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Abstract

In this paper, we consider finite groups G satisfying identities of
the form

xe1yf1xe2yf2 . . . xeryfr = 1 .

We focus on identities with r small,
∑
i ei =

∑
i fi = 0, and all ei, fi

coprime to the order of G. We show that for r = 2, 3 and 5, G must
be nilpotent. We also classify for r = 4, 6 and 7, the special identities
which can hold in non-nilpotent groups. Finally, we show that for
r < 30, the group G must be solvable.
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1 Introduction

In this paper, we consider two-variable identities for finite groups. Let
e1, e2, . . . , er, f1, f2, . . . , fr denote integers. We study finite groups G in
which the identity

xe1yf1xe2yf2 . . . xfryfr = 1 (1)

holds for all x, y ∈ G. We say such a group G satisfies the identity (1).
Some cases of such identities have been studied, for example in [1, 2].

Also in [3], the authors presented a recursive algorithm for deciding whether
a non-nilpotent (respectively non-solvable) group can satisfy an n-variable
identity w(x1, . . . , xn) = 1.
In this paper we study identities of the form (1) with an emphasis on

relatively small r. We give precise results concerning which identities are
satisfied by non-nilpotent groups for r ≤ 7, and show that, under natural
conditions described in Section 2, no identity with r < 30 can be satisfied
by any non-solvable group.
The rest of this paper is organized as follows. Section 2 covers some

preliminary comments which refine the question. Section 3 states the results
obtained. Sections 4 and 5 contain the proofs for the results regarding
nilpotency and solvability. Finally, Section 6 poses several open problems
which follow on from our work.

2 Preliminaries

Firstly we identify a special case where there is a nilpotent group of class
two satisfying (1). Let

E =
∑

i

ei F =
∑

i

fi K =
∑

i≤j

eifj .

Proposition 2.1. If gcd(E,F,K) 6= 1, then there is a nilpotent two-generator
group of class two satisfying (1). In particular, this is the case when E =
F = 0 and K 6= ±1.

Proof. The group G = 〈a, b | aE = bF = [a, b]K = 1, [a, b] central 〉 satisfies
(1). If p is a prime dividing gcd(E,F,K), then G has as a homomorphic
image the group Q = 〈a, b | ap = bp = [a, b]p = 1, [a, b] central 〉 which is a
class two group of order p3.

We next introduce some constraints on the exponents ei and fi appearing
in (1). Suppose that E is not zero. Then setting y = 1 in (1) yields xE = 1.
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Therefore the exponent exp(G) of G must divide E, and one can add or
subtract multiples of exp(G) from the exponents ei to obtain a new relation
for G with E equal to zero. Therefore we restrict our attention to identities
with exponents ei, fi obeying the equations

E =
∑

i

ei = 0 F =
∑

i

fi = 0 . (2)

Note that when (2) holds, Proposition 2.1 shows that usually there is a
nilpotent group of class two satisfying (1).
Next observe that if for some i, we have gcd(|G|, ei) > 1 or gcd(|G|, fi) >

1, then the identity (1) is somewhat degenerate for G, since one of the terms
in the identity ranges over a restrictive subset of the elements of G. Therefore
we impose the coprimality constraint

gcd(ei, |G|) = gcd(fi, |G|) = 1 for all i (3)

This constraint avoids a host of somewhat uninteresting identities imposed
by global properties of the group. For example, if H is a normal subgroup of
index n in G, then xne1ynf1 . . . xnerynfr = 1 holds in G whenever (1) holds
in H. Moreover, if the possible orders for an element in G are n1, n2, . . . , ns,
then [. . . [[x, yn1 ], yn2 ], . . . , yns ] = 1 holds in G.
The implications of the coprimality condition (3) can be surprising. The

following result shows that the dihedral groups, which are rather close to
being abelian, cannot have short identities with exponents obeying (3).

Lemma 2.2. Let D2n = 〈 a, b | a2 = bn = 1, ba = b−1 〉. If (1) holds in D2n
for exponents satisfying the coprime condition (3), then n divides r.

Proof. Since exp(G) is even, the exponents ei and fi are odd. Put x = a
and y = ab. Then x and y are both involutions, and (1) reduces to br = 1.
Since b has order n, n must divide r.

The analog of condition (3) for infinite groups G is that xei and yfi each
range uniformly over G if x and y do. Equivalently,

{xei |x ∈ G} = G and {xfi |x ∈ G} = G (4)

Proposition 2.3. Let G = D∞ = 〈a, b | a2 = 1, ba = b−1〉. No identity of
the form (1) with exponents satisfying (4) can hold in G.

