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Abstract. We obtain sharp results for the genericity and stability of transitivity, er-
godicity and mixing for compact connected Lie group extensions over a hyperbolic basic
set of a C2 diffeomorphism. In contrast to previous work, our results hold for general
hyperbolic basic sets and are valid in the Cr topology for all r > 0 (except that C1 is
replaced by Lipschitz). Moreover, when r ≥ 2, we show that there is a C2 open and Cr

dense subset of Cr extensions that are ergodic.
We obtain similar results on stable transitivity for (non-compact) Rm-extensions,

thereby generalizing a result of Niţică & Pollicott, and on stable mixing for suspension
flows.

1. Introduction

In this work we consider the stable transitivity and ergodicity of Lie group exten-
sions over hyperbolic basic set with a fixed base diffeomorphism. We also obtain stable
transitivity and ergodicity results for suspension flows (fixed base map and varying roof
function). Elsewhere [11], we show how our methods can be developed to prove, for exam-
ple, that mixing hyperbolic flows are open and dense within the class of smooth nontrivial
hyperbolic flows.

After a survey of some of the existing results on extensions by compact Lie groups, we
describe in §1.2 our new results on compact group and Rm-extensions over a hyperbolic
basic set. In §1.3, we describe our results on suspension flows. In §1.4, we describe related
results in [11].

1.1. Compact group extensions of a fixed hyperbolic basic set. In this subsection,
we give a brief historical review of some of the previous work in this area that relates to
our work.

Let G be a compact connected Lie group. In 1975, Brin [9] proved the genericity
(in the C2-topology) of stable ergodicity for compact Lie group extensions of Anosov
diffeomorphisms. Specifically, Brin showed that there was a C1-open and dense set of
transitive compact Lie group extensions of an Anosov diffeomorphism [9, Theorem 2.2]
and deduced (using [10, Theorem 5.3]) that every C2 transitive extension was Kolmogorov
and, a fortiori, ergodic. More recently, using somewhat different methods, Adler, Kitchens
& Shub [1] reproved a variant of Brin’s result that applied to circle extensions of Anosov
diffeomorphisms of a torus. Specifically, they showed that there is aC0 open and C∞ dense
set of extensions of such diffeomorphisms that are ergodic. (The same result holds for toral
extensions of a hyperbolic attractor [14].) Following the result of Adler et al. [1], Parry
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& Pollicott [23] studied stability of mixing for toral extensions over aperiodic subshifts of
finite type and over connected hyperbolic basic sets subject to a cohomological restriction.

Field & Parry [14] generalized these results to allow for extensions by compact connected
non-abelian Lie groups G. In the case that G is semisimple, they proved that for all
α ∈ (0, 1) and ∞ ≥ r ≥ α, there is a Cα open, Cr dense set of ergodic extensions over a
general hyperbolic basic set. In the case that the basic set is an attractor, they obtained
the same stability result for general compact connected Lie groups G. Extensions and
variations of the results in [23, 14] may be found in [12, 13].

Unfortunately, the situation regarding toral extensions over general hyperbolic basic
sets as reported in these works is less than satisfactory. Thus, in [23], the stability
and density result for extensions of a subshift of finite type is proved in the Cα-topology,
α ∈ (0, 1), but the open and dense set of ergodic Cα extensions contains no Cβ extensions,
β > α. A second issue is that the methods of [23, 14] require for toral extensions either
that the base is a subshift of finite type or that the base is connected and a cohomological
condition holds (the only examples known satisfying the cohomological condition are
attractors/repellors).

In the present work, we resolve these problems and give sharp results for compact Lie
group extensions of general hyperbolic basic sets. Although our emphasis in this work is
on skew (product) extensions, all of our results apply to principal G-extensions (see [14,
§5.3]). Our results also apply to classes of partially hyperbolic G-invariant basic sets. For
these applications, we refer to [12].

1.2. Results on group extensions. We suppose throughout that Φ is a fixed C2-
diffeomorphism of the compact manifold M , and that Λ is a hyperbolic basic set for
Φ. That is:

Definition 1.1. We say that Λ is a hyperbolic basic set for the diffeomorphism Φ if Λ
is a locally maximal hyperbolic set, and Φ|Λ is topologically transitive. In addition, we
require that the basic set Λ is nontrivial, meaning that it does not coincide with a periodic
orbit.

Definition 1.2. For r > 0, we give the usual meaning to ‘Cr’ and the ‘Cr-topology’
except that C1 maps will be defined as Lipschitz.

By Cr(M,G) we denote the space of Cr cocycles on M with the Cr-topology.

