Fixed points of elements of linear groups

Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Aner Shalev Institute of Mathematics Hebrew University Jerusalem 91904 Israel

Abstract

We prove that for any finite group G such that |G/R(G)| > 120(where R(G) is the soluble radical of G), and any finite-dimensional vector space V on which G acts, there is a non-identity element of G with fixed point space of dimension at least $\frac{1}{6} \dim V$. This bound is best possible.

1 Introduction

Let G be a finite group, K a field and V a finite-dimensional KG-module. For $g \in G$, let $C_V(g)$ denote the space of fixed points of g on V. The dimensions of these fixed point spaces have been studied in several papers. Upper bounds in the case where V is irreducible were obtained in [4, 5], culminating in [2, 1.3], where it is shown that dim $C_V(g) \leq \frac{1}{3} \dim V$ for some $g \in G$. In this paper we prove a counterpart concerning lower bounds. In our result the module V is arbitrary (not necessarily irreducible), but we make some necessary assumptions on the structure of G. Denote by R(G)the soluble radical of G – that is, the largest soluble normal subgroup of G.

Theorem 1 Let G be a finite group satisfying |G/R(G)| > 120. Then for any field K and any KG-module V, there exists a non-identity element $g \in G$ such that

$$\dim C_V(g) \ge \frac{1}{6} \dim V.$$

This result is best possible in several ways. First, the assumption that |G/R(G)| > 120 is necessary. Indeed, if G is a Frobenius complement then

The authors acknowledge the support of an EPSRC grant. The second author holds the Miriam and Julius Vinik Chair in Mathematics, and is also supported by a grant from the Israel Science Foundation.

²⁰⁰⁰ Mathematics Subject Classification: 20C20

it has a module V such that $C_V(g) = 0$ for all non-identity elements $g \in G$, and there are Frobenius complements G satisfying |G/R(G)| = 120 (e.g. $SL_2(5).2$). Also, the constant $\frac{1}{6}$ in the theorem is best possible, as will be shown below (see the Remark after Proposition 2.2).

Note that the assumption |G/R(G)| > 120 simply asserts that G is not soluble and |G/R(G)| is not A_5 or S_5 .

Theorem 1 can be viewed in the context of *fixity*. For a KG-module V, define the fixity fix(V) to be the maximal dimension of $C_V(g)$ for $1 \neq g \in G$. Thus Theorem 1 asserts that $fix(V) \geq \frac{1}{6} \dim V$ under the given hypotheses. This concept was introduced in [6], where the structure of finite groups having a module of bounded fixity in characteristic 0 is studied. Further results were obtained in [7, 8]; in [7, 2.1], the conclusion of Theorem 1 is obtained in the case where $K = \mathbb{C}$, and the non-modular case (i.e. the case where char(K) is 0 or coprime to |G|) follows from this. Thus our contribution here is to deal with modular representations.

2 Proof of Theorem 1

For the proof of Theorem 1 we need several preliminary results.

Throughout, let G be a finite group and K a field of characteristic l. Since the theorem has been proved in [7] in the non-modular case, we assume that l is a prime dividing |G|. Also, extending the field does not affect the fixity of a module, so we assume that K is algebraically closed.

Lemma 2.1 We have $fix(V) \ge \frac{1}{l} \dim V$ for any KG-module V.

Proof. Let $g \in G$ be an element of order l. Then $(g-1)^l V = (g^l-1)V = 0$, which implies the conclusion.

Proposition 2.2 Let $G = SL_2(p)$, where $p \ge 7$ is prime, and assume that $l \ge 7$. Then $fix(V) \ge \frac{1}{6} \dim V$ for any KG-module V.

Proof. First suppose that l divides $p^2 - 1$. Let $g \in G$ have order 3. It is shown in [8, 5.5(ii)] that for any irreducible KG-module V we have dim $V \leq 3 \dim C_V(g) + 2r$, where $r \in \{1, 2\}$ and $p \equiv r \mod 3$. Write $f = \dim C_V(g)$ and assume by contradiction that dim V > 6f. As dim $V \leq$ 3f + 2r this implies that 2r > 3f, so dim $V < 4r \leq 8$. It is well known that dim $V \geq (p-1)/2$, so this forces p = 7, 11 or 13 and r = 1, 2 or 1 respectively. The only possibility is p = 11, f = 1 and dim V = 7; but $SL_2(11)$ has no irreducible module of dimension 7. This proves that dim $C_V(g) \geq \frac{1}{6} \dim V$ for irreducible KG-modules V. Now let V be an arbitrary KG-module, and let V_i (i = 1, ..., k) be its composition factors (possibly with repetitions). Since the characteristic l is not 3, V and $\bigoplus_{i=1}^{k} V_i$ are isomorphic as $K\langle g \rangle$ -modules, so

$$\dim C_V(g) = \sum_{i=1}^k \dim C_{V_i}(g) \ge \sum_{i=1}^k \frac{1}{6} \dim V_i = \frac{1}{6} \dim V.$$