Proof. For all n, the group G has D2n as a homomorphic image. Therefore,
n divides r for all natural numbers n - a contradiction.
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We now discuss two kinds of minimal groups. If (1) holds in a group G,
then it holds in all subgroups and homomorphic images of G. Therefore,
if (1) holds in a non-nilpotent group, then it holds also in some minimal
non-nilpotent group - that is, a non-nilpotent group all of whose proper sub-
groups and homomorphic images are nilpotent. Such minimal non-nilpotent
groups are well understood. The following elementary result is equivalent
to a result proved in [3].

Theorem 2.4. Let G be a finite minimal non-nilpotent group. Then there
exist two primes p and q and a natural number k such that G is a Frobenius
group of order qkp. Specifically,

1. q has multiplicative order equal to k modulo p,

2. G = PQ is a semidirect product of subgroups P and Q/G of respective
orders p and qk,

3. Q may be regarded as the additive group (GF(qk),⊕),

4. P is the subgroup of order p of the multiplicative group (GF(qk)∗, ∙),

5. x ∈ P acts on u ∈ Q by field multiplication: i.e., x−1ux = ux = x ∙u =
u ∙ x.

Remark 2.5. The exponent of the group G in Theorem 2.4 is pq. Let
x, y ∈ P and u, v ∈ Q. Then uxvy = x∙u⊕y∙v = y∙v⊕x∙u = vyux. We use the
field addition and multiplication in GF(qk) to keep track of the action of the
elements of P on the elements of Q. One has uxuy = x∙u⊕y ∙u = (x⊕y)∙u =
ux⊕y, and (ux)y = (x ∙ u)y = y ∙ (x ∙ u) = (y ∙ x) ∙ u = (x ∙ y) ∙ u = ux∙y. In the
exponent, we will use the usual notation for multiplication and addition in
GF(qk). So we write ux+y for ux⊕y and uxy for ux∙y. Using this notation,
for any integer k, one has

(xu)k = xkux
k−1+xk−2+∙∙∙+1 , (5)

where for negative k, the exponent of u is a sum of decreasing powers of x
down to nearest multiple of p. In particular all elements of PQ not in Q
have order p.

We will also need a corresponding result for minimal non-solvable groups:
those non-solvable groups whose subgroups and homomorphic images are all
solvable. The following characterization is derived in [3] from the celebrated
N -group theorem of Thompson.

4



Theorem 2.6. Let G be a finite minimal non-solvable group. Then G is
one of the following simple groups, where p denotes an odd prime: PSL(2, p)
(for p ≥ 5), PSL(2, 2p), PSL(2, 3p), Sz(2p), and PSL(3, 3).

3 Results

In section 5 we prove

Theorem 3.1. Suppose G is a finite group satisfying the identity (1) with
exponents ei and fi obeying the coprime condition (3). If r < 30, then G is
solvable.

The bound of 30 in this theorem is best possible, since there is an obvious
identity of type (1) with r = 30 for the non-solvable group A5, namely
(xy)30 = 1. However in the proof we shall obtain some much stronger lower
bounds on the possible lengths r of identities for various types of simple
groups, such as PSL(2, q) and Sz(q).
In section 4 we prove classification results regarding nilpotency for r ≤ 7.

Our methods could be applied for any r; however, the number of cases to
consider grows rapidly with r. The answers we obtain for r ≤ 7 suggest
that for larger r there are more direct arguments. Nevertheless, the overall
principle seems to be that satisfying a randomly selected identity almost
always forces the group to be nilpotent.
We now present our nilpotency results.

Theorem 3.2. If r = 2, 3 or 5, and (2) and (3) hold, then any finite group
satisfying (1) is nilpotent.

Theorem 3.3. Suppose r = 4, and that (2) and (3) hold. Then there is a
non-nilpotent group G satisfying (1) if and only if there is an odd prime p
such that

e1 + e2 ≡ e2 + e3 ≡ f1 + f2 ≡ f2 + f3 ≡ 0 (mod p)

and (ei, 2p) = (fi, 2p) = 1 for all i.

Theorem 3.4. Suppose r = 6, and that (2) and (3) hold. Then there is a
non-nilpotent group G satisfying (1) if and only if one of the following four
possibilities holds.
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1. There is a prime p 6= 3 such that

e1 + e2 ≡ e2 + e3 ≡ e3 + e4 ≡ e4 + e5 ≡ 0 (mod p),
f1 + f2 ≡ f2 + f3 ≡ f3 + f4 ≡ f4 + f5 ≡ 0 (mod p),
e1 − e3 ≡ e2 − e4 ≡ e3 − e5 ≡ e4 − e6 (mod 3)
f1 − f3 ≡ f2 − f4 ≡ f3 − f5 ≡ f4 − f6 (mod 3)

and (ei, 3p) = (fi, 3p) = 1 for all i.