Theorem 1.3. For r > 0, there exists a Cr open and dense subset Wr of Cr(M,G) such
that for all f ∈ Wr, the skew extension Φf : Λ × G→Λ × G is transitive. If r ≥ 2,
Wr is open in the C2-topology on Cr(M,G) and C∞-cocycles are C [r]-dense in Wr. An
analogous result holds for principal G-extensions over Λ.

Remark 1.4. Theorem 1.3 is of main interest when G is not semisimple or Λ is not an
attractor — Cα-stability, C∞-density holds if G is semisimple or Λ is an attractor [14] for
any α > 0. On the other hand if G = Km, r < 1 and Λ is a subshift of finite type, then
Wr ∩Wt = ∅, 0 < r < t, and we conjecture this may occur for values of r ∈ [1, 2).

In our study of ergodic properties of extensions, we suppose that µ is the unique equilib-
rium state associated to a Hölder continuous potential on Λ [6]. It follows that Φ : Λ→Λ
is µ-ergodic. We take Haar measure h on G and define the product measure ν = µ × h
on Λ×G. All skew extensions Φf are ν-measure preserving.
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Theorem 1.5. With the notation of Theorem 1.3, if f ∈ Wr, then Φf is ν-ergodic. An
analogous result holds for principal G-extensions over Λ. If Φ : Λ→Λ is mixing and
f ∈ Wr, then Φf is mixing.

Remark 1.6. The equivalence of ergodicity and transitivity for the situation described
in Theorems 1.3 and 1.5 is a direct consequence of Livšic regularity (see §6). The last
statement of Theorem 1.5 is a consequence of [14, Proposition 3.2.1] — if Φ is mixing,
then stable ergodicity of Φf is equivalent to stable mixing of Φf .

Before stating our next result, we recall some definitions from [19]. We continue to
assume that r > 0. Let f ∈ Cr(M,Rm) and define the corresponding skew-extension
Φf : Λ×Rm→Λ×Rm. Write fn =

∑n−1
j=0 f◦Φj. Let Lf = {fn(x) | Φnx = x}. We say that f

satisfies the separating condition if Lf is not contained on one side of a hyperplane through
0 in Rm. Let Sr ⊂ Cr(M,Rm) denote the set of cocycles that satisfy the separating
condition. We remark that Sr is a nonempty open (but never dense) subset of Cr(M,Rm).
Niţică & Pollicott [19] studied the case when Λ = M is Anosov and proved that Φf is
transitive for f ∈ Sr.
Theorem 1.7. For r > 0, there exists a Cr open and dense subset Wr of Sr such that
for all f ∈ Wr, the skew extension Φf : Λ × Rm→Λ × Rm is transitive. If r ≥ 2, Wr is
open in the C2-topology on Cr(M,Rm) and C∞-cocycles are C [r]-dense in Wr.

Remark 1.8. If Λ is a hyperbolic attractor, then we obtain the improved result that Wr

is C0 open in Sr. Again, Cα-openness, α ∈ [0, 1), fails for general hyperbolic basic sets.

1.3. Suspension flows. We now describe our main result on the stability of weak mixing
for suspensions flows over hyperbolic basic sets. LetRr denote the space of strictly positive
functions (roof functions) in Cr(M,R). Each roof function f ∈ Rr defines a suspension

flow Φf
t : Λf→Λf on the suspension Λf . When Λ = M is Anosov, it follows from the

Anosov alternative [2] that Λf is mixing for all nonconstant f ∈ Rr.

Theorem 1.9. For r > 0, there exists a Cr open and dense subset Wr of Rr such that
for all f ∈ Wr, the suspension flow Φf

t : Λf→Λf is weak mixing. If r ≥ 2, Wr is open in
the C2-topology on Cr(M,R) and C∞ roof functions are C [r]-dense in Wr.

Remark 1.10. If Λ is a hyperbolic attractor, then we obtain the improved result that Wr

is C0 open in Rr. Once again, Cα-openness, α ∈ [0, 1), fails for general hyperbolic basic
sets.

Remarks 1.11. (1) On a suspension Λf ∼= Λ × R/ ∼ we consider the equilibrium state
µf = µ× `/

∫

Λ
f dµ where ` is Lebesgue measure and µ is an equilibrium state associated

to a Hölder potential on Λ. However, weak mixing of Φf
t is independent of the choice of µ

and is equivalent to topological weak mixing (see for example [21, Proposition 6.2]). Hence
we suppress any reference to the measure in the results concerning mixing of hyperbolic
(suspension) flows.
(2) Moreover, it follows from standard results (see for example [24, p. 418] and [7, Remark
3.5] for statements and references) that weak mixing suspension flows are automatically
strong mixing, Kolmogorov and even Bernoulli (so for each t ∈ R\{0} the diffeomorphism

