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O’Keeffe:
Nothing is less real than realism. Details are

confusing. It is only by selection, by elimination, by
emphasis, that we get at the real meaning of
things.

Einstein:
Make everything as simple as possible, but not
simpler.



System
® Many interacting components

® Emergence

® Evolution
\ Math model

® High dimensional
® Multiple levels
® Non-stationary



Models

Individuals interacting according to type, S, and
current environment
Fixed rate of micro dynamics

Emergent macro dynamics: n(S,t)

® Intermittency
® Adaptation
® Evolving network structures

Topology: E.g. degree distribution, connectance
Stability



Non-stationary macro dynamics

Fossil record: Decreasing
extinction rate.

From:

Newman and Sibani, Proc.
Roy. Soc. B. 266, 1593

(1999)

5
. —
p—
- —
o~

—

—_—

—
".J
—_—
. d

p—
-
—
p—
b
—
—_
—
p—
o~

-
. —
-
[
—
—_
. —
—
3




.

- "'

niw

e

Matt Hall




1.( o | 00O
f°°
a. Grassland ' o b. Scotch 1 ¢. Ythan d. Ythan

Broom ' Estuary 1 \ Estuary 2

e. El Verde f | h. Chesapeake

Rain forest . ‘ N ST o Bay

F. Canton Creek ST P gL Stony Stream |
< =095 I ” =096 I 2 =099
0.001 : 00 ‘
) 40

1.000 ¢ VOO (. .\ - X '..'*l_
| - v
! , T Manons | -

) J- S
L ] Island

i. St. Marks . ; k. Little : ‘ ‘ l. Lake

Seagrass ‘ | _ Rock Lake s dal Tahoe

=
2
—e
po
_
=
e
N
—
S’
o
ol
—
=
=]
=
=
—
—
~

* | 5
’”‘ = () ()1\ | [ I*‘ ey ()(){) | e = ()()()

5 10

m. Mirror n. Bridge ¢ - 0. Coachella e p- Skipwith
l.ake Brook lLake ® 1 Valley Pond
r° =096 [ =099 rr =095 | 2 =097
. . 0.010 ° . " . ‘

50 150 ( S 10 15 0 10

# of trophic links

Dunne, Jennifer A. et al. (2002) Proc. Natl. Acad. Sci. USA 99, 12917-12922




Correlated

D=29
D=26
D=19
Binomial, D=29

Degree, k

Figure 1: Degree distributions for the Tangled Nature model simulations. Shown are ensemble
averaged data taken from all networks with diversity, D = {19, 26,29} over 50 simulation runs
of 10° generations each. The exponential forms are highlighted by comparison with a binomial
distribution of D = 29 and equivalent connectance, C'~0.145 to the simulation data of the same
diversity.

From Laird & Jensen, Ecol. Model. In Press
See also Laird & Jensen, EPL, 76, 710 (2006)
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Montoya JM, Sole RV Topological properties of food webs: from real data to
community assembly models, OIKOS 102, 614-622 (2003)

Williams RJ, Berlow EL, Dunne JA, Barabasi AL, Martinez ND Two degrees
of separation in complex food webs, PNAS 99, 12913-12916 (2002)
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Figure 4: Plot of ensemble-averaged mean connectances, < C' > against species diversity. Error
bars represent the standard error. The lower dotted line marks the null system connectance,
C'j = 0.05, which the evolved systems clearly surpass. The overlaid functional form is that given
by Eq.(8) using the correct background connectance, C'; = 0.05 and with a value of, s = 5.5 for
the selection parameter.

From Laird & Jensen, Ecol Compl. 3, 253 (2006)
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Tangled Nature - paradigm

Individuals reproducing in type space

Your success depends on who you are amongst

n(S)= Number of individuals n(S)= Number of individuals




Definition

Individuals S* =(57,585,...8) where S =%l

l

and o =12,.., N(@)
1T
— '/L‘= 3

Dynamics — a time step

() Annihilation
Choose indiv. at random, remove with
probability

Py = const
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@ Reproduction:

» Choose indiv. at random
» Determine

H(S™,1) -NLEJ(SO‘,S)n(S,t)— uw N(t)

S

n(S,f) = occupancy at the location S

¢ o .

