|
|
Signal Processing and Inference for the Physical Sciences
|
|
|
Papers, Talks and Slides from Royal Society Discussion Meeting |
|
|
On this page we
provide extra resources for the Royal Society Discussion Meeting “Signal
Processing and Inference for the Physical Sciences”. There
is a disconnect between developments in modern data analysis and some parts of
the physical sciences in which they could find ready use. This meeting, and
this volume, provides resources to help experimental researchers access
modern data analysis tools and exposure for analysts to extant challenges in
physical science. A partial key to the meeting can be found in our introduction which is free. The meeting was published as this volume: http://rsta.royalsocietypublishing.org/content/371/1984 Nick S. Jones and Thomas J. Maccarone Inference for the physical sciences Phil. Trans. R. Soc. A. 2013 371 20120493; doi:10.1098/rsta.2012.0493 Model-based machine learning Phil. Trans. R. Soc. A. 2013 371 20120222; doi:10.1098/rsta.2012.0222
Bayesian non-parametrics and the probabilistic approach to modelling Phil. Trans. R. Soc. A. 2013 371 20110553; doi:10.1098/rsta.2011.0553
Stephen Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and S. Aigrain Gaussian processes for time-series modelling Phil. Trans. R. Soc. A. 2013 371 20110550; doi:10.1098/rsta.2011.0550 Full Text Andreas Raue, Clemens Kreutz, Fabian Joachim Theis, and Jens Timmer Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability Phil. Trans. R. Soc. A. 2013 371 20110544; doi:10.1098/rsta.2011.0544 Full Text Independent component analysis: recent advances Phil. Trans. R. Soc. A. 2013 371 20110534; doi:10.1098/rsta.2011.0534
Similarity and denoising Phil. Trans. R. Soc. A. 2013 371 20120091; doi:10.1098/rsta.2012.0091 Full Text Rotary components, random ellipses and polarization: a statistical perspective Phil. Trans. R. Soc. A. 2013 371 20110554; doi:10.1098/rsta.2011.0554 Full Text Audio Slides Modulated oscillations in many dimensions Phil. Trans. R. Soc. A. 2013 371 20110551; doi:10.1098/rsta.2011.0551 Full Text Audio Slides Vassilios Stathopoulos and Mark A. Girolami Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation Phil. Trans. R. Soc. A. 2013 371 20110541; doi:10.1098/rsta.2011.0541 Full Text Random time series in astronomy Phil. Trans. R. Soc. A. 2013 371 20110549; doi:10.1098/rsta.2011.0549 Full Text Malcolm. Sambridge, T. Bodin, K. Gallagher, and H. Tkalčić Transdimensional inference in the geosciences Phil. Trans. R. Soc. A. 2013 371 20110547; doi:10.1098/rsta.2011.0547 Full Text Gravitational wave astronomy: needle in a haystack Phil. Trans. R. Soc. A. 2013 371 20110540; doi:10.1098/rsta.2011.0540 Full Text Using topology to tame the complex biochemistry of genetic networks Phil. Trans. R. Soc. A. 2013 371 20110548; doi:10.1098/rsta.2011.0548
Max A. Little and Nick S. Jones Signal processing for molecular and cellular biological physics: an emerging field Phil. Trans. R. Soc. A. 2013 371 20110546; doi:10.1098/rsta.2011.0546
Michael A. H. Hedlin and Kristoffer T. Walker A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks Phil. Trans. R. Soc. A. 2013 371 20110542; doi:10.1098/rsta.2011.0542 Full Text Ishanu Chattopadhyay and Hod Lipson Abductive learning of quantized stochastic processes with probabilistic finite automata Phil. Trans. R. Soc. A. 2013 371 20110543; doi:10.1098/rsta.2011.0543 Full Text Audio
Slides
|