Φf
t : Λf→Λf is isomorphic to a Bernoulli shift). Consequently, it follows from Theorem 1.9

that an open and dense set of suspension flows over a hyperbolic basic set are Bernoulli.
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1.4. Varying the base diffeomorphism. Let n = dimM and restrict to Cs diffeomor-
phisms, Φ ∈ Diffs(M), s ≥ 2n + 1. If we allow the base diffeomorphism Φ to vary in the
context of Theorems 1.3 and 1.5, then it can be shown using the methods of [11] that
compact group extensions Φf : ΛΦ × G→ΛΦ are transitive/ergodic for (Φ, f) lying in a
C2n+1 × C2-open and Cs × Cr-dense subset of Diffs(M) × Cr(M,G). Similar results in
the context of Theorems 1.7 and 1.9 hold for Rm-extensions and suspension flows.

1.5. Brief remarks on proofs and extensions. Brin’s original proof of stable transi-
tivity of compact Lie group extensions over an Anosov diffeomorphism uses transitivity
properties of the stable and unstable foliations, and the well-known ‘quadrilateral con-
struction’. In a related paper [8], Brin gives a direct construction of maximal transitivity
components which uses the structure of the strong stable and unstable foliations of the
extension. While the existence of maximal transitivity components holds under the as-
sumption that the base is a basic set (see [22, §5]), the quadrilateral argument appears
to require at least some local path connectivity in the invariant foliations of the basic
set. Thus, the quadrilateral argument works for general hyperbolic attractors (see [12]),
but fails for subshifts of finite type. A common theme of more recent work is the use of
a result of Keynes & Newton [16] together with the Livšic regularity theorem [17], [20,
Theorem 3.1]. This approach allows one to prove that the ergodic components naturally
define a partition by closed sets and leads to simple arguments for stable ergodicity when
G is semisimple (see [14]). Matters are not so simple when G is abelian, and the proof of
Parry & Pollicott’s result on toral extensions over subshifts of finite type makes use of the
Ruelle transfer operator. Since we are interested in Cr results, r ≥ 1 (and cannot assume
that maps are expanding), we avoid this approach here. Our proof of Theorem 1.3 for
subshifts of finite type depends on obtaining good asymptotic bounds on the average of
R-valued cocycles along a sequence of periodic points asymptotic to a homoclinic point.
Using our methods, we give in §3 a simple proof of the original abstract result of Parry
& Pollicott, and in §5 a more geometric and very explicit proof using results of Williams
on geometric realization of subshifts of finite type [26]. For Cr extensions, we consider
subshifts of finite type in §4. We deduce the result for general basic sets using the fact that
basic sets contain (many) subshifts of finite type together with a routine argument based
on either Keynes & Newton and Livšic regularity or the existence of maximal transitivity
components.

Finally, we note that the results in this paper go far beyond the context of hyperbolic
dynamics. For example, the results on group extensions over a hyperbolic basic set Λ
generalize immediately to the case where Λ is a locally maximal topologically transitive
set such that (i) Λ contains a transverse homoclinic point, and (ii) Λ supports results on
Livšic regularity whereby measurable solutions to certain cohomological equations have
continuous versions. See Remark 6.4.

Remark 1.12. The heart of this paper, §4, is concerned with proving Theorem 1.5 in the
special case when X is a subshift of finite type and G is the circle group. The remainder of
the results are then consequences of this special case. See §6 for the proof of Theorem 1.5
for general Λ and G, §7 for the proof of Theorem 1.7, and §8 for the proof of Theorem 1.9.
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2. Preliminaries

Throughout this work we assume that M is a compact smooth Riemannian manifold
without boundary.

2.1. Transverse homoclinic points and Smale’s theorem. Let Φ : M→M be a
diffeomorphism of M . Let P ∈M and suppose that the Φ-orbit O(P ) of P is a hyperbolic
periodic orbit of Φ, of prime period q. Suppose that xH ∈ W s(O(P )) ∩W u(O(P )) is a
transverse homoclinic point. It follows straightforwardly from the λ-lemma that we can
assume xH ∈ W s(P ) ∩W u(P ). Replacing Φ by Φq, it will be no loss of generality (see
below) to assume that xH is a transverse homoclinic point for the hyperbolic fixed point
P of Φ.

We say that a subset X of M is an H-set for Φ if

(1) X is a compact locally maximal Φ-invariant subset of M .
(2) Φ|X is transitive.
(3) Φ|X is hyperbolic.
(4) X is conjugate to a subshift of finite type.

We recall Smale’s theorem (see [15, Theorem 6.5.5, Exercise 6.5.1])

Theorem 2.1. Let Φ : U →M be an embedding of the open set U ⊂M , and P, xH ∈ U .
Assume that xH is a transverse homoclinic point for the hyperbolic fixed point P of Φ.
Then there is an H-set for Φ containing P and xH .

