(Sequential) Non-parametric Bayesian inference for Time Series Modelling

Stephen Roberts, Mike Osborne, Steve Reece, Mark Ebden, Roman Garnett, Neale Gibson, Suzanne Aigrain, Tom Evans, Aris Karastergiou, Alex Rogers

Pattern Analysis & Machine Learning Research Group.

University of Oxford
The lecture aims

• *Bayesian inference* has profound impact in the principled handling of uncertainty in *practical* computation

• **What this lecture aims to do:**
 – Give a conceptual overview of Bayesian inference applied to real-world problems in time-series modelling
 – Introduce **Gaussian Processes**

• **What it does not aim to do:**
 – Give endless equations – these are important and elegant, but are in publications and texts.
PART I : Bayesian basics, a gentle conceptual overview
Met Office got it wrong over ban on flights

By Caroline Gammell
David Millward
and Bruno Waterfield

The Met Office was blamed last night for triggering the “unnecessary” six-day closure of British airspace that has cost airlines, passengers and the economy more than £1.5 billion.

The government agency was accused of using a scientific model based on “probability” rather than fact to forecast the spread of the volcanic ash cloud that made Europe a no-fly zone and ruined the plans of more than 20 million travellers.

Britain is to spend up to £1 million using three Royal Navy ships to rescue British travellers stranded by the ash cloud, despite thousands of spaces available on cross-Channel ferries and the Eurotunnel.

Two carriers, HMS Ark Royal and HMS Ocean, and the landing ship HMS Albion are being sent to rescue passengers and run only two or three return flights a day.

Admiral Lord Boyce, the former chief of the defence staff, said it was “probable rather than actual things happening.”

Mr Rutter said the commission had to intervene to allow airlines to make test flights in order to check the VAAC data.
A dot-to-dot is an inference problem.
A dot-to-dot is a problem with many possible solutions.
Our prior information allows us to discriminate between solutions.
Occam's Razor

Numquam ponenda est pluralitas sine necessitate -
“Plurality must never be posited without necessity”

"Everything should be kept as simple as possible, but no simpler."
Core methodology

• Bayesian modelling allows for explicit incorporation of all *desiderata*
• Effort focused not only on theory development, but algorithmic implementations that are *timely & practical* for *real-world, real-time scenarios*

• Single, under- and over-arching philosophy…
 “*one method to rule them all… and in the darkness bind them*”
What does this buy us?

- *Uncertainty* at all levels of inference is naturally *taken into account*

- *Optimal fusion* of information: subjective, objective

- Handling *missing values*

- Handling of *noise*

- *Principled* inference of *confidence* and *risk*

- *Optimal* decision making
PART II: more details
The right model?

All these models explain the data equally well...
Maximum-likelihood solution

Severe underestimation of uncertainty away from data

$$\frac{1}{\beta^*} = \mathbb{E}\{(y - t)^2\}$$
Draws from posterior

Draws from function $p(t|x, w)p(w)$
Bayesian marginal integral

- Key equation of Bayesian inference

\[p(t \mid x) = \int_{w, \beta} p(t \mid x, w, \beta)p(w)p(\beta)dw \, d\beta \]

- Expend computational effort \textit{integrating} not \textit{optimising}
- Obtain full \textit{predictive distribution}
- Maximum likelihood II: integrate out parameters, re-estimate hyperparameters

\[p(t \mid x, \beta^*) = \int_{w} p(t \mid x, w, \beta^*)p(w)dw \]
Bayesian solution
Complexity...

• Even when the models explain the data equally well, we somehow are urged to favour those that are “simpler”

• What we really want is somehow to work with probabilities over functions...

• Amazingly, Bayesian non-parametrics allows us to do just this!

• We now delve into the world of Gaussian Processes
Part III : Gaussian Processes
The humble (but useful) Gaussian
Observe x_1
Extend to continuous variable
Probabilities over functions not samples

A “X” process is a distribution over a function space such that the pdf at any evaluation of the function are conditionally “X” distributed.

