A Mathematical Framework for Critical Transitions: From Bifurcations to Complex Systems

Christian Kuehn

Vienna University of Technology Institute for Analysis and Scientific Computing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Outline

- 1. Introduction & Motivation
- 2. Fast-Slow Systems and Definitions
- 3. A Theorem on Scaling for Stochastic Systems
- 4. Examples (predator-prey, epidemics, epileptic seizures)
- 5. Stability and Instability in Complex Systems
- 6. More Examples (Games on Networks, Epidemics Data)

Outline

- 1. Introduction & Motivation
- 2. Fast-Slow Systems and Definitions
- 3. A Theorem on Scaling for Stochastic Systems
- 4. Examples (predator-prey, epidemics, epileptic seizures)
- 5. Stability and Instability in Complex Systems
- 6. More Examples (Games on Networks, Epidemics Data)

- Work on epileptic seizures joint with:
 C. Meisel, MPI-PKS & CGC Hospital, Dresden
- Work on networks / complex systems joint with:
 G. Zschaler, MPI-PKS, Dresden and T. Gross, U. Bristol

Critical Transitions and Tipping Points in Applications

Geoscience (climate change, climate subsystems, earthquakes)

- Lenton et al., Tipping elements in the Earth's climate system. PNAS, 2008
- ▶ Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010
- Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a review. IJBC, 2011

Ecology (extinction, desertification, ecosystem control)

- Drake and Griffen. Early warning signals of extinction in deteriorating environments. Nature, 2010
- Dakos et al. Slowing down in spatially patterned systems at the brink of collapse. Am. Nat., 2011
- Veraart et al., Recovery rates reflect distances to a tipping point in a living system. Nature, 2012

Critical Transitions and Tipping Points in Applications

Geoscience (climate change, climate subsystems, earthquakes)

- Lenton et al., Tipping elements in the Earth's climate system. PNAS, 2008
- ▶ Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010
- Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a review. IJBC, 2011

Ecology (extinction, desertification, ecosystem control)

- Drake and Griffen. Early warning signals of extinction in deteriorating environments. Nature, 2010
- Dakos et al. Slowing down in spatially patterned systems at the brink of collapse. Am. Nat., 2011
- Veraart et al., Recovery rates reflect distances to a tipping point in a living system. Nature, 2012

Human Physiology (epileptic seizures, asthma attacks)

- Mormann et al., Seizure prediction: the long and winding road. Brain, 2007
- Venegas et al., Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature, 2005

Finance (market crashes, risk analysis, asset price bubbles)

D. Sornette, Why Stock Markets Crash. PUP, 2003

► Jarrow et al., *How to detect an asset bubble*. SIAM J. Finan. Math., 2011 Engineering (voltage collapse, fracture)

Chertkov et al., Voltage collapse and ODE approach to power flows. 2011

Goals and Perspectives...

Goals and Perspectives...

- Prediction of the "critical transition" or "tipping point".
- Dynamical mechanisms and mathematical models.
- Time series analysis and data assimilation.
- Data availability, experiments, theory of extreme events, ...

∃ <2 <</p>

- 4 同 ト 4 回 ト 4 回 ト

Typical Characteristics of Critical Transitions

Following Scheffer et al, Nature, 2009:

- (1) A qualitative change from regular dynamics occurs.
- (2) Rapid change in comparison to the regular dynamics.
- (3) The system crosses a special threshold near a transition.
- (4) The new state is far away from its previous state.
- (5) There is often small noise i.e. observed data has a major deterministic component with "random fluctuations".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Typical Characteristics of Critical Transitions

Following Scheffer et al, Nature, 2009:

- (1) A qualitative change from regular dynamics occurs.
- (2) Rapid change in comparison to the regular dynamics.
- (3) The system crosses a special threshold near a transition.
- (4) The new state is far away from its previous state.
- (5) There is often small noise i.e. observed data has a major deterministic component with "random fluctuations".