2.2. Function spaces. Suppose that X is an H-set for Φ. We choose a (closed) cover
of X by mutually disjoint contractible neighborhoods, with smooth boundaries. Let U
denote the closed neighborhood of X with smooth boundary that is defined by the cover.
Without loss of generality we may and shall regard U as a subset of Rn, n = dim(M).

For r > 0, let C = Cr(U,R) denote the space of Cr R-valued cocycles on U . If r is an
integer, Cr has the usual meaning except if r = 1 when we regard C1(U,R) as the space
of Lipschitz continuous functions on U . With this proviso, we take the usual Cr topology
on C. We let ‖ ‖r denote a choice of Cr-norm on C. With respect to this norm, C is a
Banach space.

Definition 2.2. An element g ∈ C is called an X-coboundary if we can choose a contin-
uous function h : X→R such that

g = h ◦ Φ− h.

We denote the subspace of C consisting of X-coboundaries by Br = Br(U,R) or just B
if the meaning is clear from the context.

Remarks 2.3. (1) We do not ask that an X-coboundary is a coboundary on U . Nor do we
require that the function h occurring in the definition is more than continuous on X. If
fact, it follows from Livšic regularity that it suffices to assume h|X is measurable relative
to an equilibrium state on X as it then follows we can choose h|X to be Cα (Hölder)
continuous if g is Cα, α ∈ (0, 1].
(2) In the sequel, we drop the prefix ‘X’ and just refer to coboundaries.

Proposition 2.4. For r > 0, the space Br(U,R) is a C0-closed subspace of Cr(U,R).
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Proof. It follows from the Livšic theorems that an element f ∈ Cr(U,R) is a coboundary
if and only if the average of f over each periodic orbit of Φ in X is zero. �

Let V = V r(U,R) denote the Cr-closure of the subspace L = L(U,R) of C consisting
of functions which are locally constant on X.

Henceforth, if r > 0 is given, we always take the corresponding Cr topologies on the
subspaces B and V .

Remarks 2.5. (1) Let r > 0 and Cr(X) denote the space of R-valued functions f : X→R
which admit a Cr extension E(f) ∈ Cr(U,R). We similarly let V r(X) denote the subspace
of Cr(X) consisting of functions which admit a Cr extension E(f) ∈ V r(U,R). If r ∈ (0, 1)
and ∞ ≥ s > r, then V r(X) ⊃ Cs(X). That is, in the Cr-topology on Cr(X), every
Cs-function, s > r, can be Cr-approximated by a locally constant function. This result
is (obviously) not true if r ≥ 1.
(2) Every locally constant function f on X has an extension E(f) ∈ V ∞(U,R).
(3) If r is not an integer, then Cs, ∞ ≥ s > r functions are not dense in Cr(U,R) (or
Cr(X)). Density follows, by the Stone-Weierstrass approximation theorem, if r is an
integer.

2.3. Criteria for the transitivity & ergodicity of toral extensions. Let Km denote
the m-dimensional torus, regarded as a compact abelian group. We start by recalling
a special case of a general result of Keynes & Newton giving necessary and sufficient
conditions for the ergodicity of a compact group extension.

Theorem 2.6 ([16, §2]). Let Φ : X→X be an ergodic transformation of the probability
space (X,µ). Let f : X→Km be µ-measurable. Then Φf : X × Km→X × Km is µ × h-
ergodic if and only if for all ` = (`1, . . . , `m) ∈ Zm, ` 6= 0, the equation

w ◦ Φ(x) = w(x)Πm
i=1f

`i
i (x), ae x,(2.1)

has no measurable solutions w : X→K.

Let f : M→Km be a Cr-cocycle and Φf : M ×Km→M ×Km denote the corresponding
Km-extension defined by Φf (x, g) = (Φ(x), gf(x)). Restricting to the H-set X ⊂ M , we
obtain a Km-extension Φf : X ×Km→X ×Km.

For the remainder of the section, and following Parry & Pollicott [23], we give criteria
for the ergodicity and transitivity of the extension Φf . We do this in terms of a fixed
equilibrium state µ on X. However, the resulting conditions are independent of the
equilibrium state and depend only on the cocycle f . We refer the reader to [23] for details
we omit.

Let f ∈ Cr(U,Km), f = (f1, . . . , fm). Using our cover of U by contractible sets, we
may choose Fi ∈ Cr(U,R), 1 ≤ i ≤ m, such that fi = exp(2πıFi) (on U). Note that we
may suppose that the Fi depend continuously on f in the Cr-topology. Let S(F ) denote
the R-vector subspace of Cr(U,R) spanned by F1, . . . , Fm.

