
Supplementary Material:
Advection, diffusion and delivery over a network.

Luke L.M. Heaton1,2, Eduardo López2,3,

Philip K. Maini3,4,5, Mark D. Fricker3,6, Nick S. Jones2,3,5,7

1 LSI DTC, Wolfson Building, University of Oxford, Parks Road, Oxford, OX1 3QD
2 Physics Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU

3 CABDyN Complexity Centre, Säıd Business School, University of Oxford, Park End Street, Oxford, OX1 1HP
4 Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB

5 Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU
6 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB

7 Department of Mathematics, Imperial College London, SW7 2AZ∗

In the Supplementary Material we detail the mathematical machinery involved in solving the
advection, diffusion and delivery equation over a network. In Section A we describe how to solve
the particular case of stepwise constant initial conditions. In Section B we show how to calculate
the concentration of resource that leaves its initial edge over the time step in question. In Section C
we show how to calculate the concentration of resource that remains in the edge in which it started,
and in Section D we describe how to calculate the total quantity of resource in each section of the
network. Finally, in Section E we describe the Gaver-Stehfest algorithm for inverting our solutions
from Laplace space into the time domain.

SOLVING ADVECTION, DIFFUSION AND
DELIVERY IN LAPLACE SPACE

We are interested in calculating how the quantity of
resource in a network changes over time, given that the
resource decays or is delivered out of the network at a
given rate, and is subject to advection and diffusion. In
other words, we wish to solve a system of equations de-
fined over a network, where the resource in edge ij of the
network is governed by an equation of the form

∂qij
∂t

+Rijqij + uij
∂qij
∂x
−Dij

∂2qij
∂x2

= 0, (1)

where qij is the quantity of resource per unit length,
uij is the mean velocity, Dij is the dispersion coeffi-
cient and Rij is the rate at which a unit of resource
is lost, or delivered out of the network. As we are in-
terested in the case where the advective velocities uij
may vary over several orders of magnitude, it is conve-
nient to operate in Laplace space, and invert our solutions
back into the time domain by using the Gaver-Stehfest
algorithm. Note that after taking Laplace transforms
L
(
qij(x, t)

)
=
∫∞

0
qij(x, t)e

−stdt = Qij(x, s), the funda-
mental Equation (1) becomes

(s+Rij)Qij + uij
∂Qij
∂x
−Dij

∂2Qij
∂x2

= qij(x, 0). (2)

Also note that as in the Main Text, for each edge ij and
every s > 0 we let

αij(s) =
√
u2
ij + 4Dij(s+Rij),

∗ nick.jones@imperial.ac.uk

gij =
uij lij
2Dij

and hij(s) =
αij(s)lij

2Dij
.

A. Stepwise constant initial conditions

We are interested in calculating how the quantity of
resource in a network changes over time, given that the
resource is subject to the fundamental Equation (1). In
particular, it is convenient to consider a stepwise constant
initial condition, as we can then calculate how the total
quantity of resource in each segment of the network has
changed by time t. The first step in this calculation is to
find the Laplace transform of the concentrations at each
node C̄(s). As we have seen, to calculate C̄(s) we must
first find Mij(s) and Ῡ(s), which do not depend on the
initial condition. For each sample point s and each edge
ij we must also calculate βij(s) and βji(s), which capture
the effect of the initial condition qij(x, 0). In particular,
we start this subsection by considering the case where
the initial condition is

qij(x, 0) =

{
k if n−1

N lij ≤ x < n
N lij

0 otherwise,

where n ≤ N , before moving on to consider the more
general case of stepwise constant initial conditions. For
the sake of clarity we drop the subscripts ij from lij , Nij ,
Rij , αij , gij and hij , and ignore the dependence on s of
the terms αij and hij . Now, to find a particular solution
to the fundamental Equation (2) we use the method of

2

variation of parameters. This tells us that

f
(
x, s, qij(y, 0)

)
=
e(g−h) xl

α

∫ x

0

e(h−g) yl qij(y, 0)dy

− e(g+h) xl

α

∫ x

0

e−(g+h) yl qij(y, 0)dy.

