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◮ Work on epileptic seizures joint with:
C. Meisel, MPI-PKS & CGC Hospital, Dresden

◮ Work on networks / complex systems joint with:
G. Zschaler, MPI-PKS, Dresden and T. Gross, U. Bristol



Critical Transitions and Tipping Points in Applications
Geoscience (climate change, climate subsystems, earthquakes)

◮ Lenton et al., Tipping elements in the Earth’s climate system. PNAS, 2008

◮ Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010

◮ Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a

review. IJBC, 2011

Ecology (extinction, desertification, ecosystem control)

◮ Drake and Griffen. Early warning signals of extinction in deteriorating

environments. Nature, 2010

◮ Dakos et al. Slowing down in spatially patterned systems at the brink of

collapse. Am. Nat., 2011

◮ Veraart et al., Recovery rates reflect distances to a tipping point in a living

system. Nature, 2012



Critical Transitions and Tipping Points in Applications
Geoscience (climate change, climate subsystems, earthquakes)

◮ Lenton et al., Tipping elements in the Earth’s climate system. PNAS, 2008

◮ Wieczorek et al., Excitability in ramped systems. Proc. R. Soc. A, 2010

◮ Thompson and Sieber, Predicting climate tipping as a noisy bifurcation: a

review. IJBC, 2011

Ecology (extinction, desertification, ecosystem control)

◮ Drake and Griffen. Early warning signals of extinction in deteriorating

environments. Nature, 2010

◮ Dakos et al. Slowing down in spatially patterned systems at the brink of

collapse. Am. Nat., 2011

◮ Veraart et al., Recovery rates reflect distances to a tipping point in a living

system. Nature, 2012

Human Physiology (epileptic seizures, asthma attacks)

◮ Mormann et al., Seizure prediction: the long and winding road. Brain, 2007

◮ Venegas et al., Self-organized patchiness in asthma as a prelude to catastrophic

shifts. Nature, 2005

Finance (market crashes, risk analysis, asset price bubbles)

◮ D. Sornette, Why Stock Markets Crash. PUP, 2003

◮ Jarrow et al., How to detect an asset bubble. SIAM J. Finan. Math., 2011

Engineering (voltage collapse, fracture)

◮ Chertkov et al., Voltage collapse and ODE approach to power flows. 2011



Goals and Perspectives...

xx

t t

(a) (b)



Goals and Perspectives...

xx

t t

(a) (b)

◮ Prediction of the “critical transition” or “tipping point”.

◮ Dynamical mechanisms and mathematical models.

◮ Time series analysis and data assimilation.

◮ Data availability, experiments, theory of extreme events, . . .



Typical Characteristics of Critical Transitions

Following Scheffer et al, Nature, 2009:

(1) A qualitative change from regular dynamics occurs.

(2) Rapid change in comparison to the regular dynamics.

(3) The system crosses a special threshold near a transition.

(4) The new state is far away from its previous state.

(5) There is often small noise i.e. observed data has a major
deterministic component with “random fluctuations”.
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(3) The system crosses a special threshold near a transition.

(4) The new state is far away from its previous state.

(5) There is often small noise i.e. observed data has a major
deterministic component with “random fluctuations”.

Towards a mathematical theory:

◮ Define critical transitions / tipping points using (1)-(5).

◮ Verify the known early-warning signs are indeed generic.

◮ Go beyond basic elements and extend the theory.



Identify Generic Models: Fast-Slow Systems

Fast variables x ∈ R
m, slow variables y ∈ R

n, time scale separation 0 < ǫ ≪ 1.

{

dx
dt

= x ′ = f (x , y)
dy
dt

= y ′ = ǫg(x , y)

ǫt=s←→
{

ǫdx
ds

= ǫẋ = f (x , y)
dy
ds

= ẏ = g(x , y)

↓ ǫ = 0 ↓ ǫ = 0

{

x ′ = f (x , y)
y ′ = 0

{

0 = f (x , y)
ẏ = g(x , y)
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= ǫẋ = f (x , y)
dy
ds
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◮ C := {f = 0} = critical manifold = equil. of fast subsystem.

◮ C is normally hyperbolic if Dx f has no zero-real-part eigenvalues.

◮ Fenichel’s Theorem: Normal hyperbolicity ⇒ “nice” perturbation.

◮ Loss of Normal hyperbolicity ⇒ complicated dynamics.



Example - A fold bifurcation of the fast subsystem with slow drift:

ǫẋ = −y − x2,
ẏ = 1.
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Figure: (a) Singular limit ǫ = 0. (b) ǫ = 0.02.



A Natural Definition...

Let p = (xp, yp) ∈ C0 where C0 is not normally hyperbolic then p
is a critical transition if ∃ a candidate γ0 and times tj−1, tj s.t.

(C1) γ0(tj−1, tj) ⊂ S0 ⊂ C0, S0 normally hyperbolic attracting,

(C2) p = γ0(tj) is a transition point between subsystems,

(C3) and γ0(tj−1, tj) is oriented from γ0(tj−1) to γ0(tj).
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rapid change ↔ slow-to-fast transition
special threshold ↔ fast subsystem bifurcation (⇒ genericity)
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◮ Extension to stochastic systems immediate γǫ → γǫ,σ.