Now suppose that l = p. Here we use the structure of the irreducible and indecomposable KG-modules, which can be found for example in [1]. For each $1 \leq i \leq p$ there is an irreducible KG-module V_i of dimension *i*. Here V_2 is the natural $SL_2(p)$ -module, and $V_i = S^{i-1}(V_2)$, the $i - 1^{th}$ symmetric power of V_2 . Note that for *i* odd, the central involution *z* of *G* acts trivially on V_i and so fix $(V_i) = \dim V_i$.

Let $g \in G$ be an element of order 3. Then g acts as the diagonal matrix $\operatorname{diag}(\omega^{i-1}, \omega^{i-3}, \ldots, \omega^{-(i-3)}, \omega^{-(i-1)})$, where ω is a cube root of 1. It follows that

$$\dim C_{V_i}(g) \ge i/4 \quad \text{for } i \ne 2, 5, \tag{1}$$

while dim $C_{V_2}(g) = 0$ and dim $C_{V_5}(g) = 1$.

For $a \in \mathbb{F}_p^*, b \in \mathbb{F}_p$, define

$$g_{a,b} = \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in G,$$

and let N be the set of all such elements $g_{a,b}$. Then $N = N_G(P)$ with $P \in \operatorname{Syl}_p(G)$. For an integer j, let S_j be the 1-dimensional KN-module in which $g_{a,b}$ acts as multiplication by a^j . The S_j are the irreducible KN-modules. Every indecomposable KN-module U is uniserial and has a composition series with successive factors $S_j, S_{j-2}, S_{j-4}, \ldots$ for some j, the length depending only on dim U, which is at most p. Those of dimension pare the projective indecomposable KN-modules.

Now let W be an indecomposable KG-module. Then $W \downarrow N = U \oplus Q$, where U is an indecomposable and Q a projective KN-module (see [1, Theorem 1, p.71]). We have dim W = k + mp, where $k = \dim U$ and dim Q = mp. Let $u \in P$ be an element of order p. Then dim $C_W(u) = 1+m$. Also the multiplicity of any S_j as a composition factor of $W \downarrow N$ is at most 1 + m. It follows that dim $C_W(u)$ is at least the multiplicity of any V_i as a composition factor of W. We shall use this lower bound for i = 2 and 5.

Now consider an arbitrary KG-module V. Let A (resp. B) be the sum of all indecomposable summands of V which have V_2 (resp. V_5) as a composition factor, and let C be the sum of all the other indecomposable summands. Observe that V_2, V_5 cannot both occur in an indecomposable W, since $C_W(z)$ is a direct summand involving just the composition factors V_i of W with i odd. Hence $A \cap B = 0$ and we have $V = A \oplus B \oplus C$. Let $a = \dim A$, $b = \dim B$, $c = \dim C$, and write n_2 (resp. n_5) for the multiplicity of V_2 (resp. V_5) as a composition factor of V.

By (1) we have

$$\dim C_V(g) \ge \frac{1}{4}(a-2n_2) + n_5 + \frac{1}{4}(b-5n_5) + \frac{1}{4}c.$$
 (2)

Clearly dim $C_W(u) \geq \frac{1}{p} \dim W$ for any KG-module W (as $(g-1)^p W = 0$). Combining this with the previous lower bound on dim $C_W(u)$ for W indecomposable we obtain

$$\dim C_V(u) \ge n_2 + n_5 + c/p.$$
(3)

Let f = fix(V), so that $f \ge \dim C_V(g), \dim C_V(u)$. Assume that $f \le \frac{1}{6} \dim V = \frac{1}{6}(a+b+c)$. Then (2) gives

$$a+b+c \le 6n_2+3n_5,$$

while (3) gives

$$a + b + c(1 - 6/p) \ge 6n_2 + 6n_5.$$

Thus $6n_2 + 3n_5 \ge a + b + c \ge a + b + c(1 - 6/p) \ge 6n_2 + 6n_5$. It follows that equality holds throughout, and that $c = n_5 = 0$, hence also b = 0 and $f = \frac{1}{6} \dim V$. This proves the result (and also helps identifying all possibilities where fix $(V) = \frac{1}{6} \dim V$ – see the Remark below).

