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Motivation: Differing Issues for Natural vs.
Engineered Systems

In a natural system, we may hope to predict the onset
of a transition, and take precautions that may help
iInfluence it. Often, however, we have no means to
iInfluence the transition.

However, in engineered systems, we have more
options, starting at the stage of system design.



Motivation: Differing Issues for Natural vs.
Engineered Systems

« For an engineered system, we can:
e Design the system to not have a transition in the
Intended operating range.
« Design an augmented system that provides a
warning to the operator near a transition.
 Based on a good detailed model,
e Or based on smart signal processing for an
uncertain system.
e Design a control system that improves behavior at a
transition or gives a warning signal prior to a
transition.
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A tip-over warning system for vehicles of the articu-
lated type utilizes a swinging pendulum pivoted in a
frame which is mounted on and simulates the stability
triangle of the vehicle. The pivotal connection of the
pendulum is at a scale distance relative to the frame
corresponding to the location of the vehicle center of



JET AIRCRAFT

FA6 11:15

NONLINEAR STABILIZATION OF HIGH ANGLE-OF-ATTACK
FLIGHT DYNAMICS USING BIFURCATION CONTROL

Eyad H. Abed and Hsien-Chiarn Lee

Department of Electrical Engineering
and the Systems Research Center
University of Maryland, College Park, MD 20742 USA

Abstract

We consider the problem of designing stabilizing con-
trol laws for flight over a broad range of angles-of-attack
which also serve to signal the pilot of impending stall.
The paper employs bifurcation stabilization coupled with
more traditional linear control system design. To focus
the discussion, a detailed analysis is given for a model of
the longitudinal dynamics of an F-8 Crusader.

I. Introduction

Several authors have studied the nonlinear phenom-
ena that arise commonly in aircraft flight at high angle-
of-attack (alpha). The literature on high alpha flight dy-

a bifurcation occurring in a one-parameter family of sys-
tems

z = fu(z,u). (1)

These control laws exist generically, even if the critical
eigenvalues of the linearized system at the equilibrium of
interest are uncontrollable. (The critical eigenvalues are
those lying on the imaginary axis.) This approach has
been employed in the design of stabilizing control laws for
a tethered satellite system in the station-keeping mode.

III. Bifurcation Control of Longitudinal

American Control Conf., Boston, 1990, pp. 2235-2238.



Bifurcation diagrams in the aircraft example:
Uncontrolled and controlled
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COMPRESSION SYSTEM STABILITY
AND AcCTIVE CONTROL

JD Paduano, EM Greitzer, and AH Epstein

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, e-mail: paduano(@mit.edu, greitzer(@mit.edu,
epstein(@mit.edu

2.1 Waves as Precursors to Stall

The long-length-scale description of rotating stall inception starts with a two-
dimensional representation of the 1dealized compression system. which 1s shown
in Figure 2. A linearized stability analysis captures many of the characteristics of

rotating stall inception. This stability analysis has also been extended to address
10



ELECTRIC POWER NETWORKS

e As noted by Hauer (APEx 2000): “[recurring
problem of system oscillations and voltage
collapse] is due in part to ... system behavior
not well captured by the models used in
planning and operation studies”

* |In the face of component failures, system
models quickly become mismatched to the
physical network, and are only accurate if
they’re updated using a powerful and
accurate failure detection system.




* |n several papers, Hauer has discussed large
system experiments using probe signal injection
and ambient noise effects for stability and
oscillation studies. This includes HVDC
modulation at mid-level ( 125MW) for probing of
inividual oscillation modes, and low-level
( 20MW) for broadband probing.

e Hauer used prony analysis of streaming
measurements to estimate system modes, and
the calculated dominant mode was used as an
iIndicator of impending instability.



HUNTING OF RAILWAY VEHICLES
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Abstract

Mechanical systems may experience undesirable and unexpected behavior and instability due to the effects of
nonlinearity of the systems. Many kinds of control methods to decrease or eliminate the effects have been studied. In
particular, bifurcation control to stabilize or utilize nonlinear phenomena is currently an active topic in the field of
nonlinear dynamics. This article presents some types of bifurcation control methods with the aim of realizing vibration
control and motion control for mechanical systems. It is also indicated through every control method that slowly varying
components in the dynamics play important roles for the control and the utilizations of nonlinear phenomena. In the first
part, we deal with stabilization control methods for nonlinear resonance which is the 1/3-order subharmonic resonance in a
nonlinear spring-mass—damper system and the self-excited oscillation (hunting motion) in a railway vehicle wheelset. The



EARTHQUAKES
(OK, this isn’t an engineered system)