(3)

Equation (3) tells us that for the given initial condition

f
(
l, s, qij

)
= −ke

g+h

α

∫ n
N l

n−1
N l

e−(g+h) xl dx

+
keg−h

α

∫ n
N l

n−1
N l

e(h−g) xl dx,

=
2Dkeg+h

α(u+ α)

(
e
−n
N (g+h) − e

−(n−1)
N (g+h)

)
−2Dkeg+h

α(u− α)

(
e
n
N (h−g) − e

(n−1)
N (h−g)

)
.

(4)

As in the Main Text we let

βij(s) ≡
−αij(s)e−gij
2 sinh

(
hij(s)

)f(l, s, qij(y, 0)
)
. (5)

Substituting Equation (4) into Equation (5) gives us

βij(s) =
ke

1−n
N g

4(s+R) sinh(h)
×[

e
N−n
N h

(
e
h
N − e

−g
N

)(
α− u

)
+ e

n−N
N h

(
e
−h
N − e

−g
N

)(
α+ u

)]
. (6)

Recall that f(x, s, q1+q2) = f(x, s, q1)+f(x, s, q2). Since
Equation (5) is linear, it follows that if the initial condi-
tion contains several blocks of resource, each block makes
its own separate contribution to βij(s) and βji(s). Let

x0 = 0, x1 = l
N , x2 = 2l

N , . . . , xN = l, and suppose that
for all 1 ≤ n ≤ N we have

qij(x, 0) = k
(n)
ij for all xn−1 < x < xn. (7)

Given such a stepwise constant initial condition, we
can calculate βij(s) by summing the contribution of each
of the blocks of resource. That is to say, in the case
of stepwise constant initial conditions, Equation (6) be-
comes

βij(s) =

N∑
n=1

k
(n)
ij e

1−n
N g

4(s+R) sinh(h)
×[

e
N−n
N h

(
e
h
N − e

−g
N

)(
α− u

)
+e

n−N
N h

(
e
−h
N − e

−g
N

)(
α+ u

)]
. (8)

We can find βji(s) by using the above formula, substi-

tuting −gij for gji, −uij for uji and k
(N−n+1)
ij for k

(n)
ji .

It follows that where g = gij and u = uij

βji(s) =

N∑
n=1

k
(N−n+1)
ij e

n−1
N g

4(s+R) sinh(h)
×[

e
N−n
N h

(
e
h
N − e

g
N

)(
α+ u

)
+e

n−N
N h

(
e
−h
N − e

g
N

)(
α− u

)]
. (9)

B. Resource that leaves its initial edge

If a particle leaves edge ij and reaches node i or j
over the relevant time scale, it contributes to βij(s) or
βji(s), and hence it contributes to our solution Ci(s),

Cj(s) and L
(
q̂ij(x, t)

)
= Q̂ij(x, s). On the other hand, at

time 0 none of the resource has reached the nodes, so the
initial condition q̂ij(x, 0) = 0. It follows that the value

of Q̂ij(x, s) is related to the boundary conditions Xij(s)
and Xji(s) by the Main Text Equation (MT-18). In other

words, we can find Q̂ij(x, s) by effectively considering an
initially empty network, where resource is introduced at
the nodes at a rate which exactly matches the rate at
which resource reaches the nodes in the case where the
network has the given non-zero initial condition. The
propagation matrix described by Equation (MT-35) also
accounts for the impact of any inlet nodes, in the case
where resource is being added to the network.

We can therefore use Equations (MT-35), (8) and (9)
to find C̄(s) = {C1(s), . . . , Cm(s)}, and in the case
where the cross-sectional areas are constant, we can
express Q̂ij(x, s) in terms of the boundary conditions
Xij = SijCi(s) and Xji = SijCj(s). In fact, we have

Q̂ij(x, s) = SijCi(s)
sinh(l−xl h)

sinh(h)
e
x
l g

+ SijCj(s)
sinh(xl h)

sinh(h)
e
x−l
l g, (10)

where the subscripts ij have been omitted for clar-
ity. Since L

(∫
q̂ij(x, t)dx

)
=
∫
Q̂ij(x, s)dx, we can find∫

q̂ij(x, t)dx by letting s = ln 2/t, . . . , N ln 2/t, calculat-

ing
∫
Q̂ij(x, s)dx for each of these values of s, and apply-

ing the Gaver-Stehfest algorithm (see Section E).
As in Equation (7), we suppose that edge ij is divided

into Nij sections of equal length, and for the sake of
clarity we drop the subscripts ij from Dij , lij and Nij .