Remark Pursuing the final remark in the proof, we claim that the equality $\operatorname{fix}(V) = \frac{1}{6} \dim V$ holds in the l = p case if and only if p = 11 and $V = (V_2 \oplus W)^d$, where W is an indecomposable of dimension 10 with composition factors V_2 and V_8 . Indeed, if $f = \frac{1}{6} \dim V$ the above proof shows that V = A, $\dim V = a = 6n_2$ and $\dim C_V(g) = \dim C_V(u) = n_2 = \frac{1}{4}(a - 2n_2)$. The only V_i satisfying $\dim C_V(g) = i/4$ is V_8 , and there is an indecomposable with composition factors V_2 and V_8 if and only if p = 11 (see [1, pp.48-49]). Hence $V = (V_2+W)^d$ as claimed, and for this module we have $\dim C_V(x) \leq \frac{1}{6} \dim V$ for all $x \in G = SL_2(11)$, with equality holding for x = g or u.

Lemma 2.3 Let L be an l-group, and suppose L has an automorphism u of order 3. Let H be the semidirect product $L\langle u \rangle$. Then $fix(V) \geq \frac{1}{3} \dim V$ for any KH-module V.

Proof. Recall that $l \neq 3$, so we can triangularise H and write

$$u = \operatorname{diag}(I_r, \omega I_s, \omega^2 I_t),$$

where $\omega \in K$ is a cube root of unity and dim V = r + s + t. Pick $v \in L$ with $v^u \neq v$, and write

$$v = \begin{pmatrix} A & D & E \\ 0 & B & F \\ 0 & 0 & C \end{pmatrix}$$

where A is $r \times r$, B is $s \times s$ and C is $t \times t$. Then

$$v^{-1}v^{u} = \begin{pmatrix} I_{r} & * & * \\ 0 & I_{s} & * \\ 0 & 0 & I_{t} \end{pmatrix},$$

and so dim $C_V(v^{-1}v^u) \ge \max(r, s, t) \ge \frac{1}{3} \dim V.$

Proof of Theorem 1

We now complete the proof of the theorem. Let G be a finite group such that |G/R(G)| > 120, let K be a field of characteristic l, and let V be a KG-module. As the non-modular case is covered by [7, 2.1], we assume that l is a prime dividing |G|. We also assume that $l \ge 7$ in view of Lemma 2.1.

By [7, 2.3], the assumption |G/R(G)| > 120 implies that G has a subgroup H which is isomorphic to one of the following groups:

- (1) $C_2 \times C_2$
- (2) $C_3 \times C_3$

(3) $SL_2(q)$, where q is a power of a prime p and $q \ge 7$, $p \ge 5$

(4) $P\langle u \rangle$, a semidirect product of a nontrivial *p*-group *P* by a group $\langle u \rangle$ of order 3 acting nontrivially on *P*, where *p* is a prime.

We shall show, for each group H as above, that the fixity of V as a KH-module is at least $\frac{1}{6} \dim V$, and this implies the required conclusion for G.

If |H| is coprime to l, this is obtained in [7, 2.1], so assume that l divides |H|. This rules out cases (1) and (2).

Now consider case (3). If $p \ge 7$ then H has a subgroup $SL_2(p)$ to which we can apply Proposition 2.2. And if p = 5 then $q \ge 25$, so H has a subgroup $C_5 \times C_5$, for which fix $(V) \ge \frac{1}{6} \dim V$ (see [6], Lemma 2.1).

Finally, in case (4) our assumption that l divides |H| implies that p = l, and so the result follows from Lemma 2.3.

This completes the proof.

Variations and applications of our main result will be discussed in a subsequent paper [3].

References

[1] J.L. Alperin, *Local representation theory*, Cambridge University Press, Cambridge 1986.

- [2] R. Guralnick and G. Malle, Products of conjugacy classes and fixed point spaces, preprint, arXiv:1005.3756v2.
- [3] M.W. Liebeck and A. Shalev, The fixity of primitive permutation groups, in preparation.
- [4] P. M. Neumann, A study of some finite permutation groups, DPhil thesis, Oxford, 1966.
- [5] D. Segal and A. Shalev, On groups with bounded conjugacy classes, Quart. J. Math. Oxford 50 (1999), 505–516.
- [6] A. Shalev, On the fixity of linear groups, Proc. London Math. Soc. 68 (1994), 265–293.
- [7] A. Shalev, Finite groups and almost free actions, The mathematical heritage of Sir William Rowan Hamilton (Dublin, 1993), Proc. Roy. Irish Acad. Sect. A 95 (1995), suppl., 67–74.
- [8] A. Shalev, Modular representations and almost free actions, Forum Math. 7 (1995), 559–574.