x, y) +
1
ε
β(x, y)

dV
dt
. (38b)

Here fi : X × Y → R
l, α0 : X × Y → R

l×n, α1 : X × Y → R
l×m,

g1 : X × Y → R
d−l and g0, β and U, V are independent standard

Brownian motions in R
n.
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Here fi : X × Y → R
l, α0 : X × Y → R

l×n, α1 : X × Y → R
l×m,

g1 : X × Y → R
d−l and g0, β and U, V are independent standard

Brownian motions in R
n.

We will refer to (??) as the averaging and to (??) as the
homogenization problem.

We assume that the coefficients of SDEs (??) are such that, in the
limit as ε→ 0, the slow process x converges weakly in C([0,T],X )
to X, the solution of

dX
dt

= F(X) + K(X)
dW
dt
. (39)

Our aim it to estimate parameters in (??) given {x(t)}t∈[0,T].
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The averaged/homogenized equation has the form.

dX
dt

= F(X) + K(X)
dW
dt

(40)

The proof of (??) is a standard result when the state space of the
fast process is compact.

The non-compact case is more subtle. See recent work by
Pardoux and Veretennikov, 2001/03/05.

A fundamental role in the analysis is played by the Poisson
equation

−L0φ(y; x) = h(y; x),

where L0 is the generator of the fast process.
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Homogenization
We assume that the function f0 satisfies the centering condition

∫

Y
ρ(y; x)f0(x, y)dy = 0.

Let Φ(y; x) ∈ L2
ρ(Y; x) be the unique solution of the equation

−L0Φ(y; x) = f0(x, y),
∫

Y
ρ(y; x)Φ(y; x)dy = 0, (41)

Define

F0(x) :=

∫

Y

((
∇xΦf0

)
(x, y) +

(
∇yΦg1

)
(x, y)

+
(
α1β

′ : ∇y∇xΦ
)
(x, y)

)
ρ(y; x)dy,

F1(x) :=

∫

Y
f1(x, y)ρ(y; x)dy and

F(x) = F0(x) + F1(x).
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Also define

A1(x)A1(x)
′ :=

∫

Y

((
∇yΦβ + α1

)(
∇yΦβ + α1

)′)
(x, y)ρ(y; x)dy,

A0(x)A0(x)
′ :=

∫

Y
α0(x, y)α0(x, y)

′ρ(y; x)dy and

K(x)K(x)′ = A0(x)A0(x)
′ + A1(x)A1(x)

′
> 0.

Then x ⇒ X in C([0,T],X ) and X solves the SDE

dX
dt

= F(X) + A(X)
dW
dt

(42)

where W is a standard l-dimensional Brownian motion.
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We want to fit data {x(t)}t∈[0,T] to a limiting (homogenized or
averaged) equation, but with an unknown parameter θ in the drift:

dX
dt

= F(X; θ) + K(X)
dW
dt
. (43)

We assume that the actual drift that is compatible with the data is
given by F(X) = F(X; θ0).

We want to correctly identify θ = θ0 by finding the maximum
likelihood estimator (MLE) when using a statistical model of the
form (??), but using data from the slow-fast system.
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Given data {z(t)}t∈[0,T], the log likelihood for θ satisfying (??) is
given by

L(θ; z) =

∫ T

0
〈F(z; θ), dz〉a(z) −

1
2

∫ T

0
|F(z; θ)|2a(z)dt, (44)

where
〈p, q〉a(z) = 〈K(z)−1p,K(z)−1q〉.

We can define the MLE through

dP

dP0
= exp (−L(θ; X))

where P is the path space measure for (??) and P0 the path pace
measure for

dX
dt

= K(X)
dW
dt
.

The MLE is
θ̂ = argmaxθL(θ; z).
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Choosing data from (??) leads to the correct estimation of drift
parameters, in the limit as the length of the path T → ∞:

Theorem

Assume that (??) defines an ergodic Markov process with invariant
distribution π(x) for θ = θ0 and that K(x) is uniformly positive definite on
X . Let {X(t)}t∈[0,T] be a sample path of (??) with θ = θ0. Then, in
L2(Ω),

lim
T→∞

2
T

L(θ; X) = E
π|F(X; θ0)|2a(X)

−E
π|F(X; θ) − F(X; θ0)|2a(X).

This expression is maximized by choosing θ̂ = θ0, in the limit T → ∞.
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Assume that we are given data {x(t)}t∈[0,T] from (??) and we want
to fit it to the equation (??). In this case the MLE is
asymptotically biased, in the limit as ε→ 0 and T → ∞. The
MLE does not converge to the correct value θ0.

Theorem

Assume that the slow-fast system (??) as well as the averaged
equation (??) are ergodic. Let {x(t)}t∈[0,T] be a sample path of (??)
and X(t) a sample path of (??) at θ = θ0. Then the following limits, to
be interpreted in L2(Ω) and L2(Ω0) respectively, are identical:

lim
ε→0

lim
T→∞

1
T

L(θ; x) = lim
T→∞

1
T

L(θ; X) + E∞(θ),

with an explicit expression for E∞(θ).

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 70 / 150



The generator of the slow-fast process (??) has the form

Lε =
1
ε2L0 +

1
ε
L1 + L2.

