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Motivation: Differing Issues for Natural vs. 
Engineered Systems 

• In a natural system, we may hope to predict the onset 
of a transition, and take precautions that may help 
influence it. Often, however, we have no means to 
influence the transition. 
 

• However, in engineered systems, we have more 
options, starting at the stage of system design. 

 



4 
 

Motivation: Differing Issues for Natural vs. 
Engineered Systems 

• For an engineered system, we can: 
• Design the system to not have a transition in the 

intended operating range. 
• Design an augmented system that provides a 

warning to the operator near a transition.  
• Based on a good detailed model, 
• Or based on smart signal processing for an 

uncertain system. 
• Design a control system that improves behavior at a 

transition or gives a warning signal prior to a 
transition. 

 



EXAMPLES 
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(AGRICULTURAL) TRACTORS! 
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 American Control Conf., Boston, 1990, pp. 2235-2238. 

JET AIRCRAFT 



Bifurcation diagrams in the aircraft example: 
Uncontrolled and controlled 
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JET ENGINE STALL 
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ELECTRIC POWER NETWORKS 

• As noted by Hauer (APEx 2000): “[recurring 
problem of system oscillations and voltage 
collapse] is due in part to … system behavior 
not well captured by the models used in 
planning and operation studies” 

• In the face of component failures, system 
models quickly become mismatched to the 
physical network, and are only accurate if 
they’re updated using a powerful and 
accurate failure detection system. 



• In several papers, Hauer has discussed large 
system experiments using probe signal injection 
and ambient noise effects for stability and 
oscillation studies. This includes HVDC 
modulation at mid-level ( 125MW) for probing of 
inividual oscillation modes, and low-level 
( 20MW) for broadband probing. 
 

• Hauer used prony analysis of streaming 
measurements to estimate system modes, and 
the calculated dominant mode was used as an 
indicator of impending instability. 
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HUNTING OF RAILWAY VEHICLES 



EARTHQUAKES 
(OK, this isn’t an engineered system) 
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BIFURCATION CONTROL 
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• Bifurcation control is an analytical methodology for 
designing feedback to achieve desired bifurcation 
behavior. 
 

• Often one wishes to render a subcritical bifurcation 
supercritical by feedback. 
 

• The theory has been applied to models in many 
contexts, from engineering to epileptic seizures. 
 

• Dynamic feedback structures using “washout filters” 
(special high pass filters) allow control without affecting 
equilibrium path locations, even without having an 
accurate system model! 

 
(Ref: Abed and Fu, Systems and Control Letters, 1986 and 
1987, Lee and Abed 1991, and subsequent work.) 
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INSTABILITY WARNING SIGNALS AND 
CONNECTIONS WITH CONTROL 
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Bifurcation Control for Introducing Bifurcation 
Warning Signals 

• Methods should be developed for redesigning systems 
and system controllers so that new distinguishing 
features occur as bifurcation boundaries are 
approached. 

 
• These features can serve as warning signals for 

impending bifurcation. 
 
• This can involve designing more tame bifurcations into 

the dynamics, such as supercritical Hopf bifurcations. 
 

• The jet aircraft example above is pertinent. “Wing rock” 
would be a good warning signal to “departure.” 19 
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Stability Monitoring Should be Detection of Impending 
Bifurcation and Instability 

vs. 
(Early) Detection of Incipient Bifurcation and Instability 

Most stability detection in engineering focuses on detecting 
incipient instability: 

• Incipient instability is an instability that has already 
begun 

• It may be too late at that stage to take adequate control 
action to save the system from collapse 

Detection of impending bifurcation and instability: 
• An impending bifurcation is one that is nearby in 

parameter space and about ready to occur 
• “Noisy precursors” give a robust, nonparametric 

indicator of impending instability. 
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Stability Monitoring and Noisy Precursors 

• We consider instability monitoring using probe signals 
(e.g., additive white Gaussian noise). 

• “Noisy precursors” were studied by Kurt Wiesenfeld 
(1985, J. Stat. Phys.) in the context of noise 
amplification near criticality (stability boundary). 
Wiesenfeld found different noisy precursors for different 
bifurcations, assuming a small white noise disturbance. 

• It is important to note that noisy precursors also give a 
nonparametric  indicator of impending instability. 