Lemma 2.7 (cf [14]). The extension Φf is ergodic if S(F ) ∩ (B + L) = {0}. If m = 1,
then Φf is stably ergodic if and only if F /∈ B + L (closure in Cr).

Proof. It follows from Theorem 2.6 and Livšic regularity that if Φf is not ergodic then
there exists (`1, . . . , `m) 6= (0, . . . , 0), such that

g ◦ Φ = f `11 . . . f `mm g(2.2)
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has a non-trivial solution g ∈ C0(X,K). Noting that g◦Φ/g ∈ Cr(U,R) and our definition
of Br(U,R), it follows easily that we may choose M,H ∈ Cr(U,R) such that

M +H =
m
∑

i=1

`iFi,(2.3)

where

(1) M is a locally constant integer valued function on X.
(2) H ∈ Br(U,R).

If equation (2.3) has solutions, then S(F )∩(B+L) 6= {0}. That is, if S(F )∩(B+L) = {0}
then Φf is ergodic.

Suppose m = 1. If F ∈ B + L, then we can find F ′ arbitrarily Cr close to F such that
F ′ = b+ v where b is a coboundary and v is locally constant on X and takes only rational
values on X. It follows that for some integer `, `F ′ = b̃+m, where m is locally constant
and integer valued on X and b̃ is a coboundary. Setting f ′ = exp(2πıF ′), it follows that
Φf ′ is not ergodic. Hence Φf cannot be stably ergodic. �

Remarks 2.8. It follows from Lemma 2.7 that in order to prove the Cr-genericity of sta-
ble ergodicity (or transitivity) for Km-extensions, it suffices to prove that B + L is of
codimension at least m. In the case of Cα-extensions, r = α ∈ (0, 1), Parry & Pollicott
prove that B + L is of infinite codimension. They prove further that (a) B + V is closed
(recall that V = L), (b) C/(B + V ) is not separable. We are interested in the case r > 1,
especially the case when r is an integer. When r is integral, C/B + L is separable. We
do not know, at this time, whether B + V is closed.
(2) We concentrate throughout on proving stable ergodicity. In the case that Φ is topo-
logically mixing, then stable ergodicity is enough to guarantee stable mixing [14, §3.2].

2.4. Reduction to the case of a fixed point & K-extensions. Continuing with our
previous notations, suppose that X is an H-set for the diffeomorphism Φ. As usual we
set Φ = Φ|X and let r ≥ 2. In order to prove the Cr-genericity of stably ergodic Cr K-
extensions, it suffices, by Lemma 2.7, to find (a single) F ∈ Cr(U,R) such that F /∈ B + L.
In fact, we shall prove rather more:

Theorem 2.9. Let r > 0. Suppose that Φ has a fixed point p and xH is a transverse
homoclinic point for p. Let D? ⊂ U be a neighborhood of the closure of the Φ-orbit of xH
and D ⊂ D? be a neighborhood of p. We can choose F ∈ Cr(U,R) and a Cr neighborhood
W of F in Cr(U,R) such that

(1) supp(F ) ⊂ D ,
(2) If F ′ ∈ W, then F ′ /∈ B + L,
(3) If H ∈ Cr(U,R) is such that supp(H)∩D? = ∅, then F ′+H /∈ B + L, all F ′ ∈ W.
(4) If r ≥ 2, then we may take W to be open in the C2-topology on Cr(U,R).
(5) If r ≥ 2 is an integer, then C∞ cocycles are dense in W.

Next, we make a simple extension of Theorem 2.9 to allow for periodic points.

Lemma 2.10. Let r > 0. Suppose that Φ has a periodic point p ∈ X of prime period q and
xH is a transverse homoclinic point for p. Let D? ⊂ U be a neighborhood of the closure
of the Φ-orbit of xH and D ⊂ D? be a neighborhood of p. We can choose F ∈ Cr(U,R),
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and a Cr neighborhood W of F in Cr(U,R) such that the conclusions of Theorem 2.9 are
valid.

Proof. Shrink D so that the subsets Φ−i(D) are disjoint for i = 0, 1, . . . , q − 1. Since
Φq(p) = p, it is immediate from Theorem 2.9 that we can choose F ∈ Cr(U,R) supported
in D with the required properties with Φ replaced by Φq. In particular, F 6∈ Bq + L where
Bq is the space of Cr coboundaries for Φq. This proves stable ergodicity of (Φq)f where
f = e2πıF .

Define F̃ =
∑q−1

i=0 F ◦ Φi. Then F̃ coincides with F on D? and so by Theorem 2.9(3)

F̃ 6∈ Bq + L. Again (Φq)f̃ is stably ergodic, where f̃ = e2πıF̃ . But (Φq)f̃ = (Φf )
q, so

we have shown stable ergodicity of (Φf )
q and hence Φf . In particular, it follows from

Lemma 2.7 that F 6∈ B + L. �
There remains the case of Km-extensions, m > 1. Choose a set of m disjoint periodic

orbits. By the preceding arguments, we may choose F1, . . . , Fm /∈ B + L such that the
supports of the Fi are mutually disjoint. Obviously, F1, . . . , Fm are linearly independent
mod B + L. In particular, codimC(B + L) =∞.

