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THE PROBLEM:  

 

Early prediction of critical transitions in natural systems   

THE WAY OF SOLUTION: 

 

1. Construction of parameterized non-autonomous model  

of an evolution operator by virtue of  

a direct distillation of the observed time series 

2. Analysis of the model behavior outside observed time interval 
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OUTLINE:  

 

• Global reconstruction of non-autonomous dynamical systems  

from time series:  

very brief introduction  

(Takens theorems, evolution operator form, non-stationarity & long-

term behaviour prediction, necessity of Bayesian approach) 

  

• Damnation of the dimensionality  

 

• Low-dimensional stochastic reconstruction: description and 

demonstration of predictive abilities 

 

• Optimal low-dimensional stochastic models:  

Bayesian evidence as a cost function for selection of structural 

parameter  values 
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2. Choice of Poincare section  

k k k k E
Y(t )={y(t ), y(t + Δt), ..., y(t +(d -1)Δt)}

( )U nt

11(( , ( )) )) (   
n n n

t tUQU t

Distillation of the model operator from observed time series  

1. Reconstruction  of phase trajectory  (Takens, 1981) 

 

                                                                      , 

3. Approximation of Poincare map  

by a parameterized non-autonomous 

model  

 

 1 1 


n n n
U( t ) Q(U( t ), μ( t ))

E s
d 2d 1 
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Distillation of the model operator from observed time series  

4. Unavoidable measurement noise        : 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical description of the 

model parameters via 

posterior Probability Density 

Function (PDF): Bayesian 

approach  

Probabilistic analysis of 

future model behaviour:   

Markov Chain Monte-Carlo 

(MCMC) technique 

t t tx = u +

t
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5. General configuration of the evolution operator model: 

 

Bayes theorem: 

 

Here              is posterior conditional PDF of model parameters, 

                      is likelihood (prior conditional PDF ), and 

                       reflects prior information about reconstructed 

                      system. 

Approximation of “good” model:             , 

 

 

 

 

 

                                                                         

,
t+1 t t t t tu = Q(u , μ(t))+ η x = u +

Distillation of the model operator from observed time series  

p(μ x) p(x μ )× p(μ)
p(μ x)

)p( 

xp( μ)

0
t

η 

[T/w] -1 w-1
j

ξ l×w+ j l×w

l=0 j=0

p(x | u, μ) = w (x - f (u , μ)) 
Above T  is the time series (TS) duration, t is the number of time 

instants, l numbers segments of the TS, w is duration of the 

segment, and j numbers time instants within a separate segment 

,p(x μ ) = p(x μ ) d u u
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6. Functional form of the model: 

 

Artificial Neural Networks (ANN) 

 

 

 

 

 

 

 

 

 

 

                                                                      

Distillation of the model operator from observed time series  

out
in

out

in

d
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d

d ki ki ij j i

i 1 j 1
k 1

ANN (U ) ( t )tanh w U  
 



   
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Example #1 Prognosis of bifurcations by the noisy chaotic TS  

  Rössler system: ,=x - y - z  fz = - z + x z,ey = x +  y 

Observer is nonstationary noisy time series y = u + ξn n n . 

ξn Measurement noise is Gaussian 

“Experimental” 

nonstationary 

evolution operator, 

obtained via  

reconstruction of 

phase trajectory, for 

noiseless (green) and 

noisy TS (red).  

Noise to signal ratio  is 

0.1 

(y
m

a
x
) n

+
1
 

(ymax)n 
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Example#1: Prognosis of bifurcations by the noisy chaotic TS 

  Rössler system 

The segment length w=4 

Noise to signal ratio  is 0.1 

y 

  Prognosis  

of the bifurcations 

Bottom Figure: 
Probability of the predicted 

behaviour regimes 

calculated by the Algorithm 

applied to the “observed” 

TS. 

Model dimension is N =1 

Top Figure:  
Correct BD  

 

with marked (lilac) part 

corresponding to noiseless TS. 