We let y
(n)
ij (t) denote the mean value of q̂ij(x, t) in the

nth section of edge ij, and note that by definition

y
(n)
ij (t) =

N

l

∫ n
N l

n−1
N l

q̂ij(x, t)dx. (11)

3

Defining Y
(n)
ij (s) ≡ L

(
y

(n)
ij (t)

)
we have

Y
(n)
ij (s) =

N

l

∫ n
N l

n−1
N l

Q̂ij(x, s)dx

=
ND

l sinh(h)

[
Xije

h −Xjie
−g

u− α
e(g−h) xl

+
Xjie

−g −Xije
−h

u+ α
e(g+h) xl

] n
N l

n−1
N l

,

which implies that

Y
(n)
ij (s) = ηij(s)

(
α+ u

)
×[

Xij

(
e
n−1
N (g−h) − e nN (g−h)

)
+Xji ×(

e
n−N
N g−n+N

N h − e
n−N−1

N g−n+N−1
N h

)]
+ ηij(s)

(
α− u

)
×[

Xij

(
e
n−1
N g− 2N−n+1

N h − e nN g−
2N−n
N h

)
+ Xji

(
e
n−N
N (g+h) − e

n−N−1
N (g+h)

)]
, (12)

where ηij(s) =
Nije

hij (s)

4(s+Rij)lij sinh
(
hij(s)

) . (13)

C. Resource that remains in its initial edge

Over the time scale t, not all of the resource will leave
the edge in which it started. To find q̃ij(x, t), the quantity
of resource that has not left edge ij, we must solve the
advection, diffusion, delivery problem for each separate
edge ij, where nodes i and j are absorbing boundaries
and the initial condition q̃ij(x, 0) = qij(x, 0). The re-
sulting solution accounts for those particles which do not
reach a node in the relevant time-scale. In particular, we
consider the case where the initial condition is stepwise
constant, as in Equation (7).

The fundamental Equation (1) tells us that for each
edge

∂

∂t
q̃ij = Dij

∂2

∂x2
q̃ij − uij

∂

∂x
q̃ij −Rij q̃ij . (14)

Furthermore, we are looking for a real valued function
such that q̃ij(0, t) = 0 and q̃ij(lij , t) = 0 for all t. These
conditions imply that we can express q̃ij(x, t) in the fol-
lowing form:

q̃ij(x, t) = e
uij

2Dij
x
∞∑
m=1

Ameλ
m
ij tsin

(mπx
lij

)
,

where λmij = −
(
m2Dijπ

2

l2ij
+

u2
ij

4Dij
+Rij

)
. (15)

The parameters Am can be found by taking Fourier
transforms. More specifically, we know that q̃ij(x, 0) =
qij(x, 0), so

∞∑
n=1

Amsin
(mπx
lij

)
= qij(x, 0)e

−gij x
lij and

∫ l

0

sin
(mπx
lij

)
sin
(nπx
lij

)
dx =

{ 0 if m 6= n,

lij
2 if m = n.

It follows that for every positive integer m,

Am =
2

lij

∫ lij

0

sin
(mπx
lij

)
qij(x, 0)e

−gij x
lij dx.

In particular, consider the case where the initial condi-
tion is stepwise constant, and of the form described by
Equation (7). Dropping some of the subscripts ij for
clarity, we have

Am = µmij

N∑
n=1

k
(n)
ij

[
e−g

x
l ×

(
−g
πm

sin
(mπx

l

)
− cos

(mπx
l

))] nN l
n−1
N l

= µmij

(
k

(1)
ij − k

(N)
ij e−g(−1)m

)
+ µmij

N−1∑
n=1

[
e
−n
N g

(
k

(n+1)
ij − k(n)

ij

)
×(

g

πm
sin
(mnπ
N

)
+ cos

(mnπ
N

))]
, (16)

where

µmij =
8D2

ijπm

u2
ij l

2
ij + 4D2

ijπ
2m2

. (17)

We are now in a position to find

z
(n)
ij (t) =

N

l

∫ n
N l

n−1
N l

q̃ij(x, t)dx,

as Equation (15) implies that

z
(n)
ij (t) =

N

l

∫ n
N l

n−1
N l

e
gx
l

∞∑
m=1

Ameλ
m
ij tsin

(mπx
l

)
dx

=
N

2
eg

n
N

∞∑
m=1

µmijA
meλ

m
ij t

[
g

πm
×(

sin
(mnπ
N

)
− e

−g
N sin

(m(n− 1)π

N

))
+

(
e
−g
N cos

(m(n− 1)π

N

)
− cos

(mnπ
N

))]
. (18)