3. Outline of the proof and the theorem of Parry-Pollicott

We continue to assume that Φ : X→X is an H-set for Φ. Let r > 0. Suppose that
p ∈ X is a hyperbolic fixed point for Φ.

3.1. Outline of proof. Suppose F ∈ Cr(U,R). Let x ∈ X. If x is periodic of prime
period n, we define the average of F along the Φ-orbit of x by

Av(F, x) =
n−1
∑

i=0

F (Φi(x)).

If x is a homoclinic point to a periodic point p and Av(F, p) = 0, then we define

Av(F, x) =
∞
∑

i=−∞

F (Φi(x)).

Using our assumption that F is Cr, and certainly Hölder, it is easy to show that this sum
converges.

Suppose that xH ∈ X is a transverse homoclinic point for p. Let (pN) ⊂ X be a
sequence of periodic points such that pN→xH . It follows from the continuity of Φ that
for all i ∈ Z, Φi(pN)→Φi(xH), as N→∞.

Suppose that F is Cr close to B + L, so that F = b+ `+ g, b ∈ B, ` ∈ L, ‖g‖r small.
Without loss of generality, we may suppose that Av(F, p) = Av(`, p) = 0. In particular,

AN(F ) = Av(F, xH)− Av(F, pN)

is well-defined for all N ≥ 1.
It is well-known, and simple to verify, that Av(b, pN) = Av(b, xH) = 0 for all N ≥ 1

and that Av(`, pN) = Av(`, xH) for N sufficiently large. Hence for N large, we have

AN(F ) = AN(g).(3.4)

It is now an easy matter to construct explicit cocycles F 6∈ B + L — we require only
that AN(F ) is not eventually zero. It is also possible to construct cocycles F 6∈ B + L by
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comparing the asymptotics on each side of (3.4). Specifically, we obtain (i) upper bounds
for the right-hand-side of (3.4) for all small g, and (ii) lower bounds for the left-hand-side
of (3.4) for an explicitly constructed cocycle F . In this way, we show that F − g /∈ B +L
provided that ‖g‖r is sufficiently small. In fact, since our construction only depends on
averages near the Φ-orbit of xH , it will follow that g can take arbitrary values outside of
some arbitrarily small neighborhood of the closure of the Φ-orbit of xH .

In order to obtain our estimates, we will need to estimate the location of the periodic
points in the sequence (pN) rather precisely. We remark that the details of our proof are
much easier if we make the assumption that Φ is smoothly linearizable at p. However,
this assumption is not necessary for the proofs of Theorems 1.3–1.9 which do not require
any non-resonance conditions on the linearization of Φ at the fixed point.

We note that the construction involving xH and pN described above has been used
independently by Bonatti et al. [3].

3.2. The theorem of Parry-Pollicott. We conclude this section with an illustration of
how our methods give a proof of the stability result of Parry and Pollicott for (abstract)
subshifts of finite type that avoids any consideration of the Ruelle transfer operator and,
as we shall see, generalizes to smooth cocycles.

Let X be a subshift of finite type. Given θ ∈ (0, 1) we define the metric d(x, y) = θn

where n is the largest nonnegative integer such that xi = yi for |i| < n. Let Fθ(X) be the
space consisting of all functions f : X→R that are Lipschitz with respect to this metric.
Let |f |∞ denote the sup-norm and |f |θ the least Lipschitz constant. Then Fθ(X) is a
Banach space under the norm ‖f‖θ = max{|f |∞, |f |θ}.

Let B = Bθ(X) ⊂ Fθ(X) denote the subspace of coboundaries and L ⊂ Fθ(X) the
subspace of locally constant functions. If U is an open subset of X, we let Lθ(U) denote
the subspace of Fθ(X) consisting of functions which are locally constant on U .

Remark 3.1. If b = c ◦ σ − c ∈ Bθ then by Livšic regularity the cobounding function
c : X→R can be chosen to lie in Fθ. In particular, c is continuous.

We give an elementary proof of the following result of Parry-Pollicott.
Theorem 3.2. [23] The subspace Bθ + L has infinite codimension in Fθ.

We start by proving a special case of part of Theorem 3.2.

Proposition 3.3. Suppose that the shift map σ : X→X has a fixed point p and that xH
is a homoclinic point for p. If D? is any open neighborhood of the closure of the σ-orbit
of xH , then we can choose f̃ ∈ Fθ(X), such that

(1) f̃ /∈ Bθ + L.