Consider the Poisson equations

− L0Γ = 〈F(x; θ), f0(x, y)〉a(x) ,

∫

Y
ρ(y; ξ)Γ(y; x)dy = 0 (45)

and

− L0Φ(y; x) = f0(x, y),
∫

Y
ρ(y; x)Φ(y; x)dy = 0. (46)

Then E∞ is defined as

E∞ =

∫

X×Y

(
L1Γ(x, y) − 〈F(x; θ),

(
L1Φ(x, y)

)
〉a(x)

)
ρ(y; x)dxdy.
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In order to estimate the the parameter in the drift correctly, we
need to subsample, i.e. use only a (small) portion of the data that
is available to us.

Assume that we are given observation of x(t) at equidistant
discrete points {xn}N

n=1 where xn = x(nδ), Nδ = T.

The log Likelihood function has the form

L
δ,N(z) =

N−1∑

n=0

〈F(zn; θ), zn+1 − zn〉a(zn) −
1
2

N−1∑

n=0

|F(zn; θ)|2a(zn)
δ.

If we choose δ = εα appropriately, then we can estimate the drift
parameter correctly.
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Theorem

Let {x(t)}t∈[0,T] be a sample path of (??) and X(t) a sample path of
(??) at θ = θ0. Let δ = εα with α ∈ (0, 1) and let N = [ε−γ ] with γ > α.
Then (under appropriate assumptions) the following limits, to be
interpreted in L2(Ω′) and L2(Ω0) respectively, and almost surely with
respect to X(0), are identical:

lim
ε→0

1
Nδ

L
N,δ(θ; x) = lim

T→∞
1
T

L(θ; X). (47)

Define
θ̂(x; ε) := arg max

θ
L

N,δ(θ; x).

Then, under additional assumptions,

lim
ε→0

θ̂(x; ε) = θ0, in probability.
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The proof of Theorems ?? are similar to the proof of the averaging
and homogenization theorems.

The proof of Theorem ?? follows from the small ε, γ asymptotic
result for the increments of the process x(t):

xε
n+1 − xε

n = F(xε
n) δ + Mn + R(ε, δ), (48)

where Mn denotes a discrete martingale.
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1. Langevin Equation in the High Friction Limit

Consider the Langevin equation in the high friction (small mass)
limit.

ε2 d2x
dt2 = −∇V(x) − dx

dt
+

√
2σ

dW
dt
. (49)

Write this equation as a first order system:

dx
dt

=
1
ε

y,
dy
dt

= −1
ε
∇V(x) − 1

ε2 y +

√
2σ
ε2

dV
dt
.

The limiting equation is

dX
dt

= −∇V(X) +
√

2σ
dW
dt
.
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Suppose that there is a set of parameters θ ∈ Θ in the potential
that we want to estimate,

dX
dt

= −∇V(X; θ) +
√

2σ
dW
dt
.

using data from (??).

The error in the asymptotic log Likelihood function is:

E∞(θ) = −Z−1
V
β

2

∫

Rd
|∇qV(q; θ)|2e−βV(q;θ) dq, (50)

where ZV =
∫

Rd e−βV(q;θ) dq. In particular, E∞ < 0.
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2. Thermal motion in a two-scale potential

dx
dt

= −∇Vε(x) +
√

2β−1 dW
dt

(51)

where
Vε(x) = V(x) + p(x/ε),

where p(·) is a smooth 1-periodic function. The coarse-grained
equation is The homogenized equation is

dX
dt

= −K∇V(X) +
√

2β−1K
dW
dt

(52)

where

K =

∫

Td
(I + ∇yΦ(y))(I + ∇yΦ(y))Tρ(y) dy.
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Suppose there is a set of parameters θ ∈ Θ in the large-scale part
of the potential

dX
dt

= −K∇V(X; θ) +
√

2β−1K
dW
dt

using data from (??).

The error in the asymptotic log Likelihood function is:

E∞(θ) =
(
− 1 + Ẑ−1

p Z−1
p

)βZ−1
V

2

∫

R

|∂xV|2e−βV(x;θ) dx. (53)

where ZV =
∫

R
e−βV(q;θ) dq, Zp =

∫ 1
0 e−βp(y) dy Ẑp =

∫ 1
0 eβp(y) dy. In

particular, E∞ < 0.
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Estimating the Eddy Diffusivities from Noisy
Lagrangian Observations
C.J. Cotter and G.P. Comm. Math. Sci. 7(4), pp. 805-838 (2009).

Consider the equation for the Lagrangian trajectories

ẋ = v(x, t) +
√

2κẆ. (54)

For v(x, t) being either periodic or random solutions to (??)
converge to an effective Brownian motion:

lim
ε→0

εx(t/ε2) =
√

2KW(t), (55)

weakly on C([0,T]; Rd). At long length-time scales the dynamics of
the passive tracer is given by

Ẋ =
√

2KẆ. (56)

We want to estimate the eddy diffusivity and other large-scale
quantities (e.g. effective drift) from noisy Lagrangian observations.
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The eddy diffusivity (along the direction ξ ∈ R
d) is given by

Kξ = κ‖∇zχ
ξ(z) + ξ‖2

L2(Td)

where
−L0χ = v, L0 = v(z) · ∇z + κ∆z

with periodic boundary conditions.

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 80 / 150



The homogenized equation (??) is compatible with the data only
at sufficiently large scales.

We do not know a priori what the right length and time scales are
for which the dynamics can be adequately described by (??).

