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The 1972 Paper

The Paper — 1972

published in Series A

15 pages long

many examples — over half the paper

“useful way of unifying . . . unrelated statistical procedures”
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The 1972 Paper

glms — the authors

John Nelder: 1924 — 2010
Statistician at National Vegetable Research Station (NVRS), now
Horticultural Research International, Wellesbourne — 1949-68

theory of general balance — unifying framework for the wide range of
designs in agricultural experimentation
initial work on GenStat

Head of the Statistics Department at Rothamsted — 1968-1984
theory of generalized linear models, with the late Robert Wedderburn
Applied Statistics Algorithms in Applied Statistics, JRSSC
further development of GenStat, with NAG
development of GLIM, first released in 1974

visiting Professor at Imperial College — 1972-2009
GLIMPSE “expert system” based on GLIM
theory of hierarchical generalized linear models (HGLMs), with Youngjo
Lee

Robert Wedderburn: 1947 —1975

Died aged 28 of anaphylactic shock from an insect bite.
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John Nelder: 1924 — 2010
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The 1972 Paper

glms — the background

analysis of non-normal data — variance stabilising transformation of
the response

Poisson count data: square-root transformation,
√
y

Binomial proportions: arc-sin-square-root, sin−1(
√
y)

Exponential times: log transformation, log(y)

Probit analysis: Finney (1952) maximum likelihood for tolerance
distribution in toxicology

Dyke & Patterson (1952): logit model for analysis of proportions in
factorial experiment

transformations to linearity

Box-Cox transformation (1964)

Inverse polynomials, Nelder (1966)

Nelder (1968): . . . one transformation leads to a linear model and
another to normal error.
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The 1972 Paper

glms — the idea
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The 1972 Paper

glm Paper: contents

Intro: background (2 pages)

random component: 1-parameter exponential family

linear predictor: η = β0 + β1x1 + · · ·βpxp
link function: g(µ) = η

Model fitting: (3 pages)

maximum likelihood estimation using Fisher Scoring

Iteratively (Re)-Weighted Least Squares

sufficient statistics — canonical links

Analysis of Deviance

minimal ↔ complete (saturated) models

Special distributions, examples (6 pages)

Models in Teaching Statistics (1 page)
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The 1972 Paper

glm Paper: examples

Normal: observations normal on log-scale; additive effects on inverse

scale

Poisson: Fisher’s tuberculin-test data — Latin square of counts

Poisson: multinomial distributions for contingency tables

Binomial: Probit & Logit models

Gamma: estimation of variance components in incomplete block

design
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The 1972 Paper Software

John Nelder & Statistical Computing

Anti black-box packages

User should be in control

Default output should be minimal

System should not allow stupid models — marginality

Model specification using Wilkinson & Rogers formulæ

All structures available to the user — input to other routines

system should be open — user extendible (GLIM, GenStat, S/R, . . . )

Requires user expertise/knowledge

Principles embodied in GLIM

— a system specifically for fitting glms.
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The 1972 Paper Software

GLIM: Interactive package (A Fistful of $’s!!)

[i] ? $yvar days $error p $

[i] ? $fit A*S*C*L $

[o] scaled deviance = 1173.9 at cycle 4

[o] residual df = 118

Or, in John’s preferred style . . .

[i] ? $y days $e p $

[i] ? $f A*S*C*L $
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Spreading the word

Dissemination of glms

Conferences — “That’s a glm!”

Nelder (1984) Models for Rates with Poisson Errors: In a recent

paper, Frome (1983) described the fitting of models with Poisson

errors and data in the form of rates . . . fitted simply by GLIM . . . or

the use of a program that handles iterative weighted least squares

Nelder (1991) Generalized Linear Models for Enzyme-Kinetic Data:

Ruppert, Cressie, and Carroll (1989) discuss various models for fitting

the Michaelis-Menten equations to data on enzyme kinetics. I find it

surprising that they do not include, among the models they consider,

generalized linear models (GLMs) with an inverse link

The data-transformation approach suffers from the disadvantage that

normality of errors and linearity of systematic effects are still being

sought simultaneously
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Spreading the word

Generalized Linear Models — Monograph
2013 Karl Pearson Prize - isi-web.org

http://www.isi-web.org/WSC/726-2013kpp[19/07/2013 14:12:54]

Login

Follow us

 

Font Size Changer

 

International Statistical Institute (ISI)

2013 Karl Pearson Prize
 
The ISI’s Karl Pearson Prize was established in 2013 to recognize a contemporary a
research contribution that has had profound influence on statistical theory,
methodology, practice, or applications. The contribution can be a research article or a
book and must be published within the last three decades. The prize is sponsored by
Elsevier B.V.
 