◮ γ0,0 yields B-tipping, γ0,σ N-tipping (→ Ashwin); γǫ,δ perturbations.

◮ Natural: time series correspond to sample paths γǫ,σ.

◮ Extensions to PDEs, DDEs, etc. are possible via paths.



What about Noise? - Stochastic Fast-Slow Systems...

Consider the fast-slow stochastic differential equation

dxs = 1
ǫ
f (xs , ys)ds +

σ√
ǫ
F (xs , ys)dWs ,

dys = g(xs , ys)ds.
(1)

where Ws is standard Brownian motion.
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σ√
ǫ
F (xs , ys)dWs ,

dys = g(xs , ys)ds.
(1)

where Ws is standard Brownian motion.

Suppose (1) has a deterministic attracting slow manifold

Cǫ = {(x , y) ∈ R
m+n : x = hǫ(y) = h0(y) +O(ǫ)}

Theorem (Berglund and Gentz)

Sample paths of (1) stay near Cǫ with high probability.



Towards Early-Warning Signs

(W1) The system recovers slowly from perturbations: slowing down.

(W2) The autocorrelation increases before a transition.

(W3) The variance increases near a critical transition.

(W4) . . .

(W1)-(W3) are related.
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Example: Deterministic fold bifurcation x ′ = −y − x2, y ′ = ǫ.

◮ Slow subsystem ǫ = 0, attracting critical manifold x =
√−y .

◮ Fast subsystem ǫ = 0, parameterized family x ′ = −y − x2.

◮ Variational equation:

X ′ = −2√−yX ⇒ X (t) = X (0)e−2
√
−yt

Slowing down as y → 0−.



Useful Stochasticity - Variance near a Fold

dxt = 1
ǫ
(−yt − x2t ) dt + σ√

ǫ
dWt ,

dyt = 1 dt.
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Figure: (x0, y0) = (0.9,−0.92) [red dot], σ = 0.01, ǫ = 0.01.



Sketch of Proof: Early-Warning for Folds (→ Berglund)

◮ Focus on attracting slow manifold Cǫ = {x = h0(y)}.
◮ Variational equation for linearized process:

dξls =
1

ǫ
(−2h0(ys)ξls)ds +

σ√
ǫ
dWs



Sketch of Proof: Early-Warning for Folds (→ Berglund)

◮ Focus on attracting slow manifold Cǫ = {x = h0(y)}.
◮ Variational equation for linearized process:

dξls =
1

ǫ
(−2h0(ys)ξls)ds +

σ√
ǫ
dWs

◮ Define Xs := σ−2Var(ξls) and “observe”

ǫẊ = −4h0(y)X + 1,
ẏ = 1.

◮ Conclusion (up to leading order)

Var(xs) =
σ2

4
√−y = O

(

1√−y

)

as y → 0− and σ fixed.



Main Result - Overview

Theorem (K. 2011)
Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

◮ Fold, Hopf, (transcritical), (pitchfork)

◮ Cusp, Bautin, Bogdanov-Takens

◮ Gavrilov-Guckenheimer, Hopf-Hopf



Main Result - Overview

Theorem (K. 2011)
Classification of generic critical transitions for all fast subsystem
bifurcations up to codimension two:

◮ Fold, Hopf, (transcritical), (pitchfork)

◮ Cusp, Bautin, Bogdanov-Takens

◮ Gavrilov-Guckenheimer, Hopf-Hopf

The main results are:

1. (Existence:) Conditions on slow flow to get a critical transition.

2. (Scaling:) Leading-order covariance scaling Hǫ(y) for

Cov(xs) = σ2[Hǫ(y)] +O(σ4).

3. ((ǫ, σ)-expansion:) Higher-order calculations for the fold.

4. (Technique:) Covariance estimates without martingales.



Example 1: The Bazykin Predator-Prey System

dx1 =
[

x1 − x1x2
1+y1x1

− 0.01x21

]

dt + σ1√
ǫ
dW (1),

dx2 =
[

−x2 + x1x2
1+y1x1

− y2x
2
2

]

dt + σ2√
ǫ
dW (2),

dy1 = ǫg1(x , y)dt,
dy2 = ǫg2(x , y)dt,
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Figure: Partial bifurcation diagram; ǫ = 0 = σ1 = σ2.
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Figure: Averaged over 50 sample paths (ǫ, σ) = (3× 10−5, 1× 10−3);
Vi = Var(xi (y)) for i ∈ 1, 2; V1 (red) V2 (black).

◮ Theory for Bogdanov-Takens point predicts:

Cov(xs(y)) = σ2

(

O(1/y1) K
K O(1/√−y1)

)

.
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◮ Theory for Bogdanov-Takens point predicts:

Cov(xs(y)) = σ2

(

O(1/y1) K
K O(1/√−y1)

)

.

