glms: a Transformative Paradigm for Statistical Practice and Education

John Hinde
Statistics Group,
School of Mathematics, Statistics and Applied Mathematics
National University of Ireland, Galway
john.hinde@nuigalway.ie
Research Supported by SFI Award 07/MI/012
Imperial College, London

28 March 2015

Summary

(1) The 1972 Paper

- Software
(2) Spreading the word
(3) Extensions
- Random effects
- Overdispersion \& Zero-Inflation

4. Examples

- Count data
- Multinomial
(5) Education
(6) Acknowledgements

The Paper - 1972

The Paper - 1972

J. R. Statist. Soc. A, 370
(1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. Nelder and R. W. M. Wedderburn
Rothamsted Experimental Station, Harpenden, Herts

The Paper - 1972

J. R. Statist. Soc. A, 370 (1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. Nelder and R. W. M. Wedderburn
Rothamsted Experimental Station, Harpenden, Herts

- published in Series A

The Paper - 1972

J. R. Statist. Soc. A, 370 (1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. Nelder and R. W. M. Wedderburn
Rothamsted Experimental Station, Harpenden, Herts

- published in Series A
- 15 pages long

The Paper - 1972

J. R. Statist. Soc. A, 370 (1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. Nelder and R. W. M. Wedderburn
Rothamsted Experimental Station, Harpenden, Herts

- published in Series A
- 15 pages long
- many examples - over half the paper

The Paper - 1972

J. R. Statist. Soc. A, 370 (1972), 135, Part 3, p. 370

Generalized Linear Models

By J. A. Nelder and R. W. M. Wedderburn
Rothamsted Experimental Station, Harpenden, Herts

- published in Series A
- 15 pages long
- many examples - over half the paper
- "useful way of unifying . . . unrelated statistical procedures"

glms - the authors

John Nelder: 1924 - 2010

- Statistician at National Vegetable Research Station (NVRS), now Horticultural Research International, Wellesbourne - 1949-68
- theory of general balance - unifying framework for the wide range of designs in agricultural experimentation
- initial work on GenStat

glms - the authors

John Nelder: 1924 - 2010

- Statistician at National Vegetable Research Station (NVRS), now Horticultural Research International, Wellesbourne - 1949-68
- theory of general balance - unifying framework for the wide range of designs in agricultural experimentation
- initial work on GenStat
- Head of the Statistics Department at Rothamsted - 1968-1984
- theory of generalized linear models, with the late Robert Wedderburn
- Applied Statistics Algorithms in Applied Statistics, JRSSC
- further development of GenStat, with NAG
- development of GLIM, first released in 1974

glms - the authors

John Nelder: 1924 - 2010

- Statistician at National Vegetable Research Station (NVRS), now Horticultural Research International, Wellesbourne - 1949-68
- theory of general balance - unifying framework for the wide range of designs in agricultural experimentation
- initial work on GenStat
- Head of the Statistics Department at Rothamsted - 1968-1984
- theory of generalized linear models, with the late Robert Wedderburn
- Applied Statistics Algorithms in Applied Statistics, JRSSC
- further development of GenStat, with NAG
- development of GLIM, first released in 1974
- visiting Professor at Imperial College - 1972-2009
- GLIMPSE "expert system" based on GLIM
- theory of hierarchical generalized linear models (HGLMs), with Youngjo Lee

glms - the authors

John Nelder: 1924 - 2010

- Statistician at National Vegetable Research Station (NVRS), now Horticultural Research International, Wellesbourne - 1949-68
- theory of general balance - unifying framework for the wide range of designs in agricultural experimentation
- initial work on GenStat
- Head of the Statistics Department at Rothamsted - 1968-1984
- theory of generalized linear models, with the late Robert Wedderburn
- Applied Statistics Algorithms in Applied Statistics, JRSSC
- further development of GenStat, with NAG
- development of GLIM, first released in 1974
- visiting Professor at Imperial College - 1972-2009
- GLIMPSE "expert system" based on GLIM
- theory of hierarchical generalized linear models (HGLMs), with Youngjo Lee

Robert Wedderburn: 1947 —1975

- Died aged 28 of anaphylactic shock from an insect bite.

John Nelder: 1924 - 2010

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology
- Dyke \& Patterson (1952): logit model for analysis of proportions in factorial experiment

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology
- Dyke \& Patterson (1952): logit model for analysis of proportions in factorial experiment
- transformations to linearity

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology
- Dyke \& Patterson (1952): logit model for analysis of proportions in factorial experiment
- transformations to linearity
- Box-Cox transformation (1964)

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology
- Dyke \& Patterson (1952): logit model for analysis of proportions in factorial experiment
- transformations to linearity
- Box-Cox transformation (1964)
- Inverse polynomials, Nelder (1966)

glms - the background

- analysis of non-normal data - variance stabilising transformation of the response
- Poisson count data: square-root transformation, \sqrt{y}
- Binomial proportions: arc-sin-square-root, $\sin ^{-1}(\sqrt{y})$
- Exponential times: \log transformation, $\log (y)$
- Probit analysis: Finney (1952) maximum likelihood for tolerance distribution in toxicology
- Dyke \& Patterson (1952): logit model for analysis of proportions in factorial experiment
- transformations to linearity
- Box-Cox transformation (1964)
- Inverse polynomials, Nelder (1966)
- Nelder (1968): . . . one transformation leads to a linear model and another to normal error.

glms - the idea

glms - the idea

Gauss - You were one of the discussants of the Box-Cox 1964 paper and you also introduced the idea of inverse polinomials in 1966. How did you get the idea of Generalized

Linear Models?