Towards a mathematical theory:

- Define critical transitions / tipping points using (1)-(5).
- Verify the known early-warning signs are indeed generic.
- Go beyond basic elements and extend the theory.

Identify Generic Models: Fast-Slow Systems

Fast variables $x \in \mathbb{R}^m$, slow variables $y \in \mathbb{R}^n$, time scale separation $0 < \epsilon \ll 1$.

$$\begin{cases} x' = f(x, y) \\ y' = 0 \\ fast subsystem \end{cases} \begin{cases} 0 = f(x, y) \\ \dot{y} = g(x, y) \\ slow subsystem \end{cases}$$

Identify Generic Models: Fast-Slow Systems

Fast variables $x \in \mathbb{R}^m$, slow variables $y \in \mathbb{R}^n$, time scale separation $0 < \epsilon \ll 1$.

$$\begin{cases} \frac{dx}{dt} = x' = f(x, y) \\ \frac{dy}{dt} = y' = \epsilon g(x, y) \end{cases} \stackrel{\epsilon t = s}{\longleftrightarrow} \begin{cases} \epsilon \frac{dx}{ds} = \epsilon \dot{x} = f(x, y) \\ \frac{dy}{ds} = \dot{y} = g(x, y) \end{cases}$$
$$\downarrow \epsilon = 0 \qquad \qquad \downarrow \epsilon = 0 \\ \begin{cases} x' = f(x, y) \\ y' = 0 \\ \text{fast subsystem} \end{cases} \begin{cases} 0 = f(x, y) \\ \dot{y} = g(x, y) \\ \text{slow subsystem} \end{cases}$$

- ► C := {f = 0} = critical manifold = equil. of fast subsystem.
- ► *C* is normally hyperbolic if *D*_x*f* has no zero-real-part eigenvalues.
- ► Fenichel's Theorem: Normal hyperbolicity ⇒ "nice" perturbation.
- ► Loss of Normal hyperbolicity ⇒ complicated dynamics.

Example - A fold bifurcation of the fast subsystem with slow drift:

$$\begin{array}{rcl} \epsilon \dot{x} & = & -y - x^2, \\ \dot{y} & = & 1. \end{array}$$

Figure: (a) Singular limit $\epsilon = 0$. (b) $\epsilon = 0.02$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

A Natural Definition...

Let $p = (x_p, y_p) \in C_0$ where C_0 is not normally hyperbolic then p is a critical transition if \exists a candidate γ_0 and times t_{j-1}, t_j s.t. (C1) $\gamma_0(t_{j-1}, t_j) \subset S_0 \subset C_0$, S_0 normally hyperbolic attracting, (C2) $p = \gamma_0(t_j)$ is a transition point between subsystems, (C3) and $\gamma_0(t_{j-1}, t_j)$ is oriented from $\gamma_0(t_{j-1})$ to $\gamma_0(t_j)$.

A Natural Definition...

Let $p = (x_p, y_p) \in C_0$ where C_0 is not normally hyperbolic then p is a critical transition if \exists a candidate γ_0 and times t_{j-1}, t_j s.t. (C1) $\gamma_0(t_{j-1}, t_j) \subset S_0 \subset C_0$, S_0 normally hyperbolic attracting, (C2) $p = \gamma_0(t_j)$ is a transition point between subsystems, (C3) and $\gamma_0(t_{j-1}, t_j)$ is oriented from $\gamma_0(t_{j-1})$ to $\gamma_0(t_j)$.

Covers (1)-(4) of the phenomenological features:

- $\mathsf{regular} \mathsf{ dynamics} \quad \leftrightarrow \quad \mathsf{slow} \mathsf{ subsystem} \mathsf{ flow}$
 - rapid change \leftrightarrow slow-to-fast transition
- special threshold \leftrightarrow fast subsystem bifurcation (\Rightarrow genericity)
- new state is far away \leftrightarrow
- $\leftrightarrow \quad \text{measure on candidate orbit}$

A Natural Definition...

