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Follows the combined O’Keeffe-Einstein principle

O’Keeffe: 
Nothing is less real than realism. Details are 
confusing. It is only by selection, by elimination, by 
emphasis, that we get at the real meaning of 
things.

Einstein:
Make everything as simple as possible, but not 
simpler.



The essential characteristics of a complex 
system 

System
Many interacting components
Emergence
Evolution

Math model
High dimensional 
Multiple levels
Non-stationary 



Models
Individuals interacting according to type, S, and 
current environment
Fixed rate of micro dynamics
Emergent macro dynamics: n(S,t )  

Intermittency
Adaptation
Evolving network structures

Topology: E.g. degree distribution, connectance 
Stability 



☻Non-stationary macro dynamics                                                  

Fossil record: Decreasing 
extinction rate.

From:

Newman and Sibani, Proc. 
Roy. Soc. B. 266, 1593 

(1999) 



                                                    
 # of transitions in window
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Intermittency & decreasing extinction rate
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The evolved degree distribution  
 Correlated
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Figure 1: Degree distributions for the Tangled Nature model simulations. Shown are ensemble
averaged data taken from all networks with diversity, D = {19, 26, 29} over 50 simulation runs
of 106 generations each. The exponential forms are highlighted by comparison with a binomial
distribution of D = 29 and equivalent connectance, C!0.145 to the simulation data of the same
diversity.

a greater degree of resilience to random species extinctions. The stability arguments
are certainly valid but it may actually be the case that the distributional forms appear
as a consequence of the internal dynamics. When we perform simulations with random
inheritance the degree distributions revert back to binomial form. This implies that
the correlations are an essential requirement for constructing our exponential networks.
To support this theory we shall now present a network model that produces a range of
non-binomial distributions through correlated dynamics, without any form of selection.

4 Network evolution model

We consider a system with a fixed number of species, D, each defined by generalised
interactions with subsets of the other system members. Self-connections are excluded here
and as the interaction types are not explicitly considered, the connections are regarded
as undirected. This represents a simplified species interaction network that, in principle,
embodies interaction types such as mutualism in addition to the usual food-web based
predator-prey relationships. As a result, the networks we consider here are not expected to
assume non-cyclic tree structures nor the stratified trophic levels associated with resource
flow.

We now initiate dynamics representing extinction and correlated speciation with the
constraint of an invariant species number. Newly speciated members are seen to super-
sede extinct members without any implication of cause nor effect. This invariance of
the species number can be treated as a consequence of a carrying capacity and whilst
simplistic is a reasonable approximation to an ecosystem. At a timestep, we randomly
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Exponential becomes 1/k in limit of vanishing mutation rate

From Laird & Jensen, Ecol. Model. In Press
See also Laird & Jensen, EPL, 76, 710 (2006)



Connectance  
4.3. Network properties CHAPTER 4.

Figure 4.11: Field data showing connectance versus diversity for a variety of eco-
logical systems. Data is taken from articles by Montoya et al [18] and Williams et
al [19] mostly representing the same ecosystems. The connectances of the original
articles have been doubled to make their measures consistent with the connectance
definition in this thesis (see text).

4.3.2 May-wigner criterion for ecosystem stability

It was a commonly held view that the stability of an ecological network was en-

hanced by increased complexity. There are many notions of complexity [73], but

here we primarily mean the connectance. The perception was that the larger num-

ber of interaction paths between species acts to dampen any natural fluctuations or

environmentally-sourced perturbations. This seemed reasonable and is intuitive if we

think of the concurrent effects of the feedback loops as being averaged out. This

intuition can be misleading though. If we consider, as an approximation, that the

interaction effects occur as random normally distributed fluctuations each identically

distributed and independent then the dampening viewpoint is inappropriate. The

volatility of these fluctuations is measured by the standard deviation of the normal

distribution. As the summed effects of multiple sources of the fluctuations leads to

a variance which is a sum of the individual variances we have an overall standard
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Figure 4: Plot of ensemble-averaged mean connectances, < C > against species diversity. Error
bars represent the standard error. The lower dotted line marks the null system connectance,
CJ = 0.05, which the evolved systems clearly surpass. The overlaid functional form is that given
by Eq.(8) using the correct background connectance, CJ = 0.05 and with a value of, s = 5.5 for
the selection parameter.

underlying point remains valid. Selection is driving the system to higher edge numbers
and equivalently higher connectances. But as we increase the number of nodes in our
subnetwork the probability of achieving a given connectance diminishes, resulting in a
decreasing functional form. If we compare Eq.(8) to the ensemble data acquired from the
Tangled Nature model we see that the form is qualitatively appropriate, Fig.(4). With
a background connectance of CJ = 0.05, the value used in the simulations, the fit is
good but not ideal. The simulation networks presented exponential-like degree distribu-
tions though so a formulation based upon binomial networks could be responsible for this
deviation at higher diversities.