Nelder - That's an interesting question. I don't really think I know the answer to it. There is a paper that I wrote in 1970 which was published in Biometrics; in this I drew attention to the fact that there was a considerable similarity between a model with gamma errors and an inverse linear response curve and the model for Probit Analysis. I didn't understand at that time exactly what the connection was, though I could see there was one. Then in the subsequent two years somehow the idea jelled, so that Wedderburn and I could see what was common to these models. That's how it came about, but exactly how I did it I don't know. Similarly in the General Balance papers I first had the idea in a

glm Paper: contents

- Intro: background (2 pages)

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$
- Model fitting: (3 pages)
- maximum likelihood estimation using Fisher Scoring
Iteratively (Re)-Weighted Least Squares

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$
- Model fitting: (3 pages)
- maximum likelihood estimation using Fisher Scoring
Iteratively (Re)-Weighted Least Squares
- sufficient statistics - canonical links

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$
- Model fitting: (3 pages)
- maximum likelihood estimation using Fisher Scoring
Iteratively (Re)-Weighted Least Squares
- sufficient statistics - canonical links
- Analysis of Deviance

$$
\text { minimal } \leftrightarrow \text { complete (saturated) models }
$$

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$
- Model fitting: (3 pages)
- maximum likelihood estimation using Fisher Scoring
Iteratively (Re)-Weighted Least Squares
- sufficient statistics - canonical links
- Analysis of Deviance

$$
\text { minimal } \leftrightarrow \text { complete (saturated) models }
$$

- Special distributions, examples (6 pages)

glm Paper: contents

- Intro: background (2 pages)
- random component: 1-parameter exponential family
- linear predictor: $\eta=\beta_{0}+\beta_{1} x_{1}+\cdots \beta_{p} x_{p}$
- link function: $g(\mu)=\eta$
- Model fitting: (3 pages)
- maximum likelihood estimation using Fisher Scoring
Iteratively (Re)-Weighted Least Squares
- sufficient statistics - canonical links
- Analysis of Deviance

$$
\text { minimal } \leftrightarrow \text { complete (saturated) models }
$$

- Special distributions, examples (6 pages)
- Models in Teaching Statistics (1 page)

glm Paper: examples

- Normal: observations normal on log-scale; additive effects on inverse scale

glm Paper: examples

- Normal: observations normal on log-scale; additive effects on inverse scale
- Poisson: Fisher's tuberculin-test data - Latin square of counts

glm Paper: examples

- Normal: observations normal on log-scale; additive effects on inverse scale
- Poisson: Fisher's tuberculin-test data - Latin square of counts
- Poisson: multinomial distributions for contingency tables

glm Paper: examples

- Normal: observations normal on log-scale; additive effects on inverse scale
- Poisson: Fisher's tuberculin-test data - Latin square of counts
- Poisson: multinomial distributions for contingency tables
- Binomial: Probit \& Logit models

glm Paper: examples

- Normal: observations normal on log-scale; additive effects on inverse scale
- Poisson: Fisher's tuberculin-test data - Latin square of counts
- Poisson: multinomial distributions for contingency tables
- Binomial: Probit \& Logit models
- Gamma: estimation of variance components in incomplete block design

John Nelder \& Statistical Computing

- Anti black-box packages

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality
- Model specification using Wilkinson \& Rogers formulæ

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality
- Model specification using Wilkinson \& Rogers formulæ
- All structures available to the user - input to other routines

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality
- Model specification using Wilkinson \& Rogers formulæ
- All structures available to the user - input to other routines
- system should be open - user extendible (GLIM, GenStat, S/R, ...)

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality
- Model specification using Wilkinson \& Rogers formulæ
- All structures available to the user - input to other routines
- system should be open - user extendible (GLIM, GenStat, S/R, ...)
- Requires user expertise/knowledge

John Nelder \& Statistical Computing

- Anti black-box packages
- User should be in control
- Default output should be minimal
- System should not allow stupid models - marginality
- Model specification using Wilkinson \& Rogers formulæ
- All structures available to the user - input to other routines
- system should be open - user extendible (GLIM, GenStat, S/R, ...)
- Requires user expertise/knowledge

Principles embodied in GLIM

- a system specifically for fitting glms.

GLIM: Interactive package (A Fistful of \$'s!!)

GLIM: Interactive package (A Fistful of \$'s!!)

[i] ? \$yvar days \$error p \$
[i] ? \$fit A*S*C*L \$
[o] scaled deviance $=1173.9$ at cycle 4
[o] residual df = 118

GLIM: Interactive package (A Fistful of \$'s!!)

[i] ? \$yvar days \$error p \$
[i] ? \$fit A*S*C*L \$
[o] scaled deviance $=1173.9$ at cycle 4
[o] residual df = 118

Or, in John's preferred style ...

GLIM: Interactive package (A Fistful of \$'s!!)

> [i] ? \$yvar days \$error p \$
> [i] ? \$fit A*S*C*L \$
> [o] scaled deviance $=1173.9$ at cycle 4
> [o] residual df $=118$

Or, in John's preferred style ...
[i] ? \$y days \$e p \$
[i] ? \$f A*S*C*L \$

Dissemination of glms

- Conferences - "That's a glm!"

Dissemination of glms

- Conferences - "That's a glm!"
- Nelder (1984) Models for Rates with Poisson Errors: In a recent paper, Frome (1983) described the fitting of models with Poisson errors and data in the form of rates . . . fitted simply by GLIM . . . or the use of a program that handles iterative weighted least squares

Dissemination of glms

- Conferences - "That's a glm!"
- Nelder (1984) Models for Rates with Poisson Errors: In a recent paper, Frome (1983) described the fitting of models with Poisson errors and data in the form of rates ... fitted simply by GLIM . . . or the use of a program that handles iterative weighted least squares
- Nelder (1991) Generalized Linear Models for Enzyme-Kinetic Data:

Ruppert, Cressie, and Carroll (1989) discuss various models for fitting the Michaelis-Menten equations to data on enzyme kinetics. I find it surprising that they do not include, among the models they consider, generalized linear models (GLMs) with an inverse link

Dissemination of glms

- Conferences — "That's a glm!"
- Nelder (1984) Models for Rates with Poisson Errors: In a recent paper, Frome (1983) described the fitting of models with Poisson errors and data in the form of rates ... fitted simply by GLIM . . . or the use of a program that handles iterative weighted least squares
- Nelder (1991) Generalized Linear Models for Enzyme-Kinetic Data:

Ruppert, Cressie, and Carroll (1989) discuss various models for fitting the Michaelis-Menten equations to data on enzyme kinetics. I find it surprising that they do not include, among the models they consider, generalized linear models (GLMs) with an inverse link
The data-transformation approach suffers from the disadvantage that normality of errors and linearity of systematic effects are still being sought simultaneously

Generalized Linear Models - Monograph

Statistical Modelling in GLIM (1989)

An applied how to text with integrated GLIM code.

Statistical Modelling in GLIM (1989)

An applied how to text with integrated GLIM code.