Let $p = (x_p, y_p) \in C_0$ where C_0 is not normally hyperbolic then p is a critical transition if \exists a candidate γ_0 and times t_{j-1}, t_j s.t. (C1) $\gamma_0(t_{j-1}, t_j) \subset S_0 \subset C_0$, S_0 normally hyperbolic attracting, (C2) $p = \gamma_0(t_j)$ is a transition point between subsystems, (C3) and $\gamma_0(t_{j-1}, t_j)$ is oriented from $\gamma_0(t_{j-1})$ to $\gamma_0(t_j)$.

Covers (1)-(4) of the phenomenological features:

regular dynamics	\leftrightarrow	slow subsystem flow
rapid change	\leftrightarrow	slow-to-fast transition
special threshold	\leftrightarrow	fast subsystem bifurcation (\Rightarrow genericity)
new state is far away	\leftrightarrow	measure on candidate orbit

- Extension to stochastic systems immediate γ_ϵ → γ_{ϵ,σ}.
- ▶ $\gamma_{0,0}$ yields B-tipping, $\gamma_{0,\sigma}$ N-tipping (\rightarrow Ashwin); $\gamma_{\epsilon,\delta}$ perturbations.
- Natural: time series correspond to sample paths γ_{ϵ,σ}.
- Extensions to PDEs, DDEs, etc. are possible via paths.

What about Noise? - Stochastic Fast-Slow Systems...

Consider the fast-slow stochastic differential equation

$$dx_s = \frac{1}{\epsilon} f(x_s, y_s) ds + \frac{\sigma}{\sqrt{\epsilon}} F(x_s, y_s) dW_s, dy_s = g(x_s, y_s) ds.$$
(1)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

where W_s is standard Brownian motion.

What about Noise? - Stochastic Fast-Slow Systems...

Consider the fast-slow stochastic differential equation

$$dx_{s} = \frac{1}{\epsilon}f(x_{s}, y_{s})ds + \frac{\sigma}{\sqrt{\epsilon}}F(x_{s}, y_{s})dW_{s}, dy_{s} = g(x_{s}, y_{s})ds.$$
(1)

where W_s is standard Brownian motion.

Suppose (1) has a deterministic attracting slow manifold

$$C_{\epsilon} = \{(x, y) \in \mathbb{R}^{m+n} : x = h_{\epsilon}(y) = h_0(y) + \mathcal{O}(\epsilon)\}$$

Theorem (Berglund and Gentz) Sample paths of (1) stay near C_{ϵ} with high probability.

Towards Early-Warning Signs

(W1) The system recovers slowly from perturbations: slowing down.
(W2) The autocorrelation increases before a transition.
(W3) The variance increases near a critical transition.
(W4) ...

(W1)-(W3) are related.

Towards Early-Warning Signs

(W1) The system recovers slowly from perturbations: slowing down.
(W2) The autocorrelation increases before a transition.
(W3) The variance increases near a critical transition.
(W4) ...

(W1)-(W3) are related.

Example: Deterministic fold bifurcation $x' = -y - x^2$, $y' = \epsilon$.

- Slow subsystem $\epsilon = 0$, attracting critical manifold $x = \sqrt{-y}$.
- Fast subsystem $\epsilon = 0$, parameterized family $x' = -y x^2$.
- Variational equation:

$$X' = -2\sqrt{-y}X \qquad \Rightarrow \quad X(t) = X(0)e^{-2\sqrt{-y}t}$$

Slowing down as $y \to 0^-$.

