An Introduction to Numerical Continuation Methods

with Applications

Eusebius Doedel

IIMAS-UNAM

July 28 - August 1, 2014

Persistence of Solutions

- Newton's method for solving a nonlinear equation $[\mathrm{B} 83]^{1}$

$$
\mathbf{G}(\mathbf{u})=\mathbf{0}, \quad \mathbf{G}(\cdot), \mathbf{u} \in \mathbb{R}^{n}
$$

may not converge if the "initial guess" is not close to a solution.

- However, one can put a homotopy parameter in the equation.
- Actually, most equations already have parameters.
- We will discuss persistence of solutions to such equations.

[^0]
The Implicit Function Theorem

Let $\mathbf{G}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ satisfy
(i) $\quad \mathbf{G}\left(\mathbf{u}_{0}, \lambda_{0}\right)=\mathbf{0}, \quad \mathbf{u}_{0} \in \mathbb{R}^{n}, \quad \lambda_{0} \in \mathbb{R}$.
(ii) $\quad \mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{0}, \lambda_{0}\right)$ is nonsingular (i.e., \mathbf{u}_{0} is an isolated solution),
(iii) \mathbf{G} and $\mathbf{G}_{\mathbf{u}}$ are smooth near \mathbf{u}_{0}.

Then there exists a unique, smooth solution family $\mathbf{u}(\lambda)$ such that

- $\mathbf{G}(\mathbf{u}(\lambda), \lambda)=\mathbf{0}, \quad$ for all λ near λ_{0},
- $\mathbf{u}\left(\lambda_{0}\right)=\mathbf{u}_{0}$.

NOTE : The IFT also holds in more general spaces ...

EXAMPLE: A Simple Homotopy .

(Course demo: Simple-Homotopy ${ }^{2}$)
Let

$$
g(u, \lambda)=\left(u^{2}-1\right)\left(u^{2}-4\right)+\lambda u^{2} e^{\frac{1}{10} u} .
$$

When $\lambda=0$ the equation

$$
g(u, 0)=0,
$$

has four solutions, namely,

$$
u= \pm 1, \quad \text { and } \quad u= \pm 2
$$

We have

$$
\left.\left.g_{u}(u, \lambda)\right|_{\lambda=0} \equiv \frac{d}{d u}(u, \lambda)\right|_{\lambda=0}=4 u^{3}-10 u .
$$

${ }^{2}$ http://users.encs.concordia.ca/ doedel/

Since

$$
g_{u}(u, 0)=4 u^{3}-10 u
$$

we have

$$
\begin{array}{ll}
g_{u}(-1,0)=6, & g_{u}(1,0)=-6, \\
g_{u}(-2,0)=-12, & g_{u}(2,0)=12,
\end{array}
$$

which are all nonzero.

Thus each of the four solutions when $\lambda=0$ is isolated.

Hence each of these solutions persists as λ becomes nonzero,
(at least for "small" values of $|\lambda| \cdots$).

Solution families of $g(u, \lambda)=0$. Note the fold .

- Each of the four solutions at $\lambda=0$ is isolated.
- Thus each of these solutions persists as λ becomes nonzero.
- Only two of the four homotopies reach $\lambda=1$.
- The other two homotopies meet at a fold.
- IFT condition (ii) is not satisfied at the fold. (Why not?)

In the equation

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0}, \quad \mathbf{u}, \mathbf{G}(\cdot, \cdot) \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{R}
$$

let

$$
\mathbf{x} \equiv\binom{\mathbf{u}}{\lambda}
$$

Then the equation can be written

$$
\mathbf{G}(\mathbf{x})=\mathbf{0}, \quad \mathbf{G}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}
$$

DEFINITION :

A solution \mathbf{x}_{0} of $\mathbf{G}(\mathbf{x})=\mathbf{0}$ is regular if the matrix

$$
\mathbf{G}_{\mathbf{x}}^{0} \equiv \mathbf{G}_{\mathbf{x}}\left(\mathbf{x}_{0}\right), \quad(\text { with } n \text { rows and } n+1 \text { columns })
$$

has maximal rank, i.e., if

$$
\operatorname{Rank}\left(\mathbf{G}_{\mathbf{x}}^{0}\right)=n
$$

In the parameter formulation,

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0},
$$

we have
$\operatorname{Rank}\left(\mathbf{G}_{\mathbf{x}}^{0}\right)=\operatorname{Rank}\left(\mathbf{G}_{\mathbf{u}}^{0} \mid \mathbf{G}_{\lambda}^{0}\right)=n \Longleftrightarrow\left\{\begin{array}{l}\text { (i) } \mathbf{G}_{\mathbf{u}}^{0} \text { is nonsingular, } \\ \text { or } \\ \text { (ii) }\left\{\begin{array}{l}\operatorname{dim} \mathcal{N}\left(\mathbf{G}_{\mathbf{u}}^{0}\right)=1, \\ \text { and } \\ \mathbf{G}_{\lambda}^{0} \notin \mathcal{R}\left(\mathbf{G}_{\mathbf{u}}^{0}\right) .\end{array}\right.\end{array}\right.$

Here

$$
\mathcal{N}\left(\mathbf{G}_{\mathbf{u}}^{0}\right) \text { denotes the null space of } \mathbf{G}_{\mathbf{u}}^{0},
$$

and

$$
\mathcal{R}\left(\mathbf{G}_{\mathbf{u}}^{0}\right) \text { denotes the range of } \mathbf{G}_{\mathbf{u}}^{0},
$$

i.e., $\mathcal{R}\left(\mathbf{G}_{\mathbf{u}}^{0}\right)$ is the linear space spanned by the n columns of $\mathbf{G}_{\mathbf{u}}^{0}$.

COROLLARY (to the IFT) : Let

$$
\mathbf{x}_{0} \equiv\left(\mathbf{u}_{0}, \lambda_{0}\right)
$$

be a regular solution of

$$
\mathrm{G}(\mathrm{x})=0
$$

Then, near \mathbf{x}_{0}, there exists a unique one-dimensional solution family

$$
\mathbf{x}(s) \quad \text { with } \quad \mathbf{x}(0)=\mathbf{x}_{0} .
$$

PROOF : Since $\operatorname{Rank}\left(\mathbf{G}_{\mathbf{x}}^{0}\right)=\operatorname{Rank}\left(\mathbf{G}_{\mathbf{u}}^{0} \mid \mathbf{G}_{\lambda}^{0}\right)=n$, we have that
(i) either $\mathbf{G}_{\mathbf{u}}^{0}$ is nonsingular and by the IFT we have

$$
\mathbf{u}=\mathbf{u}(\lambda) \quad \text { near } \quad \mathbf{x}_{0}
$$

(ii) or else we can interchange colums in the Jacobian $\mathrm{G}_{\mathrm{x}}^{0}$ to see that the solution can locally be parametrized by one of the components of \mathbf{u}.

Thus a (locally) unique solution family passes through \mathbf{x}_{0}.

- Such a solution family is sometimes called a solution branch .
- Case (i) is where the IFT applies directly .
- Case (ii) is that of a simple fold.
- Thus even near a simple fold there is a unique solution family .
- However, near such a fold, the family cannot be parametrized by λ.

More Examples of IFT Application

- We give examples where the IFT shows that a given solution persists
(at least locally) when a problem parameter is changed.
- We also consider cases where the conditions of the IFT are not satisfied.

EXAMPLE : The $A \rightarrow B \rightarrow C$ Reaction .
(Course demo: Chemical-Reactions/ABC-Reaction/Stationary)

$$
\begin{aligned}
u_{1}^{\prime} & =-u_{1}+D\left(1-u_{1}\right) e^{u_{3}} \\
u_{2}^{\prime} & =-u_{2}+D\left(1-u_{1}\right) e^{u_{3}}-D \sigma u_{2} e^{u_{3}} \\
u_{3}^{\prime} & =-u_{3}-\beta u_{3}+D B\left(1-u_{1}\right) e^{u_{3}}+D B \alpha \sigma u_{2} e^{u_{3}}
\end{aligned}
$$

where
$1-u_{1}$ is the concentration of $A, \quad u_{2}$ is the concentration of B,
u_{3} is the temperature, $\alpha=1, \sigma=0.04, \quad B=8$,
D is the Damkohler number,
$\beta>0$ is the heat transfer coefficient.

NOTE : The zero stationary solution at $D=0$ persists (locally), because the Jacobian is nonsingular there, having eigenvalues $-1,-1$, and $-(1+\beta)$.

Families of stationary solutions of the $A \rightarrow B \rightarrow C$ reaction. (From left to right: $\beta=1.1,1.3,1.5,1.6,1.7,1.8$.

NOTE :

In the preceding bifurcation diagram:

- $\|\mathbf{u}\|=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}}$.
- Solid/dashed curves denote stable/unstable solutions.
- The red squares are Hopf bifurcations.

From the basic theory of ODEs:

- \mathbf{u}_{0} is a stationary solution of $\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t))$ if $\mathbf{f}\left(\mathbf{u}_{0}\right)=\mathbf{0}$.
- \mathbf{u}_{0} is stable if all eigenvalues of $\mathbf{f}_{\mathbf{u}}\left(\mathbf{u}_{0}\right)$ are in the negative half-plane.
- \mathbf{u}_{0} is unstable if one or more eigenvalues are in the positive half-plane.
- At a fold there is zero eigenvalue.
- At a Hopf bifurcation there is a pair of purely imaginary eigenvalues.

EXAMPLE (of IFT application): The Gelfand-Bratu Problem .
(Course demo: Gelfand-Bratu/Original)
The boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)+\lambda e^{u(x)}=0, \quad \forall x \in[0,1], \\
u(0)=u(1)=0,
\end{array}\right.
$$

defines the stationary states of a solid fuel ignition model.

If $\lambda=0$ then $u(x) \equiv 0$ is a solution.

This problem can be thought of as an operator equation $\mathbf{G}(\mathbf{u} ; \lambda)=0$.

We can use (a generalized) IFT to prove that there is a solution family

$$
\mathbf{u}=\mathbf{u}(\lambda), \quad \text { for }|\lambda| \text { small } .
$$

The linearization of $\mathbf{G}(\mathbf{u} ; \lambda)$ acting on \mathbf{v}, i.e., $\mathbf{G}_{\mathbf{u}}(\mathbf{u} ; \lambda) \mathbf{v}$, leads to the homogeneous equation

$$
\begin{aligned}
v^{\prime \prime}(x)+\lambda e^{u(x)} v & =0, \\
v(0)=v(1) & =0
\end{aligned}
$$

which for the solution $u(x) \equiv 0$ at $\lambda=0$ becomes

$$
\begin{aligned}
v^{\prime \prime}(x) & =0 \\
v(0)=v(1) & =0
\end{aligned}
$$

Since this equation only has the zero solution $v(x) \equiv 0$, the IFT applies.

Thus (locally) a unique solution family passes through $u(x) \equiv 0, \lambda=0$.

