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THE PROBLEM:

Early prediction of critical transitions in natural systems

THE WAY OF SOLUTION:

1. Construction of parameterized non-autonomous model
of an evolution operator by virtue of
a direct distillation of the observed time series
2. Analysis of the model behavior outside observed time interval

CTCS, LIC, 23.03.2012
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OUTLINE:

 Global reconstruction of non-autonomous dynamical systems
from time series:
very brief introduction
(Takens theorems, evolution operator form, non-stationarity & long-
term behaviour prediction, necessity of Bayesian approach)

« Damnation of the dimensionality

* Low-dimensional stochastic reconstruction: description and
demonstration of predictive abilities

» Optimal low-dimensional stochastic models:
Bayesian evidence as a cost function for selection of structural
parameter values

CTCS, LIC, 23.03.2012
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Distillation of the model operator from observed time series

1. Reconstruction of phase trajectory (Takens, 1981)

—

Y, )=00, ), YOG+ A0, oy 0+ -DAO}

2. Choice of Poincare section  .-g*-.. =

L_j(tn ) = Q(U(tn—l )’ﬁ(tn—l))

3. Approximation of Poincare map (
by a parameterized non-autonomous q
model ~— . g \&\
3 U(t;) T

0() = 60 )i.)
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Distillation of the model operator from observed time series

4. Unavoidable measurement noise é‘t ;

4

Statistical description of the Probabilistic analysis of
model parameters via future model behaviour:
posterior Probability Density Markov Chain Monte-Carlo

Function (PDF): Bayesian (MCMC) technique
approach

CTCS, LIC, 23.03.2012
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"™ Distillation of the model operator from observed time series

5. General configuration of the evolution operator model:
Uy = QWU @)+ 17, X = U T+ &
Bayes theorem:
-~ p(E|X) oc p(x| i) % p()
Here p(ﬁ|?c) Is posterior conditional PDF of model parameters,
p(7<|ﬁ) Is likelihood (prior conditional PDF ), and

p( 1) reflects prior information about reconstructed

system.
Approximation of “good” model: 7, — 0,
p(X|) = | p[d, /i) dd

[Tw]-1 w-1

p()_{ G1ﬁ)= H ng()—élxwﬂ '.fj(ﬁwwyﬁ))
1=0 j=0

Above T is the (TS) duration, tis the number of time
Instants, | numbers segments of the TS, wis duration of the

segment, and j numbers time instants within a separate segment
CTCS, LIC, 23.03.2012
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Distillation of the model operator from observed time series

6. Functional form of the model:

Artificial Neural Networks (ANN)

N

[ m din
ANNS;M(U )= Z(aki + 1/ )tanh(zwijuj +7’ij
i=1 j=1

J

CTCS, LIC, 23.03.2012
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Example #1 Prognosis of bifurcations by the noisy chaotic TS
Réssler system: X=-Yy-zZ,y=X+e-y,z2=f-u-z+x-2

Observer is nonstationary noisy time series Yq =Un*¢p -

Measurement noise $p is Gaussian

7

“Experimental” . g
nonstationary | LAEHES
evolution operator, g
obtained via i
reconstruction of » st S
phase trajectory, for ; s
noiseless (green) and g A
noisy TS (red). | ey
Noise to signal ratio is o T
0.1 I

I !
55 6 6.5 7

PP
(Ymasn
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Example#l: Prognosis of bifurcations by the noisy chaotic TS

Rossler system

Prognosis
of the bifurcations

Top Figure:
Correct BD
(Le[5.13;2]; e=f=0.2)
with marked (lilac) part
corresponding to noiseless TS.
The diagram corresponding to the
“observed” noisy TS is shown by ~

light blue points

(nelb.13;4.41])

Bottom Figure:
Probability of the predicted
behaviour regimes
calculated by the Algorithm
applied to the “observed”
TS.