Useful Stochasticity - Variance near a Fold

$$dx_t = \frac{1}{\epsilon}(-y_t - x_t^2) dt + \frac{\sigma}{\sqrt{\epsilon}} dW_t,$$

$$dy_t = 1 dt.$$

Figure: $(x_0, y_0) = (0.9, -0.9^2)$ [red dot], $\sigma = 0.01$, $\epsilon = 0.01$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sketch of Proof: Early-Warning for Folds (\rightarrow Berglund)

- Focus on attracting slow manifold $C_{\epsilon} = \{x = h_0(y)\}.$
- Variational equation for linearized process:

$$d\xi'_{s} = \frac{1}{\epsilon} (-2h_{0}(y_{s})\xi'_{s})ds + \frac{\sigma}{\sqrt{\epsilon}}dW_{s}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Sketch of Proof: Early-Warning for Folds (\rightarrow Berglund)

- ► Focus on attracting slow manifold C_e = {x = h₀(y)}.
- Variational equation for linearized process:

$$d\xi_s^{\prime} = rac{1}{\epsilon} (-2h_0(y_s)\xi_s^{\prime})ds + rac{\sigma}{\sqrt{\epsilon}}dW_s$$

▶ Define X_s := σ⁻²Var(ξ^l_s) and "observe"

$$\begin{aligned} \epsilon \dot{X} &= -4h_0(y)X + 1, \\ \dot{y} &= 1. \end{aligned}$$

Conclusion (up to leading order)

$$\operatorname{Var}(x_s) = \frac{\sigma^2}{4\sqrt{-y}} = \mathcal{O}\left(\frac{1}{\sqrt{-y}}\right)$$

as $y \rightarrow 0^-$ and σ fixed.

Main Result - Overview

Theorem (K. 2011)

Classification of generic critical transitions for all fast subsystem bifurcations up to codimension two:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Fold, Hopf, (transcritical), (pitchfork)
- Cusp, Bautin, Bogdanov-Takens
- ► Gavrilov-Guckenheimer, Hopf-Hopf

Main Result - Overview

Theorem (K. 2011)

Classification of generic critical transitions for all fast subsystem bifurcations up to codimension two:

- Fold, Hopf, (transcritical), (pitchfork)
- Cusp, Bautin, Bogdanov-Takens
- Gavrilov-Guckenheimer, Hopf-Hopf

The main results are:

- 1. (Existence:) Conditions on slow flow to get a critical transition.
- 2. (Scaling:) Leading-order covariance scaling $H_{\epsilon}(y)$ for

$$Cov(x_s) = \sigma^2[H_\epsilon(y)] + \mathcal{O}(\sigma^4).$$

- 3. ((ϵ, σ)-expansion:) Higher-order calculations for the fold.
- 4. (Technique:) Covariance estimates without martingales.

Example 1: The Bazykin Predator-Prey System

$$\begin{aligned} dx_1 &= \left[x_1 - \frac{x_1 x_2}{1 + y_1 x_1} - 0.01 x_1^2 \right] dt + \frac{\sigma_1}{\sqrt{\epsilon}} dW^{(1)} \\ dx_2 &= \left[-x_2 + \frac{x_1 x_2}{1 + y_1 x_1} - y_2 x_2^2 \right] dt + \frac{\sigma_2}{\sqrt{\epsilon}} dW^{(2)} , \\ dy_1 &= \epsilon g_1(x, y) dt , \\ dy_2 &= \epsilon g_2(x, y) dt , \end{aligned}$$

Figure: Partial bifurcation diagram; $\epsilon = 0 = \sigma_1 = \sigma_2$.

Figure: Averaged over 50 sample paths $(\epsilon, \sigma) = (3 \times 10^{-5}, 1 \times 10^{-3});$ $V_i = \operatorname{Var}(x_i(y))$ for $i \in 1, 2; V_1$ (red) V_2 (black).