(2) supp(f̃) ⊂ D?.

(3) If g ∈ Fθ(X) has supp(g) ∩D? = ∅, then f̃ + g /∈ Bθ + L.

(4) For some c > 0, ‖f̃ − (b+ `)‖θ ≥ c, all b ∈ Bθ and ` ∈ Lθ(D?).

In particular, Bθ + L 6= Fθ(X).

We present the proof of Proposition 3.3 in the special case where X is the full shift
{0, 1}Z on two symbols and leave the details of the general case to the reader (note that
the general case can be reduced to this case by recoding).
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We denote points x ∈ {0, 1}Z by . . . x−1 · x0x1 . . .. Let p = 0∞ · 0∞ and suppose for
simplicity that the homoclinic point is xH = 0∞ · 10∞. We let (pN) be the sequence of
periodic points of period 2N + 1 defined by pN = [0N · 10N ]. Note that pN→xH , N→∞.

Given F ∈ Fθ(X) satisfying F (p) = 0, define AN(F ) = Av(F, xH) − Av(F, pN). We
have

AN(F ) =
∞
∑

j=−∞

F (σjxH)−
N
∑

j=−N

F (σjpN)

=
N
∑

j=−N

[

F (σjxH)− F (σjpN)
]

+
∑

|j|>N

F (σjxH)

Lemma 3.4. (a) If b ∈ Bθ, then b(p) = 0 and AN(b) = 0 for all N .
(b) If ` is locally constant and `(p) = 0, then there exists N0 such that AN(`) = 0 for

all N ≥ N0.
(c) If g ∈ Fθ and g(p) = 0, then |AN(g)| ≤ 4|g|θθN/(1− θ) for all N .

Proof. Parts (a) and (b) are well-known and elementary. We prove part (c). Since pN
and xH first differ in the ±(2N + 1)’th position, |g(σjpN) − g(σjxH)| ≤ |g|θθ2N+1−|j|

for |j| ≤ 2N + 1. Hence |
∑N

j=−N [g(σjpN) − g(σjxH)]| ≤ |g|θθN+1(θN + 2θN−1 + · · · +
2) ≤ 2|g|θθN+1/(1 − θ). Similarly, since g(p) = 0, we can write

∑

|j|>N g(σjxH) =
∑

|j|>N [g(σjxH)−g(p)] which is dominated by 2|g|θ(θN+θN+1+· · · ) ≤ 2|g|θθN/(1−θ). �

Lemma 3.5. Let Cq be the cylinder of length 2q + 1 given by Cq = {x ∈ X : x =
· · · 0q · 00q · · · }. Define

f =
∑

q≥1

θq(1− ICq).

Then f ∈ Fθ, f(p) = 0, and AN(f) = 2‖f‖θθN/(1− θ).

Proof. It is immediate from the definitions that |f |∞ ≤ θ/(1 − θ) and |f |θ ≤ θ/(1 − θ).
Also, xH 6∈ Cq for all q so that f(xH) = θ/(1− θ). Hence f ∈ Fθ with ‖f‖θ = θ/(1− θ).
Since p ∈ Cq for all q, f(p) = 0.

Next, we note that σjxH ∈ C|j|−1 − C|j| for each j. Hence f(σjxH) = θ|j|/(1− θ).
The same calculation for pN shows that σjpN ∈ C|j|−1 − C|j| and hence f(σjpN) =

θ|j|/(1−θ) for |j| ≤ N . We conclude that AN(f) =
∑

|j|>N f(σjxH) = 2θN+1/(1−θ)2. �
Proof of Proposition 3.3 Let f be the function defined in Lemma 3.5. Suppose for
contradiction that f ∈ Bθ + L. Then for any ε > 0, there exists b ∈ Bθ, ` ∈ L, and g ∈ Fθ
with ‖g‖θ < ε, such that f = b+ `+ g. Replacing ` by `+ g(p) and g by g− g(p) we can
assume without loss of generality that `(p) = g(p) = 0 while maintaining |g|θ < ε. Since
AN is additive, we have AN(f) = AN(b) + AN(`) + AN(g). By Lemma 3.4, there exists
N0 such that AN(f) = AN(g) for all N ≥ N0. For such N , we have

2‖f‖θθN/(1− θ) ≤ 4εθN/(1− θ),

and hence ‖f‖θ ≤ 2ε. Since ε > 0 is arbitrary we obtain the desired contradiction, proving
the first statement of Proposition 3.3. Since the argument only depended on averages of
functions along the orbits of xH and pN , arbitrarily large N , it is clear that if g ∈ Fθ is
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supported outside of some open neighborhood D? of the closure of the orbit of xH , then
f + g /∈ Bθ + L.