- normal models
- regression
- analysis of variance
- binomial responses
- multinomial and Poisson
- count data
- multiway tables
- survival models
- parametric

- Cox PH - piecewise exponential
- discrete time

GLIM Conferences, IWSM, Statistical Modelling

- GLIM conferences - really on glms
- IWSM: International Workshop on Statistical Modelling
- Eventually led to Statistical Modelling Society

Statistical Modelling Journal

In 2000, founding of journal Statistical Modelling

 availability of data and code with papers \rightarrow reproducible research
SMij_

Aims and Scope
Editorial Board
For Authors

Archives

Modelling Society

Statistical Modelling: An International Journal

STATISTICAL MODELLING

AN
INTERNATIONAL
JOURNAL
from
SSAGE Publications

Statistical Modelling: An International Journal publishes original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.

Indexed by Science Citation Index Expanded, ISI Alerting Services, and CompuMath Citation Index, beginning with volume 3 (2003).

Extending the basic glm

- response distribution
- multivariate vector of responses
- exponential dispersion models
- generalized distributions
- quasi-distributions
- mixtures
- joint responses: longitudinal + time to event, ...

Extending the basic glm

- response distribution
- multivariate vector of responses
- exponential dispersion models
- generalized distributions
- quasi-distributions
- mixtures
- joint responses: longitudinal + time to event, ...
- linear predictor
- smooth terms - gams, etc
- random effects
- multiple linear predictors - modelling mean and dispersion, gamlss, etc

Extending the basic glm

- response distribution
- multivariate vector of responses
- exponential dispersion models
- generalized distributions
- quasi-distributions
- mixtures
- joint responses: longitudinal + time to event, ...
- linear predictor
- smooth terms - gams, etc
- random effects
- multiple linear predictors - modelling mean and dispersion, gamlss, etc
- link function
- parametric links
- composite link functions - (Thompson \& Baker, 1981)
- non-linear glms — gnm (Turner \& Firth, 2012)

Normal Models

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\boldsymbol{\epsilon}
$$

- single error term includes
- individual observation/measurement error
- experimental unit variability
- unobserved covariates

Normal Models

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\boldsymbol{\epsilon}
$$

- single error term includes
- individual observation/measurement error
- experimental unit variability
- unobserved covariates
- for simplest data structures/designs use normal linear model

Normal Models

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\boldsymbol{\epsilon}
$$

- single error term includes
- individual observation/measurement error
- experimental unit variability
- unobserved covariates
- for simplest data structures/designs use normal linear model
- more complex situations
- structure in experimental unit variability
- repeated measures/longitudinal observations
- ...

Normal Mixed Model

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\gamma^{T} \mathbf{z}+\boldsymbol{\epsilon}
$$

- z unobserved random effects

Normal Mixed Model

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\boldsymbol{\gamma}^{\top} \mathbf{z}+\boldsymbol{\epsilon}
$$

- z unobserved random effects
- shared random effects
- multi-level/variance components models
- longitudinal observations
- spatial structure

Normal Mixed Model

$$
\mathbf{y}=\boldsymbol{\beta}^{T} \mathbf{x}+\gamma^{T} \mathbf{z}+\boldsymbol{\epsilon}
$$

- z unobserved random effects
- shared random effects
- multi-level/variance components models
- longitudinal observations
- spatial structure
- z normal
- normal model with structured covariance matrix
- standard mixed model analyses - ML, REML
- widely available in standard software

Generalized Linear Models

Models for counts, proportions, times, ...

$$
\mathbf{y} \sim F(\boldsymbol{\mu}) \quad g(\boldsymbol{\mu})=\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}
$$

- distributional assumption relates to the observation/measurement process
- how does this model incorporate
- experimental/individual unit variability?
- unobserved covariates?

Generalized Linear Models

Models for counts, proportions, times, ...

$$
\mathbf{y} \sim F(\boldsymbol{\mu}) \quad g(\boldsymbol{\mu})=\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}
$$

- distributional assumption relates to the observation/measurement process
- how does this model incorporate
- experimental/individual unit variability?
- unobserved covariates?

It doesn't!

Generalized Linear Models

Models for counts, proportions, times, ...

$$
\mathbf{y} \sim F(\boldsymbol{\mu}) \quad g(\boldsymbol{\mu})=\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}
$$

- distributional assumption relates to the observation/measurement process
- how does this model incorporate
- experimental/individual unit variability?
- unobserved covariates?

It doesn't!
hence overdispersion, etc

Random Effect Models

Include random effect(s) in the linear predictor

$$
\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}+\gamma^{T} \mathbf{z}
$$

Random Effect Models

Include random effect(s) in the linear predictor

$$
\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}+\boldsymbol{\gamma}^{T} \mathbf{z}
$$

- single conjugate random effect at individual level - standard overdispersion models
- negative binomial for count data
- beta-binomial for proportions

Random Effect Models

Include random effect(s) in the linear predictor

$$
\eta=\boldsymbol{\beta}^{T} \mathbf{x}+\gamma^{T} \mathbf{z}
$$

- single conjugate random effect at individual level - standard overdispersion models
- negative binomial for count data
- beta-binomial for proportions
- z normal \longrightarrow generalized linear mixed models

Random Effect Models

Include random effect(s) in the linear predictor

$$
\boldsymbol{\eta}=\boldsymbol{\beta}^{T} \mathbf{x}+\gamma^{T} \mathbf{z}
$$

- single conjugate random effect at individual level - standard overdispersion models
- negative binomial for count data
- beta-binomial for proportions
- z normal \longrightarrow generalized linear mixed models
- z unspecified \longrightarrow nonparametric maximum likelihood

John's Approach (1984)

Addllimal ravirm term in. hiea. prexicios
 hy $\eta^{+} \varepsilon$, wher $\&$ is a ranemp vaiatle with vaciance θ.
 Uainance. Taking eypertations over The lewer hevai envor we hail

$$
E_{1}(y)=\mu=g(\eta+\varepsilon) \approx g(\eta)+y^{\prime}(\eta) \varepsilon
$$

Hence assuming intrppuzem: behoren 10. turn ewer. components we have

$$
\begin{aligned}
\operatorname{var}(y) & =v a r,(y)+g^{\prime} \cdot \theta \\
& =v(\mu)+\theta g^{\prime} \text { for a Gim. }
\end{aligned}
$$

Ir. pawhouber for a lamerical liwk wher $\hat{\theta}=\mathrm{V}$, wre have $\operatorname{par}(y)=v(\mu)+0 v^{2}(\mu)$

Motivating Application

- 4×2 factorial micropropagation experiment of the apple variety Trajan - a 'columnar' variety.
- Shoot tips of length $1.0-1.5 \mathrm{~cm}$ were placed in jars on a standard culture medium.
- 4 concentrations of cytokinin BAP added High concentrations of BAP often inhibit root formation during micropropagation of apples,
 but maybe not for 'columnar' varieties.
- Two growth cabinets, one with 8 hour photoperiod, the other with 16 hour. Jars placed at random in one of the two cabinets
Response variable: number of roots after 4 weeks culture at $22^{\circ} \mathrm{C}$.