The inaugural Karl Pearson Prize is awarded to Peter McCullagh
and John Nelder[1] for their monograph Generalized Linear
Models (1983).
 
This book has changed forever teaching, research and practice in statistics. It provides
a unified and self-contained treatment of linear models for analyzing continuous,
binary, count, categorical, survival, and other types of data, and illustrates the
methods on applications from different areas. The monograph is based on several
groundbreaking papers, including “Generalized linear models,” by Nelder and
Wedderburn, JRSS-A (1972), “Quasi-likelihood functions, generalized linear models,
and the Gauss-Newton method,” by Wedderburn, Biometrika (1974), and “Regression
models for ordinal data,” by P. McCullagh, JRSS-B (1980). The implementation of GLM
was greatly facilitated by the development of GLIM, the interactive statistical package,
by Baker and Nelder. In his review of the GLIM3 release and its manual in JASA 1979
(pp. 934-5), Peter McCullagh wrote that "It is surprising that such a powerful and
unifying tool should not have achieved greater popularity after six or more years of
existence.” The collaboration between McCullagh and Nelder has certainly remedied
this issue and has resulted in a superb treatment of the subject that is accessible to
researchers, graduate students, and practitioners.
 

The prize will be presented on August 27, 2013 at the ISI
World Statistics Congress in Hong Kong and will be followed by
the Karl Pearson Lecture by Peter McCullagh.
 
 

Karl Pearson Lecture: Statistical issues in modern scientific
research

 
Peter McCullagh

University of Chicago, USA
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Spreading the word

Statistical Modelling in GLIM (1989)

An applied how to text with integrated GLIM code.

normal models

regression
analysis of variance

binomial responses

multinomial and Poisson

count data
multiway tables

survival models

parametric
Cox PH — piecewise exponential
discrete time
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Spreading the word

GLIM Conferences, IWSM, Statistical Modelling

GLIM conferences — really on glms

IWSM: International Workshop on Statistical Modelling

Eventually led to Statistical Modelling Society
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Spreading the word

Statistical Modelling Journal

In 2000, founding of journal Statistical Modelling
availability of data and code with papers → reproducible research

STATISTICAL MODELLING

AN

INTERNATIONAL

JOURNAL

from

Statistical Modelling: An International Journal publishes original and high-quality articles that

recognize statistical modelling as the general framework for the application of statistical ideas.

Submissions must reflect important developments, extensions, and applications in statistical

modelling. The journal also encourages submissions that describe scientifically interesting,

complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions

that embrace the diversity of applied statistical modelling.

Indexed by Science Citation Index Expanded, ISI Alerting Services, and CompuMath

Citation Index, beginning with volume 3 (2003).

Aims and Scope

Editorial Board

For Authors

Archives

Modelling Society

Statistical Modelling: An International Journal http://stat.uibk.ac.at/SMIJ/

1 of 2 19/07/2013 15:21
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Extensions

Extending the basic glm

response distribution
multivariate vector of responses
exponential dispersion models
generalized distributions
quasi-distributions
mixtures
joint responses: longitudinal + time to event, . . .

linear predictor
smooth terms — gams, etc
random effects
multiple linear predictors — modelling mean and dispersion, gamlss, etc

link function
parametric links
composite link functions — (Thompson & Baker, 1981)
non-linear glms — gnm (Turner & Firth, 2012)
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Extensions Random effects

Normal Models

y = βTx + ε

single error term includes
individual observation/measurement error
experimental unit variability
unobserved covariates

for simplest data structures/designs use normal linear model

more complex situations

structure in experimental unit variability
repeated measures/longitudinal observations
...
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Extensions Random effects

Normal Mixed Model

y = βTx + γTz + ε

z unobserved random effects

shared random effects
multi-level/variance components models
longitudinal observations
spatial structure

z normal
normal model with structured covariance matrix

standard mixed model analyses – ML, REML

widely available in standard software
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Extensions Random effects

Generalized Linear Models

Models for counts, proportions, times, . . .

y ∼ F (µ) g(µ) = η = βTx

distributional assumption relates to the observation/measurement
process
how does this model incorporate

experimental/individual unit variability?
unobserved covariates?