The diagram corresponding to the 

“observed” noisy TS is shown by 

light blue points  

( )[5.13; 4.41]

( = )[5.13; 2];  e = f 0.2
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EXAMPLE OF HIGH-DIMENTIONAL DETERMINISTIC  

SYSTEM RECONSTRUCTION   

TWO COUPLED RŐSSLER’S SYSTEMS: 

Correlation dimension estimated 

from y2 variable time-series (for c=6)  

2

1 1 1 2

1 1 1

1 1 1 1

2 2 2 1

2 2 2

2 2 2 2

0 03

0 2

0 2

0 02

0 2

0 2

dx / dt y z . x

dy / dt x . y

dz / dt . cz x z

dx / dt y z . x

dy / dt x . y

dz / dt . cz x z

   

 

  

   

 

  











2 1 2 1E S Ad d d   

INABILITY OF DETERMINISTIC MODELING: 

From Taken’s theorem: 

 

Overembedding problem:  

we are forced to construct high-dimensional model 

having in the hands (reconstructed from time 

series) significantly lower dimensional  attractor 

dA=3.5 
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RED DOTS:  

Discrete time series of y2 variable 

generated by two coupled Rőssler’s 

systems under  slow trend  

of parameter c value  

(changed from 6 to 3 during  

time interval [0, 3000] ).  

 

GREEN DOTS: 

Time series generated by three different 

deterministic models that were learned  

by piece [0, 1000] of red dots’ time series.  

All models are six-dimensional and 

equally probable (correspond to close 

vicinity of posterior distribution function 

                         maximum). 

 

RESULT: 

All models exhibit qualitatively different 

behaviour even within time interval of the 

learning! 

 

CONCLUSION: 

Overembedding leads to non-robust 

models that couldn’t to use for prognosis 

of qualitative changes of the underlaying 

system behaviour!   

 

ATTEMPT OF PROGNOSIS VIA CONSTRUCTION OF HIGH-DIMENSIONAL DETERMINISTIC 

MODELS 

ps
P ( / U )

time 
learning interval 
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Fundamental  limitations  for deterministic reconstruction of complex 

systems by time series (TS) 

“Damnation” of overembedding: 

(Takens theorem) 

dE     2da+1 

dE is embedding dimension, 

da is attractor dimension 

Impossibility of high-dimensional  

system reconstruction 



Limitation on system 

complexity: 

TS contains  information exclusively  

about phase sub-space that is 

determined by underlying attractor 

Limitation on prognosis 

direction: 

Impossibility to predict  bifurcations 

from complex to simpler behavior 

Limitation on prior information: 

We need to know before hand, that TS is generated by  

deterministic dynamical system!? 
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THE WAY OF DECISION  

To construct by time series  

non-autonomous low-dimensional stochastic models. 

The robust dynamic properties of the system evolution can be described by a 

low dimensional deterministic operator, while other features are considered as 

a stochastic disturbance.  

Choice  of configuration of a stochastic model of the evolution operator 

Implementation of the operator structure by the “universal” functional form 

Prognosis of  qualitative behavior of the system  

Idea: 

The way of realization: 

Applying Bayesian approach to learning of the model  



  

CTCS, LIC, 23.03.2012  

dN

nnn tt   )(,})({ 1 UUU

Let we have a time series 

Suppose these data are coupled by random evolution operator 













:,
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1





nn
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nnn



  UU

),()(1 nnn UηUfU 

)),(()( UEUf  )(),(),( UfUUη   

d d M Mˆ ˆη( ,U ) g(U ) ( ), g : , :        

Finally, we have a model in following form: 

n 1 n n n
ˆU f (U ) g(U ) 


  

We approximate 

distribution of ξ by 

Gaussian form and 

consider it as white noise. 

Suppose that deterministic component f is 

defined by long-correlated processes,  while 

stochastic component has short time scale 

and takes the form:  
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Stochastic model 

,),,(),,( 21 ξμxgμxfx tt  21 ,
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T
ggC  - covariance matrix of noise 

Parameterization of f and g by artificial neural networks: 
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The cost function for estimation of parameters 
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iii t 

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and we have a model:  

Bayes theorem: 

)()|,...(),...|( 11 μμxxxxμ PPP NN 

The cost function 
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PROGNOSIS VIA CONSTRUCTION OF LOW-DIMENSIONAL STOCHASTIC MODEL 

TOP FIGURE: 

BLUE and RED dots:  

Discrete time series of y2 variable generated 

by two coupled Rőssler’s systems under  

slow trend of parameter c value  

(changed from 6 to 5 during  

time interval [0, 1000]  and  from 5 to 3 

during time interval [1000, 3000] ).  