Note that µmij → 2
πm as m → ∞, and likewise

Am ∈ O(m−1). In contrast eλ
m
ij t tends to zero much

4

more rapidly. Indeed, we note that

∞∑
m=Ω′

eλ
m
ij t = e−

(
u2

4D+R
)
t
∞∑

m=Ω′

e−
Dπ2t
l2

m2

<
e−
(
u2

4D+R
)
t

Ω′

∫ ∞
Ω′

xe−
Dπ2t
l2

x2

dx

<
l2

2Ω′π2Dt
eλ

Ω′
ij t. (19)

It follows that the relative error∣∣∣∣∑∞m=1 e
λmij t −

∑Ω′

m=1 e
λmij t∑∞

m=1 e
λmij t

∣∣∣∣ < ∑∞
m=Ω′ e

λmij t∑∞
m=1 e

λmij t
< ε

whenever we have

eλ
Ω′
ij t < ε

2Ω′π2Dijt

l2ij

Ω′∑
m=1

eλ
m
ij t. (20)

We can therefore be confident that if we truncate the
sum in Equation (18) at m = Ω′, the relative errors in our

estimates for z
(n)
ij (t) will be smaller than ε provided that

Ω′ satisfies Equation (20). Also note that Equation (15)

tells us that if Dijt > l2ij then eλ
m
ij t decreases rapidly, so

Ω′ does not need to be large unless Dijt� l2ij . Further-

more, if u2
ijt

2 > l2ij then most of the resource will leave
edge ij over the time scale t, and q̃ij(x, t) will only make
a small contribution to the total value of qij(x, t).

D. Calculating the total quantity of resource in
each segment of a network

Suppose that we wish to calculate the mean concen-
tration per unit length in each segment of a network at
time t, such that each part of our final answer has a rela-
tive error ε < 10−0.45Ω, where Ω is an even integer. The
first step is to set s = Ω ln 2/t, and apply Equations (8)
and (9) to find βij(s) and βji(s) for each edge ij. We
then compute M(s) and p̄(s), and employ the BiCGStab
algorithm to find C̄(sΩ), starting with the initial guess
that for each i,

Ci(sΩ) ≈ τ

Ω ln 2
ci(0) =

τ

Ω ln 2

∑
j k

(1)
ij∑

j Sij(0)
. (21)

This initial guess for the value of C̄(sΩ) would be cor-
rect if the concentration at the nodes was constant, and
making such a guess can help to speed up the process
of finding the true value of C̄(sΩ). At each step, when
we have identified C̄(s) such that M(s)C̄(s) = p̄(s), we
store the vector C̄(s) and repeat for s = sΩ−1, . . . , s1,
where sn = n ln 2/t. The only difference is that for sub-
sequent applications of the BiCGStab algorithm, we can
take advantage of the approximation

Ci(sn) ≈ n+ 1

n
Ci(sn+1). (22)

This is generally a better initial guess than that provided
by Equation (21), so the BiCGStab algorithm converges
on the solution more rapidly. Given Ci(sn) and Cj(sn),

we can use Equation (12) to calculate Y
(m)
ij (sn) for each

section in the edge ij. Having found Y
(m)
ij (sn) for each

1 ≤ n ≤ Ω, we can apply the Gaver-Stehfest algorithm to

obtain y
(m)
ij (t) (see Section E), and we repeat this process

for each edge in the network.
Finally, for each edge ij we can use Equations (15),

(17) and (16) to calculate a sequence of values for eλ
m
ij t,

µmij and Am until we reach an integer Ω′ such that eλ
Ω′
ij t

satisfies Equation (20). We then employ Equation (18) to

find z
(1)
ij (t), . . . , z

(Nij)
ij (t) (the mean quantity of resource

in ij that has not reached a node), and note that for each
section of the network the mean quantity of resource per
unit length

k
(n)
ij (t) = y

(n)
ij (t) + z

(n)
ij (t). (23)