• Noisy precursors are observed as rising peaks in the 
power spectral density of a measured output signal of a 
system with a persistent noise disturbance --- the rising 
peak is seen as one or more eigenvalues approach the 
imaginary axis. 
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Power spectrum magnitude for Hopf bifurcation when ω0=10 for  
two values of ε: (a) ε=10, (b) ε=0.1 [Kim & Abed 2000].  

(a) 

(b) 
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Power spectrum magnitude for stationary bifurcation for  
two values of ε: (a) ε=10, (b) ε=0.1 [Kim & Abed 2000].  

(a) 

(b) 



Monitoring Systems using Noisy Precursors 

• Kim and Abed (IEEE Trans. Circuits and Systems, 2000) 
developed a feedback system in which the physical 
system and a model are run side by side. 
 

• The model system is designed to enhance detectability of 
impending instability. 
 

• Actions are taken as needed to protect the physical 
system. 
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Feedback Tuning of Bifurcations 

• Moreau and Sontag (Systems and Control Letters, 2003) 
studied algorithms that can drive a system to a bifurcation 
point. 
 

• A feedback tuning of bifurcations algorithm could be 
attached to a physical system. 
 

• When the algorithm is seen to be quickly approaching 
bifurcation, this could be taken as a warning signal. 
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Extensions of Identification Theory 

• In identification theory, parameter identification for a linear 
system is possible under a “persistent excitation” 
condition for a probe signal. 
 

• For system stability monitoring, we want to focus on 
identifying the dominant mode(s) only. What is the 
theoretical condition for this to be possible? 
 

(B. Hamzi of Imperial College is currently working on this 
problem.) 
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Consider a synchronous machine connected to an infinite bus together with  
excitation control [Abed & Varaiya, 1984].  It was shown that this system  
undergoes  a subcritical Hopf bifurcation as the control gain in the  
excitation system is increased beyond a critical value.   
 
The dynamics of the generator is given by: 

The dynamics of the generator is given by: 

Application to a Power System Model 
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Output spectrum with noise probe signal, as instability is approached. 
(Critical KA = 193.7.) 
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Stability Monitoring and Noisy Precursors, 
cntd. 

• Noisy precursors, like critical slowing down and 
increasing variance, are valid precursors of instability. 
 

• However, for engineered systems we should often be 
able to have a better warning signal designed into the 
system or into its controller. 
 

• Biologically motivated precursors can also be 
considered, since nature has other wonderful 
precursors. 



MODAL PARTICIPATION FACTOR 
ANALYSIS 

 
(Ref: Hashlamoun, Hassouneh and Abed, IEEE Trans. 

Automatic Control, 2009.) 
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• Modal participation factors were introduced at 
MIT in the early 1980’s by Verghese, Perez-
Arriaga and Schweppe. 
 

• They’ve been used widely especially in power 
systems, including for selection of sites for 
measurement and sites for control. 
 

• We’ve recently revisited the concept, and come 
up with two distinct calculations of participation 
factors, and the implications for measurement 
and control are being investigated. 
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Modal Analysis of Linear Systems 

In linear system theory, we start out by considering 
the linear time-invariant continuous-time system 

The system state x(t) is known to be a linear combination 
of exponentials functions x(t) = exp(λi t) ci

  where the 
vectors ci are determined by the system initial condition. 
These functions are the system modes. 
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Participation Factors: Original Definition 

Consider again the linear time-invariant system 
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Participation Factors: Original Definition, cont’d 

The right and left eigenvectors are taken to satisfy the 
normalization 

The k-th state is given by 
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Participation Factors: Original Definition, cont’d 

Relative participation of the i-th mode in the k-th state: 

The special choice for the initial condition x0 = ek , the unit vector 
along the k-th coordinate (Perez-Arriaga, Verghese & Schweppe), 
yields  

The quantities 

were defined as the mode-in-state participation factors. 

The scalars are dimensionless 
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Participation Factors: Original Definition, cont’d 

Relative participation of the k-th state in the i-th mode:  

Applying the similarity transformation 

with  

where 
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Participation Factors: Original Definition, cont’d 

Relative participation of the k-th state in the i-th mode:  

The special choice for the initial condition x0 = rk, the right 
eigenvector corresponding to λi, (Perez-Arriaga, Verghese & 
Schweppe), yields  

As before, the quantities 

were defined as the state-in-mode participation factors. 
 
This formula is identical to the formula for mode-in-state 
participation factors. 
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Motivating Examples Showing Inadequacy of 
Participation Factors Formula as a Measure of 

State in Mode Participation 
 

Example 1 Consider the two-dimensional system 

where a, b and d are constants. 
The eigenvalues of A are given by λ1 = a and λ2 = d. 