In Course demo: Gelfand-Bratu/Original the BVP is implemented as a first order system :

$$
\begin{aligned}
& u_{1}^{\prime}(t)=u_{2}(t) \\
& u_{2}^{\prime}(t)=-\lambda e^{u_{1}(t)}
\end{aligned}
$$

with boundary conditions

$$
\begin{aligned}
& u_{1}(0)=0 \\
& u_{1}(1)=0 .
\end{aligned}
$$

A convenient solution measure in the bifurcation diagram is the value of

$$
\int_{0}^{1} u_{1}(x) d x
$$

Bifurcation diagram of the Gelfand-Bratu equation.

Some solutions of the Gelfand-Bratu equation. (The solution at the fold is colored red).

EXAMPLE: A Boundary Value Problem with Bifurcations .
(Course demo: Basic-BVP/Nonlinear-Eigenvalue)

$$
\begin{gathered}
u^{\prime \prime}+\hat{\lambda} u(1-u)=0 \\
u(0)=u(1)=0
\end{gathered}
$$

has $u(x) \equiv 0$ as a solution for all $\hat{\lambda}$.

QUESTION : Are there more solutions ?

Again, this problem corresponds to an operator equation $\mathbf{G}(\mathbf{u} ; \hat{\lambda})=0$.
Its linearization acting on \mathbf{v} leads to the equation $\mathbf{G}_{u}(\mathbf{u} ; \hat{\lambda}) \mathbf{v}=0$, i.e.,

$$
\begin{aligned}
v^{\prime \prime}+\hat{\lambda}(1-2 u) v & =0 \\
v(0)=v(1) & =0
\end{aligned}
$$

In particular, the linearization about the zero solution family $u \equiv 0$ is

$$
\begin{aligned}
v^{\prime \prime}+\hat{\lambda} v & =0, \\
v(0)=v(1) & =0,
\end{aligned}
$$

which for most values of $\hat{\lambda}$ only has the zero solution $v(x) \equiv 0$.

However, when

$$
\hat{\lambda}=\hat{\lambda}_{k} \equiv k^{2} \pi^{2}
$$

then there are nonzero solutions, namely,

$$
v(x)=\sin (k \pi x),
$$

Thus the IFT does not apply at $\hat{\lambda}_{k}=k^{2} \pi^{2}$.
(We will see that these solutions are bifurcation points .)

In the implementation we write the BVP as a first order system .

We also use a scaled version of λ.

The equations are then

$$
\begin{aligned}
& u_{1}^{\prime}=u_{2} \\
& u_{2}^{\prime}=\lambda^{2} \pi^{2} u_{1}\left(1-u_{1}\right),
\end{aligned}
$$

with $\hat{\lambda}=\lambda^{2} \pi^{2}$.

A convenient solution measure in the bifurcation diagram is

$$
\gamma \equiv u_{2}(0)=u_{1}^{\prime}(0)
$$

Solution families to the nonlinear eigenvalue problem.

Some solutions to the nonlinear eigenvalue problem.

Hopf Bifurcation

THEOREM : Suppose that along a stationary solution family $(\mathbf{u}(\lambda), \lambda)$, of

$$
\mathbf{u}^{\prime}=\mathbf{f}(\mathbf{u}, \lambda)
$$

a complex conjugate pair of eigenvalues

$$
\alpha(\lambda) \pm i \beta(\lambda)
$$

of $f_{\mathbf{u}}(\mathbf{u}(\lambda), \lambda)$ crosses the imaginary axis transversally, i.e., for some λ_{0},

$$
\alpha\left(\lambda_{0}\right)=0, \quad \beta\left(\lambda_{0}\right) \neq 0, \quad \text { and } \quad \dot{\alpha}\left(\lambda_{0}\right) \neq 0
$$

Also assume that there are no other eigenvalues on the imaginary axis .
Then there is a Hopf bifurcation, that is, a family of periodic solutions bifurcates from the stationary solution at $\left(\mathbf{u}_{0}, \lambda_{0}\right)$.

NOTE : The assumptions imply that $\mathbf{f}_{\mathbf{u}}^{0}$ is nonsingular, so that the stationary solution family is indeed (locally) a function of λ.

EXAMPLE: The $A \rightarrow B \rightarrow C$ reaction .

(Course demo: Chemical-Reactions/ABC-Reaction/Homoclinic)

A stationary (blue) and a periodic (red) family of the $A \rightarrow B \rightarrow C$ reaction for $\beta=1.2$. The periodic orbits are stable and terminate in a homoclinic orbit .

The periodic family orbit family approaching a homoclinic orbit (black). The red dot is the Hopf point; the blue dot is the saddle point on the homoclinic.

Course demo: Chemical-Reactions/ABC-Reaction/Periodic

Bifurcation diagram for $\beta=1.1,1.3,1.5,1.6,1.7,1.8$.
(For periodic solutions $\|\mathbf{u}\|=\frac{1}{T} \int_{0}^{T} \sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}} d t$, where T is the period.)

EXAMPLE: A Predator-Prey Model .

(Course demo : Predator-Prey/ODE/2D)

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=3 u_{1}\left(1-u_{1}\right)-u_{1} u_{2}-\lambda\left(1-e^{-5 u_{1}}\right) \\
u_{2}^{\prime}=-u_{2}+3 u_{1} u_{2}
\end{array}\right.
$$

Here u_{1} may be thought of as "fish" and u_{2} as "sharks", while the term

$$
\lambda\left(1-e^{-5 u_{1}}\right)
$$

represents "fishing", with "fishing-quota" λ.

When $\lambda=0$ the stationary solutions are

$$
\left.\begin{array}{ll}
3 u_{1}\left(1-u_{1}\right)-u_{1} u_{2} & =0 \\
-u_{2}+3 u_{1} u_{2} & =0
\end{array}\right\} \Rightarrow\left(u_{1}, u_{2}\right)=(0,0),(1,0),\left(\frac{1}{3}, 2\right)
$$

The Jacobian matrix is

$$
\mathbf{G}_{\mathbf{u}}\left(u_{1}, u_{2} ; \lambda\right)=\left(\begin{array}{ll}
3-6 u_{1}-u_{2}-5 \lambda e^{-5 u_{1}} & -u_{1} \\
3 u_{2} & -1+3 u_{1}
\end{array}\right)
$$

so that

$$
\begin{gathered}
\mathbf{G}_{\mathbf{u}}(0,0 ; 0)=\left(\begin{array}{rr}
3 & 0 \\
0 & -1
\end{array}\right) ; \quad \text { real eigenvalues } 3,-1 \quad \text { (unstable) } \\
\mathbf{G}_{\mathbf{u}}(1,0 ; 0)=\left(\begin{array}{rr}
-3 & -1 \\
0 & 2
\end{array}\right) ; \text { real eigenvalues }-3,2 \quad \text { (unstable) } \\
\mathbf{G}_{\mathbf{u}}\left(\frac{1}{3}, 2 ; 0\right)=\left(\begin{array}{rr}
-1 & -\frac{1}{3} \\
6 & 0
\end{array}\right) ; \text { complex eigenvalues }-\frac{1}{2} \pm \frac{1}{2} \sqrt{7} i \quad \text { (stable) }
\end{gathered}
$$

All three Jacobians at $\lambda=0$ are nonsingular .
Thus, by the IFT, all three stationary points persist for (small) $\lambda \neq 0$.

In this problem we can explicitly find all solutions:
Family 1 :

$$
\left(u_{1}, u_{2}\right)=(0,0)
$$

Family 2 :

$$
\begin{gathered}
u_{2}=0, \quad \lambda=\frac{3 u_{1}\left(1-u_{1}\right)}{1-e^{-5 u_{1}}} \\
\left(\text { Note that } \lim _{u_{1} \rightarrow 0} \lambda=\lim _{u_{1} \rightarrow 0} \frac{3\left(1-2 u_{1}\right)}{5 e^{-5 u_{1}}}=\frac{3}{5}\right. \text {) }
\end{gathered}
$$

Family 3 :

$$
u_{1}=\frac{1}{3}, \quad \frac{2}{3}-\frac{1}{3} u_{2}-\lambda\left(1-e^{-5 / 3}\right)=0 \Rightarrow u_{2}=2-3 \lambda\left(1-e^{-5 / 3}\right)
$$

These solution families intersect at two bifurcation points, one of which is

$$
\left(u_{1}, u_{2}, \lambda\right)=(0,0,3 / 5) .
$$

Stationary solution families of the predator-prey model. Solid/dashed curves denote stable/unstable solutions. Note the bifurcations and Hopf bifurcation (red square).

Stationary solution families, showing fish versus quota. Solid/dashed curves denote stable/unstable solutions.

Stability of Family 1 :

$$
\mathbf{G}_{\mathbf{u}}(0,0 ; \lambda)=\left(\begin{array}{cc}
3-5 \lambda & 0 \\
0 & -1
\end{array}\right) ; \quad \text { eigenvalues } 3-5 \lambda,-1 .
$$

Hence the zero solution is :

$$
\text { unstable if } \lambda<3 / 5 \text {, }
$$

and

$$
\text { stable if } \lambda>3 / 5 \text {. }
$$

Stability of Family 2 :

This family has no stable positive solutions.

- Stability of Family 3 :

At $\lambda_{H} \approx 0.67$ the complex eigenvalues cross the imaginary axis:

- This crossing is a Hopf bifurcation,
- Beyond λ_{H} there are stable periodic solutions.
- Their period T increases as λ increases.
- The period becomes infinite at $\lambda=\lambda_{\infty} \approx 0.70$.
- This final orbit is a heteroclinic cycle .

Stationary (blue) and periodic (red) solution families of the predator-prey model. (For the periodic solution family both the maximum and minimum are shown.)

Periodic solutions of the predator-prey model.
The largest orbits are close to a heteroclinic cycle.

The bifurcation diagram shows the solution behavior for (slowly) increasing λ :

- Family 3 is followed until $\lambda_{H} \approx 0.67$.
- Periodic solutions of increasing period until $\lambda=\lambda_{\infty} \approx 0.70$.
- Collapse to trivial solution (Family 1).

Continuation of Solutions

Parameter Continuation

Suppose we have a solution $\left(\mathbf{u}_{0}, \lambda_{0}\right)$ of

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0}
$$

as well as the derivative $\dot{\mathbf{u}}_{0}$.
Here

$$
\dot{\mathbf{u}} \equiv \frac{d \mathbf{u}}{d \lambda}
$$

We want to compute the solution \mathbf{u}_{1} at $\lambda_{1} \equiv \lambda_{0}+\Delta \lambda$.

Graphical interpretation of parameter-continuation.