Model dimension is N =1
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EXAMPLE OF HIGH-DIMENTIONAL DETERMINISTIC
SYSTEM RECONSTRUCTION

TWO COUPLED ROSSLER’S SYSTEMS:

PARH

P
/’ 2\\\ . - . .
dx /dt =-y -z +0.03x ) Correlation dimension estimated
il ' from y, variable time-series (for c=6)
dyl [ dt = x +02y
dz /dt =02 —-cz + Xz 35 |
< 1 1 11 sl
dx /dt=-y -z +002x
dy, /dt = x +0.2y, .
dz_ /dt =02-cz +Xx.z
2 2 2 2

INABILITY OF DETERMINISTIC MODELING:
Overembedding problem:

S e e e re we are forced to construct high-dimensional model
having in the hands (reconstructed from time
> . N : .
dg >2dg +1>2dp +1 series) significantly lower dimensional attractor

CTCS, LIC, 23.03.2012




% ATTEMPT OF PROGNOSIS VIA CONSTRUCTION OF HIGH-DIMENSIONAL DETERMINISTIC

MODELS

15

18

tzm%x:?x“ o ++ +
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T
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+

1604 1508 2000 2580 3660

+ o+
+
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3600

2306

learning interval

time

RED DOTS:

Discrete time series of y, variable
generated by two coupled Réssler’s
systems under slow trend
of parameter c value
(changed from 6 to 3 during
time interval [0, 3000] ).

GREEN DOTS:

Time series generated by three different
deterministic models that were learned
by piece [0, 1000] of red dots’ time series.
All models are six-dimensional and
equally probable (correspond to close
vicinity of posterior distribution function

P.(#£/U) maximum).

RESULT:
All models exhibit qualitatively different
behaviour even within time interval of the
learning!

CONCLUSION:
Overembedding leads to non-robust
models that couldn’t to use for prognosis
of qualitative changes of the underlaying

system behaviour!
CTCS, LIC, 23.03.2012



Fundamental limitations for deterministic reconstruction of complex
systems by time series (TS)

Limitation on system Limitation on prognosis
complexity: direction:

“Damnation” of overembedding:

(Takens theorem) TS contains information exclusively

e>2d.+1 about phase sub-space that is
dgis embedding dimension, determined by underlying attractor

d_ is attractor dimension

Impossibility of high-dimensional Impossibility to predict bifurcations
system reconstruction from complex to simpler behavior

Limitation on prior information:

We need to know before hand, that TS is generated by
deterministic dynamical system!?

CTCS, LIC, 23.03.2012



CTD THE WAY OF DECISION
ldea:

To construct by time series
non-autonomous low-dimensional stochastic models.

The robust dynamic properties of the system evolution can be described by a
low dimensional deterministic operator, while other features are considered as
a stochastic disturbance.

The way of realization:

J
Choice of configuration of a stochastic model of the evolution operator

Implementation of the operator structure by the “universal” functional form
J
Applying Bayesian approach to learning of the model
1

Prognosis of qualitative behavior of the system

CTCS, LIC, 23.03.2012



% Let we have a time series
{U(t,) =U, 3, U(t) e R

Suppose these data are coupled by random evolution operator
. d d
Un+l :(P(a)n)oun’ (P QXER _)ER
@ ., =0cw,,0:Q—>Q

1 1 !

Un+1 :f(Un)+n(a)’Un)

f(U) =E(e(@,U))  n(o V) =¢(o,U)-1(U)

Suppose that deterministic component f is

defined by long-correlated processes, while We approximate
stochastic component has short time scale distribution of § by
and takes the form: Gaussian form and
i](a),U)=§(U).§(a;),§:ng —)920""\",5:.(2—)9‘{'\" consider it as white noise.

Finally, we have a model in following form:

U n+1 — f (U n ) + Q( U n ) ) é:n CTCS, LIC, 23.03.2012




CTD Stochastic model

. _ d d
x=F(X,t, 1) +g(X,t, po)E, XeR*EeR™
/ ™~
Dynamical properties Nonuniformity of stochastic component

011 91 - gldz\ p(gl’ &, )OCHeXp{ ‘&‘j
0 09, .. 24,

C= T _ covariance matrix of noise
\ O O gd1d2) gg

Parameterization of f and g by artificial neural networks:

m din )
ANN g (X, 1) =1 (et +t,8ki)tanh[ZWijx [+ yij >
i<l j=1

dout

k=1
f(x,tmy) = ANNGZ(X,t)  g(x,t,p) = ANNG D2 (x 1)

CTCS, LIC, 23.03.2012



The cost function for estimation of parameters

We have a time series: {Xi = X(ti )}:11, X e fRd
and we have a model:

X=F(R L) HOR LIS, P65 [Ton] o |
O iyl 0

P(X,,.. Xy [ 1) o€ lf[Hg(xi’!~lz)gT()(i’l~lz)H_E 2

X €XP (_ % (Xi+1 —f(X;.t;, lll))T (g(xi ' uz)gT (X;, uz))_l(xnl —f(X;.t;, Hl))j

Bayes theorem:

P |Xy,..Xy) o P(Xp,. Xy [)P()| )
A\

The cost function

CTCS, LIC, 23.03.2012



TWO COUPLED ROSSLER’S SYSTEMS:

PROGNOSIS VIA CONSTRUCTION OF LOW-DIMENSIONAL STOCHASTIC MODEL

10 hd - T - T
- system
* . - obsefved TS
model

- . . -
o F * e o - * * - -
“s e - - - *
- . -

learning interval interval of prognosis

1d

-1

learning interval interval of prognosis

TOP FIGURE:
BLUE and RED dots:

Discrete time series of y,variable generated
by two coupled Réssler’s systems under
slow trend of parameter c value
(changed from 6 to 5 during
time interval [0, 1000] and from 5to 3
during time interval [1000, 3000] ).

Time series generated by one-dimensional
stochastic model that were learned by blue
dots’ time series.

The model corresponds to maximum of
posterior distribution function

P.(V.@/U) .

BOTTOM FIGURE:
Invariant measure (i.e. probability density of
states in phase space) generated by one-
dimensional stochastic model that were
learned by blue dots’ time series.



Prognosis of ENSO dynamics

Example #1
The periodically forced, nonlinear DDE model of ENSO
description
d h/ dt = —a - tanh[kh(t — 7 )] + B - tanh[kh(t — 7 )] + y cos(27z - t)

add noise

dh

— = tanh[k (1 + 0 y(t)h(t—z)]+

B-tanh[k(L+ o - y(t)h(t — 75)]+ 7 cos27 - )

7,=06, 7,=02, k=7, 0=0.15

CTCS, LIC, 23.03.2012



Stochastic reconstruction of a dynamical system for early prediction of critical transitions

The periodically forced, nonlinear stochastic DDE model
of ENSO: prediction of behaviour

noisless system
model

b666 ocooo

worivoMbo®
T 111

0.91 0.92 0.938 0.94 0.95 0.96 0.97 0.98 0.9-30'.
~0° nolsless system
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 _.'.0.99 model
! ! j ! j 'mﬁﬁuhkmﬁﬁ G 0.8
0.8 .*'initial range - | 0
.f prognosis - Oﬁ
I 0.2
0
0.2
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Prognosis of ENSO dynamics
Example #2

The Galanti-Tziperman (GT) model (JAS, 1999)

B = —erT(t) - Mo(T(t) — Teus(h(£))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin

_ (i T B models for ENSO: T is East-basin SST
h(t] M EM o [h(t-yr ;'1( Tﬂ] )T[ and his thermocline depth.
~Myne™ ' Tyt —rp = )Tt -1 — 5
-|—M3TEE E"‘ 2 F;(t 3 ]T( Tj) Seasonal forcing given by

1(t) =1+ ecos(wt + ).

CTCS, LIC, 23.03.2012



PARH

The DDE deterministic model of ENSO (
):

prediction of behaviour

Observed behavior Behavior_to be predicted

25 25 T T T T T T

20 |- ' ' S - 20 -
15 | 4 15 - 4
10 | 4 10 - i
5| i 5F -
0 i 0r 4
5 F ] 5k .

10 F i -10 4

20| observed - i :;g : observed i

-20 to be predicted 1 o . . . . . ) to be predicted

2 0 20-00 40|00 6(;00 BOIOO 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

prognosis prognosis

: 0 1000 2000 4000 5000 6000 7000 8000 9000
0 2000 4000 000 8000 10000

Model behavior
CTCS, LIC, 23.03.2012



The DDE deterministic model of ENSO (
):

prediction of behaviour

25
20 -
15
10

Power spectrums

10 T T . T

' system
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-20
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tq be prediclqd

L L L L
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\ 0 b :
time of observation %ﬁosis 1lyear
T

ol ' /ﬁ“’"?wﬁii& -
“ 1 Phase space

- projections
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55T

EOF 1

EOF 1

Stochastic reconstruction of a dynamical system for early prediction of critical transitions