6 Discussion

We have shown here that the exponential degree distributions of the correlated Tangled
Nature model may be attributed to dynamical rather than selective processes. Our
network evolution model dynamics generate distributions ranging from binomial through
exponential to power-law which encompasses the Tangled Nature model results and many
of the forms observed in real ecological systems. In the case of the power law distribution
our exponent γ!1 compares well with the low values associated with ecological networks
that take power law form. The network dynamics are appropriate given the type of system
but the model is idealised and ignores other determining factors, such as migration. The
random introduction of species acts to decorrelate the system so future work would need
to take account of such wider considerations.

Several theories have been proposed to explain the inverse relationship between con-
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The evolved connectance  
 Correlated
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Tangled Nature - paradigm

•  Individuals reproducing in type space

•  Your success depends on who you are amongst

Type - 
S

Type - 
S

n(S)= Number of individuals n(S)= Number of individuals 

SS



Definition
 
 Individuals      

   , where   

     and   

                                                                                      L= 3     
       Dynamics – a time step

            Annihilation
             Choose indiv. at random, remove with
             probability  

Henrik Jeldtoft Jensen                                                 Imperial College London
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Reproduction:

   ►  Choose indiv. at random
  ►  Determine
                                            
 

                                              

occupancy at the location    

Henrik Jeldtoft Jensen                                                 Imperial College London
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The coupling matrix J(S,S’)

  Either consider J(S,S’) to be uncorrelated 

  or to vary smoothly through type space
  

  and sparse or dense  

How Tangled is Nature? A Model of Evolutionary Ecology
Paul Anderson and Henrik Jeldtoft Jensen

Department of Mathematics, Imperial College London, South Kensington campus, London SW7 2AZ, United Kingdom

Introduction

An important characteristic of an ecosystem is the set of all interactions
between the various individuals. Organisms may influence each other in
many ways and it is difficult to monitor and quantify most relationships
except for the most obvious. Here, we look at the effect of different levels
of connectivity between species within the framework of a simple model of
ecosystem assembly and evolution: the Tangled Nature model [1, 2, 3].
All work presented in this poster appears in [4]. We compare the early
and late time connectivity and cluster properties of ecosystems evolving
in two differently connected spaces: genotypes influence either a small or
a large number of other genotypes.

The Model and Methods

↪→An individual is represented by a vector Sα = (Sα
1 , Sα

2 , ..., Sα
L) in the

genotype space S, where the “genes” Sα
i may take the values ±1, i.e.

Sα denotes a corner of the L-dimensional hypercube. We take L = 20.
The evolutionary dynamics determines whether a genotype is occupied
or not. The total number of occupied sites is called the diversity.

↪→ For simplicity, an individual is removed from the system with a con-
stant probability pkill per time step.

↪→The probability that an individual reproduces, poff , is controlled by
a weight function H(Sα, t) related to its interactions with other sites.
Reproduction is asexual and mimics fission: two individuals are pro-
duced with the parent being killed.

↪→ Each gene of the offspring has a fixed probability of mutating per time
step, pmut. 500 individuals are placed randomly on the network to
start the simulation.

↪→A time step consists of one annihilation attempt followed by one re-
production attempt. One generation consists of N(t)/pkill time steps,
which is the average time taken to kill all currently living individuals.
Generation time is used throughout.

We are interested in the effect of changing the background connectivity,
θ. This determines the probability that any two sites are interacting. If
they are, then the strength of the interaction is given by Jab = J(Sa,Sb),
a number between −1 and +1. All connections are calculated at t = 0.
Thus the network properties at any given time depend on which sites
are occupied. Interactions between other genotypes can be explored by
mutations away from the current site.