2. There is a prime p 6= 2 such that

e1 − e4 ≡ e2 − e5 ≡ e3 − e6 ≡ 0 (mod p),
f1 − f4 ≡ f2 − f5 ≡ f3 − f6 ≡ 0 (mod p)

and (ei, 2p) = (fi, 2p) = 1 for all i.

3. There are distinct primes p, q such that

e1 + e2 ≡ e2 + e3 ≡ e3 + e4 ≡ e4 + e5 ≡ 0 (mod p),
e1 + e4 ≡ e2 + e5 ≡ 0 (mod q),
f1 + f2 + f3 ≡ f2 + f3 + f4 ≡ f3 + f4 + f5 ≡ 0 (mod p),
f1 + f3 + f5 ≡ 0 (mod q)

and (ei, pq) = (fi, pq) = 1 for all i.

4. The previous case holds with each pair ei, fi interchanged.

For specific values of q, the Frobenius groups PQ of order qkp as in the
conclusion of Theorem 2.4 provide minimal examples of the non-nilpotent
G in Theorems 3.3 and 3.4. In Theorem 3.3, q = 2; in parts (1) and (2)
of Theorem 3.4, q = 3, 2, respectively; and in parts (3) and (4) q 6= p is
arbitrary.
In each of the above examples, the identity (1) reduces to simple forms.

For the examples in Theorem 3.3, the identity becomes

[xe1 , yf1 ]2 = 1 .

In Theorem 3.4 part (1), the identity reduces to

(xe1yf1xe2yf2)3 = 1 .

In Theorem 3.4 part (2), the identity reduces to

([x−e1 , y−f1 ][y−f1 , x−e1−e2 ][x−e1−e2 , y−f1 ])2 = 1
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for x, y ∈ PQ\Q, and to

(xe1yx−e2yx−e1−e2y)2 = 1

for x ∈ PQ\Q, y ∈ Q. And in Theorem 3.4 part (3), the identity reduces to

[x−e1 , y−f1 ][y−f1−f2 , x−e1 ][y−f1 , x−e1 ][x−e1 , y−f1−f2 ] = 1

for x, y ∈ PQ\Q.

We now consider identities with r = 7 satisfied by non-nilpotent groups.
First we describe a way to get many such identities for which (2) and (3)
hold. LetG be a non-nilpotent group with G ′′ = 1. (Note that the Frobenius
group G = PQ as in Theorem 2.4 is such a group.) Let e1, e3, and f1, f2 be
any integers. Then for all x, y ∈ G, we have

[yf1 , x−e1 ][y−f2 , x−e3 ][x−e1 , yf1 ][x−e3 , y−f2 ] = 1 .

Conjugating by y−f1 gives the following identity with r = 7:

xe1yf1x−e1yf2xe3y−f2xe1−e3y−f1x−e1yf1xe3yf2x−e3y−f1−f2 = 1 . (6)

Notice that since e1, e3 and e1 − e3 cannot all be odd, we must have G of
odd order if the above identity satisfies the coprime condition (3). Finally,
observe that we may obtain six further identities by cycling the exponents
in (6). For example, the first such identity is

x−e1yf2xe3y−f2xe1−e3y−f1x−e1yf1xe3yf2x−e3y−f1−f2xe1yf1 = 1 .

The following result shows that these are the only identities satisfied by
minimal non-nilpotent groups.

Theorem 3.5. Let r = 7. There is a non-nilpotent group satisfying (1)
(with (2) and (3) holding) if and only if there is a Frobenius group PQ of
odd order pqk as in Theorem 2.4 in which the identity takes the form (6),
up to cycling exponents.

The necessary and sufficient condition in Theorem 3.5 is equivalent to
existence of primes p and q such that up to cycling of exponents

e1 ≡ −e2 ≡ −e5, e3 ≡ e6 ≡ −e7, e4 ≡ e1 − e3 (mod p)

f1 ≡ −f4 ≡ f5, f2 ≡ −f3 ≡ f6, f7 ≡ −f1 − f2 (mod p)

e2 + e4 + e6 ≡ e1 + e5 ≡ e3 + e7 (mod q)

f7 + f2 + f5 ≡ f1 + f4 ≡ f3 + f6 (mod q)
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When combined with the above results, our final theorem shows that 2,3
and 5 are the only values of r which force all groups satisfying (1), (2), (3)
to be nilpotent.

Theorem 3.6. For r = 4 or r ≥ 6, there is an identity (1), and a finite
non-nilpotent group G satisfying (1), such that (2), (3) hold.

4 Proofs of Theorems on Nilpotency

Suppose G is a finite group satisfying the identity (1) and that (2), (3) hold.
We first obtain some polynomial constraints which hold if and only if there
is a non-nilpotent such G, and then we determine when these constraints
are satisfied.