Motivating Application: Data

	Photoperiod									
BAP $(\mu \mathrm{M})$	2.2	4.4	8.8	17.6	2.2	4.4	8.8	17.6		
No. of roots	0	0	0	2	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 2}$	$\mathbf{1 9}$		
0	3	0	0	0	0	2	3	2		
1	2	3	1	0	2	1	2	2		
2	3	0	2	2	2	1	1	4		
3	6	1	4	2	1	2	2	3		
4	3	0	4	5	2	1	2	1		
5	2	3	4	5	1	2	3	4		
6	2	7	4	4	0	0	1	3		
7	3	3	7	8	1	1	0	0		
8	1	5	5	3	3	0	2	2		
9	2	3	4	4	1	3	0	0		
10	1	4	1	4	1	0	1	0		
11	0	0	2	0	1	1	1	0		
12	13,17	13	14,14	14						
>12	30	30	40	40	30	30	30	40		
No. of shoots	5.8	7.8	7.5	7.2	3.3	2.7	3.1	2.5		
Mean	14.1	7.6	8.5	8.8	16.6	14.8	13.5	8.5		
Variance	1.42	-0.03	0.13	0.22	4.06	4.40	3.31	2.47		
Overdispersion index										

Dispersion

Second factorial cumulant

$$
S(X)=\operatorname{Var}(X)-\mathrm{E}[X]
$$

Useful summary:

- underdispersion:
- equidispersion (Poisson):

$$
\begin{array}{r}
-\mathrm{E}[X] \leq S(X)<0 \\
S(X)=0 \\
S(X)>0
\end{array}
$$

- overdispersion:

Dispersion

Second factorial cumulant

$$
S(X)=\operatorname{Var}(X)-\mathrm{E}[X]
$$

Useful summary:

- underdispersion:
- equidispersion (Poisson):

$$
\begin{array}{r}
-\mathrm{E}[X] \leq S(X)<0 \\
S(X)=0 \\
S(X)>0
\end{array}
$$

- overdispersion:

Fisher's dispersion index

$$
D(X)=\frac{\operatorname{Var}(X)}{\mathrm{E}[X]}=1+\frac{S(X)}{\mathrm{E}[X]}
$$

Standard Models

Poisson (Po)

$$
\operatorname{Var}(X)=\mu \quad S(X)=0
$$

Standard Models

Poisson (Po)

$$
\operatorname{Var}(X)=\mu \quad S(X)=0
$$

Negative binomial (NB2): Poisson-Gamma mixture

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\boldsymbol{\gamma} \boldsymbol{\mu}^{2} \quad S(X)=\boldsymbol{\gamma} \boldsymbol{\mu}^{2}
$$

Note: Poisson-lognormal mixture has same variance function

Standard Models

Poisson (Po)

$$
\operatorname{Var}(X)=\mu \quad S(X)=0
$$

Negative binomial (NB2): Poisson-Gamma mixture

$$
\operatorname{Var}(X)=\mu+\gamma \mu^{2} \quad S(X)=\gamma \mu^{2}
$$

Note: Poisson-lognormal mixture has same variance function Negative binomial (NB1): alternative Poisson-Gamma mixture

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \boldsymbol{\mu}=\phi \boldsymbol{\mu} \quad S(X)=\gamma \boldsymbol{\mu}
$$

same variance function as a quasi-Poisson model

Standard Models

Poisson (Po)

$$
\operatorname{Var}(X)=\mu \quad S(X)=0
$$

Negative binomial (NB2): Poisson-Gamma mixture

$$
\operatorname{Var}(X)=\mu+\gamma \mu^{2} \quad S(X)=\gamma \mu^{2}
$$

Note: Poisson-lognormal mixture has same variance function
Negative binomial (NB1): alternative Poisson-Gamma mixture

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \boldsymbol{\mu}=\phi \boldsymbol{\mu} \quad S(X)=\gamma \boldsymbol{\mu}
$$

same variance function as a quasi-Poisson model

Poisson-inverse Gaussian

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \boldsymbol{\mu}^{3} \quad S(X)=\boldsymbol{\gamma} \boldsymbol{\mu}^{3}
$$

Extended variance function

An natural generalization is

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \mu^{p} \quad S(X)=\gamma \mu^{p}
$$

for some general power p.

Extended variance function

An natural generalization is

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \mu^{p} \quad S(X)=\gamma \mu^{p}
$$

for some general power p.
Suggested by Hinde \& Demétrio (1998) and Nelder (??).

Extended variance function

An natural generalization is

$$
\operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \mu^{p} \quad S(X)=\gamma \mu^{p}
$$

for some general power p.
Suggested by Hinde \& Demétrio (1998) and Nelder (??).
Class of Poisson mixtures, Poisson-Tweedie models $P T_{p}(\boldsymbol{\mu}, \gamma)$

$$
Z \sim T w_{p}(\mu, \gamma), \quad X \mid Z \sim P o(Z) \Rightarrow X \sim P T_{p}(\mu, \gamma)
$$

has moments

$$
\mathrm{E}[X]=\mathrm{E}[Z]=\boldsymbol{\mu} \quad \operatorname{Var}(Z)=\gamma \boldsymbol{\mu}^{p} \quad \operatorname{Var}(X)=\boldsymbol{\mu}+\gamma \boldsymbol{\mu}^{p}
$$

Tweedie Models

Family	$\mathrm{E}[Z]$	$\operatorname{Var}(Z)$	Type	Support
Normal	$\boldsymbol{\mu}$	$\boldsymbol{\gamma}$	Continuous	R
Poisson	$\boldsymbol{\mu}$	$\boldsymbol{\mu}$	Discrete	N_{0}
Non-central gamma	$\boldsymbol{\mu}$	$\boldsymbol{\gamma} \boldsymbol{\mu}^{3 / 2}$	Cont. + atom	R_{0}
Gamma	$\boldsymbol{\mu}$	$\boldsymbol{\gamma} \boldsymbol{\mu}^{2}$	Continuous	R_{+}
Inverse Gauss	$\boldsymbol{\mu}$	$\boldsymbol{\gamma} \boldsymbol{\mu}^{3}$	Continuous	R_{+}

Only Poisson distribution is discrete.