The diffusive time scale at which (??) is valid depends on the
detailed properties of v(x, t) and on κ.
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For the estimation of the eddy diffusivity we use

KN,δ =
1

2Nδ

N−1∑

n=0

(
xn+1 − xn

)
⊗
(
xn+1 − xn

)
, (57)

where N is the number of observations. We have that

lim
N→∞

N−1∑

j=0

(
x(j+1)∆t − xj∆t

)
⊗
(
x(j+1)∆t − xj∆t

)
= 2κIT, a.s., (58)

with ∆tN = T, fixed.

The eddy diffusivity satisfies the bounds

κ 6 Kξ
6

C
κ
, (59)

The estimator KN,δ underestimates the value of the eddy
diffusivity, in particular when κ≪ 1.
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Theorem

Let v(z) be a smooth, divergence-free smooth vector field on T
d. Then

lim
κ→0

E|KN,δ
ξ −Kξ|2 = 0. (60)

when N ∼ κζ and δ ∼ κγ where the exponents γ and ζ depend on the
properties of the velocity field v(x, t).
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Consider (??) in 2d with

v(x) = (0, sin(x)).

The eddy diffusivity in the y direction is

K = κ+
1

2κ
.

The estimator is

Kδ =
1

2Nδ

N−1∑

n=0

(yn+1 − yn)
2 . (61)

where yn = y(nδ) and δ is the sampling rate.

For this example Theorem ?? holds with γ = ζ = −2 − ε with
ε > 0, arbitrarily small.
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Simply subsampling is clearly not the optimal strategy since we
are not using a large portion (almost all!) of the data. Note
however that the data that we do not use is highly correlated.

We combine subsampling with averaging, in order to reduce the
bias of the estimator and to remove the measurement error.
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We split the data into NB bins of size δ with δNB = N and to
perform a local averaging over each bin. Let

xj
n := x((n − 1)δ + (j − 1)∆t),

n = 1, . . .NB, j = 1, . . . J, JNB = N,

be the j-th observation in the n-th bin. J = δ/∆t is the number of
observations in each bin. The box-averaged estimator is

KN,δ
bx =

1
2Nδ

N−1∑

n=0



1
J

J∑

j=1

xj
n+1 −

1
J

J∑

j=1

xj
n





⊗



1
J

J∑

j=1

xj
n+1 −

1
J

J∑

j=1

xj
n



 . (62)
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Compute a series of estimators, each using a different
observation from each bin, and then to compute the average. This
is the shift-averaged estimator:

KN,δ
st =

1
J

J∑

j=1

1
2Nδ

N−1∑

n=0

(
xj

n+1 − xj
n

)
⊗
(

xj
n+1 − xj

n

)
. (63)
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Effect of Observation Error
Assume that the observed process is

Yξ
tj = Xξ

tj + θεξtj , j = 1, . . .N, (64)

where θ > 0 and εξtj is collection of i.i.d N (0, 1) random variables ,
independent from the Brownian motion driving the Lagrangian
dynamics.
We have

E

∣∣∣Kξ
N,δ(Yt) −Kξ

∣∣∣
2

= E

∣∣∣Kξ
N,δ(Xt) −Kξ

∣∣∣
2
+ 3

θ4

δ2

+2θ2
(

1
δ

+
2

Nδ

)
(Kξ + R),

Provided that ,N, δ → ∞ at an appropriate rate, then

lim
κ→0

E

∣∣∣Kξ
N,δ(Yt) −Kξ

∣∣∣
2

= 0.
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Figure: Estimated eddy diffusivity for shear flow with observation error.
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Figure: K for modulated shear flow with observation error.
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Figure: K for Taylor-Green flow with observation error.
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Figure: K for OU-modulated shear flow with observation.
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Maximum Likelihood and Quadratic Variation
Estimators for Multiscale Diffusions
S. Krumscheid, S. Kalliadasis, G.P., Preprint 2011

Optimal subsampling rate and estimator curves generally
unknown

MLE only feasible for drift parameters.

QVP only applicable for constant diffusion coefficients.

We propose new estimators that are applicable in a
semiparametric framework and for non-constant diffusion
coefficients.
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The Estimators

Scalar-valued Itô SDE

dxt = f (xt) dt +
√

g(xt) dWt , x(0) = x0

Parameterization of drift and diffusion coefficient

f (x) ≡ f (x;ϑ) :=
∑

j∈Jf

ϑjx
j and g(x) ≡ g(x; θ) :=

∑

j∈Jg

θjx
j

Goal
Determine ϑ ≡ (ϑj)j∈Jf

∈ R
p and θ ≡ (θj)j∈Jg

∈ R
q, with Jf , Jg ⊂ N0
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By the Martingale property of the stochastic integral we find

E(xt − x0) = E

(∫ t

0
f (xs) ds

)
=
∑

j∈Jf

ϑj

∫ t

0
E(xs

j) ds , for t > 0 fixed

This can be rewritten as

b1(x0) = a1(x0)
Tϑ

with b1(ξ) := Eξ(xt − ξ) ∈ R and a1(ξ) :=
(∫ t

0 Eξ(xs
j) ds

)

j∈Jf

∈ R
p

Equation a1(x0)
Tϑ = b1(x0) is ill-posed

Since the equation is valid for each initial condition, we can
overcome this shortcoming by considering multiple initial
conditions (x0,i)16i6m, m > p, and obtain

A1ϑ = b1

with A1 :=
(
a1(x0,i)

T
)

16i6m ∈ R
m×p, b1 :=

(
b1(x0,i)

)
16i6m ∈ R

m

Define estimator to be the best approximation

ϑ̂ := A+
1 b1
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Assume now that drift f is already estimated, hence known