4.1 Polynomial Constraints

Suppose G is minimal non-nilpotent. Then there are primes p, q such that
G = PQ is as in the conclusion of Theorem 2.4.
For x, y ∈ P and u, v ∈ Q the identity (1) gives

(xu)e1(yv)f1(xu)e2(yv)f2 ∙ ∙ ∙ (xu)er(yv)fr = 1. (7)

By (5), we have (xu)m = xmux
m−1+xm−2+∙∙∙+1. Hence (7) becomes

u(x
e1−1+∙∙∙+1)xe2+∙∙∙+eryf1+∙∙∙+fr v(y

f1−1+∙∙∙+1)xe2+∙∙∙+eryf2+∙∙∙+fr×
u(x

e2−1+∙∙∙+1)xe3+∙∙∙+eryf2+∙∙∙+fr v(y
f2−1+∙∙∙+1)xe3+∙∙∙+eryf3+∙∙∙+fr × ∙ ∙ ∙

∙ ∙ ∙ × u(x
er−1+∙∙∙+1)yfr vy

fr−1+∙∙∙+1 = 1

(8)

for all x, y ∈ P , u, v ∈ Q. Now put

Ei = ei+ ei+1+ ∙ ∙ ∙+ er Fi = fi+ fi+1+ ∙ ∙ ∙+ fr (for i = 1, 2, . . . , r)

Note that E1 = F1 = 0. Next set

w = (xe1−1 + ∙ ∙ ∙+ 1)xE2yF1 + (xe2−1 + ∙ ∙ ∙+ 1)xE3yF2

+ ∙ ∙ ∙+ (xer−1 + ∙ ∙ ∙+ 1)xE1yFr

z = (yf1−1 + ∙ ∙ ∙+ 1)xE2yF2 + (yf2−1 + ∙ ∙ ∙+ 1)xE3yF3

+ ∙ ∙ ∙+ (yfr−1 + ∙ ∙ ∙+ 1)xE1yF1

Then, by Remark 2.5, (8) becomes

uwvz = 1 .
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Since this holds for all u and v, one must have w = z = 0 for all x, y ∈ P .
Putting first x = 1, then y = 1, and then x, y 6= 1, in the expressions for
w and z, one obtains the following three polynomial equations over GF(qk)
which must hold for all x and y in the multiplicative subgroup P of order p
in GF(qk)∗:

e1y
F1 + e2y

F2 + ∙ ∙ ∙+ er−1y
Fr−1 + ery

Fr = 0 (9)

frx
E1 + f1x

E2 + ∙ ∙ ∙+ fr−2x
Er−1 + fr−1x

Er = 0 (10)

(xe1 − 1)xE2yF1 + (xe2 − 1)xE3yF2 + ∙ ∙ ∙+ (xer − 1)xE1yFr = 0 (11)

4.2 An Associated Graph

We continue with the assumptions and notation of the previous subsection.
We now introduce a graph which is a useful aid to analyzing the polynomial
constraints (9) and (10). By the coprimeness hypothesis (3), we have

(ei, pq) = (fi, pq) = 1 (for i = 1, 2, . . . , r)

In particular all the coefficients ei and fi in equations (9), (10) are nonzero
modulo q. Since the left hand side reduces to zero, the r exponents

E1, E2, . . . , Er−1, Er (12)

appearing in (10) must partition into subsets of size at least 2, such that
each subset in the partition consists of Ei’s which are pairwise congruent
modulo p. We suppose this partition is maximal in the sense that Ei’s in
different subsets are not congruent modulo p. Since ei 6≡ 0 (mod p) the
exponents Ei and Ei+1 cannot appear in the same subset of the partition.
Analogous remarks apply to the r exponents

F1, F2, . . . , Fr−1, Fr (13)

appearing in (9). Let A (respectively, B) denote the partition on the set
{Ei | i = 1, 2 . . . , r} (respectively, {Fi | i = 1, 2, . . . , r}).
Now let Γr denote a graph on the vertices E1, E2, . . . , Er, F1, F2, . . . , Fr

with edges {Ei, Ej}, {Fi, Fj}, for all i and j such that j 6≡ i, i − 1, i + 1
(mod r). Then the above partitions A and B comprise a set of vertex-
disjoint cliques of Γr such that

1. each clique contains at least two vertices,

2. each vertex in Γr appears in exactly one clique.
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We call a set of vertex-disjoint cliques of Γr satisfying the above two con-
ditions a clique decomposition of Γr. Any clique decomposition of Γr yields
congruences modulo p on the ei’s and fi’s, and hence also, via (9) and (10),
congruences modulo q.