Our main results are explained in the figures. We consider two val-
ues for θ: 1

200 (low θ) and 1
4 (high θ), and three time values: t = 500

(primal time), t = 5000 (early time) and t = 500000 (late time). An
ensemble of 500 runs for low and high θ were run on a cluster of under-
graduate machines left running overnight and at weekends.

The degree and strength distribution plots below show results from the
simulation and the null hypothesis. For this, the number of individuals
at a given time was read in from the simulation and these were then
thrown down at random on to the network with the constraint that the
diversity was the same. This provides a check on whether any trends are
real or just illusions created by an expanding diversity.

Other features of the Tangled Nature model include a punctuated dy-
namic as shown below — where the network spends long periods in a
so-called quasi-Evolutionary Stable Strategy (q-ESS) terminated by hec-
tic rearrangements of genotype space until a new q-ESS is found — and
the appearance of quasi-species [5].
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Conclusion

Our most important results are that non-trivial temporal evolution of the
network properties of an ecosystem and a realistic form for the species
abundance are only seen if the genotype space is well connected. This
is interpreted here as meaning that an occupied genotype is likely to
interact with many other (potentially occupied) genotypes. No evolution
at the level of ecosystems can occur in a world where most genotypes
have very little influence on other organisms. It is easy to overlook the
importance of the entire network of interactions when dealing with small
communities of organisms on a macroscopic scale, but easier to visualise
with colonies of billions of bacteria.

From our results, it is tempting to speculate that the observed degree
of diversity, complexity and adaptation of living matter may be directly
related to a high level of interdependence between organisms. Hence,
Darwin’s entangled bank may be a particularly useful image to keep in
mind when studying the evolution of large collections of individuals.
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Results

unoccupied site.
Links are deactivated

positive interaction

negative interaction

Not all sites are occupied. There are several isolated species, in the sense that
they are not interacting with anyone. Most sites are in two-clusters. These act as
building blocks for larger groups. They are usually plugged together by mutants.
Large clusters do not persist and the mutually positive two-clusters are the only
long-living structures. There is no tendency to form larger clusters at later times.
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Null model
Simulation

Degree Distribution for Low Species Connectivity

The degree distribution shifts out at later
times due to an increased diversity but does
not evolve away from the null model since iso-
lated sites are over represented in the null case.
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Null model at t=500000
Simulation at t=500
Simulation at t=500000

Strength of Interactions for Low Species Connectivity

A change from the null model is seen, but
this is not due to any fundamental change in
cluster structure but rather the eventual dom-
inance of mutually positive two-clusters.
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Species Abundance Distribution for Low Species Connectivity

The species abundance distribution (SAD) is skewed to the right at later times as
the heavily populated two-clusters flourish. Thus patches of clusters do not

produce the log-normal form expected from field studies.

Low connectivity → unrealistic SAD

Not all sites are occupied. Notice how all nodes are connected in one giant cluster
and there are no isolated species. With such a high background connectivity, all
occupied sites belong to one cluster at all time steps, although an individual species
may only be interacting with a few other genotypes. In the simulation, the nodes
sit on the corners of a 220 dimensional hypercube.
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Degree Distribution for High Species Connectivity

The degree distribution shifts out at later
times due to an increased diversity but, as for
the low connectivity case, does not evolve away
from the null model.
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Strength of Interactions for High Species Connectivity
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A definite shift towards more positive interac-
tions occurs. This is what drives the increas-
ing diversity and is non-trivial since all sites
are tangled together in one giant cluster.
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Species Abundance Distribution for High Species Connectivity

The species abundance distribution (SAD) evolves and becomes a closer fit to a
log-normal at later times. Thus the single cluster of highly interdependent

genotypes produces a similar SAD to those observed by ecologists.

High connectivity → realistic SAD
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Smooth function 
                                            

R→ [0, 1]
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Intermittency: 

                                                    
 # of transitions in window Matt 

1 generation = 
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Time evolution of
    Distribution of active coupling strengths

    Non correlated

Comparisons with this will reveal whether the network is
really evolving, or the results are just by-products of
increasing diversity. Simulated data is always shown as a
dotted line and random data as a continuous line.

3. Results

3.1. Connectivity

We study the temporal evolution of the network
connectivity in the space of occupied positions for
different y values. Note that the hard-wired configura-

tion of couplings JðSa;SbÞ between all 220 positions in
genotype space is determined at t ¼ 0 and remains
constant. The network of occupied sites will nevertheless
change with time and so the network properties at any
given time depend on which genotypes are inhabited.
Interactions between other sites can be explored by
mutations away from the occupied sites. The degree
distributions in Fig. 2 show the number of genotypes
having x active interactions.

