PROOF OF AVERAGED COLMEZ CONJECTURE

TALK GIVEN BY M. ORR

ABSTRACT.

CONTENTS

1.	Introduction	
2.	Strategy	2
3.	Main ingredients	2
4	Arithmetic intersection calculations	1

1. Introduction

Colmez conjectured a formula for Faltings height of a CM abelian variety in terms of special values of L-functions. The averaged version was proven in two independent papers:

- Andreatta, Goren, Howard and Madapusi-Pera;
- · Yuan and Zhang.

We will discuss the former.

1.1. Chowla-Selberg formula. Colmez translated the Chowla-Selberg formula in terms of the Faltings height: Let A be an elliptic curve, E an imaginary quadratic field such that $End(A) = \mathcal{O}_E$. Then

$$h_{Fal}(E) = -\frac{1}{2} \frac{L'(\chi, 0)}{L(\chi, 0)} - \frac{1}{4} \log |D_E| - \frac{1}{2} \frac{\zeta'(0)}{\zeta(0)}.$$

where χ is a Dirichlet character associated with quadratic extension E/\mathbb{Q} .

1.2. Colmez conjecture. From now on we work with simple CM abelian varieties with CM given by the maximal order of a CM field E of degree 2g. We write $Gal(E/\mathbb{Q})$ for the galois group . E_0 is its totally real extension.

Theorem 1.1 (Faltings height depends only on (E, Ψ)). Let (E, Ψ) be a CM type and A an abelian variety with $\operatorname{End}(A) = \mathcal{O}_E$ and CM by (E, Ψ) . Then its Faltings height depends only on (E, Ψ) .

We denote by $h_{Fal}(E,\Psi)$ the Faltings height of any such abelian variety.

Conjecture 1.1. We have

$$h_{Fal}(A) = \sum_{\eta} a(\eta) \left(\frac{L'(\eta, 0)}{L(\eta, 0)} + \frac{1}{2} \log f_{\eta} \right)$$

where the sum if over the Artin character η of $Gal(E/\mathbb{Q})$ and $a(\eta)$ are explicit constants.

Theorem 1.2 (Averaged Colmez Conjecture). We have

$$\sum_{\Phi} h_{Fal}(E, \Phi) = \sum_{\Phi} \left(\sum_{\rho} c_{\rho, \Phi} \left(\frac{L'(0, \rho)}{L(0, \rho)} + \log f_{\rho} \right) \right) = -\frac{1}{2} \frac{L'(\chi, 0)}{L(\chi, 0)} - \frac{1}{4} \log \frac{|D_E|}{|D_{E_0}|} - \frac{g}{2} \frac{\zeta'(0)}{\zeta(0)}$$

the outer sum is over all 2^g CM types of E, and ρ ranges over irreducible complex representations of $\operatorname{Gal}(E^{normal\ cl}/\mathbb{Q})$ for which $L(0,\rho)\neq 0$, $c_{\rho,\Phi}$ are rational numbers depending only on the finite combinatorial data given by Ψ and $\operatorname{Gal}(E^{normal\ cl}/\mathbb{Q})$, and f_ρ is the Artin conductor of ρ .

1

2. STRATEGY

Let $E^{\#}$ be a CM-algebra (i.e. product of CM-fields), called the total reflex algebra. We have

$$h_{Fal}(E^{\#}, \Psi^{\#}) = \frac{1}{2g} \sum_{\Psi} h_{Fal}(E, \Psi).$$

Construct a 0-dimensional Shimura variety Y_0 , with abelian scheme

$$A^\# \to Y_0$$

such that every fibre of $A^{\#}$ has CM by $E^{\#}$. We have

$$h_{Fal}(E^\#,\Psi^\#) = \frac{1}{\deg_{\mathbb{C}}(Y_0)} \hat{\deg}(\hat{\omega}_0)$$

for an arithmetic line bundle $\hat{\omega}_0$ on Y_0 . If $L \subset E$ is a lattice, we get an associated orthogonal Shimura variety M_L and a finite cover

$$Y_L \to Y_0$$

such that $Y_L \hookrightarrow M_L$. We also have an automorphic line bundle $\hat{\omega}$ on M_L such that

$$\hat{\omega}_{|Y_L}$$

is related to $\hat{\omega}_0$.