Henrik Jeldtoft Jensen Imperial College London



The coupling matrix J(S,S’)

IZ Either consider J(S,S’) to be uncorrelated

M or to vary smoothly through type space

IZ and sparse or dense

16
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H(Sa,t) —> reproduction probability

Smooth function R — [0, 1]

P (S.1) = exp[H (S ,1)]

L1 exp[H (S,1)] = [O’l]

H(S",1)

17
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Intermittency:
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Time evolution of

Distribution of active coupling strengths

Low connectivity

High connectivity

Henrik Jeldtoft Jensen

Paul Anderson
3 I I I I

\O)

p—

<
W

e
~

<
w

<
b

Normalised density of individuals with strength J
o

e
—_

)
1

|
0
|
0
Interaction strength, J

Fig. 3. Interaction distributions. Top: Distribution of interaction
strengths between individuals for 6 = 0.005. Bottom: 0 = 0.25. Inset:
Entire distribution. Solid lines, random; crosses, simulation at ¢ = 500;
dotted lines, simulation at # = 500,000. All plots are normalized so
that their area is one. For high 0, a significant increase in positive
interactions is seen. For low 0, a change 1s seen but for trivial reasons.
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Time evolution of
Distribution of active coupling strengths

Correlated
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Time evolution of

Species abundance distribution

Non Correlated

Henrik Jeldtoft Jensen
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Fig. 5. Species abundance distributions. Species abundance distribu-
tions for the simulations only. Dashed line, 7 = 500; dashed-dotted
line, ¢t = 5000; solid line, t = 500,000. Low 0 on the left, high 0 on the
right. The ecologically realistic log-normal form 1s only seen for high 0.

Low connectivity High connectivity
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Intermittent, non-stationary

Jumping through collective adaptation space: quake driven

Transitions

Fickleness

Fickleness

f(t)

—>

Configuration

Log(t)
Henrik Jeldtoft Jensen




Record dynamics

Distribution of the number of
records during f time steps
independent of the nature of the

fluctuating signal: 0 | 2 345678910 1112 13 14
tl t2 t3
1
P (t) — % The first out of ¢ is the biggest
P(l )(t) _ 1 Two records during £: one at t=1| with prob (m-1)
o)

N (m — 1)t & one at t=m with prob |/t.

t
1 Int
Py (t) = Z (m — 1)t ~ e Two records during ¢

/ log

P, (t) ~ " =e" A S with A =Int Poisson




Record dynamics

= In(ty) — In(k_y) = In(—*

t—1

) exponentially distributed

@ Poisson process in logarithmic time

@ Mean and variance

(Q) < Int and (Q — (Q))*) < Int

@ Rate of records constant as function of In(t)

@ Rate decreases 1/t

@ Non-stationary “1/f fluctuations”



Record dynamics:

Tangled Nature

Cumulative distribution of
transitions

log(t, )-log(t,  )=x

Paul Anderson



Record dynamics

® Spin glasses (Internal energy)

® Relaxation of magnetic field in superconductors
(Flux lines entering the sample)

® Hungry ants (Exit times)

® Earthquakes (Omori law)
.



Stability

Tangled Nature -



Population size
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Fig. 3. The mean population (averaged over an ensemble of 1000 runs) increases
Dominic Jones logarithmically in time.




Mutual Information
Average Mutual Information

10° 5

Time (generations) Time (generations)
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© Origin of adaptation?  Effect of mutation
Let H =J —uwN, then the effect of a mutation 1s

H—H+d8 J.

— Symmetric fluctuations prob(d J) = prob(=d J)

leads to asymmetri
Posr poﬁ(Ho +0 J) = piy >
convex Prin — poﬁ‘ (HO -0 ‘7)

H(S",1) P




Origin of adaptation?

Dominic Jones
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Macro dvhamics - the transitions

Graph courtesy to
Matt Hall

New q-ESS is
established.
d,~9-10
from root position

L——%b = 4

Root é —
500 identical Tirpe
individuals

32
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Stability of the meta-stable configurations

Consider simple adiabatic approximation.