It doesn’t!
hence overdispersion, etc
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Extensions Random effects

Random Effect Models

Include random effect(s) in the linear predictor

η = βTx + γTz

single conjugate random effect at individual level – standard
overdispersion models

negative binomial for count data
beta-binomial for proportions

z normal −→ generalized linear mixed models

z unspecified −→ nonparametric maximum likelihood

John Hinde (NUIG) 28 March 2015 21 / 49



Extensions Random effects

Random Effect Models

Include random effect(s) in the linear predictor

η = βTx + γTz

single conjugate random effect at individual level – standard
overdispersion models

negative binomial for count data
beta-binomial for proportions

z normal −→ generalized linear mixed models

z unspecified −→ nonparametric maximum likelihood

John Hinde (NUIG) 28 March 2015 21 / 49



Extensions Random effects

Random Effect Models

Include random effect(s) in the linear predictor

η = βTx + γTz

single conjugate random effect at individual level – standard
overdispersion models

negative binomial for count data
beta-binomial for proportions

z normal −→ generalized linear mixed models

z unspecified −→ nonparametric maximum likelihood

John Hinde (NUIG) 28 March 2015 21 / 49



Extensions Random effects

Random Effect Models

Include random effect(s) in the linear predictor

η = βTx + γTz

single conjugate random effect at individual level – standard
overdispersion models

negative binomial for count data
beta-binomial for proportions

z normal −→ generalized linear mixed models

z unspecified −→ nonparametric maximum likelihood

John Hinde (NUIG) 28 March 2015 21 / 49



Extensions Random effects

John’s Approach (1984)
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Extensions Overdispersion & Zero-Inflation

Motivating Application

4x2 factorial micropropagation experiment
of the apple variety Trajan – a ’columnar’
variety.

Shoot tips of length 1.0-1.5 cm were placed
in jars on a standard culture medium.

4 concentrations of cytokinin BAP added

High concentrations of BAP often inhibit root

formation during micropropagation of apples,

but maybe not for ’columnar’ varieties.

Two growth cabinets, one with 8 hour
photoperiod, the other with 16 hour.

Jars placed at random in one of the two

cabinets

Response variable: number of roots after 4 weeks culture at 22◦C.
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Extensions Overdispersion & Zero-Inflation

Motivating Application: Data

Photoperiod
8 16

BAP (µM) 2.2 4.4 8.8 17.6 2.2 4.4 8.8 17.6
No. of roots

0 0 0 0 2 15 16 12 19
1 3 0 0 0 0 2 3 2
2 2 3 1 0 2 1 2 2
3 3 0 2 2 2 1 1 4
4 6 1 4 2 1 2 2 3
5 3 0 4 5 2 1 2 1
6 2 3 4 5 1 2 3 4
7 2 7 4 4 0 0 1 3
8 3 3 7 8 1 1 0 0
9 1 5 5 3 3 0 2 2

10 2 3 4 4 1 3 0 0
11 1 4 1 4 1 0 1 0
12 0 0 2 0 1 1 1 0
>12 13,17 13 14,14 14

No. of shoots 30 30 40 40 30 30 30 40
Mean 5.8 7.8 7.5 7.2 3.3 2.7 3.1 2.5

Variance 14.1 7.6 8.5 8.8 16.6 14.8 13.5 8.5
Overdispersion index 1.42 -0.03 0.13 0.22 4.06 4.40 3.31 2.47
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Extensions Overdispersion & Zero-Inflation

Dispersion

Second factorial cumulant

S(X ) = Var(X )− E[X ]

Useful summary:

underdispersion: −E[X ] ≤ S(X ) < 0

equidispersion (Poisson): S(X ) = 0

overdispersion: S(X ) > 0

Fisher’s dispersion index

D(X ) =
Var(X )

E[X ]
= 1 +

S(X )

E[X ]
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Extensions Overdispersion & Zero-Inflation

Standard Models

Poisson (Po)
Var(X ) = µ S(X ) = 0

Negative binomial (NB2): Poisson-Gamma mixture

Var(X ) = µ + γµ2 S(X ) = γµ2

Note: Poisson-lognormal mixture has same variance function

Negative binomial (NB1): alternative Poisson-Gamma mixture

Var(X ) = µ + γµ = φµ S(X ) = γµ

same variance function as a quasi-Poisson model

Poisson-inverse Gaussian

Var(X ) = µ + γµ3 S(X ) = γµ3
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Extensions Overdispersion & Zero-Inflation

Extended variance function

An natural generalization is

Var(X ) = µ + γµp S(X ) = γµp

for some general power p.