Theory for Bogdanov-Takens point predicts:

$$\operatorname{Cov}(x_{s}(y)) = \sigma^{2} \begin{pmatrix} \mathcal{O}(1/y_{1}) & K \\ K & \mathcal{O}(1/\sqrt{-y_{1}}) \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Figure: Averaged over 50 sample paths $(\epsilon, \sigma) = (3 \times 10^{-5}, 1 \times 10^{-3});$ $V_i = \operatorname{Var}(x_i(y))$ for $i \in 1, 2; V_1$ (red) V_2 (black).

Theory for Bogdanov-Takens point predicts:

$$\operatorname{Cov}(x_{s}(y)) = \sigma^{2} \begin{pmatrix} \mathcal{O}(1/y_{1}) & K \\ K & \mathcal{O}(1/\sqrt{-y_{1}}) \end{pmatrix}$$

3

▶ NOT normal form: hidden scaling law ⇒ "unpredictable" $(\mathcal{O}(1/y_1) + \mathcal{O}(1/\sqrt{-y_1}) = \mathcal{O}(1/y_1) \text{ as } y_1 \rightarrow 0^-)$

Example 2: Epidemics on Adaptive Networks

SIS dynamics on adaptive networks [Gross et al., 2006]:

A moment closure pair-approximation $(I_{abc} = \frac{I_{ab}I_{bc}}{b})$ yields:

$$\begin{aligned} i' &= p(\frac{\mu}{2} - I_{II} - I_{SS}) - ri, \\ (I_{II})' &= p(\frac{\mu}{2} - I_{II} - I_{SS}) \left(\frac{\frac{\mu}{2} - I_{II} - I_{SS}}{1 - i} + 1\right) - 2rI_{II}, \\ (I_{SS})' &= (r + w)(\frac{\mu}{2} - I_{II} - I_{SS}) - \frac{2p(\frac{\mu}{2} - I_{II} - I_{SS})I_{SS}}{1 - i}. \end{aligned}$$

where we assume $\mu = 2 \frac{\# \text{links}}{\# \text{nodes}} = 20$, r = 0.002 and w = 0.4.

A moment closure pair-approximation $(I_{abc} = \frac{I_{ab}I_{bc}}{b})$ yields:

$$\begin{aligned} i' &= p(\frac{\mu}{2} - I_{II} - I_{SS}) - ri, \\ (I_{II})' &= p(\frac{\mu}{2} - I_{II} - I_{SS}) \left(\frac{\frac{\mu}{2} - I_{II} - I_{SS}}{1 - i} + 1\right) - 2rI_{II}, \\ (I_{SS})' &= (r + w)(\frac{\mu}{2} - I_{II} - I_{SS}) - \frac{2p(\frac{\mu}{2} - I_{II} - I_{SS})I_{SS}}{1 - i}. \end{aligned}$$

where we assume $\mu = 2 \frac{\# \text{links}}{\# \text{nodes}} = 20$, r = 0.002 and w = 0.4.

Often moment-closure works, and sometimes it doesn't but certainly there is finite-size noise:

$$\begin{aligned} dx_1 &= \frac{1}{\epsilon} \left[y(\frac{\mu}{2} - x_2 - x_3) - rx_1 \right] ds + \frac{\sigma_1}{\sqrt{\epsilon}} dW^{(1)}, \\ dx_2 &= \frac{1}{\epsilon} \left[y(\frac{\mu}{2} - x_2 - x_3) \left(\frac{\frac{\mu}{2} - x_2 - x_3}{1 - x_1} + 1 \right) - 2rx_2 \right] ds + \frac{\sigma_2}{\sqrt{\epsilon}} dW^{(2)}, \\ dx_3 &= \frac{1}{\epsilon} \left[(r + w)(\frac{\mu}{2} - x_2 - x_3) - \frac{2y(\frac{\mu}{2} - x_2 - x_3)x_3}{1 - x_1} \right] ds + \frac{\sigma_3}{\sqrt{\epsilon}} dW^{(3)}, \\ dy &= 1 \ ds, \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Results on Adaptive SIS Epidemics

Results on Adaptive SIS Epidemics

• Observe theory for scaling law for the transcritical bifurcation $dx_s = (x_s y_s - x_s^2)ds + \sigma dW$

$$\operatorname{Var}(x_s) = \sigma^2 \mathcal{O}\left((y_s - y_{tc})^{-1}\right)$$
 as $y_s \to y_{tc}$.