4.3 The Proofs

Proof of Theorem 3.2. For r = 2 and 3, Γr contains no edges; so there are no
cliques of size two or more. Therefore there is no clique decomposition of Γr
for r = 2 or 3. For r = 5, the edges of Γ5 are {E1, E3}, {E1, E4}, {E2, E4},
{E2, E5}, {E3, E5}, {F1, F3}, {F1, F4}, {F2, F4}, {F2, F5}, {F3, F5}. In this
case, any clique decomposition must contain vertex-disjoint cliques of size 2
and 3. Since Γ5 contains no triangle, there are no such clique decompositions
of Γ5. This completes the proof of Theorem 3.2.

Proof of Theorem 3.3. For r = 4. The only clique decomposition of Γ4 has
A = {E1, E3}, {E2, E4}, and B = {F1, F3}, {F2, F4}. Hence we must have

E1 ≡ E3 (mod p), E2 ≡ E4 (mod p),

F1 ≡ F3 (mod p), F2 ≡ F4 (mod p).

So e1 + e2 ≡ e2 + e3 ≡ 0 (mod p) and f1 + f2 ≡ f2 + f3 ≡ 0 (mod p). Then
the third polynomial constraint (11) reduces to the equation

2(xe1 − 1)(yf1 − 1) = 0 .

This implies that q = 2. Hence p is odd, and all ei, fi are odd. Indeed,

e2 ≡ −e1 (mod pq) and f2 ≡ −f1 (mod pq) .

Thus, for elements x, y ∈ PQ, the left hand side of the identity (1) becomes
[x−e1 , y−f1 ]2, which is equal to 1 (since all commutators in PQ lie in Q which
has exponent 2). Hence (1) certainly holds in the group PQ with q = 2. All
parts of Theorem 3.3 are now proved.

Proof of Theorem 3.4. For r = 6, the possible A and B partitions are

A1 : {E1, E3, E5}, {E2, E4, E6}
A2 : {E1, E3}, {E2, E5}, {E4, E6}
A3 : {E1, E4}, {E2, E5}, {E3, E6}
A4 : {E1, E4}, {E2, E6}, {E3, E5}
A5 : {E1, E5}, {E2, E4}, {E3, E6}

B1 : {F1, F3, F5}, {F2, F4, F6}
B2 : {F1, F3}, {F2, F5}, {F4, F6}
B3 : {F1, F4}, {F2, F5}, {F3, F6}
B4 : {F1, F4}, {F2, F6}, {F3, F5}
B5 : {F1, F5}, {F2, F4}, {F3, F6}

Each of the 25 possible choices for the pair {A,B} implies a set of equalities
and non-equalities modulo p among the Ei’s and Fi’s.
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Example 4.1. The choice {A,B} = {A3, B3} implies the constraints

E1 ≡ E4 (mod p) E2 ≡ E5 (mod p) E3 ≡ E6 (mod p)

and

F1 ≡ F4 (mod p) F2 ≡ F5 (mod p) F3 ≡ F6 (mod p)

The constraints (9), (10), (11) become

(e1 + e4)y
F1 + (e2 + e5)y

F2 + (e3 + e6)y
F3 = 0 (mod q)

(f6 + f3)x
E1 + (f1 + f4)x

E2 + (f2 + f5)x
E3 = 0 (mod q)

2(yF1xE1 − yF1xE2 + yF2xE2 − yF2xE3 + yF3xE3 − yF3xE4) = 0 (mod q)

Since E1, E2 and E3 are distinct modulo p and F1, F2 and F3 are distinct
modulo p, the third equation implies that q = 2. The coprimeness constraint
(3) then implies that ei and fi are odd, and then we see that the first two
constraints are satisfied. Thus for q = 2 and any odd prime p, there is a
solution to the constraints (9), (10), (11) with {A,B} = {A3, B3}.

In principle, we may examine each of the other 24 possibilities for {A,B}.
However, it is convenient to employ two symmetries on the set of solutions
for (9), (10), (11). Observe that the identity (1) holds in G if and only if
the identity

af6be1af1be2 ∙ ∙ ∙ af5be6 = 1

holds, and also if and only if the identity

a−f6b−e6a−f5b−e5 ∙ ∙ ∙ a−f1b−e1 = 1

holds. Hence the invertible operations

ρ : e1 → f6 → e6 → f5 → ∙ ∙ ∙ → e2 → f1 → e1
σ : e1 ↔ −f6, e2 ↔ −f5, ∙ ∙ ∙ , e6 ↔ −f1

preserve the collection of 12-tuples (e1, e2, . . . , er, f1, f2, . . . , f6) of exponents
in identities (1) holding in G. ρ moves E1 to F6 − f6, E2 to F1 − f6, E3 to
F2 − f6, . . . , E6 to F5 − f6, and Fi to Ei for i = 1, 2, . . . , 6. Thus ρ maps
congruences of the form Ei ≡ Ej (mod p) (i 6= j) to congruences of the form
Fk ≡ F` (mod p) (k 6= `) and vice versa. Hence ρ induces an action on the
set {A1, A2, . . . , A5, B1, B2, . . . , B5}. Using the cycle permutation notation,
ρ acts as (A1, B1)(A2, B4, A4, B5, A5, B2)(A3, B3). In a similar manner, σ
acts as (A1, B1)(A2, B5)(A3, B3)(A4, B4)(A5, B2). Using the shorthand ij
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for the pair {Ai, Bj}, the orbits of the induced action of 〈ρ, σ〉 on the set
{ij | i, j = 1, 2, . . . , 5} are