Stability of genotype S assuming: (S, ¢) independent of ¢ for S" = S

n(S,t)
N(t)

Consider  91(S,1)
ot

=|p,4 (n(S,0),1) = Pyy = Pt ]

Statienary solution () corresponds to p,;, (1 (S)) = iy = Py = 0

Fluctuation

5 = n(S,t) - ny(S)

Fulfil Mo s
NO

with 4 = ~(1- p,, )(p,p)Pe" (=

+u)<0 I.e.stability
N W)

33
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Transitions between meta-stable configurations caused by
co-evolutionary collective fluctuations

n(S',t) needs to be considered

dependent of ¢ for S' = S

34
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The error threshold
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Figure 3. Occupation plots for different values of the mutation rate. The y-axis refers to an
arbitrary enumeration of all positions in genotype space. Occupied positions are indicated by a

black dot. Results shown are for py;; = 0.2, & = 1/1000-1In (]—;ﬁﬂ) and C = 0.05. (a) Mutation

rate: pmut = 0.009. The initial transient is extended. (b) Mutation rate: pmu = 0.00925. The
initial transient has the same extension of any q-ESS state. (c¢) Mutation rate: pmu = 0.0095.
The transition between two q-ESS state are extended. (d) Mutation rate: pp, = 0.01. The
initial transient is very extended. (e¢) Mutation rate pmy = 0.0104. The initial transient and any
transitions are extensively hectic. (f) Mutation rate pmye = 0.0108. There is no q-ESS state.

Collobiano, Christensen and Jensen, J Phys A 36, 883, (2003)

Henrik Jeldtoft Jensen

Too large mutation rate prevents gEES to

establish.

Mean field analysis:

E Ang(E)
OO +t P3

7
— 0  2po(1l- po)
%260 o
C N ) -1 (1- po)?

Number of individuals on site a

Ang = +1p2 + (=1)(1 = Py)?
U

na(t + 1) = na(t) + —nel)

> o (1)

Po = (1 . pmut)L

= 2pp — 1

pors(t)(2p0 — 1) — priu

35
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Assume steady state, time average and use

Ng(t)

> (1)

Na(t)

>0 N (1)

Porr(t)) = M Dorr(t))

<

then we obtain
Dy = Pkill
i 2(1 _pmut)L 1

for the on average off-spring probability for those site which are
able to counterbalance the kill by off-spring production.
Leading to a corresponding weight function H for the wild-types in

the g-ESS

Pkill
(1 T pmut)L — 1 — priu

p
H, = hrl(1 —qp )= ln(2
q

In the hectic states we assume the a simple balance between reproduction and killing

Poff = Pkill

36

Pkill )

or Hhectic - 1n(
1 — priu



A hectic transition can only develop into a g-ESS if hectic peak overlaps with g-EES

peak

Prill

g 2 - H -zlnM H—-:lnp—q:ln
X I hectic (1—;01%'”) /?“ Q_ (1_pq) (

0

_80 6.0 ' —4.0 T 20 T 00
H Hhectic

Figure 2. The probability density function of the weight function H = In (1—_117)37) during a g-ESS

state of a simulation (solid line) and during a transition between two g-ESS states (dashed line).
During a g-ESS state (solid line) positions range in two sets: unfit positions, for which the weight
function is lower than —3.0 and fit positions, for which the fitness is greater then the average value

(H) = In (%) ~ —1.38 = Hpeuic, indicated by a vertical dotted line. During a transition
1

(dashed line) the fitness of all positions is normally distributed around Hpecic Where all positions
reproduce (on average) at the same rate, equal to the killing rate. Note the support of the weight
function in the hectic phase exceeds H,, ensuring that the positions in genotype space are able to
fulfil the gq-ESS balance equation (13). The parameters (for precise definitions, see [14, 15]) are

prit = 0.2, 2 = 1/1000 - In (%) ~ 0.0014, C = 10.0 and pyy = 0.008.

Hhectz'c + ak > Hq

\ We assume width of hectic peak proportional
to with of distribution of J given by k

2(1 — prut)* — 1 —pkill)

37
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Figure 4. The computational determination of the error threshold. The loss of q-ESS states occurs
for mutation rates above the solid circles. The data, compared with the theoretically predicted
error threshold pt . (solid line), indicate a value of @ = 0.07, see equation (18). The parameters
of the simulations are L = 20, u = 0.005 and pgiy = 0.2.

a is used as fitting parameter
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In progress

Dynamical systems
approach

Mean field

\ Fixed point analysis

\ Stability matrix



Economics

David Robalino

Stochastic dynamics



correlated

Consider S to label economical entities, say companies of capital C(S,t)

exp|H (S,1)] Replacement
1 4+ exp[H(S,1)]

Define Pyain(S,t) =

n(S,t) — C(S,t)

let
JT(S) =>_g J(8,8)0[J(S,S")]
J7(8) = 2_s J(S,S")0[-I(S,8)]
With probability  Pyain(S,%) : C(S,t+1)=C(S,t)( J(S)

L+¢ JTot(S))

7~ (S)

Wlth probability 1 — Pgain(sat) . C(S, t _|_ ]-) — 0(87 t)(l _|_ Cl JTOt(S))




Volume as GDP

David Robalino,
MSci Thesis Figure 12: Model GDP (Iterations x10).