To solve the equation

$$
\mathbf{G}\left(\mathbf{u}_{1}, \lambda_{1}\right)=\mathbf{0},
$$

for \mathbf{u}_{1} (with $\lambda=\lambda_{1}$ fixed) we use Newton's method

$$
\begin{gathered}
\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}\right) \Delta \mathbf{u}_{1}^{(\nu)}=-\mathbf{G}\left(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}\right), \\
\mathbf{u}_{1}^{(\nu+1)}=\mathbf{u}_{1}^{(\nu)}+\Delta \mathbf{u}_{1}^{(\nu)} .
\end{gathered}
$$

As initial approximation use

$$
\mathbf{u}_{1}^{(0)}=\mathbf{u}_{0}+\Delta \lambda \dot{\mathbf{u}}_{0} .
$$

If

$$
\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}, \lambda_{1}\right) \quad \text { is nonsingular , }
$$

and $\Delta \lambda$ sufficiently small then this iteration will converge [B55].

After convergence, the new derivative $\dot{\mathbf{u}}_{1}$ is computed by solving

$$
\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}, \lambda_{1}\right) \dot{\mathbf{u}}_{1}=-\mathbf{G}_{\lambda}\left(\mathbf{u}_{1}, \lambda_{1}\right)
$$

This equation is obtained by differentiating

$$
\mathbf{G}(\mathbf{u}(\lambda), \lambda)=\mathbf{0}
$$

with respect to λ at $\lambda=\lambda_{1}$.

Repeat the procedure to find $\mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$.

NOTE:

- $\dot{\mathbf{u}}_{1}$ can be computed without another $L U$-factorization of $\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}, \lambda_{1}\right)$.
- Thus the extra work to compute $\dot{\mathbf{u}}_{1}$ is negligible .

EXAMPLE: The Gelfand-Bratu Problem .

$$
u^{\prime \prime}(x)+\lambda e^{u(x)}=0 \quad \text { for } \quad x \in[0,1], \quad u(0)=0, \quad u(1)=0
$$

We know that if $\lambda=0$ then $u(x) \equiv 0$ is an isolated solution.

Discretize by introducing a mesh,

$$
\begin{gathered}
0=x_{0}<x_{1}<\cdots<x_{N}=1 \\
x_{j}-x_{j-1}=h, \quad(1 \leq j \leq N), \quad h=1 / N .
\end{gathered}
$$

The discrete equations are :

$$
\frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}+\lambda e^{u_{j}}=0, \quad j=1, \cdots, N-1
$$

with $u_{0}=u_{N}=0$.

Let

$$
\mathbf{u} \equiv\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
u_{N-1}
\end{array}\right)
$$

Then we can write the discrete equations as

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0},
$$

where

$$
\mathbf{G}: \mathbb{R}^{N-1} \times \mathbb{R} \rightarrow \mathbb{R}^{N-1}
$$

Parameter-continuation :

Suppose we have $\lambda_{0}, \mathbf{u}_{0}$, and $\dot{\mathbf{u}}_{0}$. Set $\lambda_{1}=\lambda_{0}+\Delta \lambda$.

Newton's method :

$$
\begin{gathered}
\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}\right) \Delta \mathbf{u}_{1}^{(\nu)}=-\mathbf{G}\left(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}\right), \\
\mathbf{u}_{1}^{(\nu+1)}=\mathbf{u}_{1}^{(\nu)}+\Delta \mathbf{u}_{1}^{(\nu)},
\end{gathered}
$$

for $\nu=0,1,2, \cdots$, with

$$
\mathbf{u}_{1}^{(0)}=\mathbf{u}_{0}+\Delta \lambda \dot{\mathbf{u}}_{0} .
$$

After convergence compute $\dot{\mathbf{u}}_{1}$ from

$$
\mathbf{G}_{\mathbf{u}}\left(\mathbf{u}_{1}, \lambda_{1}\right) \dot{\mathbf{u}}_{1}=-\mathbf{G}_{\lambda}\left(\mathbf{u}_{1}, \lambda_{1}\right) .
$$

Repeat the procedure to find $\mathbf{u}_{2}, \mathbf{u}_{3}, \cdots$.

Here

$$
\mathbf{G}_{\mathbf{u}}(\mathbf{u}, \lambda)=\left(\begin{array}{ccccc}
-\frac{2}{h^{2}}+\lambda e^{u_{1}} & \frac{1}{h^{2}} & & & \\
& \frac{1}{h^{2}} & -\frac{2}{h^{2}}+\lambda e^{u_{2}} & \frac{1}{h^{2}} & \\
\\
& & \cdot & \cdot & \cdot \\
& & & & \\
& & & & \frac{1}{h^{2}}
\end{array}-\frac{2}{h^{2}}+\lambda e^{u_{N-1}}\right)
$$

Thus we must solve a tridiagonal system for each Newton iteration.

NOTE :

- The solution family has a fold where parameter-continuation fails !
- A better continuation method is "pseudo-arclength continuation".
- There are also better discretizations, namely collocation, as used in AUTO .

Pseudo-Arclength Continuation

This method allows continuation of a solution family past a fold.
It was introduced by H. B. Keller (1925-2008) in 1977.

Suppose we have a solution $\left(\mathbf{u}_{0}, \lambda_{0}\right)$ of

$$
\mathbf{G}(\mathbf{u}, \lambda)=\mathbf{0},
$$

as well as the normalized direction vector ($\dot{\mathbf{u}}_{0}, \dot{\lambda}_{0}$) of the solution family.

Pseudo-arclength continuation consists of solving these equations for $\left(\mathbf{u}_{1}, \lambda_{1}\right)$:

$$
\begin{gathered}
\mathbf{G}\left(\mathbf{u}_{1}, \lambda_{1}\right)=\mathbf{0} \\
\left\langle\mathbf{u}_{1}-\mathbf{u}_{0}, \dot{\mathbf{u}}_{0}\right\rangle+\left(\lambda_{1}-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s=0
\end{gathered}
$$

Graphical interpretation of pseudo-arclength continuation.

Solve the equations

$$
\begin{gathered}
\mathbf{G}\left(\mathbf{u}_{1}, \lambda_{1}\right)=\mathbf{0} \\
\left\langle\mathbf{u}_{1}-\mathbf{u}_{0}, \dot{\mathbf{u}}_{0}\right\rangle+\left(\lambda_{1}-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s=0
\end{gathered}
$$

for $\left(\mathbf{u}_{1}, \lambda_{1}\right)$ by Newton's method:

$$
\left(\begin{array}{cc}
\left(\mathbf{G}_{\mathbf{u}}^{1}\right)^{(\nu)} & \left(\mathbf{G}_{\lambda}^{1}\right)^{(\nu)} \\
\dot{\mathbf{u}}_{0}^{*} & \dot{\lambda}_{0}
\end{array}\right)\binom{\Delta \mathbf{u}_{1}^{(\nu)}}{\Delta \lambda_{1}^{(\nu)}}=-\binom{\mathbf{G}\left(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}^{(\nu)}\right)}{\left\langle\mathbf{u}_{1}^{(\nu)}-\mathbf{u}_{0}, \dot{\mathbf{u}}_{0}\right\rangle+\left(\lambda_{1}^{(\nu)}-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s}
$$

Compute the next direction vector by solving

$$
\left(\begin{array}{cc}
\mathbf{G}_{\mathbf{u}}^{1} & \mathbf{G}_{\lambda}^{1} \\
\dot{\mathbf{u}}_{0}^{*} & \dot{\lambda}_{0}
\end{array}\right)\binom{\dot{\mathbf{u}}_{1}}{\dot{\lambda}_{1}}=\binom{\mathbf{0}}{1}
$$

and normalize it.

- We can compute ($\dot{\mathbf{u}}_{1}, \dot{\lambda}_{1}$) with only one extra backsubstitution.
- The orientation of the family is preserved if Δs is sufficiently small.
- Rescale the direction vector so that indeed $\left\|\dot{\mathbf{u}}_{1}\right\|^{2}+\dot{\lambda}_{1}^{2}=1$.

FACT: The Jacobian is nonsingular at a regular solution.
PROOF : Let $\mathrm{x} \equiv\binom{\mathbf{u}}{\lambda} \in \mathbb{R}^{n+1}$.
Then pseudo-arclength continuation can be simply written as

$$
\mathbf{G}\left(\mathbf{x}_{1}\right)=0,
$$

$$
\left\langle\mathbf{x}_{1}-\mathbf{x}_{0}, \dot{\mathbf{x}}_{0}\right\rangle-\Delta s=0
$$

$$
\left(\left\|\dot{\mathrm{x}}_{0}\right\|=1\right)
$$

The pseudo-arclength equations are

$$
\begin{gathered}
\mathbf{G}\left(\mathbf{x}_{1}\right)=0 \\
\left\langle\mathbf{x}_{1}-\mathbf{x}_{0}, \dot{\mathbf{x}}_{0}\right\rangle-\Delta s=0, \quad\left(\left\|\dot{\mathbf{x}}_{0}\right\|=1\right) .
\end{gathered}
$$

The Jacobian matrix in Newton's method at $\Delta s=0$ is

$$
\binom{\mathrm{G}_{\mathrm{x}}^{0}}{\dot{\mathbf{x}}_{0}^{*}} .
$$

At a regular solution $\mathcal{N}\left(\mathbf{G}_{\mathrm{x}}^{0}\right)=\operatorname{Span}\left\{\dot{\mathbf{x}}_{0}\right\}$.

We must show that $\binom{\mathbf{G}_{x}^{0}}{\dot{\mathbf{x}}_{0}^{*}}$ is nonsingular at a regular solution.

If on the contrary $\binom{\mathbf{G}_{x}^{0}}{\dot{\mathbf{x}}_{0}^{*}}$ is singular then for some vector $\mathbf{z} \neq \mathbf{0}$ we have :

$$
\begin{aligned}
\mathrm{G}_{\mathrm{x}}^{0} \mathrm{z} & =\mathbf{0}, \\
\left\langle\dot{\mathrm{x}}_{0}, \mathrm{z}\right\rangle & =0,
\end{aligned}
$$

Since by assumption $\mathcal{N}\left(\mathbf{G}_{\mathrm{x}}^{0}\right)=\operatorname{Span}\left\{\dot{\mathbf{x}}_{0}\right\}$, we have

$$
\mathbf{z}=c \dot{\mathbf{x}}_{0}, \quad \text { for some constant } c .
$$

But then

$$
0=\left\langle\dot{\mathbf{x}}_{0}, \mathbf{z}\right\rangle=c\left\langle\dot{\mathbf{x}}_{0}, \dot{\mathbf{x}}_{0}\right\rangle=c\left\|\dot{\mathbf{x}}_{0}\right\|^{2}=c,
$$

so that $\mathbf{z}=\mathbf{0}$, which is a contradiction .

EXAMPLE: The Gelfand-Bratu Problem .