Poisson-Tweedie Models

Family	$\mathrm{E}[X]$	$S(X)$	Disp. Type	$Z I(X)$
Poisson	$\boldsymbol{\mu}$	0	Equi	0
Hermite	$\boldsymbol{\mu}$	$\boldsymbol{\gamma}$	Over	+
Neyman Type A	$\boldsymbol{\mu}$	$\boldsymbol{\gamma} \boldsymbol{\mu}$	Over	+
(Poisson-Poisson)				
Pólya-Aeppli Type A	$\boldsymbol{\mu}$	$\gamma \boldsymbol{\mu}^{3 / 2}$	Over	+
(Poisson-compound Poisson)				
Negative binomial	$\boldsymbol{\mu}$	$\gamma \boldsymbol{\mu}^{2}$	Over	+
Binomial	$\boldsymbol{\mu}$	$-\gamma \boldsymbol{\mu}^{2}$	Under	+
Poisson-Inv. Gauss	$\boldsymbol{\mu}$	$\gamma \boldsymbol{\mu}^{3}$	Over	-

Motivating Application: Data

	Photoperiod										
BAP $(\mu \mathrm{M})$	2.2	4.4	8.8	17.6	2.2	4.4	8.8	17.6			
No. of roots	0	0	0	2	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 2}$	$\mathbf{1 9}$			
0	3	0	0	0	0	2	3	2			
1	2	3	1	0	2	1	2	2			
2	3	0	2	2	2	1	1	4			
3	6	1	4	2	1	2	2	3			
4	3	0	4	5	2	1	2	1			
5	2	3	4	5	1	2	3	4			
6	2	7	4	4	0	0	1	3			
7	3	3	7	8	1	1	0	0			
8	1	5	5	3	3	0	2	2			
9	2	3	4	4	1	3	0	0			
10	1	4	1	4	1	0	1	0			
11	0	0	2	0	1	1	1	0			
12	13,17	13	14,14	14							
>12	30	30	40	40	30	30	30	40			
No. of shoots	5.8	7.8	7.5	7.2	3.3	2.7	3.1	2.5			
Mean	14.1	7.6	8.5	8.8	16.6	14.8	13.5	8.5			
Variance	1.42	-0.03	0.13	0.22	4.06	4.40	3.31	2.47			
Overdispersion index											

Zero-inflated models

If Y_{i} has a zero-inflated Poisson (ZIP) distribution, given by

$$
\operatorname{Pr}\left(Y_{i}=y_{i}\right)= \begin{cases}\omega_{i}+\left(1-\omega_{i}\right) e^{-\lambda_{i}} & y_{i}=0 \\ \left(1-\omega_{i}\right) \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!} & y_{i}>0\end{cases}
$$

Zero-inflated models

If Y_{i} has a zero-inflated Poisson (ZIP) distribution, given by

$$
\operatorname{Pr}\left(Y_{i}=y_{i}\right)= \begin{cases}\omega_{i}+\left(1-\omega_{i}\right) e^{-\lambda_{i}} & y_{i}=0 \\ \left(1-\omega_{i}\right) \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!} & y_{i}>0\end{cases}
$$

Lambert (1992) considered models in which

$$
\log \left(\lambda_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta} \quad \text { and } \quad \log \left(\frac{\omega_{i}}{1-\omega_{i}}\right)=\mathbf{z}_{i}^{T} \gamma
$$

where \mathbf{x} and \mathbf{z} are covariate vectors and $\boldsymbol{\beta}$ and γ are vectors of parameters.

Zero-inflated models

If Y_{i} has a zero-inflated Poisson (ZIP) distribution, given by

$$
\operatorname{Pr}\left(Y_{i}=y_{i}\right)= \begin{cases}\omega_{i}+\left(1-\omega_{i}\right) e^{-\lambda_{i}} & y_{i}=0 \\ \left(1-\omega_{i}\right) \frac{e^{-\lambda_{i}} \lambda_{i}^{y_{i}}}{y_{i}!} & y_{i}>0\end{cases}
$$

Lambert (1992) considered models in which

$$
\log \left(\lambda_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta} \quad \text { and } \quad \log \left(\frac{\omega_{i}}{1-\omega_{i}}\right)=\mathbf{z}_{i}^{T} \gamma
$$

where \mathbf{x} and \mathbf{z} are covariate vectors and $\boldsymbol{\beta}$ and γ are vectors of parameters.
Similar mixture models are available for the negative binomial distribution (ZINB), etc.

Trajan apple cultivation data: fitted frequencies

No. of Roots	Observed	Poisson	Neg-bin	ZIP	ZINB	ZIGPD
0	62	7.4	55.8	62	62	62
1	7	21.3	19.8	1.6	5.1	4.8
2	7	30.4	12.2	4.4	7.6	7.6
3	8	29	8.6	7.9	8.9	9.1
4	8	20.8	6.4	10.8	9.1	9.3
5	6	11.9	4.9	11.8	8.4	8.5
6	10	5.7	3.9	10.7	7.2	7.2
7	4	2.3	3.1	8.3	5.8	5.8
8	2	0.8	2.5	5.7	4.5	4.5
9	7	0.3	2.1	3.4	3.4	3.4
10	4	0.1	1.7	1.9	2.5	2.4
11	2	0	1.4	0.9	1.8	1.7
≥ 12	3	0	5.8	0.7	3.6	3.7
$-2 \times \log -l i k$		840.7	550.2	537.9	519.3	519.8
	G^{2}		335.5	36.9	31.2	9.1

Trajan apple cultivation data: ZINB

Contour plot of $2 \times \log$-likelihood for α and ω with μ fixed at the sample mean: maximum likelihood estimates for $\operatorname{ZINB}(*)$ and negative binomial models (\bullet).