© Birkhiuser Verlag, Basel, 2000

Pure appl. geophys. 157 (2000) 2365—-2383 . -
0033-4553/00/122365-19 § 1.50 +0.20/0 [ Pure and Applied Geophysics

Development of a New Approach to Earthquake Prediction:
Load/Unload Response Ratio (LURR) Theory

XIANG-CHU YIN,'Z YU-CANG WANG,' KE-YIN PENG,'Z YI-LONG Bal,'
Hal-Tao WaANG! and Xun-Fer Yin'-

Abstract—The seismogenic process is nonlinear and irreversible so that the response to loading is
different from unloading. This difference reflects the damage of a loaded material. Based on this insight,
a new parameter-load/unload response ratio (LURR) was proposed to measure quantitatively the
proximity to rock failure and earthquake more than ten vears ago. In the present paper. we review the



BIFURCATION CONTROL
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« Bifurcation control is an analytical methodology for
designing feedback to achieve desired bifurcation
behavior.

 Often one wishes to render a subcritical bifurcation
supercritical by feedback.

 The theory has been applied to models in many
contexts, from engineering to epileptic seizures.

« Dynamic feedback structures using “washout filters”
(special high pass filters) allow control without affecting
equilibrium path locations, even without having an
accurate system model!

(Ref: Abed and Fu, Systems and Control Letters, 1986 and 4
1987, Lee and Abed 1991, and subsequent work.)



Subcritical Hopf bifurcation

- Bifurcation control

0

Supercritical Hopf bifurcation

N\
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Radius of limit cycle and nonlinear control (

stable, — — — unstable).
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INSTABILITY WARNING SIGNALS AND
CONNECTIONS WITH CONTROL

18



Bifurcation Control for Introducing Bifurcation
Warning Signals

Methods should be developed for redesigning systems
and system controllers so that new distinguishing
features occur as bifurcation boundaries are
approached.

These features can serve as warning signals for
Impending bifurcation.

This can involve designing more tame bifurcations into
the dynamics, such as supercritical Hopf bifurcations.

The jet aircraft example above is pertinent. “Wing rock”
would be a good warning signal to “departure.” 19



Stability Monitoring Should be Detection of Impending
Bifurcation and Instability
VS.
(Early) Detection of Incipient Bifurcation and Instability

Most stability detection in engineering focuses on detecting
Incipient instability:

e Incipient instability is an instability that has already
begun

* It may be too late at that stage to take adequate control
action to save the system from collapse

Detection of impending bifurcation and instabillity:

« Animpending bifurcation is one that is nearby Iin
parameter space and about ready to occur

* “Noisy precursors” give a robust, nonparametric
iIndicator of impending instability. 20



Stablility Monitoring and Noisy Precursors

We consider instability monitoring using probe signals
(e.g., additive white Gaussian noise).

“Noisy precursors” were studied by Kurt Wiesenfeld
(1985, J. Stat. Phys.) in the context of noise
amplification near criticality (stability boundary).
Wiesenfeld found different noisy precursors for different
bifurcations, assuming a small white noise disturbance.

It is Important to note that noisy precursors also give a
nonparametric indicator of impending instability.

Noisy precursors are observed as rising peaks in the
power spectral density of a measured output signal of a
system with a persistent noise disturbance --- the rising
peak is seen as one or more eigenvalues approach the
Imaginary axis.

21
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Power spectrum magnitude for stationary bifurcation for
two values of €: (a) €=10, (b) €=0.1 [Kim & Abed 2000].
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Monitoring Systems using Noisy Precursors

 Kim and Abed (IEEE Trans. Circuits and Systems, 2000)
developed a feedback system in which the physical
system and a model are run side by side.

 The model system is designed to enhance detectability of
Impending instability.

e Actions are taken as needed to protect the physical
system.

24



Feedback Tuning of Bifurcations

 Moreau and Sontag (Systems and Control Letters, 2003)
studied algorithms that can drive a system to a bifurcation

point.

« A feedback tuning of bifurcations algorithm could be
attached to a physical system.

 When the algorithm is seen to be quickly approaching
bifurcation, this could be taken as a warning signal.

25



Extensions of Identification Theory

 Inidentification theory, parameter identification for a linear
system is possible under a “persistent excitation”
condition for a probe signal.

» For system stability monitoring, we want to focus on
identifying the dominant mode(s) only. What is the
theoretical condition for this to be possible?

(B. Hamzi of Imperial College is currently working on this
problem.)

26



Application to a Power System Model

Consider a synchronous machine connected to an infinite bus together with
excitation control [Abed & Varaiya, 1984]. It was shown that this system
undergoes a subcritical Hopf bifurcation as the control gain in the
excitation system is increased beyond a critical value.