Use pseudo-arclength continuation for the discretized Gelfand-Bratu problem.
Then the matrix

$$
\binom{\mathbf{G}_{\mathbf{x}}}{\dot{\mathbf{x}}^{*}}=\left(\begin{array}{cc}
\mathrm{G}_{\mathbf{u}} & \mathrm{G}_{\lambda} \\
\dot{\mathbf{u}}^{*} & \dot{\lambda}
\end{array}\right),
$$

in Newton's method is a bordered tridiagonal matrix :

$$
\left(\begin{array}{lllllllll}
\star & \star & & & & & & & \star \\
\star & \star & \star & & & & & & \star \\
& \star & \star & \star & & & & & \star \\
& & \star & \star & \star & & & & \star \\
& & & \star & \star & \star & & & \star \\
& & & & \star & \star & \star & & \star \\
& & & & & \star & \star & \star & \star \\
& & & & & & \star & \star & \star \\
\star & \star
\end{array}\right) .
$$

which can be decomposed very efficiently .

Following Folds and Hopf Bifurcations

- At a fold the the behavior of a system can change drastically.
- How does the fold location change when a second parameter varies ?
- Thus we want the compute a locus of folds in 2 parameters.
- We also want to compute loci of Hopf bifurcations in 2 parameters.

Following Folds

Treat both parameters λ and μ as unknowns, and compute a solution family

$$
\mathbf{X}(s) \equiv(\mathbf{u}(s), \boldsymbol{\phi}(s), \lambda(s), \mu(s))
$$

to

$$
\mathbf{F}(\mathbf{X}) \equiv\left\{\begin{array}{l}
\mathbf{G}(\mathbf{u}, \lambda, \mu)=\mathbf{0} \\
\mathbf{G}_{\mathbf{u}}(u, \lambda, \mu) \boldsymbol{\phi}=\mathbf{0} \\
\left\langle\boldsymbol{\phi}, \boldsymbol{\phi}_{0}\right\rangle-1=0
\end{array}\right.
$$

and the added continuation equation
$\left\langle\mathbf{u}-\mathbf{u}_{0}, \dot{\mathbf{u}}_{0}\right\rangle+\left\langle\phi-\phi_{0}, \dot{\phi}_{0}\right\rangle+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}+\left(\mu-\mu_{0}\right) \dot{\mu}_{0}-\Delta s=0$.

As before,

$$
\left(\dot{\mathbf{u}}_{0}, \dot{\phi}_{0}, \dot{\lambda}_{0}, \dot{\mu}_{0}\right)
$$

is the direction of the family at the current solution point

$$
\left(\mathbf{u}_{0}, \phi_{0}, \lambda_{0}, \mu_{0}\right) .
$$

EXAMPLE: The $A \rightarrow B \rightarrow C$ Reaction .
(Course demo: Chemical-Reactions/ABC-Reaction/Folds-SS)

The equations are

$$
\begin{aligned}
u_{1}^{\prime} & =-u_{1}+D\left(1-u_{1}\right) e^{u_{3}} \\
u_{2}^{\prime} & =-u_{2}+D\left(1-u_{1}\right) e^{u_{3}}-D \sigma u_{2} e^{u_{3}} \\
u_{3}^{\prime} & =-u_{3}-\beta u_{3}+D B\left(1-u_{1}\right) e^{u_{3}}+D B \alpha \sigma u_{2} e^{u_{3}}
\end{aligned}
$$

where
$1-u_{1}$ is the concentration of $A, \quad u_{2}$ is the concentration of B,
u_{3} is the temperature, $\alpha=1, \sigma=0.04, B=8$,
D is the Damkohler number,
β is the heat transfer coefficient.

A stationary solution family for $\beta=1.20$.
Note the two folds and the Hopf bifurcation.

A locus of folds (with blow-up) for the $A \rightarrow B \rightarrow C$ reaction.
Notice the two cusp singularities along the 2 -parameter locus.
(There is a swallowtail singularity in nearby 3 -parameter space.)

Stationary solution families for $\beta=1.20,1.21, \cdots, 1.42$.
(Open diamonds mark folds, solid red squares mark Hopf points.)

Following Hopf Bifurcations

The extended system is

$$
\mathbf{F}(\mathbf{u}, \boldsymbol{\phi}, \beta, \lambda ; \mu) \equiv\left\{\begin{array}{l}
\mathbf{f}(\mathbf{u}, \lambda, \mu)=\mathbf{0} \\
\mathbf{f}_{\mathbf{u}}(\mathbf{u}, \lambda, \mu) \boldsymbol{\phi}-i \beta \boldsymbol{\phi}=\mathbf{0} \\
\left\langle\boldsymbol{\phi}, \boldsymbol{\phi}_{0}\right\rangle-1=0
\end{array}\right.
$$

where

$$
\mathbf{F} \quad: \quad \mathbb{R}^{n} \times \mathbb{C}^{n} \times \mathbb{R}^{2} \times \mathbb{R} \quad \rightarrow \quad \mathbb{R}^{n} \times \mathbb{C}^{n} \times \mathbb{C}
$$

and to which we want to compute a solution family

$$
(\mathbf{u}, \boldsymbol{\phi}, \beta, \lambda, \mu)
$$

with

$$
\mathbf{u} \in \mathbb{R}^{n}, \quad \phi \in \mathbb{C}^{n}, \quad \beta, \lambda, \mu \in \mathbb{R}
$$

Above ϕ_{0} belongs to a "reference solution"

$$
\left(\mathbf{u}_{0}, \phi_{0}, \beta_{0}, \lambda_{0}, \mu_{0}\right)
$$

which normally is the latest computed solution along a family.

EXAMPLE: The $A \rightarrow B \rightarrow C$ Reaction .
(Course demo: Chemical-Reactions/ABC-Reaction/Hopf)

The stationary family with Hopf bifurcation for $\beta=1.20$.

The locus of Hopf bifurcations for the $A \rightarrow B \rightarrow C$ reaction.

Stationary solution families for $\beta=1.20,1.20,1.25,1.30, \cdots, 2.30$, with Hopf bifurcations (the red squares).

Boundary Value Problems

Consider the first order system of ordinary differential equations

$$
\mathbf{u}^{\prime}(t)-\mathbf{f}(\mathbf{u}(t), \mu, \lambda)=\mathbf{0}, \quad t \in[0,1]
$$

where

$$
\mathbf{u}(\cdot), \mathbf{f}(\cdot) \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{R}, \quad \mu \in \mathbb{R}^{n_{\mu}}
$$

subject to boundary conditions

$$
\mathbf{b}(\mathbf{u}(0), \mathbf{u}(1), \mu, \lambda)=\mathbf{0}, \quad \mathbf{b}(\cdot) \in \mathbb{R}^{n_{b}}
$$

and integral constraints

$$
\int_{0}^{1} \mathbf{q}(\mathbf{u}(s), \mu, \lambda) d s=\mathbf{0}, \quad \mathbf{q}(\cdot) \in \mathbb{R}^{n_{q}}
$$

This boundary value problem (BVP) is of the form

$$
\mathbf{F}(\mathbf{X})=0
$$

where

$$
\mathbf{X}=(\mathbf{u}, \mu, \lambda),
$$

to which we add the continuation equation

$$
\left\langle\mathbf{X}-\mathbf{X}_{0}, \dot{\mathbf{X}}_{0}\right\rangle-\Delta s=0
$$

where \mathbf{X}_{0} represents the latest solution computed along the family.

In detail , the continuation equation is

$$
\begin{aligned}
\int_{0}^{1}\left\langle\mathbf{u}(t)-\mathbf{u}_{0}(t), \dot{\mathbf{u}}_{0}(t)\right\rangle d t+ & \left\langle\mu-\mu_{0}, \dot{\mu}_{0}\right\rangle \\
& +\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s=0
\end{aligned}
$$

- In the context of continuation we solve this BVP for $(\mathbf{u}(\cdot), \lambda, \mu)$.
- In order for problem to be formally well-posed we must have

$$
n_{\mu}=n_{b}+n_{q}-n \geq 0 .
$$

- A simple case is

$$
n_{q}=0, \quad n_{b}=n, \quad \text { for which } \quad n_{\mu}=0 .
$$

Discretization: Orthogonal Collocation

Introduce a mesh

$$
\left\{0=t_{0}<t_{1}<\cdots<t_{N}=1\right\}
$$

where

$$
h_{j} \equiv t_{j}-t_{j-1}, \quad(1 \leq j \leq N)
$$

Define the space of (vector) piecewise polynomials \mathbb{P}_{h}^{m} as

$$
\mathbb{P}_{h}^{m} \equiv\left\{\mathbf{p}_{h} \in C[0,1]:\left.\mathbf{p}_{h}\right|_{\left[t_{j-1}, t_{j}\right]} \in \mathbb{P}^{m}\right\}
$$

where \mathbb{P}^{m} is the space of (vector) polynomials of degree $\leq m$.

The collocation method consists of finding

$$
\mathbf{p}_{h} \in \mathbb{P}_{h}^{m}, \quad \mu \in \mathbb{R}^{n_{\mu}},
$$

such that the following collocation equations are satisfied :

$$
\mathbf{p}_{h}^{\prime}\left(z_{j, i}\right)=\mathbf{f}\left(\mathbf{p}_{h}\left(z_{j, i}\right), \mu, \lambda\right), \quad j=1, \cdots, N, \quad i=1, \cdots, m,
$$

and such that
\mathbf{p}_{h} satisfies the boundary and integral conditions.

The collocation points $z_{j, i}$ in each subinterval

$$
\left[t_{j-1}, t_{j}\right]
$$

are the (scaled) roots of the m th-degree orthogonal polynomial (Gauss points ${ }^{3}$).

[^1]

The mesh $\left\{0=t_{0}<t_{1}<\cdots<t_{N}=1\right\}$, with collocation points and extended-mesh points shown for $m=3$. Also shown are two of the four local Lagrange basis polynomials .

Since each local polynomial is determined by

$$
(m+1) n,
$$

coefficients, the total number of unknowns (considering λ as fixed) is

$$
(m+1) n N+n_{\mu} .
$$

This is matched by the total number of equations :

$$
\begin{array}{ll}
\text { collocation : } & m n N, \\
\text { continuity : } & (N-1) n, \\
\text { constraints : } & n_{b}+n_{q}\left(=n+n_{\mu}\right) .
\end{array}
$$

Assume that the solution $\mathbf{u}(t)$ of the BVP is sufficiently smooth.

Then the order of accuracy of the orthogonal collocation method is m, i.e.,

$$
\left\|\mathbf{p}_{h}-\mathbf{u}\right\|_{\infty}=\mathcal{O}\left(h^{m}\right)
$$

At the main meshpoints t_{j} we have superconvergence :

$$
\max _{j}\left|\mathbf{p}_{h}\left(t_{j}\right)-\mathbf{u}\left(t_{j}\right)\right|=\mathcal{O}\left(h^{2 m}\right)
$$

The scalar variables λ and μ are also superconvergent.