Trajan Apples: model fitting results

P	is a two level factor for photoperiod is a four level factor for the BAP levels is a linear trend over the levels of H (on the log-concentration scale for BAP.)							
H								
Lin(H)								
		Mod						
	Description	λ	ω	α	-2 $\log L$	df	AIC	BIC
	Poisson	$\mathrm{H} * \mathrm{P}$	0	0	1556.9	262	1572.9	1601.7
		P	0	0	1571.9	268	1575.9	1583.1
	Neg-Bin	H*P	0	const	1399.6	261	1417.6	1450.0
		H*P	0	P	1264.6	260	1284.6	1320.6
		H*P	0	H*P	1254.8	254	1286.8	1344.4
		Lin(H) $*$ P	0	P	1270.1		1282.1	1303.7
		P	0	P	1272.4	266	1280.4	1294.8
		P		const	1403.9	267	1409.9	1420.7

Trajan Apples: model fitting results

	Models							
Description	λ	ω	α	$-2 \operatorname{logL}$	df	AIC	BIC	
ZIP	$\mathrm{H} * \mathrm{P}$	const	0	1338.0	261	1356.0	1388.4	
	$\mathrm{H} * \mathrm{P}$	P	0	1244.5	260	1264.5	1300.5	
	$\mathrm{H} * \mathrm{P}$	$\mathrm{H} * \mathrm{P}$	0	1238.2	254	1270.2	1327.8	
	Lin $(\mathrm{H}) * \mathrm{P}$	P	0	1250.2	264	$\mathbf{1 2 6 2 . 2}$	1283.8	
	P	P	0	1261.3	266	1269.3	1283.7	
	P	const	0	1355.2	267	1361.2	1372.0	
ZINB	$\mathrm{H} * \mathrm{P}$	const const	1324.8	260	1344.8	1380.8		
	$\mathrm{H} * \mathrm{P}$	P	const	1232.5	259	1254.5	1294.1	
	$\mathrm{H} * \mathrm{P}$	P	P	1226.3	258	1250.3	1293.5	
	$\mathrm{H} * \mathrm{P}$	$\mathrm{H} * \mathrm{P}$	$\mathrm{H} * \mathrm{P}$	1205.6	246	1253.6	1340.0	
	$\mathrm{Lin}(\mathrm{H}) * \mathrm{P}$	P	P	1231.0	262	$\mathbf{1 2 4 7 . 0}$	1275.8	
	P	P	P	1237.7	264	1249.7	$\mathbf{1 2 7 1 . 3}$	
	P	P	const	1243.9	265	1253.9	1271.9	
	P	const const	1336.5	266	1344.5	1358.9		
	const	P	const	1257.8	266	1265.8	1280.2	

Dataset: Biological Pest Control

- Termite Heterotermes tenuis: an important pest of sugarcane in Brazil, causing damage of up to 10 metric tonnes/ha/year.

Dataset: Biological Pest Control

- Termite Heterotermes tenuis: an important pest of sugarcane in Brazil, causing damage of up to 10 metric tonnes/ha/year.
- Fungus Beauveria bassiana: a possible microbial control.

Dataset: Biological Pest Control

- Termite Heterotermes tenuis: an important pest of sugarcane in Brazil, causing damage of up to 10 metric tonnes/ha/year.
- Fungus Beauveria bassiana: a possible microbial control.
- Experiment: on the pathogenicity and virulence of 142 different isolates of Beauveria bassiana.
- Completely randomized experiment: five replicates of each of the 142 isolates.
- Solutions of the isolates applied to groups (clusters) of $n=30$ termites kept in plastic Petri-dishes.
- Mortality in the groups was measured daily for eight days

Dataset: Biological Pest Control

- Termite Heterotermes tenuis: an important pest of sugarcane in Brazil, causing damage of up to 10 metric tonnes/ha/year.
- Fungus Beauveria bassiana: a possible microbial control.
- Experiment: on the pathogenicity and virulence of 142 different isolates of Beauveria bassiana.
- Completely randomized experiment: five replicates of each of the 142 isolates.
- Solutions of the isolates applied to groups (clusters) of $n=30$ termites kept in plastic Petri-dishes.
- Mortality in the groups was measured daily for eight days
- Data: 710 ordered multinomial observations of length eight.

Cumulative Mortality: sample of isolates

Cumulative Mortality: spaghetti plot of all isolates

Multinomial Model: Cumulative Proportions

Because of natural time ordering consider models for the cumulative proportions (isolate i, replicate k)

$$
R_{i k, d}=\text { proportion of insects dead by day } d
$$

$\gamma_{i k, d}=\mathrm{E}\left(R_{i k, d}\right)=$ probability an insect dies by day d,

$$
\mathbf{R}_{i k}=\left(R_{i k, 1}, R_{i k, 2}, \ldots, R_{i k, D}\right)^{T}=\frac{1}{n} \mathbf{L} \mathbf{Y}_{i k}
$$

Multinomial Model: Cumulative Proportions

Because of natural time ordering consider models for the cumulative proportions (isolate i, replicate k)

$$
\begin{gathered}
R_{i k, d}=\text { proportion of insects dead by day } d, \\
\gamma_{i k, d}=\mathrm{E}\left(R_{i k, d}\right)=\text { probability an insect dies by day } d, \\
\mathbf{R}_{i k}=\left(R_{i k, 1}, R_{i k, 2}, \ldots, R_{i k, D}\right)^{T}=\frac{1}{n} \mathbf{L Y} \mathbf{Y}_{i k} \\
\mathrm{E}\left[\mathbf{R}_{i k}\right]=\mathbf{L} \boldsymbol{\pi}_{i k}=\boldsymbol{\gamma}_{i k} \\
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right]=\frac{1}{n} \boldsymbol{L}\left[\operatorname{diag}\left\{\boldsymbol{\pi}_{i k}\right\}-\boldsymbol{\pi}_{i k} \boldsymbol{\pi}_{i k}^{T}\right] \boldsymbol{L}^{T}=\boldsymbol{V}\left(\gamma_{i k}\right)
\end{gathered}
$$

Multinomial Model(ctd)

- Use a glm with link function: $\quad g\left(\gamma_{i k}\right)=\mathbf{X}_{i k} \boldsymbol{\beta}_{i}$

Multinomial Model(ctd)

- Use a glm with link function: $\quad g\left(\gamma_{i k}\right)=\mathbf{X}_{i k} \boldsymbol{\beta}_{i}$
- Logit link function \longrightarrow cumulative logistic model

$$
g\left(\gamma_{i k j}\right)=\operatorname{logit}\left(\gamma_{i k j}\right)=\log \left(\frac{\sum_{s=1}^{j} \pi_{i k, s}}{\sum_{s=j+1}^{\mathrm{D}+1} \pi_{i k, s}}\right)=\eta_{i k j}
$$

- alternative models: discrete survival models, other ordinal models

Multinomial Model(ctd)

- Use a glm with link function: $\quad g\left(\gamma_{i k}\right)=\mathbf{X}_{i k} \boldsymbol{\beta}_{i}$
- Logit link function \longrightarrow cumulative logistic model

$$
g\left(\gamma_{i k j}\right)=\operatorname{logit}\left(\gamma_{i k j}\right)=\log \left(\frac{\sum_{s=1}^{j} \pi_{i k, s}}{\sum_{s=j+1}^{\mathrm{D}+1} \pi_{i k, s}}\right)=\eta_{i k j}
$$

- Linear predictor: isolate specific factors, time dependency, ...