Prognosis of ENSO dynamics: Example #3

Coupled ocean-atmosphere intermediate PDE model
(Jin-Neeling model, JAS , 1993)
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Prognosis
(model
behavior)

CTCS, LIC, 23.03.2012



2-D Model:

Q00
BE0
a0
40
20
800
Ta0

T80

Stochastic reconstruction of a dynamical system for early prediction of critical transitions

Example #3

Coupled ocean-atmosphere intermediate PDE model
(Jin-Neeling model, JAS , 1993)

Xn+

1 = F(Xn’xn—l)_l_g(xn’xn—l).én

&n ~ N(0,1)

) i il '?
Y’ -n“-nnw g ..&’*-M i m
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Example #3

Coupled ocean-atmosphere intermediate PDE model
(Jin-Neeling model, JAS , 1993)

MSSA analysis: spatial-temporal EOF

basis:
| I Eigenvalues of covariance

2 o bl ! il 8038 EE‘ ol §:f8  matrix (variances of EOFs)
2k H g B il |
5 - -f| 8.825 5 = -H =H* Variances of EOFs
a B ! 1 a :EEE . ! 48 Z EE% 1000

16 28 30 48 18 EH 33 48
259 - I (I i 23 - 1 o
15 - \\1\ ﬁ EEEE % 1\\ -,,;ﬁ EEEQ o 100 |
23 B 8. 18 4 HoH.2 S
8 - . ZEEE§ 8 - = EEé 5

18 23 30 160 23 33 a8 > 10 ¢
259 o 253 - [ (T a
D i
5 ] - B =H: 940 945 950 955 960
8 ;§§ 8 B ke :Eg EOF number

16 28 30 48 18 28 30 48
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Conclusion # 1

Dynamics of the high-dimensional

systems (deterministic or stochastic)

can be predicted by low-dimensional
stochastic models.

CTCS, LIC, 23.03.2012



Optimal model selection criterion: Bayesian evidence
U ,=f (Xg ,,u)+g(xg,v)<§n

We define structural parameters as parameters which are responsible for
the complexity of the model, and also prior distribution parameters:

S = (mf M, ,0; ,Gg,d) - vector of structural parameters in the case of using
artificial neural networks
me., mg - amounts of neurons in f and g,

O:, O, -priordistribution parameters for f and g

9

Bayesian evidence is a posterior distribution density of structural
parameters space (i. e. of “model space”):

E(5)=Prserior (S1U) = [[ P (U] 1£,v55) - P, (11,,5) - da - dv

The maximum of E(s) corresponds to the compromise between quality of the
data fit and predictiveness of the model. There must be the optimum.

CTCS, LIC, 23.03.2012
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Evidence estimations for stochastic model

To approximate the integral in the case of stochastic model we introduce the
function F as follows:

E (S) — Hexp(—F (,u,v,s)) -du - dv
F (,u,v,s) = %Z[(Uml —~ f(xg,,u))T (Ai_l(xﬁ',v)(Un+1 - f(xg,,u)) + ln‘é(xﬁ,v)ﬂ —InP (,u,v,s)

The approximation is that we consider the posterior distribution on model

parameter space (“nonstructural” parameter space) to be quasi-gaussian in
the vicinity of point of its maximum g, ,v,

lin I

F(ﬂ,V,S)zF(ﬂoy"o,S)"'EL} Q(ﬂoyvo,s){v

Q is the matrix of the second derivatives of F with respect to u,v

It can be shown that within this approximation the optimal model corresponds to
the n(inimum of the function:

?(s)= —In(E(s)) =| F + % In\detQ\——I\ZA—In(Zzz))

(#%0)

M is the dimension of model parameter space K,V

CTCS, LIC, 23.03.2012
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Evidence estimations for stochastic model

In the further demonstration of the method the following functions will be
considered :

(D(mf ,m, ,d) = minq)(mf m, d,o. ,0'9)- dependencies on the ANN complexity

O ¢ ,O'g

@(d) = min (D(mf M, d,o. ,0'9) - dependencies on the model dimension

mf ,mg ,O'f ,O'g

Example: Stochastic Lorentz system with classical parameters

X = 10( y— X) “Observed’_’ time se_ries (at r=25 corresponding
. to chaotic behavior of the “deterministic”
y=rX-y-xz system):
. 8 U =vy(t, +nr), 7=0,17
i=——z+Xxy+aé(t) n=Y(t+1r)

