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Work on epileptic seizures joint with:
C. Meisel, MPI-PKS & CGC Hospital, Dresden

Work on networks / complex systems joint with:
G. Zschaler, MPI-PKS, Dresden and T. Gross, U. Bristol



Critical Transitions and Tipping Points in Applications
Geoscience (climate change, climate subsystems, earthquakes)
» Lenton et al., Tipping elements in the Earth’s climate system. PNAS, 2008
» Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010
» Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a
review. 1JBC, 2011
Ecology (extinction, desertification, ecosystem control)
» Drake and Griffen. Early warning signals of extinction in deteriorating
environments. Nature, 2010
» Dakos et al. Slowing down in spatially patterned systems at the brink of
collapse. Am. Nat., 2011
» Veraart et al., Recovery rates reflect distances to a tipping point in a living
system. Nature, 2012



Critical Transitions and Tipping Points in Applications
Geoscience (climate change, climate subsystems, earthquakes)
» Lenton et al., Tipping elements in the Earth’s climate system. PNAS, 2008
» Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010

» Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a
review. 1JBC, 2011

Ecology (extinction, desertification, ecosystem control)

» Drake and Griffen. Early warning signals of extinction in deteriorating
environments. Nature, 2010

» Dakos et al. Slowing down in spatially patterned systems at the brink of
collapse. Am. Nat., 2011

» Veraart et al., Recovery rates reflect distances to a tipping point in a living
system. Nature, 2012

Human Physiology (epileptic seizures, asthma attacks)
» Mormann et al., Seizure prediction: the long and winding road. Brain, 2007

» Venegas et al., Self-organized patchiness in asthma as a prelude to catastrophic
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Finance (market crashes, risk analysis, asset price bubbles)
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» Chertkov et al., Voltage collapse and ODE approach to power flows. 2011
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Goals and Perspectives...

v

Prediction of the “critical transition” or “tipping point”.

v

Dynamical mechanisms and mathematical models.

v

Time series analysis and data assimilation.

v

Data availability, experiments, theory of extreme events, ...



Typical Characteristics of Critical Transitions

Following Scheffer et al, Nature, 2009:
1
2

(1) A qualitative change from regular dynamics occurs.

(2)

(3) The system crosses a special threshold near a transition.
(4)

(5)

Rapid change in comparison to the regular dynamics.

4
5

The new state is far away from its previous state.

There is often small noise i.e. observed data has a major
deterministic component with “random fluctuations”.
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(3) The system crosses a special threshold near a transition.
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Rapid change in comparison to the regular dynamics.
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The new state is far away from its previous state.

There is often small noise i.e. observed data has a major
deterministic component with “random fluctuations”.

Towards a mathematical theory:
» Define critical transitions / tipping points using (1)-(5).
> Verify the known early-warning signs are indeed generic.

» Go beyond basic elements and extend the theory.



|dentify Generic Models: Fast-Slow Systems

Fast variables x € R™, slow variables y € R”, time scale separation 0 < € < 1.
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|dentify Generic Models: Fast-Slow Systems

Fast variables x € R™, slow variables y € R”, time scale separation 0 < € < 1.

D =x = f(xy) = e = x = f(xy)
dy _ o — &y .
=Y eg(x,y) P y g(x,y)
} e=0 } e=0
{ X' = f(x,y) { 0 = f(x,y)
y’ =20 vy = g&xy)
fast subsystem slow subsystem

v

C := {f = 0} = critical manifold = equil. of fast subsystem.

» C is normally hyperbolic if D,f has no zero-real-part eigenvalues.

v

Fenichel’s Theorem: Normal hyperbolicity = “nice” perturbation.

v

Loss of Normal hyperbolicity = complicated dynamics.



Example - A fold bifurcation of the fast subsystem with slow drift:

ex = —y— x>,
y = 1
y candidate g ()
C
17 o X 2 =Y 0 X 12

Figure: (a) Singular limit e = 0. (b) e = 0.02.



A Natural Definition...