Multinomial Model(ctd)

- Use a glm with link function: $\quad g\left(\gamma_{i k}\right)=\mathbf{X}_{i k} \boldsymbol{\beta}_{i}$
- Logit link function \longrightarrow cumulative logistic model

$$
g\left(\gamma_{i k j}\right)=\operatorname{logit}\left(\gamma_{i k j}\right)=\log \left(\frac{\sum_{s=1}^{j} \pi_{i k, s}}{\sum_{s=j+1}^{\mathrm{D}+1} \pi_{i k, s}}\right)=\eta_{i k j}
$$

- Linear predictor: isolate specific factors, time dependency, ... e.g. Isolate specific linear time effect, constant over replicates

$$
\eta_{i k j}=\beta_{1 i}+\beta_{2 i} t_{j}
$$

Random Effect Models

Incorporate random effects in the linear predictor:

- Add random effect for each experimental unit (groups of insects).
- simple time shifts
- time dependent covariates with random coefficients
- Replicate level random effect - accounts for overdispersion

Random Effect Models

Incorporate random effects in the linear predictor:

- Add random effect for each experimental unit (groups of insects).
- simple time shifts
- time dependent covariates with random coefficients
- Replicate level random effect - accounts for overdispersion
- Model isolates as a random effect.

$$
\eta_{i k j}=\mu+\text { time }_{j}+u_{i}+\epsilon_{i k}
$$

Non-parametric maximum likelihood techniques give a finite mass-point distribution $\left\{\omega_{k} ; z_{k}\right\}$ for the isolate effects u_{i}.
Using a small number of components may identify effective isolates look at the posterior distribution of u_{i}.

Dirichlet-Multinomial Model

Additional variation across replicates \longrightarrow overdispersion

Dirichlet-Multinomial Model

Additional variation across replicates \longrightarrow overdispersion

- Allow variation in multinomial parameter $\boldsymbol{\pi}$ - two-stage model $\boldsymbol{Y}_{i k} \mid \boldsymbol{p}_{i k} \sim \operatorname{Multinomial}\left(n ; \boldsymbol{p}_{i k}\right)$
$\boldsymbol{p}_{i k}=\left(p_{i k, 1}, \ldots, p_{i k, \mathrm{D}}, p_{i k, \mathrm{D}+1}\right)^{T}$ follows a Dirichlet distribution

Dirichlet-Multinomial Model

Additional variation across replicates \longrightarrow overdispersion

- Allow variation in multinomial parameter $\boldsymbol{\pi}$ - two-stage model

$$
\begin{aligned}
& \boldsymbol{Y}_{i k} \mid \boldsymbol{p}_{i k} \sim \operatorname{Multinomial}\left(n ; \boldsymbol{p}_{i k}\right) \\
& \boldsymbol{p}_{i k}=\left(p_{i k, 1}, \ldots, p_{i k, \mathrm{D}}, p_{i k, \mathrm{D}+1}\right)^{T} \text { follows a Dirichlet distribution }
\end{aligned}
$$

- Dirichlet-multinomial model for \mathbf{Y} and \mathbf{R} with

$$
E\left[\boldsymbol{R}_{i k}\right]=\gamma_{i k}
$$

and covariance matrix given by

$$
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right]=\boldsymbol{V}\left(\gamma_{i k}\right)\left[1+\rho_{i}(n-1)\right]
$$

where ρ_{i} is an (isolate specific) overdispersion parameter

Dirichlet-Multinomial Model

Additional variation across replicates \longrightarrow overdispersion

- Allow variation in multinomial parameter $\boldsymbol{\pi}$ - two-stage model

$$
\begin{aligned}
& \boldsymbol{Y}_{i k} \mid \boldsymbol{p}_{i k} \sim \operatorname{Multinomial}\left(n ; \boldsymbol{p}_{i k}\right) \\
& \boldsymbol{p}_{i k}=\left(p_{i k, 1}, \ldots, p_{i k, \mathrm{D}}, p_{i k, \mathrm{D}+1}\right)^{T} \text { follows a Dirichlet distribution }
\end{aligned}
$$

- Dirichlet-multinomial model for \mathbf{Y} and \mathbf{R} with

$$
E\left[\boldsymbol{R}_{i k}\right]=\gamma_{i k}
$$

and covariance matrix given by

$$
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right]=\boldsymbol{V}\left(\gamma_{i k}\right)\left[1+\rho_{i}(n-1)\right]
$$

where ρ_{i} is an (isolate specific) overdispersion parameter

- Generalization of beta-binomial model

Random Intercept Model

- Model additional variation by including random effects in the linear predictor

$$
g\left(q_{i k j}\right)=\eta_{i k j}+\xi_{i k}=\beta_{1 i}+\beta_{2 i} t_{j}+\xi_{i k}
$$

where $\xi_{i k}$ is a random effect with $E\left[\xi_{i k}\right]=0, \operatorname{Var}\left[\xi_{i k}\right]=\sigma_{i}^{2}$

Random Intercept Model

- Model additional variation by including random effects in the linear predictor

$$
g\left(q_{i k j}\right)=\eta_{i k j}+\xi_{i k}=\beta_{1 i}+\beta_{2 i} t_{j}+\xi_{i k}
$$

where $\xi_{i k}$ is a random effect with $E\left[\xi_{i k}\right]=0, \operatorname{Var}\left[\xi_{i k}\right]=\sigma_{i}^{2}$

- Taylor series approximations give

$$
E\left[\boldsymbol{R}_{i k}\right]=E\left[E\left(\boldsymbol{R}_{i k} \mid \boldsymbol{q}_{i k}\right)\right]=E\left[\boldsymbol{q}_{i k}\right] \approx \gamma_{i k}
$$

and

$$
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right] \approx \boldsymbol{V}\left(\gamma_{i k}\right)+\left(1-\frac{1}{n}\right) \sigma_{i}^{2}\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]^{T}
$$

where \boldsymbol{h} is inverse link function with derivative \boldsymbol{h}^{\prime}