- Dirichlet Process [infinite state HMM]
- Indian Buffet Process [infinite binary strings] etc etc.
Simple regression modelling
Less simple regression
The Gaussian process model

• See the GP via the distribution

\[p(y(x)) = \mathcal{N}(\mu(x), K(x, x)) \]

• If we observe a set \((x, y)\) and want to infer \(y^*\) at \(x^*\)

\[
p \left(\begin{bmatrix} y \\ y^* \end{bmatrix} \right) = \mathcal{N} \left(\begin{bmatrix} \mu(x) \\ \mu(x^*) \end{bmatrix}, \begin{bmatrix} K(x, x) & K(x, x^*) \\ K(x^*, x) & K(x^*, x^*) \end{bmatrix} \right)
\]

\[p(y^*) = \mathcal{N}(m^*, C^*) \]

\[m^* = \mu(x^*) + K(x^*, x)K(x, x)^{-1}(y - \mu(x)), \]

\[\sigma^2 = K(x^*, x^*) - K(x^*, x)K(x, x)^{-1}K(x, x^*). \]
The beating heart...

What about these covariances though?

\[
K(x, x) = \begin{pmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_n) \\
 k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_n, x_1) & k(x_n, x_2) & \cdots & k(x_n, x_n)
\end{pmatrix}
\]

Achieved using a \textit{kernel function}, which describes the relationship between two points.

What form should this take though?
An example

$$k(x_i, x_j) = h^2 \exp \left[- \left(\frac{x_i - x_j}{\lambda} \right)^2 \right]$$

What is this based upon?
- Intrinsic smoothness (infinitely differentiable)
- amplitude of expected functions is controlled by h
- typical scale of variations in time (correlation “length”) controlled by λ
We commonly possess prior expectations that the function should be smooth. If we know something of the dynamics then this can inform our covariance functions accordingly.
Covariances

There are a huge number of covariance functions (in spite of the requirement that they be positive semi-definite) appropriate for modelling functions of different types.

Elegantly, all continuous Markov time series models (AR, ARMA, ARIMA, GARCH, KF...) can be recast as special cases of Gaussian Processes.

The squared exponential and Matérn covariances allow us to model functions of various degrees of smoothness.

![Graph showing squared exponential and Matérn covariances](image)

- Squared exponential
- Matérn, $\nu = \frac{3}{2}$
- Matérn, $\nu = \frac{1}{2}$
We often want distances that are **stationary** (a function of x_1-x_2), implying that the function looks similar throughout its domain.
We can create new covariance functions by adding or multiplying other covariance functions.

E.g.

\[
\times (\times) +
\]
When a function is the **sum** of two independent functions, use a covariance that is the sum of the covariances for those two functions.
When a function is the product of two independent functions, use a covariance that is (almost) the product of the covariances for those two functions.
We can modify covariance functions to accommodate multiple input dimensions, using
If there are multiple outputs, reframe the problem as having a single output, and an additional label input specifying the output.

Hence we do not need simultaneous observations of all outputs.
Periodic & quasi-periodic
Many other modifications are possible, to build covariances allowing for e.g. changepoints, faults and sets.

Part IV: some examples
In a sequential setting
Active data selection

The Gaussian process can decide for itself which sensor to observe, and when, by determining which observation will be most informative.

Transactions on Sensor Networks
Demonstration

http://www.aladdinproject.org/situation/
Changepoints

Dow-Jones data

Watergate scandal

OPEC embargo

Nixon resigns
Faults & fault recovery
Potential fault types

(a) Bias

(b) Stuck value

(c) Drift

(d) Censoring
Posterior distribution over the fault type

Drift

Spike

Bias

Echo

Stuck
Can track and fault recover sequentially

- Observations
- Posterior over track +/- 1 sd
- True track

Posterior Fault Probabilities

Bias

Drift

Stuck
Faults - demonstration
Recent work – applications to time-domain Astronomy

Light curves

How does Kepler find planets?
Problem is that stellar flux is highly variant... star-spots and stellar rotations... so first we need to model the quasi-periodic flux measurements... but there aren't many of them!
Quasi-periodic Gaussian Process regression to photometric observations of the well-known planet-host star HD 189733
Exoplanet transit light curve. The data is fitted with a GP with an exoplanet transit mean function and a squared exponential covariance kernel to model the correlated noise process and the effects of external state variables.
Transient phenomena: Radio Surveys

- Transient objects
 - Pulsars
 - Supernovae
 - ?
- "Needle in haystack" problems
 - Computationally demanding – 100s of TBs of data each night

One of our major challenges is *scalability* in Bayesian modelling...

> exabyte / day
Questions?
The prior mean function is the function our inference will default to far from observations.