We can calculate $deg(\hat{\omega}_{|Y_L})$:

- $\hat{\omega}$ can be written as a combination of Heegner divisor $Z(m,\mu)$ (Borcherds, Brunier).
- calculate arithmetic intersections $Z(m,\mu).Y_L$ (Brunier-Kudla-Yang conjecture)

3. Main ingredients

3.1. **Metrized line bundles.** Let X/\mathbb{C} be a smooth proper curve, \mathcal{L} a line bundle on X, we define

$$\deg(\mathcal{L}) := \sum_{p \in X(\mathbb{C})} v_p(s)$$

for a section s of \mathcal{L} (if a section exists). Since, for $f \in \mathbb{C}(X)$, $\sum_p v_p(f) = 0$ (product formula for absolute values on $\mathbb{C}(X)$), the degree does not depend on the choice of s.

Arithmetic version of this: Let K be a number field and consider the one dimensional scheme (not proper)

$$\operatorname{Spec}(\mathfrak{O}_K)$$
.

A line bundle on $\operatorname{Spec}(\mathfrak{O}_K)$ is a projective rank 1 \mathfrak{O}_K -module. One could try

$$\deg(\mathcal{L}) = \sum_{\mathcal{D}} v_{\mathcal{P}}(s) \log |\mathcal{O}_K/\mathcal{P}|$$

for $s \in \mathcal{L} - 0$. But it does not work: it depends on s. We need to compactify $\operatorname{Spec}(\mathfrak{O}_K)$. Indeed the product formula for absolute values on K involves the archimedean absolute values as well as finite places. So we need to add some archimedean information.

For each $\sigma: K \to \mathbb{C}$, choose a Hermitian form on $\mathcal{L} \otimes_{K,\sigma} \mathbb{C}$. Then

$$\hat{\deg}(\hat{\mathcal{L}}) = \sum_{\mathcal{P}} v_{\mathcal{P}}(s) \log |\mathcal{O}_K/\mathcal{P}| - \sum_{\sigma} ||s||_{\sigma} \in \mathbb{R}.$$

This generalises to higher dimensions, but it is enough for us in this setting. We will only look at

$$\hat{\deg}(\hat{\omega}_{|Y_L})$$

where Y_L/\mathcal{O}_E has relative dimension zero. So for each point of $Y_L(\mathbb{C})$, $\hat{\omega}$ restricts to a line bundle over \mathcal{O}_E .

We can use this to define heights: If $f: X \hookrightarrow \mathbb{P}^n$ (everything over \mathfrak{O}_K), let $\mathcal{L} := f^*\mathfrak{O}(1)$. It is a very ample line bundle on X, and comes naturally with a metric (from the metric of $\mathfrak{O}(1)$).

If
$$s : \operatorname{Spec}(\mathcal{O}_K) \to X$$
, we set $h(f(s)) = \operatorname{deg}(s^*\mathcal{L})$.

3.2. **Faltings height.** Faltings height of an abelian variety can be defined in a similar way: there is a line bundle ω on \mathcal{A}_g (considering its compactification over \mathbb{Z} and taking care of the stacky issue), with a metric (with log singularities on boundary). If A is an abelian variety corresponding to $s \in \mathcal{A}_g(\mathcal{O}_K)$, then

$$h_{\text{Fal}}(A) = \frac{1}{[K:\mathbb{Q}]} \hat{\deg}(s^*\hat{\omega}).$$

3.3. Orthogonal Shimura varieties. Let $V=\mathbb{Q}$ as \mathbb{Q} -vector space of dimension 2g. Choose $\lambda\in F$ such that $\sigma_0(\lambda)<0$ and $\sigma_i(\lambda)>0$ for $i=1,\ldots,g-1$, where $\sigma_i:F\to\mathbb{R}$. We can define a quadratic form $V\times V\to\mathbb{Q}$

$$B(x,y) = \operatorname{Tr}_{E/\mathbb{Q}}(\lambda x \overline{y})$$

of signature (2g-2,2).