{11}, {12, 21, 51, 14, 15, 41}, {13, 31}, {22, 24, 55, 44, 45, 52},

{23, 34, 35, 43, 53, 32}, {25, 54, 42}, {33} (14)

Thus to analyze the initial 25 possibilities it is sufficient to consider the
seven orbit representatives 11, 21, 31, 22, 32, 42, 33. We will show that, of
the original 25 cases, only the cases 11, 31, 13 and 33 yield solutions to the
polynomial constraints (9), (10) and (11).
We first show that we cannot have A = A2 or B = B2. If B = B2, then

(11) becomes

yF1
{
(xe1 − 1)xE2 + (xe3 − 1)xE4

}
+ yF2

{
(xe2 − 1)xE3 + (xe5 − 1)xE6

}

+ yF4
{
(xe4 − 1)xE5 + (xe6 − 1)xE1

}
= 0 .

Since F1, F2 and F4 are distinct modulo p, this is equivalent to the condition

xE1 + xE3 = xE2 + xE4

xE2 + xE5 = xE3 + xE6

xE4 + xE6 = xE5 + xE1

Since this must hold for all x ∈ GF(qk) of order p, the first equation can only
hold if the list of residues E1, E3 modulo p is the same as the list E2, E4,
or q = 2 and E1 ≡ E3 (mod p) and E2 ≡ E4 (mod p). Referring to the
possibilities for A, we see that the first case is not possible. Hence the latter
holds and we have q = 2 and A = A1. Now the coprimeness condition (3)
implies that the exponents ei and fi are odd (since q = 2). But then (10)
holds only if f6+ f2+ f6 ≡ f1+ f3+ f5 ≡ 0 (mod 2) - an impossibility since
fi is odd. Hence B 6= B2.
Examination of (11) similarly reveals that A = A2 implies q = 2 and

B = B1, and hence via (3) and then (9) the contradiction 1 ≡ e1+ e3+ e5 ≡
e2+e4+e6 ≡ 0 (mod 2). Since each of the orbits in (14) except {11}, {13, 31}
and {33}, have an element with A = A2 or B = B2, we have proved that the
only possibilities for the partition pair (A,B) are 11, 13, 31 or 33 as claimed.
We now examine each of these cases separately.

Case A = A1,B = B1 Here (11) reduces to

3(xe2 − 1)xE1 ≡ 0 (mod q)
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Therefore q = 3, and we must have p 6= 3 prime. Now A = A1 implies that
e1+ e2 ≡ e2+ e3 ≡ e3+ e4 ≡ e4+ e5 ≡ e5+ e6 ≡ 0 (mod p) and hence from
(10) that f1+f3+f5 ≡ f2+f4+f6 ≡ 0 (mod 3). The coprimeness condition
(3) in fact implies that f1 ≡ f3 ≡ f5 (mod 3) and f2 ≡ f4 ≡ f6 (mod 3).
Similarly, B = B1 implies the above conditions with ei and fi interchanged.
We now have all the congruences listed in part 1 of Theorem 3.4. Moreover,
we have shown that these congruences imply that (9), (10) and (11) hold.
Hence the identity (1) holds in the Frobenius group PQ.

Case A = A1,B = B3 In this case, the modulo p constraints are

f1 − f4 ≡ f2 − f5 ≡ f3 − f6 ≡ 0 (mod p)

e1 ≡ −e2 ≡ e3 ≡ −e4 ≡ e5 ≡ −e6 (mod p)

and the modulo q constraints (required to cause (9) and (10) to hold) are

e1 + e4 ≡ e2 + e5 ≡ e3 + e6 ≡ 0 (mod q)

f1 + f3 + f5 ≡ f2 + f4 + f6 ≡ 0 (mod q)

Finally, in this case, (11) holds without condition on p or q. This case
corresponds to part 3 of Theorem 3.4.

Case A = A3,B = B1 This case is the same as the above case with the
exponents ei and fi interchanged. This corresponds to the last part of
Theorem 3.4.

Case A = A3,B = B3 This case was covered in Example 4.1. In this case,
we require q = 2 and p to be an odd prime. The modulo p conditions on the
exponents ei (i = 1, 2 . . . , 6) are equivalent to e1 + e2 + e3 ≡ e2 + e3 + e4 ≡
e3 + e4 + e5 ≡ 0 (mod p) which is equivalent to e4 ≡ e1 (mod p), e5 ≡ e2
(mod p), e6 ≡ e3 (mod p). Analogous constraints hold for the exponents fi.
This case corresponds to part 2 of Theorem 3.4.