The dynamics of the generator is given by:

o= w
2Hw = —Dw + wo (P, — Pe)
Tooly = Erp — E, — (Xq — X})iq

The dynamics of the generator is given by:

TEEFD = —KpErp +Vr — ErpSg(ErD)
TrV3 = —V3 + AL (—KpErp+ Ve — ErpSe(Erp))
TAVrR = —Vr + KA(Vrer — Vi — V3)
27
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Stability Monitoring and Noisy Precursors,
cntd.

 Noisy precursors, like critical slowing down and
Increasing variance, are valid precursors of instability.

* However, for engineered systems we should often be
able to have a better warning signal designed into the
system or into its controller.

* Biologically motivated precursors can also be
considered, since nature has other wonderful
precursors.

29



MODAL PARTICIPATION FACTOR
ANALYSIS

(Ref: Hashlamoun, Hassouneh and Abed, IEEE Trans.
Automatic Control, 2009.)

30



« Modal participation factors were introduced at
MIT in the early 1980’s by Verghese, Perez-
Arriaga and Schweppe.

 They've been used widely especially in power
systems, including for selection of sites for
measurement and sites for control.

 We've recently revisited the concept, and come
up with two distinct calculations of participation
factors, and the implications for measurement
and control are being investigated.

31



Modal Analysis of Linear Systems

In linear system theory, we start out by considering
the linear time-invariant continuous-time system

r = Ax(t)
where x € R™ and A is a real n x n matrix.

Assume that A has a set of n distinct eigenvalues (A1, Ao, ..., Ap).

The system state x(t) is known to be a linear combination
of exponentials functions x(t) = exp(4;t) ¢! where the
vectors ¢' are determined by the system initial condition.
These functions are the system modes.

32



Participation Factors: Original Definition

Consider again the linear time-invariant system
r = Ax(t)
where x € R™ and A is a real n x n matrix.

Assume that A has a set of n distinct eigenvalues (A1, Ao, ..., Ap).

Let (r!,r2,...,r™) be right eigenvectors of the matrix A
associated with the eigenvalues (A1, Ao, ..., \y),
respectively.

Let (I1,1%,...,1™) denote left (row) eigenvectors of the
matrix A associated with the eigenvalues (A1, Ao, ..., \y),
respectively. B



Participation Factors: Original Definition, cont’'d

The right and left eigenvectors are taken to satisfy the

normalization o
(
['r! = (5,,;j

where ¢, is the Kronecker delta:

5. 1 1=

YL 0 i#E]
The solution to &+ = Ax starting from an initial condition
r(0) = 2 is

xr(t) = R Z(Z%O)e)‘itri
i=1
The k-th state is given by

n

r(t) = Z(lixo)eAitrz

1=1

34



Participation Factors: Original Definition, cont’'d

Relative participation of the I-th mode In the k-th state:

The special choice for the initial condition x° = ek, the unit vector
along the k-th coordinate (Perez-Arriaga, Verghese & Schweppe),

yields -
Tp(t) = Z krk Zpkz
i=1

The quantities

Pki = LT

were defined as the mode-in-state participation factors.

The scalars pPg; are dimensionless

35



Participation Factors: Original Definition, cont’'d

Relative participation of the k-th state in the I-th mode:

Applying the similarity transformation I
12
yi=V 1y with vi=| .

to ¢ = Ax yields i
2t) = VIAVz(t) = Az(),

where A .— diag(A1, Az, ..., An)

The evolution of the new state vector components z,,

i=1,...,nis given by

Zz(t) — ZO€ _lz 0 )\t

Clearly, z;(t) represents the evolution of the i-th mode. i



Participation Factors: Original Definition, cont’'d

Relative participation of the k-th state in the I-th mode:

The special choice for the initial condition x° = rk, the right
eigenvector corresponding to A, (Perez-Arriaga, Verghese &
Schweppe), yields

n
z(t) = Itelit = lTet:: D€t
kT
k=1

As before, the quantities
Pki = T},

were defined as the state-in-mode participation factors.

This formula is identical to the formula for mode-in-state

participation factors. 37



Motivating Examples Showing Inadequacy of
Participation Factors Formula as a Measure of
State in Mode Participation

Example 1 Consider the two-dimensional system

A=l el

A
where a, b and d are constants.

The eigenvalues of A are given by A, =aand A, =d.