Let p = (xp, yp) € Co where Cq is not normally hyperbolic then p
is a critical transition if 3 a candidate v and times t;_1, t; s.t.

(C1) ~o(tj—1,t}) C So C Co, So normally hyperbolic attracting,
(C2) p =0(t)) is a transition point between subsystems,
(C3) and 7o(tj—1, tj) is oriented from vo(tj—1) to Yo(t;).
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A Natural Definition...

Let p = (xp, yp) € Co where Cq is not normally hyperbolic then p
is a critical transition if 3 a candidate v and times t;_1, t; s.t.
(C1) ~o(tj—1,t}) C So C Co, So normally hyperbolic attracting,
(C2) p =0(t)) is a transition point between subsystems,

(C3) and 7o(tj—1, tj) is oriented from vo(tj—1) to Yo(t;).

» Covers (1)-(4) of the phenomenological features:

regular dynamics <>  slow subsystem flow

rapid change <  slow-to-fast transition
special threshold <  fast subsystem bifurcation (= genericity)
new state is far away <> measure on candidate orbit

Extension to stochastic systems immediate v, — e -
~0,0 Yields B-tipping, 70, N-tipping (— Ashwin); . s perturbations.
Natural: time series correspond to sample paths . ;.

vV V. v Y

Extensions to PDEs, DDEs, etc. are possible via paths.



What about Noise? - Stochastic Fast-Slow Systems...

Consider the fast-slow stochastic differential equation

dxs = %f(xsd/s)ds"_%F(X&ys)dwﬁ (1)
dys = g(xs,ys)ds.

where W is standard Brownian motion.



What about Noise? - Stochastic Fast-Slow Systems...

Consider the fast-slow stochastic differential equation

dxs = %f(xsd/s)ds"_%F(Xﬁys)dwﬁ (1)
dys = g(xs,ys)ds.

where W is standard Brownian motion.
Suppose (1) has a deterministic attracting slow manifold

Ce={(x,y) € R™": x = h(y) = ho(y) + O(e)}

Theorem (Berglund and Gentz)
Sample paths of (1) stay near C. with high probability.



Towards Early-Warning Signs

(W1) The system recovers slowly from perturbations: slowing down.
(W2) The autocorrelation increases before a transition.

(W3) The variance increases near a critical transition.

(w4) .

(W1)-(W3) are related.



Towards Early-Warning Signs

(W1) The system recovers slowly from perturbations: slowing down.
(W2) The autocorrelation increases before a transition.

(W3) The variance increases near a critical transition.

(w4) .

(W1)-(W3) are related.

Example: Deterministic fold bifurcation X' = —y — x2, y/ = ¢.

» Slow subsystem e = 0, attracting critical manifold x = /—y.
» Fast subsystem ¢ = 0, parameterized family x' = —y — x2.

» Variational equation:

X'=-2/=yX = X(t)=X(0)e 2V

Slowing down as y — 07



Useful Stochasticity - Variance near a Fold

dXt = %(_yt — Xg) dt + %th,
dyr = 1 dt.

(xts yt) Xt
Co

0.0003

0.0002

0.0001

Figure: (x0,¥0) = (0.9, —0.92) [red dot], o = 0.01, ¢ = 0.01.



Sketch of Proof: Early-Warning for Folds (— Berglund)

» Focus on attracting slow manifold C. = {x = ho(y)}.

» Variational equation for linearized process:

1
dé; = <(=2ho(y)&2)ds + —=dW,



Sketch of Proof: Early-Warning for Folds (— Berglund)

» Focus on attracting slow manifold C. = {x = ho(y)}.

» Variational equation for linearized process:

1
dé; = <(=2ho(y)&2)ds + —=dW,

» Define X, := 0~?Var(¢l) and “observe”

eX = —ahy(y)X +1,
y = 1

» Conclusion (up to leading order)

as y — 07 and o fixed.