Important: Early-warning sign in the link density only!

► Also observe a delay (→ way-in way-out function).

Example 3: ECoG Data and Epileptic Seizures

Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).

< ロ > < 同 > < 回 > < 回 >

Example 3: ECoG Data and Epileptic Seizures

Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).

Scaling law + genericity \Rightarrow Hopf (\rightarrow Terry, U. Sheffield).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Example 3: ECoG Data and Epileptic Seizures

Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).

- Scaling law + genericity \Rightarrow Hopf (\rightarrow Terry, U. Sheffield).
- Early-warning signs for excitable systems (FitzHugh-Nagumo).
- Comparison: neuron (micro), cluster (meso), network (macro).
- Network measures based upon wavelet decomposition.

Critical Transitions in (unstructured) Complex Systems Consider $x \in \mathbb{R}^N$, $N \gg 1$

$$\frac{dx}{dt} = f(x).$$

At a steady state x^* , we have

$$f(x^*) = 0,$$
 $A = Df(x^*)$ determines stability.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Critical Transitions in (unstructured) Complex Systems Consider $x \in \mathbb{R}^N$, $N \gg 1$

$$\frac{dx}{dt} = f(x).$$

At a steady state x^* , we have

$$f(x^*) = 0,$$
 $A = Df(x^*)$ determines stability.

► Large system (→ May) take A a random real symmetric matrix, use semi-circle law

$$\mathbb{P}(x^* \text{ (un-)stable}) = \left(rac{1}{2}
ight)^N, \qquad \mathbb{P}(x^* \text{ saddle}) = 1 - \left(rac{1}{2}
ight)^{N-1}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Critical Transitions in (unstructured) Complex Systems Consider $x \in \mathbb{R}^N$, $N \gg 1$

$$\frac{dx}{dt} = f(x).$$

At a steady state x^* , we have

$$f(x^*) = 0,$$
 $A = Df(x^*)$ determines stability.

► Large system (→ May) take A a random real symmetric matrix, use semi-circle law

$$\mathbb{P}(x^* \text{ (un-)stable}) = \left(rac{1}{2}
ight)^N, \qquad \mathbb{P}(x^* \text{ saddle}) = 1 - \left(rac{1}{2}
ight)^{N-1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Needs strong assumptions on structure of the matrix A!
 Proof of full circular law (→ Tao and Van Vu 2008).
 Expected abundance of saddle points in complex systems.

Metastability and Critical Transitions near Saddle Points

Trivial case: planar saddle in \mathbb{R}^2 at x = (0,0) locally

$$x' = Ax \quad \Rightarrow x(t) = y_1(0)e^{\lambda_s t}v_1 + y_2(0)e^{\lambda_u t}v_2.$$

< ロ > < 同 > < 回 > < 回 >

э

Metastability and Critical Transitions near Saddle Points

Trivial case: planar saddle in \mathbb{R}^2 at x = (0,0) locally

$$x' = Ax \quad \Rightarrow x(t) = y_1(0)e^{\lambda_s t}v_1 + y_2(0)e^{\lambda_u t}v_2$$

If x(0) close to $W^{s}(0)$ then logarithmic distance reduction

 $\ln \|x(t_2) - x(t_1)\| \approx \lambda_s t_1 + k_1.$

(日) (四) (三) (三)

Example 4: Evolutionary Game on a Network Agents/nodes play snowdrift game each time step

$$M = \begin{pmatrix} b - c/2 & b - c \\ b & 0 \end{pmatrix}$$
 c=cost, b=benefit.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Re-wire (p), adopt (1 - p) based upon performance.