By Itô Isometry and the parameterization of g we find

E

((
xt − x0 −

∫ t

0
f̂ (xs) ds

)2
)

= E

(∫ t

0
g(xs) ds

)
=
∑

j∈Jg

θj

∫ t

0
E(xs

j) ds

Provides the same structure as for ϑ

Thus, we can follow the same steps as before: Rewriting,
considering multiple initial conditions, and taking the best
approximation to obtain

θ̂ := A+
2 b2

with A2 and b2 defined appropriately
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Summary: Two Step Estimation Procedure

1 Estimate drift coefficient via ϑ̂ := A+
1 b1

2 Based on ϑ̂ estimate diffusion coefficient via θ̂ := A+
2 b2

Further Approximations
Discrete Time Data: Approximate integrals via trapezoidal rule

Approximate expectations via Monte Carlo experiments
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Fast OU Process Revisited

Fast/Slow System

dxt =
(σ
ε

yt + Axt
)

dt ,

dyt = − 1
ε2 yt dt +

√
2
ε

dVt

Effective Dynamics

dXt = AXt dt +
√

2σ dWt
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Fast OU Process II
Fast/slow system:

dxt =
(yt

ε

√
σa + σbx2

t + (A − σb)xt − Bxt
3) dt ,

dyt = − 1
ε2 yt dt +

√
2
ε

dVt

Effective Dynamics:
dXt = (AXt − BXt

3) dt +

√
2(σa + σbXt

2) dWt

True values:

A = 1 , σa = 0.81

B = 2 , σb = 0.49

ε = 0.1
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Brownian Motion in two-scale Potential [Pavliotis, Stuart ’07]

Fast/slow system:

dxt = − d
dx

Vα

(
xt,

xt

ε

)
dt +

√
2σ dUt

Two-scale potential: Vα(x, y) = αV(x) + p(y), with p(·) periodic
Effective Dynamics:

dXt = −AV ′(Xt) dt +
√

2Σ dWt

with:
V(x) = x2/2

p(y) = cos (y)

True values:
α = 1 , A ≈ 0.192

σ =
1
2
, Σ ≈ 0.096

ε = 0.1
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Fast Chaotic Noise
Fast/slow system:

dx
dt

= x − x3 +
λ

ε
y2 ,

dy1

dt
=

10
ε2 (y2 − y1) ,

dy2

dt
=

1
ε2 (28y1 − y2 − y1y3) ,

dy3

dt
=

1
ε2 (y1y2 −

8
3

y3)

Effective Dynamics: [Melbourne, Stuart ’11]

dXt = A
(
Xt − Xt

3) dt +
√
σ dWt

true values:

A = 1 , λ =
2

45
, σ = 2λ2

∫ ∞

0
lim

T→∞
1
T

∫ T

0
ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators

Values for σ reported in the literature (ε = 10−3/2)
◮ 0.126 ± 0.003 via Gaussian moment approx.
◮ 0.13 ± 0.01 via HMM

[Givon, Kupferman, Stuart ’04]

here: ε = 10−1 → σ̂ ≈ 0.121 and ε = 10−3/2 → σ̂ ≈ 0.124

But we estimate also Â
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Truncated Burgers Equation

Diffusively time rescaled variant of Burgers’ equation

dut =
( 1
ε2 (∂2

x + 1)ut +
1
2ε
∂xu2

t + νut

)
dt +

1
ε

Q dWt

on an open interval equipped with homogeneous Dirichlet
boundary conditions

Effective dynamics for dominant mode

dXt =
(
AXt − BXt

3) dt +
√
σa + σbXt

2 dWt

For the three-term truncated representation the true values are:

A = ν +
q1

2

396
+

q2
2

352
, B =

1
12

, σa =
q1

2q2
2

2112
, and σb =

q1
2

36
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Truncated Burgers Equation
Estimators

ν = 1, q1 = 1 = q2 and ε = 0.1
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Fast Chaotic Noise II
Fast/slow system:

dx
dt

= x − x3 +
λ

ε
(1 + x2)y2 ,

dy1

dt
=

10
ε2 (y2 − y1) ,

dy2

dt
=

1
ε2 (28y1 − y2 − y1y3) ,

dy3

dt
=

1
ε2 (y1y2 −

8
3

y3)

Effective Dynamics:
dXt =

(
AXt + BXt

3 + CXt
5) dt +

√
σa + σbXt

2 + σcXt
4 dWt

true values (λ = 2/45):

A = 1 + σ , B = σ − 1 , C = 0 , σa = σ , σb = 2σ , σc = σ ,

σ = 2λ2
∫ ∞

0
lim

T→∞
1
T

∫ T

0
ψs(y)ψs+t(y) ds dt
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Fast Chaotic Noise
Estimators
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Multiscale modeling and inverse problems
J. Nolen, A.M Stuart, G.P., in Numerical Analysis of Multiscale Problems,

Springer, 2012

In many applications we need to blend observational data and
mathematical models.

Parameters appearing in the model, such as constitutive tensors,
initial conditions, boundary conditions, and forcing can be
estimated on the basis of observed data.

The resulting inverse problems are usually ill-posed and some
form of regularization is required.

We are interested in problems where the unknown parameters
vary across multiple scales.
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We study inverse problems for PDEs with rapidly oscillating
coefficients for which a homogenized equation exists.

Unknown parameters are denoted by u ∈ X.

We denote the data by y ∈ Y to denote the data (usually Y = R
N).

z is the the predicted quantity, i.e. the solution of the PDE.