The right and left eigenvectors corresponding to λ1 and λ2 
are 

and 
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Example 1, cont’d 

The evolution of the mode corresponding the λ1 can be 
written explicitly: 

Note that the evolution of mode 1 is influenced by both x0
1 and 

x0
2, with the relative degree of influence depending on the 

values of the system parameters a, b and d. 
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Example 1, cont’d 

Participation Factors Based on Original Definition:  

Participation of state 1 in mode 1: 
 

Participation of state 2 in mode 1: 

Thus, the original definition of participation factors for state in 
mode participation indicates that state x2 has much smaller 
(even zero) influence on mode 1 compared to the influence 
coming from state x1, regardless of the values of system 
parameters a, b and d.  
 
This is in stark contradiction to what we observed using the 
explicit formula for mode 1’s evolution!  
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Motivating Examples, cont’d  

Example 2 Consider the two-dimensional system 

where d is a constant. 
 

The eigenvalues of A are given by λ1 = 0 and λ2 = 1−d. 

The right and left eigenvectors corresponding to λ1 and λ2 
are 

and 
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Example 2, cont’d 

The evolution of the system modes can be written explicitly: 

Observe that state x1 and state x2  participate equally in mode 2 
since z2(t) depends on the initial condition x0 through the sum 
x1

0 + x2
0. 

Participation Factors Based on Original Definition:  

Participation of state 1 in mode 2: 
 

Participation of state 2 in mode 2: 

Clearly which IS NOT in agreement with the 
explicit expression for mode 2. 
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 The initial condition for such a perturbation is usually viewed as 
being an uncertain vector of small norm. 
 

 We have introduced a new definition of state-in-mode and of 
mode-in-state participation factors using deterministic and 
probabilistic uncertainty models. 
 

 By averaging the effect of system initial conditions to re-define 
each notion of modal participation, we find that the formula 

Participation Factors: New Approach and New 
Definitions  

The linear system 

usually represents the small perturbation dynamics of a 
nonlinear system near an equilibrium. 

is quite reasonable for measuring participation of modes in 
states, but that it is better replaced by a new (more complex) 
formula for participation of states in modes. 
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Participation Factors: New Approach and New 
Definitions, cont’d 

whenever this quantity exists. 
 
Here S is the initial condition uncertainty set. 

Mode in State Participation Factors:  
 

In the set-theoretic formulation, the participation factor 
measuring relative influence of the mode associated with λi 
on state xk is defined as 
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Mode In State Participation Factors, cont’d 

In the probabilistic formulation, the participation factor 
measuring relative influence of the mode associated with λi 
on state xk is defined as 

whenever this quantity exists. 
 
The expectation is evaluated using some assumed joint 
probability density function f (x0) for the initial condition 
uncertainty. 
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Mode In State Participation Factors, cont’d 
Under any of the following conditions (1-3) 

same  as formula originally 
introduced by Perez-Arriaga, 
Verghese and Schweppe. 

the new definitions of mode in state participation factors 
yield the following formula 
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New Definition of State in Mode Participation 
Factors 

We’ve introduced a new definition for state in mode 
participation factors using a probabilistic approach. Let’s 
focus on the case of distinct real eigenvalues first. 
 
The participation factor of state xk in mode i is defined as  

Here the notation 

where zi(t) is the ith system mode: 

whenever this expectation exists. 
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State in Mode Participation Factors, cont’d 
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State in Mode Participation Factors, cont’d 
To obtain a simple closed-form expression for the state in mode 
participation factors πki using the general definition, we need to 
find an assumption on the probability density function f(x0) 
governing the uncertainty in the initial condition x0 that allows us 
to explicitly evaluate the integrals inherent in the definition. 

We assume that the probability density function f(x0) is such 
that the components x0

1,x0
2,…,x0

n are jointly uniformly 
distributed over the unit sphere in Rn centered at the origin: 

K is chosen to ensure the 
normalization condition: 
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State in Mode Participation Factors, cont’d 
The following lemma will be used in obtaining a closed form 
expression for πki. 

Lemma 

Using this Lemma, we obtain a closed-form expression for state 
in mode participation factors denoted by  πki. 
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State in Mode Participation Factors, cont’d 
A Closed-Form Expression for State in Mode Participation Factors 
(Case of real eigenvalues): 

Another expression equivalent to (1) is 

πki = pki only if the left eigenvectors of the system matrix A 
are mutually orthogonal which is a very restrictive case. 