Random Intercept Model

- Model additional variation by including random effects in the linear predictor

$$
g\left(q_{i k j}\right)=\eta_{i k j}+\xi_{i k}=\beta_{1 i}+\beta_{2 i} t_{j}+\xi_{i k}
$$

where $\xi_{i k}$ is a random effect with $E\left[\xi_{i k}\right]=0, \operatorname{Var}\left[\xi_{i k}\right]=\sigma_{i}^{2}$

- Taylor series approximations give

$$
E\left[\boldsymbol{R}_{i k}\right]=E\left[E\left(\boldsymbol{R}_{i k} \mid \boldsymbol{q}_{i k}\right)\right]=E\left[\boldsymbol{q}_{i k}\right] \approx \gamma_{i k}
$$

and

$$
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right] \approx \boldsymbol{V}\left(\gamma_{i k}\right)+\left(1-\frac{1}{n}\right) \sigma_{i}^{2}\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]^{T}
$$

where \boldsymbol{h} is inverse link function with derivative \boldsymbol{h}^{\prime}

- Analagous to approximate variance function for logistic-normal distribution

Random Intercept + Random Slope Model

- Extend to include correlated random effects for intercept and slope

$$
g\left(q_{i k j}\right)=\beta_{1 i}+\xi_{i k}+\left(\beta_{2 i}+\zeta_{i k}\right) t_{j}=\eta_{i k j}+\xi_{i k}+\zeta_{i k} t_{j}
$$

where $\left(\xi_{i k}, \zeta_{i k}\right)^{T}$ has $E\left[\xi_{i k}\right]=E\left[\zeta_{i k}\right]=0$ and covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\nu_{i}^{2} & \lambda_{i} \nu_{i} \tau_{i} \\
\lambda_{i} \nu_{i} \tau_{i} & \tau_{i}^{2}
\end{array}\right]
$$

Random Intercept + Random Slope Model

- Extend to include correlated random effects for intercept and slope

$$
g\left(q_{i k j}\right)=\beta_{1 i}+\xi_{i k}+\left(\beta_{2 i}+\zeta_{i k}\right) t_{j}=\eta_{i k j}+\xi_{i k}+\zeta_{i k} t_{j}
$$

where $\left(\xi_{i k}, \zeta_{i k}\right)^{T}$ has $E\left[\xi_{i k}\right]=E\left[\zeta_{i k}\right]=0$ and covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\nu_{i}^{2} & \lambda_{i} \nu_{i} \tau_{i} \\
\lambda_{i} \nu_{i} \tau_{i} & \tau_{i}^{2}
\end{array}\right]
$$

- Approximations now give

$$
E\left[\boldsymbol{R}_{i k}\right] \approx \gamma_{i k}
$$

and

$$
\begin{aligned}
\operatorname{Var}\left[\boldsymbol{R}_{i k}\right] & \approx \boldsymbol{V}\left(\boldsymbol{\gamma}_{i k}\right)+\left(1-\frac{1}{n}\right)\left\{\nu_{i}^{2}\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]^{T}\right. \\
& \left.+\tau_{i}^{2}\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right) * \boldsymbol{t}_{i k}\right]\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right) * \boldsymbol{t}_{i k}\right]^{T}+\lambda_{i} \nu_{i} \tau_{i}\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]\left[\boldsymbol{h}^{\prime}\left(\boldsymbol{\eta}_{i k}\right)\right]^{T} *\left[\boldsymbol{1}_{i k}^{T}+\boldsymbol{t}_{i k} \mathbf{1}^{T}\right]\right\}
\end{aligned}
$$

Results - Surprising Outcome?

Results - Surprising Outcome?

- Parameter estimates from all four models are identical

Results - Surprising Outcome?

- Parameter estimates from all four models are identical
- Robust se's from all four models are identical

Results - Surprising Outcome?

- Parameter estimates from all four models are identical
- Robust se's from all four models are identical
- Model based se's exhibit simple relationships

Results - Surprising Outcome?

- Parameter estimates from all four models are identical
- Robust se's from all four models are identical
- Model based se's exhibit simple relationships
- Numerous explanations posited by various colleagues, but...

All down to forms of models and matrix algebra

Influence on Teaching

- Extension of general linear model

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data
- Likelihood based inference

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data
- Likelihood based inference
- Model selection, comparison, validation

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data
- Likelihood based inference
- Model selection, comparison, validation
- Iterative computational methods

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data
- Likelihood based inference
- Model selection, comparison, validation
- Iterative computational methods
- Extending model classes

Influence on Teaching

- Extension of general linear model
- Analysis of non-normal data
- Likelihood based inference
- Model selection, comparison, validation
- Iterative computational methods
- Extending model classes

Combination of theory \& application

Bristol: Generalised Linear Models

Syllabus

- Overview of data analysis, motivating examples. Review of linear models. (1 lecture)
- Generalized linear models (GLMs). Exponential family model, sufficiency issues. Link function, canonical link. (5 lectures)
- Inference for generalized linear models, based on asymptotic theory: confidence intervals, hypothesis testing, goodness of fit. Results interpretation. Diagnostics. (4 lectures)
- Binary responses, logistic regression, residuals and diagnostics. (2 lectures)
- Introduction to survival analysis. Distribution theory: standard parametric models. Proportional odds model and connection to binomial GLM's. Inference assuming a parametric form for the baseline hazard. (4 lectures)

UCSC: Generalized Linear Models

- Introduction to GLMs

Statistical modeling in the context of GLMs. Exponential dispersion family of distributions (definitions, properties, and examples). Components of a GLM, examples of GLMs.

- Likelihood inference for GLMs

Likelihood estimation (iterative weighted least squares) and inference (asymptotic interval estimates). Model diagnostics (residuals for GLMs, model comparison criteria).

- Regression models for categorical responses and count data Models for binary responses (dose-response modeling, probit and logit models). Poisson regression and log-linear models. Basic ideas for modeling of contingency tables. Multinomial response models for nominal or ordinal responses.
- Bayesian GLMs General setting, examples, priors for GLMs. MCMC posterior simulation methods for GLMs. Bayesian residual analysis and model choice. Hierarchical GLMs, overdispersed GLMs, generalized linear mixed models.

Acknowledgements

- Norma Coffey
- Clarice Demétrio
- Jochen Einbeck
- Silvia de Freitas
- Emma Holian
- Naratip Jansakul
- Bent Jørgensen
- Marie-José Martinez
- Georgios Papageorgiou
- Martin Ridout
- Mariana Ragassi Urbano
- Afrânio Vieira