Implementation

For each subinterval $\left[t_{j-1}, t_{j}\right.$] , introduce the Lagrange basis polynomials

$$
\left\{\ell_{j, i}(t)\right\}, \quad j=1, \cdots, N, \quad i=0,1, \cdots, m,
$$

defined by

$$
\ell_{j, i}(t)=\prod_{k=0, k \neq i}^{m} \frac{t-t_{j-\frac{k}{m}}}{t_{j-\frac{i}{m}}^{m}-t_{j-\frac{k}{m}}},
$$

where

$$
t_{j-\frac{i}{m}} \equiv t_{j}-\frac{i}{m} h_{j} .
$$

The local polynomials can then be written

$$
\mathbf{p}_{j}(t)=\sum_{i=0}^{m} \ell_{j, i}(t) \mathbf{u}_{j-\frac{i}{m}} .
$$

With the above choice of basis

$$
\mathbf{u}_{j} \sim \mathbf{u}\left(t_{j}\right) \quad \text { and } \quad \mathbf{u}_{j-\frac{i}{m}} \sim \mathbf{u}\left(t_{j-\frac{i}{m}}\right)
$$

where $\mathbf{u}(t)$ is the solution of the continuous problem.

The collocation equations are

$$
\mathbf{p}_{j}^{\prime}\left(z_{j, i}\right)=\mathbf{f}\left(\mathbf{p}_{j}\left(z_{j, i}\right), \mu, \lambda\right), \quad i=1, \cdots, m, \quad j=1, \cdots, N
$$

The boundary conditions are

$$
b_{i}\left(\mathbf{u}_{0}, \mathbf{u}_{N}, \mu, \lambda\right)=0, \quad i=1, \cdots, n_{b}
$$

The integral constraints can be discretized as

$$
\sum_{j=1}^{N} \sum_{i=0}^{m} \omega_{j, i} q_{k}\left(\mathbf{u}_{j-\frac{i}{m}}, \mu, \lambda\right)=0, \quad k=1, \cdots, n_{q}
$$

where the $\omega_{j, i}$ are the Lagrange quadrature weights .

The continuation equation is
$\int_{0}^{1}\left\langle\mathbf{u}(t)-\mathbf{u}_{0}(t), \dot{\mathbf{u}}_{0}(t)\right\rangle d t+\left\langle\mu-\mu_{0}, \dot{\mu}_{0}\right\rangle+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s=0$,
where

$$
\left(\mathbf{u}_{0}, \mu_{0}, \lambda_{0}\right),
$$

is the previous solution along the solution family, and

$$
\left(\dot{\mathbf{u}}_{0}, \dot{\mu}_{0}, \dot{\lambda}_{0}\right)
$$

is the normalized direction of the family at the previous solution.

The discretized continuation equation is of the form

$$
\begin{aligned}
& \sum_{j=1}^{N} \sum_{i=0}^{m} \omega_{j, i}\left\langle\mathbf{u}_{j-\frac{i}{m}}-\left(\mathbf{u}_{0}\right)_{j-\frac{i}{m}},\left(\dot{\mathbf{u}}_{0}\right)_{j-\frac{i}{m}}\right\rangle \\
& \quad+\left\langle\mu-\mu_{0}, \dot{\mu}_{0}\right\rangle+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}-\Delta s=0
\end{aligned}
$$

Numerical Linear Algebra

The complete discretization consists of

$$
\operatorname{mnN}+n_{b}+n_{q}+1,
$$

nonlinear equations, with unknowns

$$
\left\{\mathbf{u}_{j-\frac{i}{m}}\right\} \in \mathbb{R}^{m n N+n}, \quad \mu \in \mathbb{R}^{n_{\mu}}, \quad \lambda \in \mathbb{R}
$$

These equations are solved by a Newton-Chord iteration.

We illustrate the numerical linear algebra for the case

$$
\begin{gathered}
n=2 \text { ODEs } \quad, \quad N=4 \text { mesh intervals } \quad, \quad m=3 \text { collocation points } \\
\quad n_{b}=2 \text { boundary conditions }, n_{q}=1 \text { integral constraint }
\end{gathered}
$$

and the continuation equation.

- The operations are also done on the right hand side, which is not shown.
- Entries marked "o" have been eliminated by Gauss elimination.
- Entries marked "." denote fill-in due to pivoting .
- Most of the operations can be done in parallel.

The system after condensation of parameters, which can be done in parallel.

Stage 1 of the nested dissection to solve the decoupled - subsystem.

Stage 2 of the nested dissection to solve the decoupled - subsystem.

The preceding matrix showing the final decoupled • subsystem.

The approximate Floquet multipliers are the eigenvalues of $\mathbf{M} \equiv-\mathbf{B}^{-1} \mathbf{A}$.

Accuracy Test

The Table shows the location of the fold in the Gelfand-Bratu problem, for 4 Gauss collocation points per mesh interval, and N mesh intervals .

N	Fold location
2	3.5137897550
4	3.5138308601
8	3.5138307211
16	3.5138307191
32	3.5138307191

Periodic Solutions

- Periodic solutions can be computed efficiently using a BVP approach.
- This method also determines the period very accurately.
- Moreover, the technique can compute unstable periodic orbits.

Consider

$$
\mathbf{u}^{\prime}(t)=\mathbf{f}(\mathbf{u}(t), \lambda), \quad \mathbf{u}(\cdot), \mathbf{f}(\cdot) \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{R}
$$

Fix the interval of periodicity by the transformation

$$
t \rightarrow \frac{t}{T} .
$$

Then the equation becomes

$$
\mathbf{u}^{\prime}(t)=T \mathbf{f}(\mathbf{u}(t), \lambda), \quad \mathbf{u}(\cdot), \mathbf{f}(\cdot) \in \mathbb{R}^{n}, \quad T, \lambda \in \mathbb{R}
$$

and we seek solutions of period 1 , i.e.,

$$
\mathbf{u}(0)=\mathbf{u}(1)
$$

Note that the period T is one of the unknowns.

The above equations do not uniquely specify \mathbf{u} and T :

Assume that we have computed

$$
\left(\mathbf{u}_{k-1}(\cdot), T_{k-1}, \lambda_{k-1}\right)
$$

and we want to compute the next solution

$$
\left(\mathbf{u}_{k}(\cdot), T_{k}, \lambda_{k}\right)
$$

Then $\mathbf{u}_{k}(t)$ can be translated freely in time :
If $\mathbf{u}_{k}(t)$ is a periodic solution, then so is $\mathbf{u}_{k}(t+\sigma)$, for any σ.

Thus, a phase condition is needed.

An example is the Poincaré phase condition

$$
\left\langle\mathbf{u}_{k}(0)-\mathbf{u}_{k-1}(0), \mathbf{u}_{k-1}^{\prime}(0)\right\rangle=0
$$

(But we will derive a numerically more suitable integral phase condition.)

Graphical interpretation of the Poincaré phase condition.

An Integral Phase Condition

If $\tilde{\mathbf{u}}_{k}(t)$ is a solution then so is

$$
\tilde{\mathbf{u}}_{k}(t+\sigma),
$$

for any σ.

We want the solution that minimizes

$$
D(\sigma) \equiv \int_{0}^{1}\left\|\tilde{\mathbf{u}}_{k}(t+\sigma)-\mathbf{u}_{k-1}(t)\right\|_{2}^{2} d t
$$

The optimal solution

$$
\tilde{\mathbf{u}}_{k}(t+\hat{\sigma}),
$$

must satisfy the necessary condition

$$
D^{\prime}(\hat{\sigma})=0
$$

Differentiation gives the necessary condition

$$
\int_{0}^{1}\left\langle\tilde{\mathbf{u}}_{k}(t+\hat{\sigma})-\mathbf{u}_{k-1}(t), \tilde{\mathbf{u}}_{k}^{\prime}(t+\hat{\sigma}\rangle d t=0 .\right.
$$

Writing

$$
\mathbf{u}_{k}(t) \equiv \tilde{\mathbf{u}}_{k}(t+\hat{\sigma})
$$

gives

$$
\int_{0}^{1}\left\langle\mathbf{u}_{k}(t)-\mathbf{u}_{k-1}(t), \mathbf{u}_{k}^{\prime}(t)\right\rangle d t=0
$$

Integration by parts, using periodicity, gives

$$
\int_{0}^{1}\left\langle\mathbf{u}_{k}(t), \mathbf{u}_{k-1}^{\prime}(t)\right\rangle d t=0
$$

This is the integral phase condition.

Continuation of Periodic Solutions

- Pseudo-arclength continuation is used to follow periodic solutions .
- It allows computation past folds along a family of periodic solutions.
- It also allows calculation of a "vertical family " of periodic solutions.

For periodic solutions the continuation equation is

$$
\int_{0}^{1}\left\langle\mathbf{u}_{k}(t)-\mathbf{u}_{k-1}(t), \dot{\mathbf{u}}_{k-1}(t)\right\rangle d t+\left(T_{k}-T_{k-1}\right) \dot{T}_{k-1}+\left(\lambda_{k}-\lambda_{k-1}\right) \dot{\lambda}_{k-1}=\Delta s
$$

SUMMARY :

We have the following equations for periodic solutions :

$$
\begin{gathered}
\mathbf{u}_{k}^{\prime}(t)=T \mathbf{f}\left(\mathbf{u}_{k}(t), \lambda_{k}\right) \\
\mathbf{u}_{k}(0)=\mathbf{u}_{k}(1) \\
\int_{0}^{1}\left\langle\mathbf{u}_{k}(t), \mathbf{u}_{k-1}^{\prime}(t)\right\rangle d t=0
\end{gathered}
$$

with continuation equation
$\int_{0}^{1}\left\langle\mathbf{u}_{k}(t)-\mathbf{u}_{k-1}(t), \dot{\mathbf{u}}_{k-1}(t)\right\rangle d t+\left(T_{k}-T_{k-1}\right) \dot{T}_{k-1}+\left(\lambda_{k}-\lambda_{k-1}\right) \dot{\lambda}_{k-1}=\Delta s$,
where

$$
\mathbf{u}(\cdot), \mathbf{f}(\cdot) \in \mathbb{R}^{n}, \quad \lambda, T \in \mathbb{R}
$$

Stability of Periodic Solutions

In our continuation context, a periodic solution of period T satisfies

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)=T \mathbf{f}(\mathbf{u}(t)), \quad \text { for } t \in[0,1] \\
\mathbf{u}(0)=\mathbf{u}(1)
\end{gathered}
$$

(for given value of the continuation parameter λ).

A small perturbation in the initial condition

$$
\mathbf{u}(0)+\epsilon \mathbf{v}(0), \quad \epsilon \text { small }
$$

leads to the linearized equation

$$
\mathbf{v}^{\prime}(t)=T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t)) \mathbf{v}(t), \quad \text { for } t \in[0,1]
$$

which induces a linear map

$$
\mathbf{v}(0) \rightarrow \mathbf{v}(1),
$$

represented by

$$
\mathbf{v}(1)=\mathbf{M} \mathbf{v}(0)
$$

$$
\mathbf{v}(1)=\mathbf{M} \mathbf{v}(0)
$$

The eigenvalues of \mathbf{M} are the Floquet multipliers that determine stability.