For a lattice $L \subset V$, we can define a Shimura variety M_L associated with GSpin(V) and arithmetic subgroup GSpin(L), of dimension 2q-2.

GSpin(V) has two natural representations:

- on V: get a family of HS on M_L of K3 type, i.e. with dim $V^{2,0}=1$ and dim $V^{1,1}=2g-2$
- on $C^+(V)$: get a family of HS with dim $C^+V^{0,1}=2^{2g-2}$.

Outcome: $V^{2,0}$ gives a line bundle on M_L , $C^+(V)$ gives a family of AVs over M_L and $E^\# \hookrightarrow C^+(V)$ induces $Y_L \to M_L$.

The authors construct an integral model for M_L over $\operatorname{Spec}(\mathbb{Z})$, relying on Kisin-Vasiu, who constructed a model over $\mathbb{Z}[1/2\Delta_L]$.

There is a natural metric on ω associated with $V^{2,0}$, and, using de Rham realisations, ω has a model over \mathfrak{O}_E . Under suitable conditions on $L \subset E$, also $Y_L \to M_L$ has a model over \mathfrak{O}_E and suitable compatibilities with automorphic line bundles. So: $\hat{\omega}$ on M_L pulls back to an arithmetical line bundle on Y_L which we can understand.

3.4. **Hegneer divisors.** If $\lambda \in V$, $B(\lambda, \lambda) > 0$, then its orthogonal $V_{\lambda} := \lambda^{\perp} \subset V$ is a quadratic vector space of signature (2g - 3, 2). Call $L_{\lambda} := \lambda^{\perp} \subset L$. Get an orthogonal Shimura variety M_{λ} from $Gspin(V_{\lambda}), L_{\lambda}$. We also get

$$GSpin(V_{\lambda}) \to GSpin(V)$$

but $GSpin(L_{\lambda})$ does not map into GSpin(L), so we get 'almost' a map of Shimura varieties $M_{\lambda} \to M_L$. Formally we can 'sum over' M_{λ} for λ in an O(L)-orbit:

$$\sum_{\lambda} M_{\lambda} \to M_L.$$

We define Hegneer divisor $Z(m, \mu)$ as the image of this, where the sum is over $\lambda \in \wedge^+ \mu$ s.t. $B(\lambda) = m$, for $m \in \mathbb{Q}$ $\mu \in V$. They generalise Hegneer points on modular curves. They admit integral models $\mathcal{Z}(m, \mu)$.

4. ARITHMETIC INTERSECTION CALCULATIONS

Let f be a suitable weakly holomorphic modular form

$$f = \sum_{\mu \in L^{\vee}/L} \sum_{m \in \Delta_I^{-1} \mathbb{Z}} c_f(m, \mu) q^m \varphi_{\mu}$$

and let

$$Z(f) = \sum_{\mu,m>0} c(-m,\mu)Z(m,\mu)$$

and call ω_f the line bundle associated with Z(f) on M_L . The theory of Borcherds lift gives a metric on ω_f (using the construction of Burnier-Yang).

Theorem 4.1 (Hormann). For the right choice of f, we have

$$\hat{\omega}_f = \hat{\omega}^{\otimes c(0,0)} + \hat{\mathcal{E}}$$

where $\hat{\mathcal{E}}$ is an error term supported at primes dividing the discriminant δ_L .

By varying the lattices, we can get rid of the error term.

Theorem 4.2.

where
$$\Lambda$$
 is the completed L-function (up to some small errors).
$$\frac{\hat{\deg}(\hat{\omega}_{f|Y_L})}{\deg_{\mathbb{C}} Y_L} = \frac{-2\Lambda'(\chi,0)}{\Lambda(\chi,0)}c(0,0)$$

The archimedean part was computed by Brunier-Kudla-Yang. AGHMP computed the finite part.

Conclusion: from these calculations can obtain $h_{Fal}(E^{\#}, \Psi^{\#})$ up to small errors at bad primes. We can do this for different choices of lattices L to get the exact formula.