Note that in general 
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State in Mode Participation Factors, cont’d 
A Closed-Form Expression for State in Mode Participation Factors 
(general case): 

Finally, we have: 
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Examples 1 and 2 Revisited 

Example 1 revisited:  Consider the two-dimensional system 

The evolution of the mode corresponding the λ1 can be 
written explicitly: 
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Example 1, cont’d 

Participation of 
state 1 in mode 1 

The coupling between state x2 and state x1 in the system 
dynamics is not reflected in the original formula for 
participation factors (the pki), whereas this coupling between 
state variables is reflected in the result of applying the new 
formula (for the πki). 

Based on Original Formula Based on New Formula 

Participation of 
state 2 in mode 1 
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Examples 1 and 2 Revisited, cont’d 

Example 2 revisited:  Consider the two-dimensional system 

The evolution of the system modes can be written explicitly: 
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Example 2, cont’d 

Participation of 
state 1 in mode 2 

The results using the new formula more faithfully reflect the 
relative contributions of the initial conditions of the two state 
variables to the evolution of mode 2, which is given explicitly 
by the formula 

Based on Original Formula Based on New Formula 

Participation of 
state 2 in mode 2 
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Eigenvalues from data and Prony analysis 
9-Bus power system example (all modes) 
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Eigenvalues from data and prony analysis 
9-Bus power system example 
(two suggested modes) 
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Concluding Remarks 
• Critical transition prediction issues differ in natural and 

engineered systems. 
• Engineers (especially control engineers) have dealt with 

system design for delaying bifurcation or detecting bifurcation 
for some time. Usually the methods and results depend very 
much on the system. 

• Precursors of bifurcation can be designed into a system or into 
its controller. 

• For large complex networked systems, modal participation 
analysis may assist in determining where to measure and 
where to apply control. 

• Signal processing methods are needed for connecting model-
based and nonparametric approaches to system stability 
monitoring. 

• Applications to power networks have just begun, but other 
applications such as computer networks and social networks 
are yet to be considered. 


	Precursors for Critical Transitions: Natural vs. Engineered Systems, and a Role for Control Theory
	Outline
	Motivation: Differing Issues for Natural vs. Engineered Systems
	Motivation: Differing Issues for Natural vs. Engineered Systems
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Bifurcation diagrams in the aircraft example: Uncontrolled and controlled
	Slide Number 9
	JET ENGINE STALL
	ELECTRIC POWER NETWORKS
	Slide Number 12
	HUNTING OF RAILWAY VEHICLES
	EARTHQUAKES�(OK, this isn’t an engineered system)
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Bifurcation Control for Introducing Bifurcation Warning Signals
	Stability Monitoring Should be Detection of Impending Bifurcation and Instability�vs.�(Early) Detection of Incipient Bifurcation and Instability
	Stability Monitoring and Noisy Precursors
	Slide Number 22
	Slide Number 23
	Monitoring Systems using Noisy Precursors
	Feedback Tuning of Bifurcations
	Extensions of Identification Theory
	Slide Number 27
	Slide Number 28
	Stability Monitoring and Noisy Precursors, cntd.
	Slide Number 30
	Slide Number 31
	Modal Analysis of Linear Systems
	Participation Factors: Original Definition
	Participation Factors: Original Definition, cont’d
	Participation Factors: Original Definition, cont’d
	Participation Factors: Original Definition, cont’d
	Participation Factors: Original Definition, cont’d
	Motivating Examples Showing Inadequacy of Participation Factors Formula as a Measure of State in Mode Participation�
	Example 1, cont’d
	Example 1, cont’d
	Motivating Examples, cont’d 
	Example 2, cont’d
	Participation Factors: New Approach and New Definitions 
	Participation Factors: New Approach and New Definitions, cont’d
	Mode In State Participation Factors, cont’d
	Mode In State Participation Factors, cont’d
	New Definition of State in Mode Participation Factors
	State in Mode Participation Factors, cont’d
	State in Mode Participation Factors, cont’d
	State in Mode Participation Factors, cont’d
	State in Mode Participation Factors, cont’d
	State in Mode Participation Factors, cont’d
	Examples 1 and 2 Revisited
	Example 1, cont’d
	Examples 1 and 2 Revisited, cont’d
	Example 2, cont’d
	Slide Number 57
	Slide Number 58
	Concluding Remarks