M always has a multiplier $\mu=1$, since differentiating

$$
\mathbf{u}^{\prime}(t)=T \mathbf{f}(\mathbf{u}(t))
$$

gives

$$
\mathbf{v}^{\prime}(t)=T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t)) \mathbf{v}(t)
$$

where

$$
\mathbf{v}(t)=\mathbf{u}^{\prime}(t), \quad \text { with } \quad \mathbf{v}(0)=\mathbf{v}(1)
$$

$$
\mathbf{v}(1)=\mathbf{M} \mathbf{v}(0)
$$

- If \mathbf{M} has a Floquet multiplier μ with $|\mu|>1$ then $\mathbf{u}(t)$ is unstable.
- If all multipliers (other than $\mu=1$) satisfy $|\mu|<1$ then $\mathbf{u}(t)$ is stable.
- At folds and branch points there are two multipliers $\mu=1$.
- At a period-doubling bifurcation there is a real multiplier $\mu=-1$.
- At a torus bifurcation there is a complex pair on the unit circle.

EXAMPLE: The Lorenz Equations .

(Course demo: Lorenz)

These equations were introduced in 1963 by Edward Lorenz (1917-2008)
as a simple model of atmospheric convection :

$$
\begin{aligned}
x^{\prime} & =\sigma(y-x), \\
y^{\prime} & =\rho x-y-x z, \\
z^{\prime} & =x y-\beta z,
\end{aligned}
$$

where (often)

$$
\sigma=10 \quad, \quad \beta=8 / 3 \quad, \quad \rho=28 .
$$

Course demo: Lorenz/Basic

Bifurcation diagram of the Lorenz equations for $\sigma=10$ and $\beta=8 / 3$.

Course demo: Lorenz/Basic

Unstable periodic orbits of the Lorenz equations.

In the Lorenz Equations :

- The zero stationary solution is unstable for $\rho>1$.
- Two nonzero stationary families bifurcate at $\rho=1$.
- The nonzero stationary solutions are unstable for $\rho>\rho_{H}$.
- At $\rho_{H} \approx 24.7$ there are Hopf bifurcations .
- Unstable periodic solution families emanate from the Hopf bifurcations.
- These families end in homoclinic orbits (infinite period) at $\rho \approx 13.9$.
- At $\rho=28$ (and a range of other values) there is the Lorenz attractor .

EXAMPLE : The $A \rightarrow B \rightarrow C$ Reaction .
(Course demo: Chemical-Reactions/ABC-Reaction/Periodic)

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.55$.
Note the coexistence of stable solutions, for example, solutions 1 and 2.

Top left: $\beta=1.55$, right: $\beta=1.56$, Bottom left: $\beta=1.57$, right: $\beta=1.58$.
(QUESTION : Is something missing somewhere ?)

Following Folds for Periodic Solutions

Recall that periodic orbits families can be computed using the equations

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)-T \mathbf{f}(\mathbf{u}(t), \lambda)=\mathbf{0} \\
\mathbf{u}(0)-\mathbf{u}(1)=\mathbf{0} \\
\int_{0}^{1}\left\langle\mathbf{u}(t), \quad \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0
\end{gathered}
$$

where \mathbf{u}_{0} is a reference orbit, typically the latest computed orbit.

The above boundary value problem is of the form

$$
\mathbf{F}(\mathbf{X}, \lambda)=\mathbf{0}
$$

where

$$
\mathbf{X}=(\mathbf{u}, T)
$$

At a fold with respect to λ we have

$$
\begin{gathered}
\mathbf{F}_{\mathbf{X}}(\mathbf{X}, \lambda) \boldsymbol{\Phi}=\mathbf{0}, \\
\langle\boldsymbol{\Phi}, \boldsymbol{\Phi}\rangle=1
\end{gathered}
$$

where

$$
\mathbf{X}=(\mathbf{u}, T) \quad, \quad \mathbf{\Phi}=(\mathbf{v}, S)
$$

i.e., the linearized equations about \mathbf{X} have a nonzero solution $\boldsymbol{\Phi}$.

In detail : $\mathbf{v}^{\prime}(t)-T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t), \lambda) \mathbf{v}-S \mathbf{f}(\mathbf{u}(t), \lambda)=\mathbf{0}$,

$$
\begin{gathered}
\mathbf{v}(0)-\mathbf{v}(1)=\mathbf{0} \\
\int_{0}^{1}\left\langle\mathbf{v}(t), \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0, \\
\int_{0}^{1}\langle\mathbf{v}(t), \mathbf{v}(t)\rangle d t+S^{2}=1
\end{gathered}
$$

The complete extended system to follow a fold is

$$
\begin{gathered}
\mathbf{F}(\mathbf{X}, \lambda, \mu)=\mathbf{0} \\
\mathbf{F}_{\mathbf{X}}(\mathbf{X}, \lambda, \mu) \boldsymbol{\Phi}=\mathbf{0} \\
\langle\boldsymbol{\Phi}, \boldsymbol{\Phi}\rangle-1=0
\end{gathered}
$$

with two free problem parameters λ and μ.

To the above we add the continuation equation
$\left\langle\mathbf{X}-\mathbf{X}_{0}, \dot{\mathbf{X}}_{0}\right\rangle+\left\langle\boldsymbol{\Phi}-\boldsymbol{\Phi}_{0}, \dot{\boldsymbol{\Phi}}_{0}\right\rangle+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}+\left(\mu-\mu_{0}\right) \dot{\mu}_{0}-\Delta s=0$.

In detail :

$$
\mathbf{u}^{\prime}(t)-T \mathbf{f}(\mathbf{u}(t), \lambda, \mu)=\mathbf{0}
$$

$$
\mathbf{u}(0)-\mathbf{u}(1)=\mathbf{0}
$$

$$
\int_{0}^{1}\left\langle\mathbf{u}(t), \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0
$$

$$
\mathbf{v}^{\prime}(t)-T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t), \lambda, \mu) \mathbf{v}-S \mathbf{f}(\mathbf{u}(t), \lambda, \mu)=\mathbf{0}
$$

$$
\mathbf{v}(0)-\mathbf{v}(1)=\mathbf{0}
$$

$$
\int_{0}^{1}\left\langle\mathbf{v}(t), \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0
$$

with normalization

$$
\int_{0}^{1}\langle\mathbf{v}(t), \mathbf{v}(t)\rangle d t+S^{2}-1=0
$$

and continuation equation

$$
\begin{aligned}
& \int_{0}^{1}\left\langle\mathbf{u}(t)-\mathbf{u}_{0}(t), \dot{\mathbf{u}}_{0}(t)\right\rangle d t+\int_{0}^{1}\left\langle\mathbf{v}(t)-\mathbf{v}_{0}(t), \dot{\mathbf{v}}_{0}(t)\right\rangle d t+ \\
& \quad+\left(T_{0}-T\right) \dot{T}_{0}+\left(S_{0}-S\right) \dot{S}_{0}+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}+\left(\mu-\mu_{0}\right) \dot{\mu}_{0}-\Delta s=0
\end{aligned}
$$

EXAMPLE : The $A \rightarrow B \rightarrow C$ Reaction .
(Course demo: Chemical-Reactions/ABC-Reaction/Folds-PS)

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction . (with blow-up) for $\beta=1.55$. Note the three folds, labeled 1, 2, 3 .

Loci of folds along periodic solution families for the $A \rightarrow B \rightarrow C$ reaction.

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.56$.

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.57$.

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.58$.

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.61$.

Stationary and periodic solution families of the $A \rightarrow B \rightarrow C$ reaction: $\beta=1.62$.

Periodic solutions along the isola for $\beta=1.58$. (Stable solutions are blue, unstable solutions are red.)

Following Period-doubling Bifurcations

Let $(\mathbf{u}(t), T)$ be a periodic solution, i.e., a solution of

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)-T \mathbf{f}(\mathbf{u}(t), \lambda)=\mathbf{0} \\
\mathbf{u}(0)-\mathbf{u}(1)=\mathbf{0} \\
\int_{0}^{1}\left\langle\mathbf{u}(t), \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0
\end{gathered}
$$

where \mathbf{u}_{0} is a reference orbit.

A necessary condition for a period-doubling bifurcation is that the following linearized system have a nonzero solution $\mathbf{v}(t)$:

$$
\begin{gathered}
\mathbf{v}^{\prime}(t)-T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t), \lambda) \mathbf{v}(t)=\mathbf{0} \\
\mathbf{v}(\mathbf{0})+\mathbf{v}(\mathbf{1})=\mathbf{0} \\
\int_{0}^{1}\langle\mathbf{v}(t), \mathbf{v}(t)\rangle d t=1
\end{gathered}
$$

The complete extended system to follow a period-doubling bifurcation is

$$
\begin{gathered}
\mathbf{u}^{\prime}(t)-T \mathbf{f}(\mathbf{u}(t), \lambda, \mu)=\mathbf{0}, \\
\mathbf{u}(0)-\mathbf{u}(1)=\mathbf{0}, \\
\int_{0}^{1}\left\langle\mathbf{u}(t), \mathbf{u}_{0}^{\prime}(t)\right\rangle d t=0, \\
\mathbf{v}^{\prime}(t)-T \mathbf{f}_{\mathbf{u}}(\mathbf{u}(t), \lambda) \mathbf{v}(t)=\mathbf{0}, \\
\mathbf{v}(\mathbf{0})+\mathbf{v}(\mathbf{1})=0, \\
\int_{0}^{1}\langle\mathbf{v}(t), \mathbf{v}(t)\rangle d t-1=0,
\end{gathered}
$$

and continuation equation

$$
\begin{aligned}
\int_{0}^{1}\langle\mathbf{u}(t)- & \left.\mathbf{u}_{0}(t), \dot{\mathbf{u}}_{0}(t)\right\rangle d t+\int_{0}^{1}\left\langle\mathbf{v}(t)-\mathbf{v}_{0}(t), \dot{\mathbf{v}}_{0}(t)\right\rangle d t+ \\
& +\left(T_{0}-T\right) \dot{T}_{0}+\left(\lambda-\lambda_{0}\right) \dot{\lambda}_{0}+\left(\mu-\mu_{0}\right) \dot{\mu}_{0}-\Delta s=0 .
\end{aligned}
$$

EXAMPLE : Period-Doubling Bifurcations in the Lorenz Equations .
 (Course demo: Lorenz/Period-Doubling)

- The Lorenz equations also have period-doubling bifurcations.
- In fact, there is a period-doubling cascade for large ρ.
- We start from numerical data.
- (Such data may be from simulation, i.e., initial value integration .)
- We also want to compute loci of period-doubling bifurcations .
(Course demo: Lorenz/Period-Doubling)

Left panel: Solution families of the Lorenz equations.
The open diamonds denote period-doubling bifurcations .
Right panel: Solution 1 was found by initial value integration.
(Course demo: Lorenz/Period-Doubling)

Left panel: A primary period-doubled solution.
Right panel: A secondary period-doubled solution.
(Course demo: Lorenz/Period-Doubling)

Loci of period-doubling bifurcations for the Lorenz equations (with blow-up).
Black: primary, Red: secondary, Blue: tertiary period-doublings.