The leftmost pair of curves represents primal time, the
next, early time and the rightmost late time. Considering
only the simulation data for now, a clear shift to a
greater number of active links is seen in the high y case,
whilst a slight change occurs for low y: The difference
between early and late time is bigger than that between
early and primal time. The degree of a site is equal to the
number of direct interactions it has with all other
occupied sites. This explains why any particular site in
the low y runs only has at most nine and usually only
one or two direct interactions. The data is summed up
over the entire ensemble.

How much of this shift is due to a genuine change in
network connectivity? For high y; the null model data
shows that there is very little difference between evolving
the network and throwing individuals down randomly.
Low y appears to show a change. However, any site that
does not interact with any others will die very quickly
in a simulation. If for any instant in time geno-
type positions are chosen by chance, such a low
connectivity will give a disproportionate number of
isolated genomes that would be forbidden by the
dynamics. There is no fair way to simulate this effect,
but it can be seen that the differences between the time
curves in the random and simulated runs is similar and
thus the network connectivity does not evolve for either
value of y:
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Fig. 2. Degree histograms. Top: Degree histogram for y ¼ 0:005:
Bottom: y ¼ 0:25: Solid lines, random; dotted lines, simulation. From
the left, the pairs of curves are for t ¼ 500; 5000 and 500,000. At later
times, the number of active links increases for both the simulation and
random data.
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Fig. 3. Interaction distributions. Top: Distribution of interaction
strengths between individuals for y ¼ 0:005: Bottom: y ¼ 0:25: Inset:
Entire distribution. Solid lines, random; crosses, simulation at t ¼ 500;
dotted lines, simulation at t ¼ 500; 000: All plots are normalized so
that their area is one. For high y; a significant increase in positive
interactions is seen. For low y; a change is seen but for trivial reasons.
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Fig. 4. Maximum cluster size. Maximum cluster size across all
realisations for y ¼ 0:005: Solid line, random; dotted line, simulation.
Clusters produced by the simulation are larger than those produced in
a history-independent network.

P.E. Anderson, H.J. Jensen / Journal of Theoretical Biology 232 (2005) 551–558554

Low connectivity

High connectivity
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Time evolution of
    Distribution of active coupling strengths

    Correlated

Simon Laird  
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High connectivity

20



  

 

Time evolution of
    Species abundance distribution  

    Non Correlated

              Low connectivity                High connectivity
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Complex dynamics:
Intermittent, non-stationary

Jumping through collective adaptation space: quake driven 

Transitions

   

Log(t)

f(t)



Record dynamics    

Distribution of the number of 
records during t time steps 
independent of the nature of the 
fluctuating signal: 0    1    2    3  4   5   6  7   8  9  10   11  12   13    14

P1(t) =
1
t

The first out of t is the biggest

P(1,m)(t) =
1

(m− 1)t
Two records during t: one at t=1 with prob (m-1) 
& one at t=m with prob 1/t.

Two records during t 
⇓

Pn(t) ≈ (ln t)n−1

(n− 1)!
1
t

= e−λ
λn−1

(n− 1)!

⇓
with λ = ln t

log 
Poisson

P2(t) =
t∑

m=2

1
(m− 1)t

≈ ln t

t



 Poisson process in logarithmic time

 Mean and variance

     

  Rate of records constant as function of ln(t)

  Rate decreases 

  Non-stationary “1/f fluctuations”

〈Q〉 ∝ ln t and 〈(Q− 〈Q〉)2〉 ∝ ln t

τ = ln(tk)− ln(kk−1) = ln(
tk

tk−1
) exponentially distributed

Record dynamics    

∝ 1/t



Record dynamics:

       

   

              

Tangled Nature
  Cumulative distribution of
  transitions
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Record dynamics    

Spin glasses (Internal energy)

Relaxation of magnetic field in superconductors 
(Flux lines entering the sample)

Hungry ants (Exit times)

Earthquakes (Omori law)



Stability
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Dynamics - correlations  

I =
∑

J1,J2

P (J1, J2) log[
P (J1, J2)
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Origin of adaptation?    
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Macro dynamics - the transitions
Non correlated

   

Graph courtesy to 
Matt Hall
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decease. The fitness poff ðSa; tÞ of individuals at a
position Sa depends on the occupancy n(Sb, t) of
all the sites Sb with which site Sa is connected
through couplings Jab. Accordingly, a small
perturbation in the occupancy at one position
is able to disturb the balance between poff ðS; tÞ
and pkill on connected sites. In this way, an
imbalance at one site can spread as a chain
reaction through the system, possibly affecting a
global reconfiguration of the genotypical com-
position of the population.