The right and left eigenvectors corresponding to A, and i,
are




Example 1, cont'd

The evolution of the mode corresponding the A, can be
written explicitly:

b Y
- 1,.0 >\1t_ 1 )\1t
z1(t) = ['xe —[1 a—d][$8]e

b
0 0) A1t
(xl + o dxz) e .

Note that the evolution of mode 1 is influenced by both x°; and
x%,, with the relative degree of influence depending on the
values of the system parameters a, b and d.

39



Example 1, cont'd

Participation Factors Based on Original Definition:

Participation of state 1 in mode 1: P11 = Iiri =1
Participation of state 2 in mode 1: P21 = l373 =0

Thus, the original definition of participation factors for state in
mode participation indicates that state x, has much smaller
(even zero) influence on mode 1 compared to the influence
coming from state x,, regardless of the values of system
parameters a, b and d.

This is In stark contradiction to what we observed using the
explicit formula for mode 1’s evolution!

b
21(t) = (330 -+ xo) eM?,
: a—d : 40




Motivating Examples, cont'd

Example 2 Consider the two-dimensional system

BEEEIS

\ . 4

N

. A
where d Is a constant.

The eigenvalues of A are given by A, =0 and A, = 1-d.

The right and left eigenvectors corresponding to A, and A,
are

and

41



Example 2, cont'd

The evolution of the system modes can be written explicitly:

z1(t)
22(t)
Observe that state x, and state x, participate equally in mode 2

since z,(t) depends on the initial condition x° through the sum
X9 + X,0.

([ =d .0 1 .0\ .M\t |
] _ (1—d5’71 1—d5'72)6 .

|1 (21 +23)

Participation Factors Based on Original Definition:

Participation of state 1 in mode 2: P12 = 7“%52 = ﬁ

Participation of state 2 in mode 2:  pag = r3l5 = =%

Clearly p12 # P22 which IS NOT in agreement with the
explicit expression for mode 2.



Participation Factors: New Approach and New
Definitions

The linear system

T = Ax(t)

usually represents the small perturbation dynamics of a
nonlinear system near an equilibrium.

= The initial condition for such a perturbation is usually viewed as
being an uncertain vector of small norm.

= We have introduced a new definition of state-in-mode and of
mode-in-state participation factors using deterministic and
probabilistic uncertainty models.

= By averaging the effect of system initial conditions to re-define
each notion of modal participation, we find that the formula

1 .1
Pki = LT

IS quite reasonable for measuring participation of modes in
states, but that it is better replaced by a new (more complex) ,;
formula for participation of states in modes.



Participation Factors: New Approach and New
Definitions, cont’'d

Mode In State Participation Factors:

In the set-theoretic formulation, the participation factor
measuring relative influence of the mode associated with A,
on state x, Is defined as

liZEO ,,,i
Pki — avg ( iUO) i
20 e S k

whenever this quantity exists.

Here S is the initial condition uncertainty set.

44



Mode In State Participation Factors, cont’d

In the probabilistic formulation, the participation factor

measuring relative influence of the mode associated with A,
on state x, Is defined as

['29)r?

L

whenever this quantity exists.

The expectation is evaluated using some assumed joint

probability density function £(x°) for the initial condition
uncertainty.

45



Mode In State Participation Factors, cont’d

Under any of the following conditions (1-3)

1. The initial condition 2" is taken to lie in an uncertainty set S
which is symmetric with respect to each of the hyperplanes
:1:2 =0,k=1,2,...,n

2. The initial condition components are independent random
variables with marginal density functions which are sym-
metric with respectto 2 =0,k =1,2,...,n,

3. The initial condition components, :r: , 7 = 1,2,...,n, are
jointly uniformly distributed over a sphere centered at the
origin,

the new definitions of mode in state participation factors
yield the following formula .
: same as formula originally
l k,r ;. introduced by Perez-Arriaga,
Verghese and Schweppe.



New Definition of State in Mode Participation
Factors

We've introduced a new definition for state in mode
participation factors using a probabilistic approach. Let’s
focus on the case of distinct real eigenvalues first.

The participation factor of state x, in mode i is defined as

L {l}il’% }
T = L R =5
{Zjl(ljx?) } 27

whenever this expectation exists.
. 0
Here the notation 2; = 2i(0)

where z;(t) is the it" system mode:

n

zi(t) = eMiial = et Z(l;x?) .

j=1



State iIn Mode Participation Factors, cont’d

(17 .0
€T
Tk = F < kok}
. Zi
(74 n J .0
lij:1Tij
= F < 5
e
L 7
(17 .7 0 n 0
.z : <
— FE < k' k™1 i E: lZT]E v
ZO k' k ZO
L i ) ., i

i
kT k

I
_|_
]
~ .
%
>~ i,
vy
e N
N©|%NC>
N——

J=1, j#i
e Note that the first term in the expression for w; coincides with pg;,
the original participation factors formula.

e However, the second term does not vanish in general. This is true
even when the components =¥, 29, ..., 20 representing the initial

conditions of the state are assumed to be independent. 8



State iIn Mode Participation Factors, cont’d

To obtain a simple closed-form expression for the state in mode
participation factors m,; using the general definition, we need to
find an assumption on the probability density function f(x°)
governing the uncertainty in the initial condition x° that allows us
to explicitly evaluate the integrals inherent in the definition.