Suggested by Hinde & Demétrio (1998) and Nelder (??).

Class of Poisson mixtures, Poisson-Tweedie models PTp(µ,γ)

Z ∼ Twp(µ,γ), X |Z ∼ Po(Z )⇒ X ∼ PTp(µ,γ)

has moments

E[X ] = E[Z ] = µ Var(Z ) = γµp Var(X ) = µ + γµp
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Extensions Overdispersion & Zero-Inflation

Tweedie Models

Family E[Z ] Var(Z ) Type Support

Normal µ γ Continuous R

Poisson µ µ Discrete N0

Non-central gamma µ γµ3/2 Cont. + atom R0

Gamma µ γµ2 Continuous R+

Inverse Gauss µ γµ3 Continuous R+

Only Poisson distribution is discrete.
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Extensions Overdispersion & Zero-Inflation

Poisson-Tweedie Models

Family E[X ] S(X ) Disp. Type ZI (X )

Poisson µ 0 Equi 0

Hermite µ γ Over +

Neyman Type A µ γµ Over +

(Poisson-Poisson)

Pólya-Aeppli Type A µ γµ3/2 Over +

(Poisson-compound Poisson)

Negative binomial µ γµ2 Over +

Binomial µ −γµ2 Under +

Poisson-Inv. Gauss µ γµ3 Over −
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Examples Count data

Motivating Application: Data

Photoperiod
8 16

BAP (µM) 2.2 4.4 8.8 17.6 2.2 4.4 8.8 17.6
No. of roots

0 0 0 0 2 15 16 12 19
1 3 0 0 0 0 2 3 2
2 2 3 1 0 2 1 2 2
3 3 0 2 2 2 1 1 4
4 6 1 4 2 1 2 2 3
5 3 0 4 5 2 1 2 1
6 2 3 4 5 1 2 3 4
7 2 7 4 4 0 0 1 3
8 3 3 7 8 1 1 0 0
9 1 5 5 3 3 0 2 2

10 2 3 4 4 1 3 0 0
11 1 4 1 4 1 0 1 0
12 0 0 2 0 1 1 1 0
>12 13,17 13 14,14 14

No. of shoots 30 30 40 40 30 30 30 40
Mean 5.8 7.8 7.5 7.2 3.3 2.7 3.1 2.5

Variance 14.1 7.6 8.5 8.8 16.6 14.8 13.5 8.5
Overdispersion index 1.42 -0.03 0.13 0.22 4.06 4.40 3.31 2.47
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Examples Count data

Zero-inflated models

If Yi has a zero-inflated Poisson (ZIP) distribution, given by

Pr(Yi = yi ) =


ωi + (1− ωi )e

−λi yi = 0

(1− ωi )
e−λiλyii
yi !

yi > 0

Lambert (1992) considered models in which

log(λi ) = xTi β and log

(
ωi

1− ωi

)
= zTi γ

where x and z are covariate vectors and β and γ are vectors of parameters.

Similar mixture models are available for the negative binomial distribution
(ZINB), etc.
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Examples Count data

Trajan apple cultivation data: fitted frequencies

No. of Fitted frequencies
Roots Observed Poisson Neg-bin ZIP ZINB ZIGPD

0
1
2
3
4
5
6
7
8
9

10
11
≥ 12

62
7
7
8
8
6

10
4
2
7
4
2
3

7.4
21.3
30.4
29

20.8
11.9
5.7
2.3
0.8
0.3
0.1
0
0

55.8
19.8
12.2
8.6
6.4
4.9
3.9
3.1
2.5
2.1
1.7
1.4
5.8

62
1.6
4.4
7.9

10.8
11.8
10.7
8.3
5.7
3.4
1.9
0.9
0.7

62
5.1
7.6
8.9
9.1
8.4
7.2
5.8
4.5
3.4
2.5
1.8
3.6

62
4.8
7.6
9.1
9.3
8.5
7.2
5.8
4.5
3.4
2.4
1.7
3.7

−2× log-lik 840.7 550.2 537.9 519.3 519.8
G 2 335.5 36.9 31.2 9.1 9.4
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Examples Count data

Trajan apple cultivation data: ZINB

log((αα))

ωω

      

  

  

  

  

  

  

  

  

  

  

  

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

 −522 

 −529 

 −539 

 −559 

 −559 

 −619 

 −619 

●

Contour plot of 2×log-likelihood for α and ω with µ fixed at the sample mean:
maximum likelihood estimates for ZINB (∗) and negative binomial models (•).
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Examples Count data

Trajan Apples: model fitting results

P is a two level factor for photoperiod

H is a four level factor for the BAP levels

Lin(H) is a linear trend over the levels of H

(on the log-concentration scale for BAP.)