Dynamical Behaviour

We consider two different types of popula-
tions: (1) a purely asexual population and (2) a
purely sexual population.

ASEXUAL REPRODUCTION

In this subsection, we discuss the model when
all reproduction is assumed to be asexual.

INITIATION

Let us consider the initiation of the model.
First, we place the entire population N(0) at a
randomly chosen location S* in genome space.
The H-function in eqn (2) will be given by
H(S*,0)=#mN(0) since n(S)=0 for SaS* and
J(S*, S*)=0. If no mutations can occur the
population will remain confined at the location
S* and the size of the population n(S*, t) will
according to eqn (4) approach the value

N$ ¼
1

m
ln

1# pkill

pkill

! "

:

Mutations do occur, however, and the popula-
tion will migrate away from the original location
S* into the surrounding region of genome space.
In Fig. 2, we show a cladogram indicating the
evolution of the first 110 generations. During
this initial period, the newly invaded positions
are only occupied for a few generations (in-
dicated by the short horizontal lines in Fig. 2).
After this period of rapid changes, a relatively
stable configuration is achieved, and the occu-
pied positions to the right in Fig. 2 indicate that
the system has entered its first q-ESS.

We have also studied simulations started out
from an initial population spread out over many
randomly chosen positions in genome space.
Most of these initially occupied positions rapidly
become extinct. In this way, the diversity in
genome space passes through a ‘‘bottleneck’’
before the population starts to migrate out into
genome space from one or a few positions which
were able to pass through the bottleneck. From
then on, the evolution of the ecology behaves in
the same way as when started out from one
single position in genome space.

LONG TIME BEHAVIOUR

Now, we turn to a discussion of the nature of
the long time dynamics of the model. The model
consists of a variable number of co-evolving
individuals all subject to the same physical
environment. An individual’s ability to thrive

Fig. 2. The initial diversification from a single position
in genome space. The system is initialized at time t=0 with
500 identical individuals and allowed to develop autono-
mously. Time is plotted horizontally. Similar to ordinary
cladograms different genotypes are located at different
vertical positions. Vertical lines represent parentages.
Horizontal lines starts at the time a genotype is created
and stops when the genotype becomes extinct. The system
mutates away from the initial location, which becomes
extinct relatively quickly. After 34 branchings the system
finds a stable configuration and enters the first q-ESS (see
Figs 3 and 4).
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Consider simple adiabatic approximation. 

       Stability of genotype S assuming:

Consider

Stationary solution

Fluctuation     

Fulfil 

                                                                                               i.e. stability

Stability of the meta-stable configurations

   

              Henrik Jeldtoft Jensen                                                 Imperial College London
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Transitions between meta-stable configurations caused by 
co-evolutionary collective fluctuations

 

Henrik Jeldtoft Jensen                                                 Imperial College London
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The error threshold

 

Henrik Jeldtoft Jensen                                                 Imperial College London

Too large mutation rate prevents qEES to 
establish.

Mean field analysis:

Collobiano, Christensen and Jensen, J Phys A 36, 883, (2003)

na(t + 1) = na(t) +
na(t)

∑′
a na′(t)

[pa
off (t)(2p0 − 1)− pkill]

Number of individuals on site a 

∆na = +1p2
o + (−1)(1− P0)2 = 2p0 − 1

⇓

p0 = (1− pmut)L
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Assume steady state, time average and use

〈 na(t)
∑′

a na′(t)
pa

off (t)〉 = 〈 na(t)
∑′

a na′(t)
〉〈pa

off (t)〉

then we obtain

pq =
pkill

2(1− pmut)L − 1
for the on average off-spring probability for those site which are 
able to counterbalance the kill by off-spring production. 
Leading to a corresponding weight function H for the wild-types in 
the q-ESS
 
Hq = ln(

pq

1− pq
) = ln(

pkill

2(1− pmut)L − 1− pkill
)