Example 4: Evolutionary Game on a Network Agents/nodes play snowdrift game each time step

$$M = \begin{pmatrix} b - c/2 & b - c \\ b & 0 \end{pmatrix} \qquad c = \text{cost, } b = \text{benefit.}$$

Re-wire (p), adopt (1 - p) based upon performance.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > の < @

Example 4: Evolutionary Game on a Network Agents/nodes play snowdrift game each time step

$$M = \begin{pmatrix} b - c/2 & b - c \\ b & 0 \end{pmatrix} \qquad c = \text{cost, b=benefit.}$$

Re-wire (p), adopt (1 - p) based upon performance.

For near-full cooperation with high re-wiring: saddle point.

ъ.

Early-warning signs: period blow-up and log-distance.

Example 5: Back to Epidemics

Measles epidemics in cities in the UK between 1944 and 1966.

Figure: (a) Example time series. (b) ROC(*d*)-curve (dots, crosses = different forecast lengths); blue=true instability, red=weak stability.

< ロ > < 同 > < 回 > < 回 >

Example 5: Back to Epidemics

Measles epidemics in cities in the UK between 1944 and 1966.

Figure: (a) Example time series. (b) ROC(*d*)-curve (dots, crosses = different forecast lengths); blue=true instability, red=weak stability.

Test logarithmic distance indicator to estimate λ_u , threshold d. Receiver-operator-characteristic curve

$$r_c = \frac{\#\text{correct predictions}}{\#\text{events/outbreaks}} \quad \text{and} \quad r_f = \frac{\#\text{false positives}}{\#\text{non-events}}.$$

Mathematical Theory:

- Characterization and definition of critical transitions.
- ► Useful noise: proof of scaling laws up to codimension two.
- ► Hidden laws, coarse-grained networks.
- Saddle points as critical transitions.
- Logarithmic distance and period blow-up as warning signs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Data analysis, excitable systems, multiplicative noise, ...

Mathematical Theory:

- Characterization and definition of critical transitions.
- ► Useful noise: proof of scaling laws up to codimension two.
- ► Hidden laws, coarse-grained networks.
- Saddle points as critical transitions.
- Logarithmic distance and period blow-up as warning signs.
- Data analysis, excitable systems, multiplicative noise, ...

Applications:

- ► Social connections could be crucial for epidemic prediction.
- Epileptic seizures and evidence for Hopf bifurcation.
- Economic networks: critical transitions via bursts of defectors.

▶ (systems biology, biomechanics and controllability, ...)

Mathematical Theory:

- Characterization and definition of critical transitions.
- ► Useful noise: proof of scaling laws up to codimension two.
- ► Hidden laws, coarse-grained networks.
- Saddle points as critical transitions.
- Logarithmic distance and period blow-up as warning signs.
- Data analysis, excitable systems, multiplicative noise, ...

Applications:

- ► Social connections could be crucial for epidemic prediction.
- Epileptic seizures and evidence for Hopf bifurcation.
- Economic networks: critical transitions via bursts of defectors.
- (systems biology, biomechanics and controllability, ...)

For references see my webpage (and the arXiv):

http://www.asc.tuwien.ac.at/~ckuehn/

Mathematical Theory:

- Characterization and definition of critical transitions.
- ► Useful noise: proof of scaling laws up to codimension two.
- ► Hidden laws, coarse-grained networks.
- Saddle points as critical transitions.
- Logarithmic distance and period blow-up as warning signs.
- Data analysis, excitable systems, multiplicative noise, ...

Applications:

- ► Social connections could be crucial for epidemic prediction.
- Epileptic seizures and evidence for Hopf bifurcation.
- Economic networks: critical transitions via bursts of defectors.
- (systems biology, biomechanics and controllability, ...)

For references see my webpage (and the arXiv):

http://www.asc.tuwien.ac.at/~ckuehn/

Thank you for your attention.