Models

Description λ ω α −2 logL df AIC BIC

Poisson H*P 0 0 1556.9 262 1572.9 1601.7

P 0 0 1571.9 268 1575.9 1583.1

Neg-Bin H*P 0 const 1399.6 261 1417.6 1450.0

H*P 0 P 1264.6 260 1284.6 1320.6

H*P 0 H*P 1254.8 254 1286.8 1344.4

Lin(H)*P 0 P 1270.1 264 1282.1 1303.7

P 0 P 1272.4 266 1280.4 1294.8

P 0 const 1403.9 267 1409.9 1420.7
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Examples Count data

Trajan Apples: model fitting results

Models

Description λ ω α −2 logL df AIC BIC

ZIP H*P const 0 1338.0 261 1356.0 1388.4

H*P P 0 1244.5 260 1264.5 1300.5

H*P H*P 0 1238.2 254 1270.2 1327.8

Lin(H)*P P 0 1250.2 264 1262.2 1283.8

P P 0 1261.3 266 1269.3 1283.7

P const 0 1355.2 267 1361.2 1372.0

ZINB H*P const const 1324.8 260 1344.8 1380.8

H*P P const 1232.5 259 1254.5 1294.1

H*P P P 1226.3 258 1250.3 1293.5

H*P H*P H*P 1205.6 246 1253.6 1340.0

Lin(H)*P P P 1231.0 262 1247.0 1275.8

P P P 1237.7 264 1249.7 1271.3

P P const 1243.9 265 1253.9 1271.9

P const const 1336.5 266 1344.5 1358.9

const P const 1257.8 266 1265.8 1280.2
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Examples Multinomial

Dataset: Biological Pest Control

Termite Heterotermes tenuis: an important pest of sugarcane in
Brazil, causing damage of up to 10 metric tonnes/ha/year.

Fungus Beauveria bassiana: a possible microbial control.

Experiment: on the pathogenicity and virulence of 142 different
isolates of Beauveria bassiana.

Completely randomized experiment: five replicates of each of the 142
isolates.
Solutions of the isolates applied to groups (clusters) of n = 30 termites
kept in plastic Petri-dishes.
Mortality in the groups was measured daily for eight days

Data: 710 ordered multinomial observations of length eight.
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Examples Multinomial

Cumulative Mortality: sample of isolates

days

pr
op
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tio

n

0.0
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2 4 6 8

732 743

2 4 6 8
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1006 1024
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Examples Multinomial

Cumulative Mortality: spaghetti plot of all isolates

1 2 3 4 5 6 7 8
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Examples Multinomial

Multinomial Model: Cumulative Proportions

Because of natural time ordering consider models for the cumulative
proportions (isolate i , replicate k)

Rik,d = proportion of insects dead by day d ,

γik,d = E(Rik,d) = probability an insect dies by day d ,

Rik = (Rik,1,Rik,2, . . . ,Rik,D)T =
1

n
LYik

E[Rik ] = Lπik = γik

Var[R
ik

] =
1

n
L[diag{πik} − πikπ

T
ik ]LT = V (γ ik)
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Examples Multinomial

Multinomial Model(ctd)

Use a glm with link function: g(γik) = Xikβi

Logit link function −→ cumulative logistic model

g(γ
ikj

) = logit(γ
ikj

) = log


j∑

s=1
π

ik,s

D+1∑
s=j+1

πik,s

 = ηikj

alternative models: discrete survival models, other ordinal models

Linear predictor: isolate specific factors, time dependency, . . .

e.g. Isolate specific linear time effect, constant over replicates

η
ikj

= β1i + β2i tj ,
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Examples Multinomial

Random Effect Models

Incorporate random effects in the linear predictor:

Add random effect for each experimental unit (groups of insects).

simple time shifts
time dependent covariates with random coefficients
Replicate level random effect — accounts for overdispersion

Model isolates as a random effect.