Growth rate

GDP Growth

Figure 13: US GDP growth 1929-2010 corrected for infration (Source Bureau of Economic Analysis).

David Robalino,
MSci Thesis

Figure 14: Model GDP growth (Iterations x10).




Size of companies

Carrpanies capltal histogram att— 4000

100D

Figure 15: US firms by number of employees 2007 (Source U.S. Census Bureau).

400

Figure of companies capital

David Robalino,
MNEREESR




Company age

Corrpanss age histearam akt= 4000

Figure 18: US firms by age in 2007 (Last 4 cols are averages; Source U.S. Census Bureau).

200 1000 1500 2000 2500 3000 3500 4000

DaVid RO balino’ Figure 19: Model Companies by age at t=4000.
MSci Thesis




Number of companies

Figure 22: US Number of Firms (Source U.S. Census Bureau).

Nun OfF Cor ey -
Number OF Caompanics Humer L - mRAanes

David Robalino,
MSci Thesis

‘igure 23: Model number of companies (Iterations x10).



Economics

Xiaoye Chen

Deterministic dynamics
with
stochastic node addition



Simple dynamical network model of N nodes and k edges:

® Each node i = one company possessing:

B C; = Cash - liquidity

B M; = Material - goods or services

B P; = position in “production chain”

BA =C + M(Pit+l) = assets

B Ei = Maximum fraction of cash it uses in trade each
turn. Represents the amount of risk a company is
willing to take.

M |; = in degree

B O; = out degree

Summer project by Xiaoye Chen



® Each link aj; = | represents flow direction of
cash between two companies

Cash in
flow

\,
\
N ‘

Money source N Material

flow

Money sink
D ———
Position

Figure 1: Schematic of network, showing the diredtion of links.




nodes are created and disappear

|.Initially No nodes. And K=Nom edges

2. New companies:
-> Select company preferentially according to assets.

New subsidiary created by transferring |/2 the assets of

mother company.
-> New company is linked to mother company + preferential

—
=)
V)
S

-
U
S
»v» attachment according to assets.

3. Bankruptcy
-> A company with negative cash is bankrupt. It is merged with

another company selected preferentially on cash.
The cash of the company is decreased accordingly.
The bankrupt is removed from the system.



| . Fixed cash payment: running cost
2. Trade with adjacent companies i & j:

Tij = min{GE/O;, M;(P+1)/1;}

3. Cash update of company i:

wing the diredtion of links

()T = (C))' =) ayTy;+ Y ajTj; — PAYMENT

J J
Cash spent Cash gained
buying materials selling materials

4. Materials update:

(M;)"

1

(M)' + ) ayTi/(Pj+1) = > a;iT;/(Pi+1)

J J



Before each exchange/trading round
a source and a sink is added.
They are linked to the m=4 nodes of most extreme position.

Cash in
flow

Material
in
flow

Money source [ a2 T e e

Money sink
<—

Position

Figure 1: Schematic of network, showing the diredtion of links.

These nodes are removed again after each exchange round.



Fluctuations and perturbation

2000 4000 6000 8000 10000 12000 14000 16000 18000
Time




Size distribution of spontaneous “crashes”

ey

5
I

¥o!

S -
-

s
(=]
o

3

Size of avalanche (N




Spread in degreed decreases robustness
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Figure 4: Plot of Robustness against standard deviation of Degree of 500 runs. Shows that
increase in diversity of degree reduce robustness.




Spread in risk willingness increases robustness
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Figure 5: Plot of Robustness against standard deviation of Exchange ratio of 500 runs. Shows
that increase in diversity of exchange ratio increases robustness.




Summary + Conclusion

® Multi-level dynamics
intermittency at macro-level

® Non-stationary
collective adaptation

® Transition times found to follow
record statistics
not always but often
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Networks

Web sites: www.ma.ic.ac.uk/~hjjens
www3.imperial.ac.uk/complexityandnetworks
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