◮ NOT normal form: hidden scaling law ⇒ “unpredictable”
(O(1/y1) +O(1/

√−y1) = O(1/y1) as y1 → 0−)



Example 2: Epidemics on Adaptive Networks

SIS dynamics on adaptive networks [Gross et al., 2006]:

p

1− p

w

1− w

r

1− r

infect

re-wire

recover

infected

susceptible



A moment closure pair-approximation (labc = lab lbc
b

) yields:

i ′ = p(µ2 − lII − lSS)− ri ,

(lII )
′ = p(µ2 − lII − lSS)

( µ
2
−lII−lSS
1−i

+ 1
)

− 2rlII ,

(lSS)
′ = (r + w)(µ2 − lII − lSS)−

2p(µ
2
−lII−lSS )lSS
1−i

.

where we assume µ = 2 #links
#nodes = 20, r = 0.002 and w = 0.4.
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i ′ = p(µ2 − lII − lSS)− ri ,

(lII )
′ = p(µ2 − lII − lSS)

( µ
2
−lII−lSS
1−i

+ 1
)

− 2rlII ,

(lSS)
′ = (r + w)(µ2 − lII − lSS)−

2p(µ
2
−lII−lSS )lSS
1−i

.

where we assume µ = 2 #links
#nodes = 20, r = 0.002 and w = 0.4.

Often moment-closure works, and sometimes it doesn’t but
certainly there is finite-size noise:

dx1 = 1
ǫ

[

y(µ2 − x2 − x3)− rx1
]

ds + σ1√
ǫ
dW (1),

dx2 = 1
ǫ

[

y(µ2 − x2 − x3)
( µ

2
−x2−x3
1−x1

+ 1
)

− 2rx2

]

ds + σ2√
ǫ
dW (2),

dx3 = 1
ǫ

[

(r + w)(µ2 − x2 − x3)−
2y(µ

2
−x2−x3)x3
1−x1

]

ds + σ3√
ǫ
dW (3),

dy = 1 ds,



Results on Adaptive SIS Epidemics
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◮ Observe theory for scaling law for the transcritical bifurcation
dxs = (xsys − x2s )ds + σdW

Var(xs) = σ2O
(

(ys − ytc)
−1

)

as ys → ytc .

◮ Important: Early-warning sign in the link density only!

◮ Also observe a delay (→ way-in way-out function).



Example 3: ECoG Data and Epileptic Seizures
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Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).
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◮ Scaling law + genericity ⇒ Hopf (→ Terry, U. Sheffield).
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Figure: Avg. ECoG data (blue), seizure (black dashed), scaling law (red).

◮ Scaling law + genericity ⇒ Hopf (→ Terry, U. Sheffield).

◮ Early-warning signs for excitable systems (FitzHugh-Nagumo).

◮ Comparison: neuron (micro), cluster (meso), network (macro).

◮ Network measures based upon wavelet decomposition.



Critical Transitions in (unstructured) Complex Systems
Consider x ∈ R

N , N ≫ 1

dx

dt
= f (x).

At a steady state x∗, we have

f (x∗) = 0, A = Df (x∗) determines stability.
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Critical Transitions in (unstructured) Complex Systems
Consider x ∈ R

N , N ≫ 1

dx

dt
= f (x).

At a steady state x∗, we have

f (x∗) = 0, A = Df (x∗) determines stability.

◮ Large system (→ May) take A a random real symmetric
matrix, use semi-circle law

P(x∗ (un-)stable) =

(

1

2

)N

, P(x∗ saddle) = 1−
(

1

2

)N−1

.

◮ Needs strong assumptions on structure of the matrix A!

◮ Proof of full circular law (→ Tao and Van Vu 2008).

Expected abundance of saddle points in complex systems.



Metastability and Critical Transitions near Saddle Points

Trivial case: planar saddle in R
2 at x = (0, 0) locally

x ′ = Ax ⇒ x(t) = y1(0)e
λs tv1 + y2(0)e

λu tv2.
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If x(0) close to W s(0) then logarithmic distance reduction

ln ‖x(t2)− x(t1)‖ ≈ λst1 + k1.



Example 4: Evolutionary Game on a Network
Agents/nodes play snowdrift game each time step

M =

(

b − c/2 b − c
b 0

)

c=cost, b=benefit.

Re-wire (p), adopt (1− p) based upon performance.
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◮ For near-full cooperation with high re-wiring: saddle point.

◮ Early-warning signs: period blow-up and log-distance.



Example 5: Back to Epidemics
Measles epidemics in cities in the UK between 1944 and 1966.
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Figure: (a) Example time series. (b) ROC(d)-curve (dots, crosses =
different forecast lengths); blue=true instability, red=weak stability.
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Figure: (a) Example time series. (b) ROC(d)-curve (dots, crosses =
different forecast lengths); blue=true instability, red=weak stability.

Test logarithmic distance indicator to estimate λu , threshold d .
Receiver-operator-characteristic curve

rc =
#correct predictions

#events/outbreaks
and rf =

#false positives

#non-events
.



Overview & Conclusions
Mathematical Theory:

◮ Characterization and definition of critical transitions.

◮ Useful noise: proof of scaling laws up to codimension two.

◮ Hidden laws, coarse-grained networks.
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