ηikj = µ+ timej + ui + εik

Non-parametric maximum likelihood techniques give a finite
mass-point distribution {ωk ; zk} for the isolate effects ui .
Using a small number of components may identify effective isolates –
look at the posterior distribution of ui .
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Examples Multinomial

Dirichlet-Multinomial Model

Additional variation across replicates −→ overdispersion

Allow variation in multinomial parameter π — two-stage model

Y ik | pik ∼ Multinomial(n; pik)

pik = (pik,1, . . . , pik,D, pik,D+1)T follows a Dirichlet distribution

Dirichlet-multinomial model for Y and R with

E [R ik ] = γ ik

and covariance matrix given by

Var[R ik ] = V (γ ik)[1 + ρi (n − 1)]

where ρi is an (isolate specific) overdispersion parameter

Generalization of beta-binomial model
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Examples Multinomial

Random Intercept Model

Model additional variation by including random effects in the linear
predictor

g(qikj) = ηikj + ξik = β1i + β2i tj + ξik

where ξik is a random effect with E [ξik ] = 0, Var[ξik ] = σ2
i

Taylor series approximations give

E [R ik ] = E [E (R ik |q ik)] = E [q ik ] ≈ γ ik

and

Var[R ik ] ≈ V (γ ik) +

(
1− 1

n

)
σ2
i [h′(ηik)][h′(ηik)]T

where h is inverse link function with derivative h′

Analagous to approximate variance function for logistic-normal
distribution
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Examples Multinomial

Random Intercept + Random Slope Model

Extend to include correlated random effects for intercept and slope

g(qikj) = β1i + ξik + (β2i + ζik)tj = ηikj + ξik + ζiktj

where (ξik , ζik)T has E [ξik ] = E [ζik ] = 0 and covariance matrix

Σ =

[
ν2
i λiνiτi

λiνiτi τ2
i

]

Approximations now give

E [R ik ] ≈ γ ik

and

Var[R ik ] ≈ V (γ ik) +

(
1− 1

n

){
ν2
i

[h′(η
ik

)][h′(η
ik

)]T

+ τ 2
i

[h′(η
ik

) ∗ t
ik

][h′(η
ik

) ∗ t
ik

]T + λi νi τi [h
′(η

ik
)][h′(η

ik
)]T ∗ [1tT

ik
+ t

ik
1T ]
}
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Examples Multinomial

Results — Surprising Outcome?

Parameter estimates from all four models are identical

Robust se’s from all four models are identical

Model based se’s exhibit simple relationships

Numerous explanations posited by various colleagues, but . . .

All down to forms of models and matrix algebra
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Education

Influence on Teaching

Extension of general linear model

Analysis of non-normal data

Likelihood based inference

Model selection, comparison, validation

Iterative computational methods

Extending model classes

Combination of theory & application
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Education

Bristol: Generalised Linear Models

Syllabus

Overview of data analysis, motivating examples. Review of linear
models. (1 lecture)

Generalized linear models (GLMs). Exponential family model,
sufficiency issues. Link function, canonical link. (5 lectures)

Inference for generalized linear models, based on asymptotic theory:
confidence intervals, hypothesis testing, goodness of fit. Results
interpretation. Diagnostics. (4 lectures)

Binary responses, logistic regression, residuals and diagnostics. (2
lectures)

Introduction to survival analysis. Distribution theory: standard
parametric models. Proportional odds model and connection to
binomial GLM’s. Inference assuming a parametric form for the
baseline hazard. (4 lectures)
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Education

UCSC: Generalized Linear Models

Introduction to GLMs
Statistical modeling in the context of GLMs. Exponential dispersion family
of distributions (definitions, properties, and examples). Components of a
GLM, examples of GLMs.

Likelihood inference for GLMs
Likelihood estimation (iterative weighted least squares) and inference
(asymptotic interval estimates). Model diagnostics (residuals for GLMs,
model comparison criteria).

Regression models for categorical responses and count data
Models for binary responses (dose-response modeling, probit and logit
models). Poisson regression and log-linear models. Basic ideas for modeling
of contingency tables. Multinomial response models for nominal or ordinal
responses.

Bayesian GLMs
General setting, examples, priors for GLMs. MCMC posterior simulation
methods for GLMs. Bayesian residual analysis and model choice.
Hierarchical GLMs, overdispersed GLMs, generalized linear mixed models.
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