Periodic Solutions of Conservative Systems

EXAMPLE: A Model Conservative System .
(Course demo: Vertical-HB)

$$
\begin{aligned}
& u_{1}^{\prime}=-u_{2} \\
& u_{2}^{\prime}=u_{1}\left(1-u_{1}\right) .
\end{aligned}
$$

PROBLEM :

- This system has a family of periodic solutions, but no parameter !
- The system has a constant of motion, namely the Hamiltonian

$$
H\left(u_{1}, u_{2}\right)=-\frac{1}{2} u_{1}^{2}-\frac{1}{2} u_{2}^{2}+\frac{1}{3} u_{1}^{3}
$$

REMEDY :

Introduce an unfolding term with unfolding parameter λ :

$$
\begin{aligned}
& u_{1}^{\prime}=\lambda u_{1}-u_{2}, \\
& u_{2}^{\prime}=u_{1}\left(1-u_{1}\right) .
\end{aligned}
$$

Then there is a vertical Hopf bifurcation from the trivial solution at $\lambda=0$.

Bifurcation diagram of the vertical Hopf bifurcation problem. (Course demo: Vertical-HB)

NOTE :

- The family of periodic solutions is vertical.
- The parameter λ is solved for in each continuation step.
- Upon solving, λ is found to be zero, up to numerical precision.
- One can use standard BVP continuation and bifurcation algorithms.

A phase plot of some periodic solutions.

EXAMPLE: The Circular Restricted 3-Body Problem (CR3BP). (Course demo: Restricted-3Body/Earth-Moon/Orbits)

$$
\begin{aligned}
x^{\prime \prime} & =2 y^{\prime}+x-\frac{(1-\mu)(x+\mu)}{r_{1}^{3}}-\frac{\mu(x-1+\mu)}{r_{2}^{3}} \\
y^{\prime \prime} & =-2 x^{\prime}+y-\frac{(1-\mu) y}{r_{1}^{3}}-\frac{\mu y}{r_{2}^{3}} \\
z^{\prime \prime} & =-\frac{(1-\mu) z}{r_{1}^{3}}-\frac{\mu z}{r_{2}^{3}}
\end{aligned}
$$

where

$$
r_{1}=\sqrt{(x+\mu)^{2}+y^{2}+z^{2}}, \quad r_{2}=\sqrt{(x-1+\mu)^{2}+y^{2}+z^{2}} .
$$

and
(x, y, z) denotes the position of the zero-mass body.

NOTE: For the Earth-Moon system $\mu \approx 0.01215$.

The CR3BP has one integral of motion, namely, the "Jacobi-constant" :

$$
J=\frac{x^{\prime 2}+y^{\prime 2}+z^{\prime 2}}{2}-U(x, y, z)-\mu \frac{1-\mu}{2},
$$

where

$$
U=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{r_{1}}+\frac{\mu}{r_{2}},
$$

and

$$
r_{1}=\sqrt{(x+\mu)^{2}+y^{2}+z^{2}}, \quad r_{2}=\sqrt{(x-1+\mu)^{2}+y^{2}+z^{2}} .
$$

Boundary value formulation :

$$
\begin{aligned}
x^{\prime} & =T v_{x} \\
y^{\prime} & =T v_{y} \\
z^{\prime} & =T v_{z} \\
v_{x}^{\prime} & =T\left[2 v_{y}+x-(1-\mu)(x+\mu) r_{1}^{-3}-\mu(x-1+\mu) r_{2}^{-3}+\lambda v_{x}\right] \\
v_{y}^{\prime} & =T\left[-2 v_{x}+y-(1-\mu) y r_{1}^{-3}-\mu y r_{2}^{-3}+\lambda v_{y}\right] \\
v_{z}^{\prime} & =T\left[-(1-\mu) z r_{1}^{-3}-\mu z r_{2}^{-3}+\lambda v_{z}\right]
\end{aligned}
$$

with periodicity boundary conditions

$$
\begin{gathered}
x(1)=x(0) \quad, \quad y(1)=y(0) \quad, \quad z(1)=z(0), \\
v_{x}(1)=v_{x}(0) \quad, \quad v_{y}(1)=v_{y}(0) \quad, \quad v_{z}(1)=v_{z}(0),
\end{gathered}
$$

+ phase constraint + continuation equation .
Here T is the period of the orbit.

NOTE :

- One can use BVP continuation and bifurcation algorithms.
- The unfolding term $\lambda \nabla v$ regularizes the continuation.
- λ will be zero, once solved for.
- Other unfolding terms are possible.

Schematic bifurcation diagram of periodic solution families of the Earth-Moon system.

The planar Lyapunov family L1.

The Halo family H1.

The Halo family H1.

The Vertical family V1.

The Axial family A1.

Stable and Unstable Manifolds

EXAMPLE: Phase-plane orbits: Fixed length .

These can be computed by orbit continuation .

Model equations are

$$
\begin{aligned}
& x^{\prime}=\epsilon x-y^{3}, \\
& y^{\prime}=y+x^{3} .
\end{aligned}
$$

where $\epsilon>0$ is small.

- There is only one equilibrium , namely, $(x, y)=(0,0)$.
- This equilibrium has eigenvalues ϵ and 1 ; it is a source.

For the computations :

- The time variable t is scaled to $[0,1]$.
- The actual integration time T is then an explicit parameter :

$$
\begin{aligned}
& x^{\prime}=T\left(\epsilon x-y^{3}\right), \\
& y^{\prime}=T\left(y+x^{3}\right) .
\end{aligned}
$$

These constraints are used:

- To put the initial point on a small circle around the origin :

$$
\begin{aligned}
x(0)-r \cos (2 \pi \theta) & =0 \\
y(0)-r \sin (2 \pi \theta) & =0
\end{aligned}
$$

- To keep track of the end points :

$$
\begin{aligned}
& x(1)-x_{1}=0 \\
& y(1)-y_{1}=0 .
\end{aligned}
$$

- To keep track of the length of the orbits

$$
\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t-L=0
$$

The computations are done in 3 stages :

- In the first run an orbit is grown by continuation :
- \quad The free parameters are T, L, x_{1}, y_{1}.
- The starting point is on the small circle of radius r.
- The starting point is in the strongly unstable direction.
- The value of ϵ is 0.5 in the first run.
- In the second run the value of ϵ is decreased to 0.01 :
- The free parameters are $\epsilon, T, x_{1}, y_{1}$.
- In the third run the initial point is free to move around the circle :
- The free parameters are θ, T, x_{1}, y_{1}.
(Course demo: Basic-Manifolds/2D-ODE/Fixed-Length)

Unstable Manifolds in the Plane: Orbits of Fixed Length . (The right-hand panel is a blow-up, and also shows fewer orbits.)

EXAMPLE: Phase-plane orbits: Variable length .

These can also be computed by orbit continuation .

Model equations are

$$
\begin{aligned}
& x^{\prime}=\epsilon x-y^{2} \\
& y^{\prime}=y+x^{2} .
\end{aligned}
$$

- The origin $(x, y)=(0,0)$ is an equilibrium .
- The origin has eigenvalues ϵ and 1 ; it is a source.
- Thus the origin has a 2-dimensional unstable manifold .
- We compute this stable manifold using continuation.
- (The equations are 2D; so we actually compute a phase portrait.)

For the computations :

- The time variable t is scaled to $[0,1]$.
- The actual integration time T is then an explicit parameter :

$$
\begin{aligned}
x^{\prime} & =T\left(\epsilon x-y^{2}\right), \\
y^{\prime} & =T\left(y+x^{2}\right) .
\end{aligned}
$$

NOTE :

- There is also a nonzero equilibrium

$$
(x, y)=\left(\epsilon^{\frac{1}{3}},-\epsilon^{\frac{2}{3}}\right)
$$

- It is a saddle (1 positive, 1 negative eigenvalue).

These constraints are used:

- To put the initial point on a small circle at the origin :

$$
\begin{aligned}
x(0)-r \cos (2 \pi \theta) & =0 \\
y(0)-r \sin (2 \pi \theta) & =0
\end{aligned}
$$

- To keep track of the end points :

$$
\begin{aligned}
x(1)-x_{1} & =0 \\
y(1)-y_{1} & =0
\end{aligned}
$$

- To keep track of the length of the orbits we add an integral constraint :

$$
\int_{0}^{1} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t-L=0
$$

- To allow the length L to contract:

$$
\left(T_{\max }-T\right)\left(L_{\max }-L\right)-c=0
$$

Again the computations are done in 3 stages :

- In the first run an orbit is grown by continuation :
- The free parameters are T, L, x_{1}, y_{1}, c.
- The starting point is on a small circle of radius r.
- The starting point is in the strongly unstable direction .
- In this first run $\epsilon=0.5$.
- In the second run the value of ϵ is decreased to 0.05 :
- The free parameters are $\epsilon, T, L, x_{1}, y_{1}$.
- In the third run the initial point is free to move around the circle :
- The free parameters are $\theta, T, L, x_{1}, y_{1}$.
(Course demo: Basic-Manifolds/2D-ODE/Variable-Length)

Unstable Manifolds in the Plane: Orbits of Variable Length .
(Course demo: Basic-Manifolds/2D-ODE/Variable-Length)

Unstable Manifolds in the Plane: Orbits of Variable Length (Blow-up).

EXAMPLE: A 2D unstable manifold in \mathbb{R}^{3}.
This can also be computed by orbit continuation. The model equations are

$$
\begin{aligned}
x^{\prime} & =\epsilon x-z^{3}, \\
y^{\prime} & =y-x^{3}, \\
z^{\prime}= & -z+x^{2}+y^{2} .
\end{aligned}
$$

- We take $\epsilon=0.05$.
- The origin is a saddle with eigenvalues $\epsilon, 1$, and -1 .
- Thus the origin has a 2-dimensional unstable manifold .
- The initial point moves around a circle in the 2D unstable eigenspace .
- The equations are 3D; so we will compute a 2 D manifold in \mathbb{R}^{3}.
- There is also a nonzero saddle, so we use retraction .
- The set-up is similar to the 2D phase-portrait example.
(Course demo: Basic-Manifolds/3D-ODE/Variable-Length)

Unstable Manifolds in \mathbb{R}^{3} : Orbits of Variable Length .

148

EXAMPLE: Another 2D unstable manifold in \mathbb{R}^{3}.
The model equations are

$$
\begin{aligned}
x^{\prime} & =\epsilon x-y^{3}+z^{3} \\
y^{\prime} & =y+x^{3}+z^{3} \\
z^{\prime} & =-z-x^{2}+y^{2}
\end{aligned}
$$

- We take $\epsilon=0.05$.
- The origin is a saddle with eigenvalues $\epsilon, 1$, and -1 .
- Thus the origin has a 2-dimensional unstable manifold.
- The initial point moves around a circle in the 2D unstable eigenspace .
- The equations are 3 D ; so we will compute a 2 D manifold in \mathbb{R}^{3}.
- No retraction is needed, so we choose to compute orbits of fixed length .
- The set-up is similar to the 2D phase-portrait example.