GREEN DOTS: 

Time series generated by one-dimensional 

stochastic model that were learned  by blue 

dots’ time series.  

The model corresponds to maximum of 

posterior distribution function 

                             . 

 

BOTTOM FIGURE: 

Invariant measure (i.e. probability density of 

states in phase space) generated by one-

dimensional stochastic model that were 

learned  by blue dots’ time series.  

 

learning interval interval of prognosis 

ps
P ( , / U ) 

learning interval interval of prognosis 

TWO COUPLED RŐSSLER’S SYSTEMS: 
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Example #1 

Prognosis of ENSO dynamics 

The periodically forced, nonlinear DDE model of ENSO 
(Tziperman et al., 1994):  description 

1 2
d h/ dt tanh[ kh( t )] tanh[ kh( t )] cos( 2 t )             

add noise 

1 2
0.6, 0.2, k 7 , 0.15     

 

  )2cos()]()1(tanh[

)]()1(tanh[

2

1

tthtyk

thtyk
dt

dh








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The periodically forced, nonlinear stochastic DDE model 
of ENSO: prediction of behaviour 
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Example #2 

Prognosis of ENSO dynamics 
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Observed behavior Behavior to be predicted 

Model behavior 

   The DDE deterministic model of ENSO    (Galanti-
Tziperman model, JAS , 1999):  

prediction of behaviour 
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Phase space 

projections 

Power spectrums 

Time of observation  Prognosis 

   The DDE deterministic model of ENSO    (Galanti-
Tziperman model, JAS , 1999):  

prediction of behaviour 
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Coupled ocean-atmosphere intermediate PDE model 
    (Jin-Neeling model, JAS , 1993) 

Prognosis of ENSO dynamics: Example #3 

 

SST in one 

spatial point 

First  

MSSA EOF 

Prognosis 

(model 

behavior) 

n 1 n n 1 n n 1 n

n

X F( x , x ) g( x , x )

~ N(0,1 )





  
  

2-D Model: 
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n 1 n n 1 n n 1 n

n

X F( x , x ) g( x , x )

~ N(0,1 )





  
  

2-D Model: 

Example #3 

Coupled ocean-atmosphere intermediate PDE model 
    (Jin-Neeling model, JAS , 1993) 
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MSSA analysis: spatial-temporal EOF 

basis: 
I II 

III IV 

V VI 

Eigenvalues of covariance 

matrix (variances of EOFs) 

Example #3 

Coupled ocean-atmosphere intermediate PDE model 
    (Jin-Neeling model, JAS , 1993) 
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Conclusion # 1 

Dynamics of the high-dimensional 

systems (deterministic or stochastic) 

can be predicted by low-dimensional 

stochastic models. 
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Bayesian evidence is a posterior distribution density of structural 

parameters space (i. e. of “model space”): 

We define structural parameters as parameters which are responsible for 

the complexity of the model, and also prior distribution parameters:  

The maximum of E(s) corresponds to the compromise between quality of the 

data fit and predictiveness of the model. There must be the optimum. 

Optimal model selection criterion: Bayesian evidence 

   ξd d

n 1 n n n
U f x , μ g x ,ν


 

 f g f g
s m ,m ,σ ,σ ,d

       posterior prior
E s P s U P U μ,ν,s P μ,ν,s dμ dν    

Likelihood 

- vector of structural parameters in the case of using  

  artificial neural networks  

f g
m , m - amounts of neurons in f and g , 

f g
σ , σ - prior distribution parameters for f and g  
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Evidence estimations for stochastic model 

To approximate the integral in the case of stochastic model we introduce the 

function F as follows: 

    E s exp F μ,ν,s dμ dν   
             

N T
d 1 d d d

n 1 n n n 1 n n prior

n 1

1 ˆ ˆF μ,ν,s U f x ,μ G x ,ν U f x ,μ ln G x ,ν ln P μ,ν,s
2



 