E. Inverting from Laplace space

We have seen that we can calculate a sequence of real
valued sample points in Laplace space, and we wish to
calculate the corresponding value at a given point in time.
Under these circumstances it is appropriate and efficient
to apply the Gaver-Stehfest algorithm [1–6]. The key idea
behind this algorithm (and other, related algorithms) is
the notion of constructing a sequence of linear combina-
tions of exponential functions, in order to form a weighted
delta convergent sequence [1–6]. That is to say, we con-
sider a sequence of functions δn(x, t) such that for any
function q that is continuous at t, we have∫ ∞

0

δn(v, t)q(v)dv = tq̃n(t), (24)

where q̃n(t) → q(t) as n → ∞. As we shall see, there
are weighted delta convergent sequences of functions such
that δn(v, t) is of the form

δn(v, t) =

n∑
i=1

ωie
−θiv
t , (25)

where θi > 0 for all i, and the terms θi and ωi do not
depend on t. Now, if we suppose that our function q
does not increase exponentially, then the Laplace trans-
form Q(s) =

∫∞
0
e−svq(v)dv is well defined for all positive

numbers s. Hence the existence of Q(s) for all positive
s is a reasonable assumption, given the context in which
our functions q arise. Assuming that Q(s) is well defined
for all positive numbers s, Equations (24) and (25) imply
that

q̃n(t) =
1

t

∫ ∞
0

n∑
i=1

ωie
−θiv
t q(v)dv

=
1

t

n∑
i=1

ωiQ
(θi
t

)
.

5

Gaver [7] employed the sequence of functions

δn(v, t) = ln 2
(2n)!

n!(n− 1)!
(1− e− v ln 2

t)n(e−
v ln 2
t)n,

but the resulting terms q̃n(t) converge to q(t) logarith-
mically slowly. Gaver also showed that the quantity
q̃n(t)−q(t) can be expanded in terms of inverse powers of
n, which enabled him to accelerate the convergence of his
original sequence of approximations [7]. The most useful
formula for finding an accurate estimate of q(t) based on
a linear combination of the Gaver estimates was derived
by Stehfest [4], who stated that

q(t) ≈ q̃Ω(t) =
ln 2

t

Ω∑
n=1

κnQ(n
ln 2

t
), where (26)

κn = (−1)n+Ω/2

min(n,Ω/2)∑
k=[(n+1)/2]

kΩ/2(2k)!

(Ω/2− k)!k!(n− k)!(2k − n)!
,

and Ω is even. Note that the terms κn can be extremely
large, and that the value of κn depends on the parameter
Ω. Furthermore, increasing the parameter Ω increases
the accuracy of our estimate q(t) ≈ q̃Ω(t), provided that

we have sufficient system precision to utilize the exact
values for κn.

The Gaver-Stehfest algorithm is very efficient and ac-
curate, but it requires high system precision for the
weights κn if it is to yield accurate estimates for q(t).
Indeed, if we wish to produce an estimate of q(t) that
is accurate to N significant digits, we must calculate the
values of κn with an accuracy of about 2.5N significant
digits [1, 2]. Fortunately, to calculate q(t) accurately we
do not require such a disproportionately high level of ac-
curacy in the values of Q(s).

If the transform Q(s) has all its singularities on the
negative real axis, and if the function q(t) is infinitely
differentiable for all t > 0, extensive experimentation [1,
2] indicates that the relative error∣∣∣∣q(t)− q̃Ω(t)

q(t)

∣∣∣∣ ≈ 10−0.45Ω (27)

provided that the values κn have been calculated with
sufficient precision [1, 2]. If the function q does not satisfy
the above conditions q̃Ω(t) may converge to q(t) rather
more slowly, but as a rule of thumb setting Ω = 10 and
using standard double precision for the weights κn will
ensure that the Gaver-Stehfest algorithm produces inver-
sions that are accurate to at least three significant digits.

[1] J. Abate and P. P. Valkó, Int. J. Numer. Meth. Engng,
60, 979 (2004).

[2] J. Abate and W. Whitt, INFORMS JOC, 18, 408 (2006).
[3] B. Davies and B. Martin, J. Comput. Phys., 33, 1 (1979).

[4] H. Stehfest, Comm. ACM, 13, 47 (1970).
[5] V. Zakian, Electron. Lett., 5, 120 (1969).
[6] V. Zakian, Electron. Lett., 6, 677 (1970).
[7] D. P. Gaver, Oper. Res, 14, 444 (1966).