The map G : X → R
N denotes the mapping from the unknown

parameter to the data (observation operator)

The map F : X → Z denotes the mapping from the parameter to
the prediction (prediction operator).

The mapping G : X → P mapping u ∈ X to the solution G(u) ∈ P of
a (PDE), is the solution operator.

We assume that we are given noisy data:

y = G(u) + ξ (65)

for some ξ ∈ R
N quantifying model error. We will take it to be a

Gaussian random variable.
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The main conclusions are:

(a) The choice of the space or set in which to seek the solution to the
inverse problem is intimately related to whether a low-dimensional
“homogenized" solution or a high-dimensional “multiscale" solution
is required for predictive capability. This is a choice of
regularization.

(b) If a homogenized solution to the inverse problem is desired, then
this can be recovered from carefully designed observations of the
full multiscale system.

(c) The theory of homogenization can be used to improve the
estimation of homogenized parameters from observations of
multiscale data.
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Example: Dirichlet problem for the pressure (groundwater flow)

∇ · v = f , x in D,

p = 0, x on ∂D,

v = −k∇p

(66)

where D ⊂ R
d.

The permeability tensor field k(x) = exp
(
u(x)

)
, u(x) positive definite

is assumed to be unknown and must be determined from data.

Equation for Lagrangian trajectories (φ is the porosity):

dx =
v(x)
φ

dt +
√

2η dW, x(0) = xinit, (67)
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from PDEs theory we know that we may define G : X → H1
0(D) by

G(u) = p.

Consider a set of real-valued continuous linear functionals

ℓj : H1(D) → R

and define
G : X → R

N by G(u)j = ℓj(G(u)).

Inverse problem: determine u ∈ X from y ∈ R
N where it is

assumed that y is given by (??).
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Assume that the permeability tensor has two characteristic length
scales k = Kε(x) = K(x, x/ε), periodic in the second argument,
and ε > 0 a small parameter.

Family of problems

∇ · vε = f , x in D, (68a)

pε = 0, x on ∂D, (68b)

vε = −Kε∇pε. (68c)

Family of SDEs (we η = εη0)

dxε =
vε(xε)

φ
dt +

√
2η0ε dW, xε(0) = xinit. (69)
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The pressure admits the two–scale expansion

pε(x) ≈ pε
a(x) := p0(x) + εp1(x,

x
ε
) (70)

The cell problem for χ(x, y) is:

−∇y ·
(
∇yχKT) = ∇y · KT , y ∈ T

d. (71)

We can now define for each x ∈ D the effective (homogenized)
permeability tensor K0

K0(x) =

∫

Td
Q(x, y)dy, (72)

Q(x, y) = K(x, y) + K(x, y)∇yχ(x, y)T . (73)

We write K0 = exp(u0).
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p0 is the solution of the homogenized PDE

∇ · v0 = f , x ∈ D, (74a)

p0 = g, x ∈ ∂D, (74b)

v0 = −K0∇p0. (74c)

and the corrector p1 is defined by

p1(x, y) = χ(x, y) · ∇p0(x). (75)

We will need the following strong convergence result.
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Theorem
Let pε and p0 be the solutions of (??) and (??). Assume that
f ∈ C∞(D) and that K ∈ C∞(D; C∞

per(T
d)). Then

lim
ε→0

‖pε − pε
a‖H1 = 0. (76)

Corollary

Under the same conditions as in Theorem ?? we have

‖pε − p0‖L2 → 0 and ‖∇pε −
(
I + χy(·, ·/ε)T)∇p0‖L2 → 0

as ε→ 0.
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Assumption

The function pε converges to p0 in L∞(D) and its gradient converges to
the gradient of p0 + εp1 in L∞(D) so that

lim
ε→0

‖pε − pε
a‖W1,∞ = 0.

This assumption can be proved in 1d. See also Avellaneda and
Lin CPAM 40(6):803-847, 1987.

Under this assumption we can study the asymptotic behavior of
the particle trajectories.
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Theorem

Let xε(t) and x0(t) be the solutions to equations (??) and

dx0

dt
=

v0(x0)

φ
, x0(0) = xinit, (77)

with velocity fields extended from D = (LT)d to R
d by periodicity, and

assume that Assumption ?? holds. Assume also that f ∈ C∞(D) and
that K ∈ C∞(D; C∞

per(T
d)). Then

lim
ε→0

E sup
06t6T

‖xε(t) − x0(t)‖ = 0.

If the length scale ε is small, the data generated from Kε and K0

may appear very similar due to homogenization effects. Therefore,
when trying to infer parameters from data, it is difficult to
distinguish between Kε and K0 without some form of regularization
or prior assumptions about the form of the parameter.
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Regularization of Inverse Problems

Objective: determine u, given y ∈ R
N and ξ ∼ N(0,Γ).

Least squares functional

Φ(u) =
1
2
|y − G(u)|2Γ (78)

with | · | = |Γ−1/2 · |.
Inverse problems are ill-posed/hard to solve.

Some kind of regularization is needed.
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Regularization by Minimization Over a Compact Set

E is a reflexive Banach space compactly embedded into X.

Let Ead = {u ∈ E : ‖u‖E 6 α}. Then Ead is a closed bounded set in
E and any sequence in Ead must contain a weakly convergent
subsequence with limit in Ead.