Main Result - Overview

Theorem (K. 2011)

Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

> Fold, Hopf, (transcritical), (pitchfork)
» Cusp, Bautin, Bogdanov-Takens

» Gavrilov-Guckenheimer, Hopf-Hopf



Main Result - Overview

Theorem (K. 2011)

Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

> Fold, Hopf, (transcritical), (pitchfork)
» Cusp, Bautin, Bogdanov-Takens
» Gavrilov-Guckenheimer, Hopf-Hopf
The main results are:
1. (Existence:) Conditions on slow flow to get a critical transition.

2. (Scaling:) Leading-order covariance scaling H.(y) for
Cov(xs) = o?[He(y)] + O(c*).

3. ((e,0)-expansion:) Higher-order calculations for the fold.

4. (Technique:) Covariance estimates without martingales.



Example 1: The Bazykin Predator-Prey System

da = |x - % 0015 | dt + ZLdW),
do =[x+ EE — yaxg | dt + %dW(Q),
dyi = egi(x,y)dt,

dy, = ego(x,y)dt,

0.3 0.35 0.4 0.45 0.5

1

Figure: Partial bifurcation diagram; e =0 = 01 = 0.
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Figure: Averaged over 50 sample paths (¢,0) = (3 x 10751 x 1073);
Vi = Var(x;(y)) for i € 1,2; V; (red) V5 (black).

» Theory for Bogdanov-Takens point predicts:

Cov(xs(y)) = o? < K 0(1/}\(/——)/1) > '
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Figure: Averaged over 50 sample paths (¢,0) = (3 x 10751 x 1073);
Vi = Var(x;(y)) for i € 1,2; V; (red) V5 (black).

» Theory for Bogdanov-Takens point predicts:

Cov(xs(y)) = o? < K 0(1/}\(/——)/1) > '

» NOT normal form: hidden scaling law = “unpredictable”

( +0(1/v=—n) = asy; —07)



Example 2: Epidemics on Adaptive Networks

SIS dynamics on adaptive networks [Gross et al., 2006]:

@ infected < infect

® susceptible e—o

/ recover
\ °

.9 | re-wire .\.

Py 1—w
o



. . . Ll . )
A moment closure pair-approximation (lpc = “24%<) yields:

i = p(5—1Iy—lss) —ri,
Ii—I
(/Il)/ — p(% — /” — /55) (ﬂ > _ 2,,/”’
(Iss) = (r+w)(& — Iy —Iss) — w

where we assume 1 = 2jrj'ondk:s 20, r = 0.002 and w = 0.4.
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A moment closure pair-approximation (lpc = “24%<) yields:

i = p(5—1Iy—lss) —ri,
Ii—I
(/Il)/ — p(% — /” — /55) (ﬂ > _ 2,,/”’
(Iss) = (r+w)(& — Iy —Iss) — w

where we assume 1 = 2jrj'ondk:s 20, r = 0.002 and w = 0.4.

Often moment-closure works, and sometimes it doesn’t but
certainly there is finite-size noise:

da = L[y(4—x—x3)—ma]ds+ ”—\/LdW(l),

dxs = % |:y % — Xo — X3) ( . X32-i; 1) — 2/)’X2} ds + %dWQ),
dX3 % |:(l’ + W) 5 — X2 — X3) — %};Xm} ds + %dWG)7
dy = 1 ds,



Results on Adaptive SIS Epidemics

x10° x10*
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1
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Results on Adaptive SIS Epidemics

0.5

x1

x 10

-5

—Xx1
— X2
—Xx3

(b)

0.025

0 0.025 0.05

» Observe theory for scaling law for the transcritical bifurcation
dxs = (Xsys — x2)ds + odW

Var(xs) = 00 ((¥s — yec) ")

as Ys — Ytc-

» Important: Early-warning sign in the link density only!

» Also observe a delay (— way-in way-out function).



Example 3: ECoG Data and Epileptic Seizures

X == —l

x| k i
N & o "
\/MMUJ\ v - f\/j
X } X " .ﬂ

V%r/vv/m L ﬁﬂj '
waf\/\ \”%wjmﬂ\\

Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).
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» Scaling law + genericity = Hopf (— Terry, U. Sheffield).