In the hectic states we assume the a simple balance between reproduction and killing 

poff = pkill

or Hhectic = ln(
pkill

1− pkill
)
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Hq = ln(
pq

1− pq
) = ln(

pkill

2(1− pmut)L − 1− pkill
)Hhectic = ln(

pkill

1− pkill
)

A hectic transition can only develop into a q-ESS if hectic peak overlaps with q-EES 
peak

Hhectic + αk ≥ Hq
We assume width of hectic peak proportional 
to with of distribution of J given by k
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α is used as fitting parameter

q-ESS region

No q-ESS region

=1/k
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Dynamical systems 
approach
 Mean field

  
        Fixed point analysis
       
                 Stability matrix

In progress



David Robalino

Stochastic dynamics

Economics



Use correlated J(S1,S2)
Consider S to label economical entities, say companies of capital C(S,t)

Dynamics:
Define Pgain(S, t) =

exp[H(S, t)]
1 + exp[H(S, t)]

With probability

let
J+(S) =

∑
S′ J(S,S′)θ[J(S,S′)]

J−(S) =
∑

S′ J(S,S′)θ[−J(S,S′)]

C(S, t + 1) = C(S, t)(1 + cg
J+(S)
JTot(S)

)

C(S, t + 1) = C(S, t)(1 + cl
J−(S)
JTot(S)

)With probability 1− Pgain(S, t)

Pgain(S, t) :

:

n(S, t)→ C(S, t)

Replacement



Comparison between data and model:
Volume as GDP

In model

GDP(t) =
∑

S

C(S, t)

David Robalino, 
MSci Thesis



Comparison between data and model:
Growth rate

David Robalino, 
MSci Thesis



Comparison between data and model:
Size of companies

David Robalino, 
MSci Thesis



Comparison between data and model:
Company age

David Robalino, 
MSci Thesis



Comparison between data and model:
Number of companies

David Robalino, 
MSci Thesis



Deterministic dynamics 
with 

stochastic node addition

Xiaoye Chen

Economics



Robustness versus diversity

Simple dynamical network model of N nodes and k edges:

 Each node i = one company possessing:
 Ci = Cash - liquidity
 Mi = Material - goods or services
 Pi = position in “production chain”
 Ai = Ci + Mi(Pi+1) = assets
 Ei = Maximum fraction of cash it uses in trade each

                                                                                                turn. Represents the amount of risk a company is
                       willing to take.

 Ii = in degree
 Oi = out degree

.

Summer project by Xiaoye Chen



 Each link aij = 1 represents flow direction of 
                      cash between two companies

Cash in 
flow

Material 
in 

flow

Money source

Money sink



Dynamics: nodes are created and disappear

1.Initially No nodes. And K=N0m edges 

2. New companies:
    -> Select company preferentially according to assets. 
        New subsidiary created by transferring 1/2 the assets of
        mother company. 

    -> New company is linked to mother company + preferential
       attachment according to assets.

3. Bankruptcy 
     -> A company with negative cash is bankrupt. It is merged with 
        another company selected preferentially on cash.  
        The cash of the company is decreased accordingly.
        The bankrupt is removed from the system.

st
oc

ha
st

ic



Time step

1. Fixed cash payment: running cost
2. Trade with adjacent companies i & j:

     Tij = min{CiEi/Oi , Mj(Pj+1)/Ij}

3. Cash update of company i:

4. Materials update:

 

(ci)t+1 = (Ci)t −
∑

j

aijTij +
∑

j

ajiTji − PAYMENT

Cash spent 
buying materials

Cash gained
selling materials

(Mi)t+1 = (Mi)t +
∑

j

aijTij/(Pj + 1)−
∑

j

ajiTji/(Pi + 1)



Source and sink

Before each exchange/trading round 
a source and a sink is added.
They are linked to the m=4 nodes of most extreme position.

These nodes are removed again after each exchange round.

Material 
in 

flow

Money source

Money sink

Cash in 
flow



Fluctuations and perturbation
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Size distribution of spontaneous “crashes”



Spread in degreed decreases robustness



Spread in risk willingness increases robustness



Summary + Conclusion

Multi-level dynamics 
             intermittency at macro-level

Non-stationary  
             collective adaptation
 

Transition times found to follow 
record statistics 

              not always but often
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Thank you
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