This concludes the proof of Theorem 3.4.

Proof of Theorem 3.5. The clique decompositions of Γ7 are Pi = (i, i+2, i+
5 : i+1, i+3 : i+4, i+6) and P ′i = (i, i+2, i+5 : i+1, i+4 : i+3, i+6),
where 1 ≤ i ≤ 7. By cycling exponents, we may suppose that the partition
A is P1 or P

′
1. Suppose the former, then (11) reduces to

0 = xE1(yF1 + yF3 + yF6 − yF2 − yF5 + yF7)

+ xE2(yF2 + yF4 − yF1 − yF3) + xE5(yF5 + yF7 − yF4 − yF6)
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Since F2 cannot be congruent to F1 or F3 modulo p, we see from the coef-
ficient of xE2 that yF2 = yF4 , yF1 = yF3 and q = 2. But there is a clique of
size 3 and hence (10) implies that f7 + f2 + f5 ≡ 0 (mod 2) contradicting
the coprime condition (3).
Hence A = P ′1, and (11) implies that B = P

′
4. Consequently, the con-

gruences among the exponents ei, fi are as listed after Theorem 3.5.

Proof of Theorem 3.6. We prove two lemmas which together with Theo-
rem 3.5 imply that Theorem 3.6 holds for r = 6, 7, 8, 9, 10, 11. Then con-
catenating with identities provided by Theorem 3.4 gives Theorem 3.6 for
all r ≥ 12.

Lemma 4.2. Theorem 3.6 holds when r is not prime.

Proof. Suppose that r is not prime, and let s be the smallest prime divisor
of r. Write r = st. Consider the identity

((xy)s−1x−s+1y−s+1)t = 1. (15)

Choose a prime q dividing t. By choice of s, we know that q does not divide
s − 1. Let p be another prime, distinct from q and not dividing s − 1, and
let G = PQ be a Frobenius group of order qkp as in Theorem 2.4. Then for
x, y ∈ G, the element (xy)s−1x−s+1y−s+1 lies in G′ = Q. Hence G satisfies
the identity (15) of length r = st, and this identity satisfies (2) and (3).

Lemma 4.3. Theorem 3.6 holds for r = 11.

Proof. The identity

[xa1 , yb1 ][xa2 , yb2 ][xa3 , yb3 ] = [xa3 , yb3 ][xa1 , yb1 ][xa2 , yb2 ]

holds in any group G with G ′′ = 1. This reduces to

xa3−a1yb1xa1yb1x−a2y−b2xa2yb2x−a3y−b3×

xa3yb3−b2x−a2yb2xa2y−b1x−a1yb1xa1y−b3x−a3yb3 = 1

which is an identity with r = 11.

This completes the proof of Theorem 3.6.
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5 Proof of Solvability Theorem 3.1

Suppose G is a minimal finite, non-solvable group. Then G must be one of
the groups listed in Theorem 2.6. Suppose that the identity (1) holds in G
with ei and fi satisfying the coprime condition (3). The following lemma
gives large lower bounds on r. Indeed, since (xy)e = 1, where e = exp(G),
is an identity with exponents ei = fi = 1 satisfying conditions (2) and (3),
some of the bounds are sharp.
We would like to thank Steve Schibell for his assistance with the com-

putational work in proving part (v) of the next lemma.

Lemma 5.1. Let G be a group which satisfies an identity (1) such that (3)
holds.

(i) If G = PSL(2, q) (q any prime power), then r is divisible by
(q2 − 1)/(4, q2 − 1).

(ii) If G = PSL(2, p) with p ≡ 1 mod 4, then r is divisible by
p(p2 − 1)/4 = exp(G).

(iii) If G = PSL(2, 2p), then r is divisible by 2(22p − 1) = exp(G).

(iv) If G = Sz(2p), then r is divisible by 2(2p − 1)(22p + 1) = 1
2exp(G).

(v) If G = PSL(2, 7) or PSL(3, 3), then r is divisible by 12 and is at
least 36.