(Course demo: Basic-Manifolds/3D-ODE/Fixed-Length)

Unstable Manifolds in \mathbb{R}^{3} : Orbits of Fixed Length .

The Lorenz Manifold

- For $\rho>1$ the origin is a saddle point.
- The Jacobian has two negative and one positive eigenvalue.
- The two negative eigenvalues give rise to a 2D stable manifold .
- This manifold is known as as the Lorenz Manifold .
- The set-up is as for the earlier 3D model, using fixed length .

Course demo: Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold (with blow-up). Orbits have fixed length $L=60$.
152

Course demo : Lorenz/Manifolds/Origin/Fixed-Length

Part of the Lorenz Manifold. Orbits have fixed length $L=200$.

Heteroclinic Connections.

- The Lorenz Manifold helps understand the Lorenz attractor .
- Many orbits in the manifold depend sensitively on initial conditions .
- During the manifold computation one can locate heteroclinic orbits .
- These are also in the 2 D unstable manifold of the nonzero equilibria.
- The heteroclinic orbits have a combinatorial structure ${ }^{4}$.
- One can also continue heteroclinic orbits as ρ varies.
${ }^{4}$ Nonlinearity 19, 2006, 2947-2972.

Course demo: Lorenz/Heteroclinics

Four heteroclinic orbits with very close initial conditions

One can also determine the intersection of the Lorenz manifold with a sphere .
The set-up is as follows :

$$
\begin{aligned}
x^{\prime} & =T \sigma(y-x) \\
y^{\prime} & =T(\rho x-y-x z), \\
z^{\prime} & =T(x y-\beta z),
\end{aligned}
$$

which is of the form

$$
\mathbf{u}^{\prime}(t)=T \mathbf{f}(\mathbf{u}(t)), \quad \text { for } \quad 0 \leq t \leq 1
$$

where

- $\quad T$ is the actual integration time, which is negative!

To this we add boundary and integral constraints .

The complete set-up consists of the ODE

$$
\mathbf{u}^{\prime}(t)=T \mathbf{f}(\mathbf{u}(t)), \quad \text { for } \quad 0 \leq t \leq 1
$$

subject to the following constraints:

$$
\mathbf{u}(0)-\epsilon\left(\cos (\theta) \mathbf{v}_{1}-\sin (\theta) \mathbf{v}_{2}\right)=0 \quad \mathbf{u}(0) \text { is on a small circle }
$$

$$
\mathbf{u}(1)-\mathbf{u}_{1}=0
$$

$$
\left\|\mathbf{u}_{1}\right\|-R=0 \quad \text { distance of } \mathbf{u}_{1} \text { to the origin }
$$

$$
\left\langle\mathbf{u}_{1} /\left\|\mathbf{u}_{1}\right\|, \mathbf{f}\left(\mathbf{u}_{1}\right) /\left\|\mathbf{f}\left(\mathbf{u}_{1}\right)\right\|\right\rangle-\tau=0 \quad \text { to locate tangencies, where } \tau=0
$$

$$
T \int_{0}^{1}\|\mathbf{f}(\mathbf{u})\| d s-L=0
$$

$$
\left(T-T_{n}\right)\left(L-L_{n}\right)-c=0
$$

allows retraction into the sphere

The continuation system has the form

$$
\mathbf{F}\left(\mathbf{X}_{k}\right)=0, \quad \text { where } \quad \mathbf{X}=(\mathbf{u}(\cdot), \Lambda)
$$

with continuation equation

$$
\left\langle\mathbf{X}_{k}-\mathbf{X}_{k-1}, \dot{\mathbf{X}}_{k-1}\right\rangle-\Delta s=0, \quad\left(\left\|\dot{\mathbf{X}}_{k-1}\right\|=1\right)
$$

The computations are done in 2 stages :

- In the first run an orbit is grown by continuation :
- The starting point is on the small circle of radius ϵ.
- The starting point is in the strongly stable direction .
- \quad The free parameters are $\Lambda=\left(T, L, c, \tau, R, \mathbf{u}_{1}\right)$.
- In the second run the orbit sweeps the stable manifold.
- The initial point is free to move around the circle :
- \quad The free parameters are $\Lambda=\left(T, L, \theta, \tau, R, \mathbf{u}_{1}\right)$.

Course demo: Lorenz/Manifolds/Origin/Sphere

Intersection of the Lorenz Manifold with a sphere

NOTE :

- We do not just change the initial point (i.e., θ) and integrate !
- Every continuation step requires solving a boundary value problem .
- The continuation stepsize Δs controls the change in \mathbf{X}.
- X can only change a little in any continuation step.
- This way the entire manifold (up to a given length L) is computed.
- The retraction constraint allows the orbits to retract into the sphere.
- This is necessary when heteroclinic connections are encountered.

EXAMPLE: Unstable Manifolds of a Periodic Orbit.
(Course demo : Lorenz/Manifolds/Orbits/Rho24.3)

Left: Bifurcation diagram of the Lorenz equations.
Right: Labeled solutions.

Both sides of the unstable manifold of periodic orbit 3 at $\rho=24.3$.

EXAMPLE : Unstable Manifolds in the CR3BP .
(Course demo: Restricted-3Body/Earth-Moon/Manifolds/H1)

- "Small" Halo orbits have one real Floquet multiplier outside the unit circle.
- Such Halo orbits are unstable .
- They have a 2 D unstable manifold.
- The unstable manifold can be computed by continuation .
- First compute a starting orbit in the manifold.
- Then continue the orbit keeping, for example, $x(1)$ fixed .

Part of the unstable manifold of three Earth-Moon L1-Halo orbits.

- The initial orbit can be taken to be much longer ...
- Continuation with $x(1)$ fixed can lead to a Halo-to-torus connection!

- The Halo-to-torus connection can be continued as a solution to

$$
\begin{gathered}
\mathbf{F}\left(\mathbf{X}_{k}\right)=\mathbf{0} \\
<\mathbf{X}_{k}-\mathbf{X}_{k-1}, \dot{\mathbf{X}}_{k-1}>-\Delta s=0
\end{gathered}
$$

where

$$
\mathbf{X}=(\text { Halo orbit }, \text { Floquet function }, \text { connecting orbit }) .
$$

In detail, the continuation system is

$$
\begin{gathered}
\frac{d u}{d \tau}-T_{u} f(u(\tau), \mu, l)=0 \\
u(1)-u(0)=0 \\
\int_{0}^{1}\left\langle u(\tau), \dot{u}_{0}(\tau)\right\rangle d \tau=0 \\
\frac{d v}{d \tau}-T_{u} D_{u} f(u(\tau), \mu, l) v(\tau)+\lambda_{u} v(\tau)=0 \\
v(1)-s v(0)=0 \quad(s= \pm 1) \\
\langle v(0), v(0)\rangle-1=0 \\
\frac{d w}{d \tau}-T_{w} f(w(\tau), \mu, 0)=0 \\
w(0)-(u(0)+\varepsilon v(0))=0 \\
w(1)_{x}-x_{\Sigma}=0
\end{gathered}
$$

The system has
18 ODEs , 20 boundary conditions , 1 integral constraint.
We need

$$
20+1+1-18=4 \text { free parameters }
$$

Parameters :

- An orbit in the unstable manifold: $T_{w}, l, T_{u}, x_{\Sigma}$
- Compute the unstable manifold: $\quad T_{w}, l, T_{u}, \varepsilon$
- Follow a connecting orbit: $\quad \lambda_{u}, l, T_{u}, \varepsilon$

$\cdot 0$	\bullet
$\bullet 0$	$\cdot 6$

The Solar Sail Equations

The equations in Course demo: Solar-Sail/Equations/equations.f90:

$$
\begin{gathered}
x^{\prime \prime}=2 y^{\prime}+x-\frac{(1-\mu)(x+\mu)}{d_{S}^{3}}-\frac{\mu(x-1+\mu)}{d_{P}^{3}}+\frac{\beta(1-\mu) D^{2} N_{x}}{d_{S}^{2}} \\
y^{\prime \prime}=-2 x^{\prime}+y-\frac{(1-\mu) y}{d_{S}^{3}}-\frac{\mu y}{d_{P}^{3}}+\frac{\beta(1-\mu) D^{2} N_{y}}{d_{S}^{2}} \\
z^{\prime \prime}=-\frac{(1-\mu) z}{d_{S}^{3}}-\frac{\mu z}{d_{P}^{3}}+\frac{\beta(1-\mu) D^{2} N_{z}}{d_{S}^{2}}
\end{gathered}
$$

where

$$
\begin{gathered}
d_{S}=\sqrt{(x+\mu)^{2}+y^{2}+z^{2}}, d_{P}=\sqrt{(x-1+\mu)^{2}+y^{2}+z^{2}}, r=\sqrt{(x+\mu)^{2}+y^{2}} \\
N_{x}=[\cos (\alpha)(x+\mu)-\sin (\alpha) y]\left[\cos (\delta)-\frac{\sin (\delta) z}{r}\right] / d_{S} \\
N_{y}=[\cos (\alpha) y+\sin (\alpha)(x+\mu)]\left[\cos (\delta)-\frac{\sin (\delta) z}{r}\right] / d_{S} \\
N_{z}=[\cos (\delta) z+\sin (\delta) r] / d_{S}, D=\frac{x+\mu}{d_{S}} N_{x}+\frac{y}{d_{S}} N_{y}+\frac{z}{d_{S}} N_{z}
\end{gathered}
$$

Course demo: Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for $\beta=0, \alpha=0, \delta=0$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Points

Sun-Jupiter libration points, for $\beta=0.02, \alpha=0.02, \delta=0$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with $\delta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, for various β, with $\alpha=0$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Loci

Sun-Jupiter libration points, with $\delta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, for various α, with $\beta=0.15$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Homoclinic

Sun-Jupiter: detection of a homoclinic orbit at $\beta=0.050698$, with $\alpha=0, \delta=0$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Manifolds

Sun-Jupiter: unstable manifold orbits for $\delta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, with $\beta=0.05, \alpha=0.1$.

Course demo: Solar-Sail/Sun-Jupiter/Libration/Manifolds

The libration points

The end points

Course demo: Solar-Sail/Sun-Jupiter/Libration/Manifolds

Some connecting orbits for $\alpha=0.07$ and varying β and δ.

Course demo: Solar-Sail/Sun-Jupiter/Orbits

V_{1}-orbits with $\beta=0.15, T=6.27141, \delta \in[0,0.6415]$.

[^0]: ${ }^{1}$ See Page 83^{+}of the Background Notes on Elementary Numerical Methods.

[^1]: ${ }^{3}$ See Pages 261, 287 of the Background Notes on Elementary Numerical Methods.