We assume that the probability density function f(x%) is such
that the components x°,x%,,...,x%_ are jointly uniformly
distributed over the unit sphere in R" centered at the origin:

TR A

otherwise

K is chosen to ensure the
normalization condition: / f(29)dz® = 1.

|[z0]|<1
49



State in Mode Participation Factors, cont’d

The following lemma will be used in obtaining a closed form
expression for m;.

Lemma
For vectors a,b € R™ with b # 0 we have
alx alb

where d,,x denotes the differential volume element dx1dxs - - - dx,,,
and V,, is the volume of a unit sphere in R™ which is

given by ( 2, n—=1
V, =< n =2
X %Vn—Qa n Z 3

Using this Lemma, we obtain a closed-form expression for state
IN mode participation factors denoted by ;. >0



State in Mode Participation Factors, cont’d

A Closed-Form Expression for State in Mode Participation Factors
(Case of real eigenvalues):

Note that in general
Thki 7 Phi-

i = Pii only if the left eigenvectors of the system matrix A
are mutually orthogonal which is a very restrictive case.

Another expression equivalent to (1) is
() _ _ G)*
lz(lz)T Z;L:l(l;)2 51

Mk —



State in Mode Participation Factors, cont’d

A Closed-Form Expression for State in Mode Participation Factors

(general case) Dfﬁﬂfriﬂﬁ I: For a linear time-invariant continuous-time

system (23), the participation factor for the kth state in the ¢th
mode is

E {Eﬁji} \ if \;is real
Mhi « = e
E { (i )i } . if \; is complex

- L) =)
"t'_l_"t'

(27)

whenever this expectation exists.

Finally, we have: é (E;;=1T.££j}(ﬂc{£-;}}-r
i = Rl R e T

(54)

This formula can be rewritten as

(et Py Rell ! Rell
cy bt M Re gl i
= Rell, } =— — - E -

“TRell' W Relln})!

(55) 52



Examples 1 and 2 Revisited

Example 1 revisited: Consider the two-dimensional system

!i:]!iﬂli:]

The evolution of the mode corresponding the A, can be
written explicitly:

b Y
- 1,.0 >\1t_ 1 )\1t
z1(t) = ['xe —[1 a_dllmgle

b
_ 0 0) it
<x1 + . de) e,

53



Example 1, cont'd

Based on Original Formula Based on New Formula

Participation of Py = 1 o — (a —d)?
state 1 in mode 1 T (a—d)2 b2
Participation of b?

state 2 in mode 1 P21 =0 e (a —d)? + b

The coupling between state x, and state x, in the system
dynamics is not reflected in the original formula for
participation factors (the p,;), whereas this coupling between
state variables is reflected in the result of applying the new
formula (for the m).

54



Examples 1 and 2 Revisited, cont’d

Example 2 revisited: Consider the two-dimensional system

BEERE

[ 21 (1 ] [ (et - ) et
22(t) )+ ah) er2? |

55



Example 2, cont'd

Based on Original Formula Based on New Formula

Participation of Dio = 1 S 1
state 1 in mode 2 1 —d 12 — 9
Participation of —d 1
state 2 in mode 2 P22 = 1_4d Moo = 5

The results using the new formula more faithfully reflect the
relative contributions of the initial conditions of the two state
variables to the evolution of mode 2, which is given explicitly

by the formula

1
Zo(t) = T (2} + z9) e*?*

56
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PF Eigenvalue Trajectories
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Concluding Remarks

Critical transition prediction issues differ in natural and
engineered systems.

Engineers (especially control engineers) have dealt with
system design for delaying bifurcation or detecting bifurcation
for some time. Usually the methods and results depend very
much on the system.

Precursors of bifurcation can be designed into a system or into
its controller.

For large complex networked systems, modal participation
analysis may assist in determining where to measure and
where to apply control.

Signal processing methods are needed for connecting model-
based and nonparametric approaches to system stability
monitoring.

Applications to power networks have just begun, but other
applications such as computer networks and social networks

are yet to be considered. -
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