Consider the minimization problem

Φ = inf
u∈Ead

Φ(u). (79)

Theorem

Any minimizing sequence {un}n∈Z+ for (??) contains a weakly
convergent subsequence in E with limit u ∈ Ead which attains the
infimum: Φ(u) = Φ.
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Tikhonov Regularization

We consider the minimization problem

I = inf
u∈E

I(u), (80)

where

I(u) =
λ

2
‖u‖2

E + Φ(u). (81)

Theorem

Any minimizing sequence {un}n∈Z+ for (??) contains a weakly
convergent subsequence in E with limit u which attains the infimum:
I(u) = I.
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Bayesian Regularization

In many cases it may be interesting to find a large class of
solutions to the inverse problem, and to give relative weights to
their importance.

The Bayesian approach to regularization does this by adopting a
probabilistic framework in which the solution to the inverse
problem is a probability measure on X, rather than a single
element of X.

We think of (u, y) ∈ X × R
N as a random variable.

Goal: find the distribution of u given y, denoted by u|y.
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Assume that u and ξ appearing in (??) are independent mean zero
Gaussian random variables, supported on X and R

N respectively,
with covariance operator 1

λC and covariance matrix Γ respectively.

The distribution of y given u, denoted y|u, is Gaussian N(G(u),Γ).

The measure µ0 = N(0, 1
λC) is known as the prior measure.

When solving the inverse problem, the aim is to find the posterior
measure µy(du) = P(du|y), and to obtain information about likely
candidate solutions to the inverse problem from it.
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Informal application of Bayes’ theorem gives

P(u|y) ∝ P(y|u)µ0(u). (82)

The probability density function for P(y|u) is, using the property of
Gaussians, proportional to

exp
(
−1

2
|y − G(u)|2Γ

)
= exp

(
−Φ(u)

)
.

The infinite dimensional analogue of this result is to show that µy

is absolutely continuous with respect to µ0 with Radon-Nikodym
derivative relating posterior to prior as follows:

dµy

dµ0
(u) =

1
Z

exp
(
−Φ(u)

)
. (83)

Here Φ(u) is given by (??) and Z =
∫

X exp
(
−Φ(u)

)
µ0(du).
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The meaning of the formula (??) is that expectations under the
posterior measure µy can be rewritten as weighted expectations
with respect to the prior: for a function F on X we may write

∫

X
F(u)µy(du) =

∫

X

1
Z

exp
(
−Φ(u)

)
F(u)µ0(du).

These problems have been studied rigorously in Dashti, Stuart
2011.

The choice of prior µ0, relates directly to the regularization of the
inverse problem.
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Priors which charge functions with a multiscale character can be
built in this Gaussian context.

The formula (??) shows how regularization works in the Bayesian
context: the main contribution to the expectation will come from
places where Φ is close to its minimum value and where µ0 is
concentrated; thus minimizing Φ is important, but this minimization
is regularized through the properties of the measure µ0.

In the Bayesian context the solution of the Tikhonov regularized
problem is known as the Maximum A Posteriori estimator (MAP
estimator)

Choosing the correct regularization is part of the overall modelling
scenario in which the inverse problem is embedded.
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Large Data Limits
We study inverse problems where a single scalar parameter is
sought and we study whether or not this parameter is correctly
identified when a large amount of noisy data is available.

We consider the problem of estimating a single scalar parameter
u ∈ R in the elliptic PDE

∇ · v = f , x ∈ D,

p = 0, x ∈ ∂D,

v = − exp(u)A∇p

(84)

where D ⊂ R
d is bounded and open, and f ∈ H−1 as well as the

constant symmetric matrix A are assumed to be known.

We let G : R → H1
0(D) be defined by G(u) = p.

The observation operator G : R → R
N is defined by

G(u)j = ℓj(G(u)).
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Our aim is to solve the inverse problem of determining u given y
satisfying (??).

We assume that ξ ∼ N(0, γ2I) i.e. that the observational noise on
each linear functional is i.i.d. N(0, γ2).

u is finite dimensional, so we can minimize the least squares
functional and no regularization is needed.

Since the solution p of (??) is linear in exp(−u), we can write
G(u) = exp(−u)p⋆ where

∇ · v = f , x ∈ D,

p⋆ = 0, x ∈ ∂D.

v = −A∇p⋆

(85)
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Note that G(u)j = exp(−u)ℓj(p⋆) so that the least squares
functional (??) has the form

Φ(u) =
1

2γ2

N∑

j=1

|yj − Gj(u)|2 =
1

2γ2

N∑

j=1

|yj − exp(−u)ℓj(p
⋆)|2.

We can prove that Φ has a unique minimizer u satisfying

exp(−u) =

∑N
j=1 yjℓj(p⋆)

∑N
j=1 ℓj(p⋆)2

. (86)

It is now natural to ask whether, for large N, the estimate u is close
to the desired value of the parameter. We study two situations:

◮ The data is generated by the model which is used to fit the data.
◮ The data is generated by a multiscale model whose homogenized

limit gives the model which is used to fit the data.

We define p0 = exp(−u0)p⋆ so that p0 solves (??) with u = u0.
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Assumption

We assume that the data y is given by noisy observations generated
by the statistical model:

yj = ℓj(p0) + ξj

where {ξj} form an i.i.d. sequence of random variables distributed as
N(0, γ2).

Theorem

Let the above assumption hold and assume that
lim infN→∞ 1

N

∑N
j=1 ℓj(p⋆)2 > L > 0 as N → ∞. Then ξ-almost surely

lim
N→∞

| exp(−u) − exp(−u0)| = 0.
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Proof.
Substituting the assumed expression for the data from Assumption ??
into the formula (??) gives

exp(−u) = exp(−u0) + I1

where

I1 =
1
N

∑N
j=1 ξjℓj(p⋆)

1
N

∑N
j=1 ℓj(p⋆)2

.