3 e VCith intensity Construction of d-dimensional state

vectors from observations:

ud =(un ,un_l,...,un_(d_l))

CTCS, LIC, 23.03.2012



Itions

| trans

itica

fcr

Iction 0

| system for early predi

ICa

f a dynam

IC reconstruction o

Stochast

Observable evolution plane at different values of O

“Hu@.tut”

Maul, trt™

“unB.trt”

amB, trt"

2012

03

CTCS, LIC, 23.



% Stochastic reconstruction of a dynamical system for early prediction of critical transitions
PAn

Evidence behavior with respect to the dimension (different colors
correspond to systems with different noise intensities)

i opt opt i d d
Q(d)_¢(mf d’mg d’d) Un+1_ f(Xn’Ju)-l-g(xn’v)in
1 I I I ' s.i.g'rla=1 —t— &

= = TiERa=a g
E signa=18 —#—
8.5 zigna=2a —B— A
H -
_:|
—H‘E .
-1
-1.5
-
1 2 3 4 9 6 F 8 d

The more the noise intensity, the weaker the connection between
neighbor data points, and the less the dimension of the model

CTCS, LIC, 23.03.2012



% Stochastic reconstruction of a dynamical system for early prediction of critical transitions
PAn

Evidence behavior with respect to the ANN complexity (different lines
correspond to different m, values) and evolution planes (red points —
observation, green points — model)

11 79
O = | 3 “whole” model
Dd({m,. m ,d ™ Or
f g ' opt U.. N
1 T T T T T T
d=4_ng=68 —_— 2
d=4_ng=81 —i—
d=4a_ng=82 ——
d=4_ng=83 —8—
o d=4_ng=84
& d=4_ng=085 —s—
i d=4_ng=86

“deterministic” pa

T
“xxB.trt" -
U "f_d=d_nf=15_ng=08.txt" -

-1

=-1.3

-2

U

n

CTCS, LIC, 23.03.2012



% Stochastic reconstruction of a dynamical system for early prediction of critical transitions
PAn

Evidence behavior with respect to the ANN complexity (different lines
correspond to different m,values) and evolution planes (red points —
observation, green points — model)

T
THRB.ERET ¢
s_d=4_wF=08_wg=02_tut" -

U ;

o=5 _ “whole” model

n+1

T
d=4_np=80 —
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d=4_ng=83 —e—
d=4_ng=04

d=4_ng=85 —a—
d=4_ng=086

Up =T+ 00, 0 U

~ “deterministic” part
U ey B

-8.6 1 ] ] 1 1 m .
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Evidence behavior with respect to the ANN complexity (different lines
correspond to different m, values) and evolution planes (red points —
observation, green points — model)

T
e, kxt" -
l | gm03 tut” -
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O = ]_O 3 ‘fwh le” mode
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Stochastic reconstruction of a dynamical system for early prediction of critical transitions

Evidence behavior with respect to the ANN complexity (different lines

correspond to different m,values) and evolution planes (red points —
observation, green points — model)

o=20

T
d=3_ng=88 —

d=3_ng=81 ——
d=3_ng=82 ——
d=3_ng=83 —8—
d=3_ng=84 ]
d=3_ng=85 —e—
d=3_ng=06

u

n+l

“whole” model

T
------------

U

n

LJn+1 = f(Xg )+ g(Xg )’;:n{

U

n+1

“deterministic” part

" _d=3_nf=65_n;
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Conclusions # 2&3

(about optimal stochastic model complexity):

* In the general case the model with the non-uniform stochastic part is
optimal

* The optimal dimension of the model and the optimal complexity of
deterministic and stochastic parts are closely connected with the
noise intensity (“stochasticity” of the system ):
the higher noise intensity, the more the non-uniformity of the optimal
stochastic part, and the less the optimal dimension and the
complexity of the deterministic part
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NEXT STEPS:

* Reconstruction by real climatic data
 Algorithm of optimal variables’ choice
« Study of teleconnection phenomena
e Separation of the climatic sub-systems

* Applications in other fields
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Thank you!
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