Example 3: ECoG Data and Epileptic Seizures

X frrm ‘ X | ‘ A
AR J\ v (b) \/j

VoW Y
x| :ﬂ X ! ,ﬁ
1

Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).

» Scaling law + genericity = Hopf (— Terry, U. Sheffield).

» Early-warning signs for excitable systems (FitzHugh-Nagumo).
» Comparison: neuron (micro), cluster (meso), network (macro).
» Network measures based upon wavelet decomposition.



Critical Transitions in (unstructured) Complex Systems
Consider x e RN, N> 1

dx
— = f(x).
= x)
At a steady state x*, we have

f(x*) =0, A = Df(x™) determines stability.
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Critical Transitions in (unstructured) Complex Systems
Consider x e RN, N> 1

dx
— = f(x).
= x)

At a steady state x*, we have

f(x*) =0, A = Df(x™) determines stability.

» Large system (— May) take A a random real symmetric
matrix, use semi-circle law

P(x* (un-)stable) = <%>N P(x* saddle) = 1—<%> N_l.

» Needs strong assumptions on structure of the matrix Al
» Proof of full circular law (— Tao and Van Vu 2008).

Expected abundance of saddle points in complex systems.



Metastability and Critical Transitions near Saddle Points
Trivial case: planar saddle in R? at x = (0, 0) locally

X' =Ax = x(t) = y1(0)e*tvy + yo(0)eM vy,

;
X2 ; (3) X1,2} (b) g d (C)
! | ? -
2 ’,’ 1 : LY
; it ; ﬁ
\ / | [ ¢ 5 _?f

2 3 0 2 4 10 12 o 2 4 6 8 10 12
X1 t t




Metastability and Critical Transitions near Saddle Points
Trivial case: planar saddle in R? at x = (0, 0) locally

X' =Ax = x(t) = y1(0)e*tvy + yo(0)eM vy,

X0 I,"I (a) x1,2} (b) '," d (C)
: i T ﬁ
/ - : ’
) /" ”“_.—"’ ““ 'J' bt -6 \*&; f

J % =
' —— o B
! . ) P A
e VY o -8 o B
A oy 5K R
0 AR » Kx X
B . . -
. _ © %
05 -
0. 1 2 3 o 2 4 6 s 10 12 o 2 4 6 s 10 12
X1 t t

If x(0) close to W*(0) then logarithmic distance reduction

In||x(t2) — x(t1)|| = Ast1 + k.



Example 4: Evolutionary Game on a Network
Agents/nodes play snowdrift game each time step

M= ( b _bC/2 ba ¢ ) c=cost, b=benefit.

Re-wire (p), adopt (1 — p) based upon performance.
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Example 4: Evolutionary Game on a Network
Agents/nodes play snowdrift game each time step

M= ( b _bC/2 ba ¢ ) c=cost, b=benefit.

Re-wire (p), adopt (1 — p) based upon performance.

» For near-full cooperation with high re-wiring: saddle point.

» Early-warning signs: period blow-up and log-distance.



Example 5: Back to Epidemics

Measles epidemics in cities in the UK between 1944 and 1966.

1
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Figure: (a) Example time series. (b) ROC(d)-curve (dots, crosses =

1959 t 1964

0.8

different forecast lengths); blue=true instability, red=weak stability.

re




Example 5: Back to Epidemics

Measles epidemics in cities in the UK between 1944 and 1966.

1

/

0.8
0.6
0.4

0.2

(@) |

1

re
08

0.6
0.4

0.2

**
L]
*..0.®

L]

(b)

:ﬁ;ﬁ

0
1944

Figure: (a) Example time series. (b) ROC(d)-curve (dots, crosses =

1949

1954

1959 t 1964

0.6

0.8

different forecast lengths); blue=true instability, red=weak stability.
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Test logarithmic distance indicator to estimate A, threshold d.
Receiver-operator-characteristic curve

__ #fcorrect predictions

r- =
#events/outbreaks

and

rf

#non-events

__ ##false positives

1
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Thank you for your attention.