Therefore,

E[I2
1 ] =

γ2

∑N
j=1 ℓj(p∗)2

6
2γ2

NL
(87)

for N sufficiently large. Since I1 is Gaussian we deduce that
EI2p

1 = O(N−p) as N → ∞. Application of the Borel-Cantelli lemma
shows that I1 converges almost surely to zero as N → ∞.
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Remarks
1 The condition that L > 0 prevents additional observation noise

from overwhelming the information obtained from additional
measurements as N → ∞.

2 Theorem ?? is a example of what is known as posterior
consistency in the theory of statistics.
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Data from the multiscale problem

We consider the situation where the data is taken from a
multiscale model whose homogenized limit falls within the class
used in the statistical model to estimate parameters.

We define p0 = exp(−u0)p⋆ and we let pε be the solution of (??)
with Kε chosen so that the homogenized coefficient associated
with this family is K0 = exp(u0)A.

Assumption

We assume that the data y is generated from noisy observations of a
multiscale model:

yj = ℓj(p
ε) + ξj

with pε as above and the {ξj} an i.i.d. sequence of random variables
distributed as N(0, γ2).

G.A. Pavliotis (MICMAC-IC) Parameter Estimation for Multiscale Diffusions 132 / 150



Theorem

Let Assumptions ?? hold and assume that that the linear functionals ℓj

are chosen so that

lim
ε→0

lim sup
N→∞

1
N

N∑

j=1

|ℓj(p
ε − p0)|2 = 0 (88)

and lim infN→∞ 1
N

∑N
j=1 ℓj(p⋆)2 > L > 0 as N → ∞. Then ξ− almost

surely
lim
ε→0

lim
N→∞

| exp(−u) − exp(−u0)| = 0.
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Proof.

Notice that the solution of the homogenized equation is
p0 = exp(−u0)p⋆. We write

yj = ℓj(p0) + ℓj(p
ε − p0) + ξj

= exp(−u0)ℓj(p
⋆) + ℓj(p

ε − p0) + ξj.

Substituting this into the formula (??) gives

exp(−u) = exp(−u0) + I1 + Iε
2

where I1 is as defined in the proof of Theorem ?? and is independent
of ε, and

Iε
2 =

∑N
j=1 ℓj(pε − p0)ℓj(p⋆)
∑N

j=1 ℓj(p⋆)2
.
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The Cauchy-Schwarz inequality gives

|Iε
2 | 6

(∑N
j=1 |ℓj(pε − p0)|2

)1/2

(∑N
j=1 ℓj(p⋆)2

)1/2
6

( 2
NL

N∑

j=1

|ℓj(p
ε − p0)|2

)1/2

for N sufficiently large. As in the proof of Theorem ?? we have,
ξ-almost surely,

lim
N→0

| exp(−u) − exp(−u0) − Iε
2 | = 0.

From this and (??) the desired result now follows.
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Remarks
1 The assumption (??) encodes the idea that, for small ε, the linear

functionals used in the observation process return nearby values
when applied to the solution pε of the multiscale model or to the
solution p0 of the homogenized equation.

2 In particular, Corollary ?? implies that if {ℓj(p)}∞j=1 is a family of
bounded linear functionals on L2(D), uniformly bounded in j, then
(??) will hold.

3 On the other hand, we may choose linear functionals that are
bounded as functionals on H1(D) yet unbounded on L2(D). In this
case Theorem ?? shows that (??) may not hold and the correct
homogenized coefficient may not be recovered, even in the large
data limit.

4 This is analogous to the situation in the problem of parameter
estimation for multiscale diffusions.
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Exploiting Multiscale Properties Within Inverse
Estimation

We consider the situation where the unknown parameter has
small-scale random fluctuations.

If we attempt to recover the homogenized parameter the error ξ
appearing in (??) is affected by the model mismatch.

This is because the simplified, low-dimensional parameter used to
fit the data is different from the true unknown coefficient.

Even when there is no observational noise, the error ξ has a
statistical structure.

We can use homogenization theory to predict the (universal)
statistical structure of the discrepancy between G(u) and y.

This structure can be exploited in the inverse problem, as we now
describe.
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The Model
We consider the two-point boundary value problem

− d
dx

(
exp(u(x))

dp
dx

)
= f (x), x ∈ [−1, 1], (89a)

p(−1) = p(1) = 0. (89b)

The coefficient k(x) = exp(u(x)) is a single realization of a
stationary, ergodic and mixing random field k(x, ω), where (k0 is
deterministic)

1
k(x, ω)

=
1

k0(x)
+ σµ

(x
ε
, ω
)
, (90)

and µ(x, ω) is a stationary, mean zero random field with covariance

R(x) = E(µ(x + y)µ(y)).

We assume that R(0) = 1 and
∫

R
R(x) dx = 1. Thus, σ2 and ε are

the (given) variance and correlation length of the fluctuations.
We are interested in the case where ε≪ 1.
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In the limit as ε→ 0, pε(x, ω) coverges to p0(x) which is the
solution of the homogenized Dirichlet problem

− d
dx

(
k0(x)

d
dx

p0

)
= f (x), x ∈ [−1, 1], (91a)

p0(−1) = p0(1) = 0. (91b)

Furthermore, the fluctuations of pε are Gaussian (Bal, Garnier,
Motsch, Perrier 2008):

pε(x, ω) − p0(x)

ε1/2
→ σ

∫

D
Q(x, y; k0)v0(y; k0) dWy(ω) (92)

in distribution as ε→ 0, where Wy(ω) is a Brownian random field.