     
  



It can be shown that within this approximation the optimal model corresponds to 

the minimum of the function: 

The approximation is that we consider the posterior distribution on model 

parameter space (“nonstructural” parameter space) to be quasi-gaussian in 

the vicinity of point of its maximum  0 0
μ ,ν

Q is the matrix of the second derivatives of F with respect to  

     
T

0 0 0 0

μ μ1
F μ,ν,s F μ ,ν ,s Q μ ,ν ,s

2 ν ν

   
   
   

 

μ,ν

      
 μ ,ν ,s

0 0

1 M
s ln E s F ln det Q ln 2

2 2
 

 
     

 

M is the dimension of model parameter space  μ,ν
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Evidence estimations for stochastic model 

In the further demonstration of the method the following functions will be 

considered : 

   
f g

f g f g f g
σ ,σ

m ,m ,d min m ,m ,d ,σ ,σ  - dependencies on the ANN complexity  

   
f g f g

f g f g
m ,m ,σ ,σ

d min m ,m ,d ,σ ,σ  - dependencies on the model dimension  

 

 

x 10 y x

y rx y xz

8
z z xy t

3


 

  

   

noise with intensity  

“Observed” time series (at r=25 corresponding 

to chaotic behavior of the “deterministic” 

system): 

 n 0U y t n , 0,17   

Construction of d-dimensional state 

vectors from observations: 

 d
n n n 1 n (d 1)

U U ,U ,...,U  

Example: Stochastic Lorentz system with classical parameters 
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Observable evolution plane at different values of 
1nU 

nU1

1nU 

nU10

1nU 

nU5

1nU 

nU20
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The more the noise intensity, the weaker the connection between 

neighbor data points, and the less the dimension of the model 

Evidence behavior with respect to the dimension (different colors 

correspond to systems with different noise intensities) 

d

   opt opt

f gd d
d m ,m ,d     ξd d

n 1 n n n
U f x , μ g x ,ν


 
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Evidence behavior with respect to the ANN complexity (different lines 

correspond to different mg values) and evolution planes (red points – 

observation, green points – model) 

f
m

f

g

m 15

m 0





 f g opt
m ,m ,d 1 

 d

nn xfU 1

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

nU

1nU

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

1nU

    n

d

n

d

nn xgxfU ξ1 

“whole” model 

“deterministic” part 
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Stochastic reconstruction of a dynamical system for early prediction of critical transitions 

Evidence behavior with respect to the ANN complexity (different lines 

correspond to different mg values) and evolution planes (red points – 

observation, green points – model) 

f
m

f

g

m 8

m 2





 f g opt
m ,m ,d 5 

 d

nn xfU 1

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

nU

1nU

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

1nU

    n

d

n

d

nn xgxfU ξ1 
nU

1nU

    n

d

n

d

nn xgxfU ξ1 

“whole” model 

“deterministic” part 
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Evidence behavior with respect to the ANN complexity (different lines 

correspond to different mg values) and evolution planes (red points – 

observation, green points – model) 
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Evidence behavior with respect to the ANN complexity (different lines 

correspond to different mg values) and evolution planes (red points – 

observation, green points – model) 
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• In the general case the model with the non-uniform stochastic part is 

optimal 

 

• The optimal dimension of the model and the optimal complexity of 

deterministic and stochastic parts are closely connected with the 

noise intensity (“stochasticity“ of the system ):  

the higher noise intensity, the more the non-uniformity of the optimal 

stochastic part, and the less the optimal dimension and the 

complexity of the deterministic part 

Conclusions # 2&3 
(about optimal stochastic model complexity): 



  

CTCS, LIC, 23.03.2012  

Stochastic reconstruction of a dynamical system for early prediction of critical transitions 

NEXT STEPS: 

• Reconstruction by real climatic data 

 

• Algorithm of optimal variables’ choice  

 

• Study of teleconnection phenomena 

 

• Separation of the climatic sub-systems 

 

• Applications in other fields 



  

CTCS, LIC, 23.03.2012  

Thank you! 
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