Proof. Each of the above groups contains various dihedral groups. So we
may use Lemma 2.2 to obtain constraints on r.
Now PSL(2, q) contains dihedral subgroups D2k for k = (q−1)/(2, q−1)

and k = (q+1)/(2, q− 1), and the least common multiple of these numbers
is (q2 − 1)/(4, q2 − 1). Part (i) follows.
Next, if p ≡ 1 mod 4, then PSL(2, p) also contains a dihedral subgroup

of order 2p, giving part (ii). And PSL(2, 2p) contains a pair of (commuting)
involutions with product of order 2, which gives (iii).
By [4], the Suzuki group Sz(q), q = 2p, contains dihedral subgroups of

order 2k for k = q − 1, k = q +
√
2q + 1, k = q −

√
2q + 1 and k = 2, from

which (iv) follows.
Finally, the groups in part (v) are small enough to handled computation-

ally using MAGMA. As above, r is divisible by 12 for these groups, so the
possibilities for r less than 30 are 12 and 24. Evaluating proposed identities
on elements x and y of small order, we showed that no identities with r = 12
or 24 exist.
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Remark In our MAGMA computations for part (v) of the above lemma,
we found some “near identities” on G = PSL(2, 7). Define functions P and
Q = Q1Q2 as follows:

P (x, y) = (x−1yxy−1x−1y−1xy−1x−1yxy−1x−1y−1xy)3,
Q1(x, y) = x29y67x19y41x65y23x43y65x41y61x19y83x17y17×

x31y31x17y73x55y23x5y71x67y59,

Q2(x, y) = x17y67x55y41x65y59x55y25x53yx79y83x29y17×
x67y59x41y61x31y23x53y71x55y55.

Then P evaluates to the identity on 18480 of the 28224 pairs of elements in
PSL(2, 7). This is about 65% of the space. The partial identity Q(x, y) = 1
holds for 19152 of the 28224 pairs of elements in PSL(2, 7).

Theorem 3.1 follows quickly from the lemma. Consider G as in (i)-(v)
above. If G = PSL(2, q) as in (i)-(iii) then r is divisible by (q2−1)/(4, q2−1)
by Lemma 5.1(i), and so r ≥ 30 provided q ≥ 8. The remaining possible
values for q are 5 and 7, and for these we have r ≥ 30 by Lemma 5.1(ii),(v).
If G = Sz(q), q = 2p ≥ 8, then r is divisible by 2(q − 1)(q2 + 1) by Lemma
5.1(iv), so certainly r ≥ 30. This leavesG = PSL(3, 3) as the only remaining
possibility, and this is covered by Lemma 5.1(v). This completes the proof
of the theorem.

6 Concluding Remarks

This paper shows that short identities (where r = 4, 6) can hold in a non-
nilpotent group G, but that such identities are very special. On the other
hand, short identities (where r < 30) cannot hold in a non-solvable group.
Our results are indicative of a relationship between the behavior of derived
or lower central series of a group G and the least possible value for r ob-
tained by an identity satisfied by that group. Our next goal should be to
refine our understanding of this relationship both when the series in ques-
tion terminates in the trivial group 1, and when it doesn’t. In this section,
we pose some problems whose solution would in part serve this need.
The examples listed after the Theorem 3.4 of non-nilpotent groups sat-

isfying identities with r = 4 or 6 are solvable of derived length two. It seems
likely that r would have to be larger for identities in solvable non-nilpotent
groups with longer derived series.

Problem 1. Amongst the identities (1), satisfying (2) and (3), holding for
some finite, solvable, non-nilpotent group with derived series length k, what
is the least value rmin(k) of r?
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Our results show that rmin(2) = 4.
The identities (1) with r = 2, 3 or 5 seem to offer particular interest,

since Theorem 3.2 shows that (under the assumptions (2), (3)), all finite
groups satisfying these identites are necessarily nilpotent. For r = 2, the
groups are abelian; and for r = 3, Larry Wilson (personal communication)
has shown that the groups have class at most 3. So we pose

Problem 2. For r = 5, is there a finite bound on the nilpotency class of the
finite groups satisfying an identity of the form (1) with exponents obeying
(3)?

Notice that the groups satisfying such an identity include the finite Burn-
side groups of exponent 5 (take ei = fi = 1 for i = 1, 2, . . . , 5).
The next problem is related to Problem 2. We know by Proposition 2.1

that for every choice of exponents ei and fi, there is a nilpotency class two
group satisfying (1) whenever gcd(E,F,K) 6= 1. So given an identity (1), it
would be interesting to find techniques for solving the following problem.

Problem 3. For a given choice of exponents ei and fi in (1) and positive
integer k, is there a finite nilpotent group of class k satisfying (1)?

Finally we pose a problem for non-solvable groups. We know that any
identity (1) (with (2), (3)) which is satisfied by a non-solvable group, must
have r ≥ 30. Moreover, for various classes of non-abelian simple groups, we
showed in Lemma 5.1 that such identities must be much longer. We pose
the following problem for simple groups.

Problem 4. For each finite simple group G, determine the minimum r(G)
of the values of r in identities (1) (with (2), (3) holding) satisfied by G.

For example, Lemma 5.1 shows that for G = PSL(2, p) (p ≡ 1 (mod 4))
or PSL(2, 2p) (p prime), we have r(G) = exp(G).
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