Here v0(x; k0) = k0(x)p0(x), and the kernel Q(x, y; k0) is related to
the Green’s function for the one dimensional system.
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Enhanced Estimation

The inverse problem is to identify the parameter k0(x) in the model

− d
dx

(
k0(x)

d
dx

p0

)
= f (x), x ∈ [−1, 1], (93a)

p0(−1) = p0(1) = 0. (93b)

We assume that the data actually come from observations of
pε(x, ω), which is the solution of the multiscale model (??) with
k(x, ω) given by (??).

Consequently, there is a discrepancy between the model used to
fit the data and the true model which generates the data.

The modelling issue is the choice of statistical model for the error
ξ in (??).
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Suppose we make noisy observations of pε(xj) at points {xj}N
j=1

distributed throughout the domain. Then the measurements are

yj = pε(xj, ω) + ξj, j = 1, . . . ,N

where ξj ∼ N(0, γ2) are mutually independent, representing
observation noise. The limit (??) tells us that for ε small, these
measurements are approximated well by

yj ≈ p0(xj) + ξ′j ,

where {ξ′j}N
j=1 are Gaussian random variables with mean zero and

covariance

Cj,ℓ(k0, ε) = E[ξ′jξ
′
ℓ] = γ2δj,ℓ +εσ

2
∫

D
Q(xj, y; k0)v0(y; k0)

2Q(xℓ, z; k0) dy

(94)
Therefore, we model the observations as

yj ≈ G(k0) + ξ′j , j = 1, . . . ,N

where G(k0) = p0(xj; k0) with p0 being the solution of (??).
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The modified statistical error ξ′ has two components:
◮ The first term γ2δj,ℓ is due to observation error.
◮ The second term comes from the asymptotic theory and is

associated with the random microstructure in the true parameter
k(x, ω).

If ε is very small, relative to γ2, then the observation noise
dominates (??) and we can ignore the error associated with the
model mismatch.

If γ2 is small relative to ε then the statistical error ξ′ is dominated
by the model mismatch.
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Using the covariance (??), we make the approximation

P(y|k0) ≈
1√

2π|C(k0; ε)|
exp
(
−1

2

(
y−G(k0)

)T
C(k0; ε)

−1(y−G(k0)
))
.

The parameter k0(x) is a function and we may place a Gaussian
prior µ0 on u0(x) = log k0(x). Application of Bayes’ theorem (??)
(with k0 replacing u) gives that

P(k0|y) ∝ 1√
2π|C(k0; ε)|

exp
(
−1

2

(
y − G(k0)

)T
C(k0; ε)

−1(y − G(k0)
))

× µ0(log k0).
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The maximum a posteriori estimator (MAP) is then found as the
function k0(x) which maximizes P(k0|y) which is the same as
minimizing I(k0) = − ln

(
P(k0|y)

)
.

The key contribution of homogenization theory is to correctly
identify the noise structure which has covariance C(k0; ε)
depending on k0(x), the parameter to be estimated.
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Numerical Results

Given noisy observations of pε(xj) we may compute the MAP
estimator k̂1 using the covariance C(k0; ε) given by (??):

k̂1 = argmaxk0

1√
2π|C(k0; ε)|

exp
(
−1

2

(
y − G(k0)

)T
C(k0; ε)

−1(y − G(k0)
))
µ0(log k0),

The other option is to ignore the effect of the random
microstructure and simply use C = γ2I, accounting only for
observation noise:

k̂2 = argmaxk0

1√
2π|γ2I|

exp
(
−1

2
γ−2|y − G(k0)|2

)
µ0(log k0). (95)
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Both estimates k̂1 and k̂2 are random variables, depending on the
random data observed.

It is expected that k̂1 gives us a better approximation of k0, since it
makes use of the true covariance (??).

The numerical results are consistent with the expectation that
approximation of the true covariance (through homogenization
theory) yields a MAP estimator that has smaller variance, relative
to the estimate that makes no use of the homogenization theory
(see Figure ??).
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Figure: The thin erratic curve is one realization of the true coefficient kε(x, ω).
The thick curve is the slowly-varying harmonic mean k0(x). This realization
was used to generate the data.
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The data was generated as follows:
◮ using one realization of k(x, ω) and given forcing f , we solve the

Dirichlet boundary value problem (??).
◮ The observation data involves point-wise evaluation of pε(xj) at

points {xj}N
j=1 spaced uniformly across the domain, plus

independent observation noise N(0, γ2) at each point of
observation.

◮ Using this data, we compute estimates k̂1 and k̂2 by minimizing (??)
and (??), respectively.

◮ For the computation shown the function k0(x) is parameterized by
the first three coefficients in a Fourier series expansion.
Consequently, computing k̂1 and k̂2 involves an optimization in R

3.
◮ To evaluate P(k0|y) at each step in the minimization algorithm, we

must solve the forward problem (??) with the current estimate of k0,
and in the case of k̂1 we must also compute C(k0, ε).
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Figure: The thick curve is the true k0. The dashed series represent 100
independent realizations of the estimate k̂1.
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Figure: The upper series (o) is the empirical variance Var[k̂2(x)]. The lower
series (-) is Var[k̂1(x)]. Both quantities were computed using 500 samples.
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