If b ∈ Bθ, and ` ∈ Lθ(D?), then AN(f − (b+ `)) = AN(f)−AN(`) = AN(f), sufficiently
large N . By Lemma 3.4, |AN(f − (b+ `))| ≤ 4|f − (b+ `)|θθN/(1− θ) for all N . Hence

|f − (b+ `)|θ ≥
1

4
θ−N(1− θ)AN(f).(3.5)

for sufficiently large values of N . But, by Lemma 3.5, AN(f) = 2‖f‖θθN/(1− θ). Hence
it follows that ‖f − (b+ `)‖θ ≥ |f − (b+ `)|θ ≥ 1

2
‖f‖θ, all b, `.

Finally, to complete the proof, note that it is no loss of generality to assume that D? is
open and closed. It follows that if we define f̃ = fχD? , then f̃ ∈ Fθ(X) and ‖f̃‖θ ≥ ‖f‖θ.
Equation (3.5) continues to hold, with f̃ replacing f . Since AN(f̃) = AN(f) for sufficiently

large N , we deduce that ‖f̃ − (b+ `)‖θ ≥ 1
2
‖f‖θ = θ

2(1−θ) for all b, `. �
Following the argument in the general case (Lemma 2.10), we can allow for periodic

points.

Lemma 3.6. Suppose that p ∈ X is a periodic orbit and that xH is a homoclinic point
for the orbit of p. If D? is any open neighborhood of the closure of the σ-orbit of xH , then
we can choose f̃ ∈ Fθ, such that

(1) f̃ /∈ Bθ + L.

(2) supp(f̃) ⊂ D?.

(3) If g ∈ Fθ has supp(g) ∩D? = ∅, then f̃ + g /∈ Bθ + L.

(4) For some c > 0, ‖f̃ − (b+ `)‖θ ≥ c, all b ∈ Bθ and ` ∈ Lθ(D?).

The theorem of Parry and Pollicott is an immediate consequence of the following result.

Theorem 3.7. There is a sequence of disjoint open and closed sets Uj and functions
fj ∈ Fθ(X) with the following properties:

(i) supp(fj) ⊂ Uj.
(ii) ‖fj − (b+ `)‖θ ≥ 1 for all b ∈ Bθ(X) and ` ∈ Lθ(Uj).

Proof. Let xj be a sequence of periodic points lying on distinct periodic orbits O(xj).
Choose xjH homoclinic to xj and let O(xjH) denote the homoclinic orbit through xjH . The

points xj and xjH can be chosen so that there are disjoint open and closed sets Uj such

that O(xj) ∪O(xjH) ⊂ Uj.
It follows from Lemma 3.6 that for each j, we can find a cocycle fj, and constant cj > 0,

such that supp(fj) ⊂ Uj and ‖fj − (b+ `)‖θ ≥ cj, all b ∈ B, ` ∈ Lθ(Uj). Replacing fj by
fj/cj, it follows that we can require ‖fj − (b+ `)‖θ ≥ 1, for all b ∈ B, ` ∈ Lθ(Uj). �

4. Proof of Theorem 2.9

As outlined in §3.1, we will construct a sequence of periodic points (pN) approaching
the homoclinic point xH . In Proposition 4.8 we give general estimates for the position
of pN under the assumption that Φ is linear on the stable and unstable manifolds of the
fixed point p. We can and do improve these estimates on pN if we assume that Φ is
C2-linearizable at p (Remark 4.10(3)).

In the remainder of the section, we consider the problems of obtaining upper bound
estimates on AN(F ) and finding functions F for which the growth of AN(F ) matches the
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upper bound. So as to simplify the exposition, we make some linearizability assumptions
that we remove in §4.9. Specifically, in §§4.2 and 4.4–4.8 we assume that Φ is linear on the
stable and unstable manifolds of the fixed point p. We also assume in our verification of
the upper bounds for AN(F ), F at least C2, that Φ is C2-linearizable at p (Lemma 4.13).
Indeed, if Φ is not C2-linearizable at p, then we have to allow for slower decay of AN(F )
(see §4.9). Finally, we remark that results and methods are a little different when F is Cr,
r ∈ (0, 2).

4.1. The local model. We always assume that Φ is C2. It follows that there will be
C2 local stable and unstable manifolds through the fixed point p. We use these invariant
manifolds as the basis for a local C2-coordinate system at p. Thus we regard p as the
origin of the vector space Rm = Es ⊕ Eu with the local stable (respectively, unstable)
manifold through p contained in Es (respectively, Eu). We choose coordinates on Es,Eu
so that DΦ(0) = G is in real Jordan normal form, with Jordan blocks J1, . . . , Jk.

We denote the set of generalized eigenspaces of G by E . Abusing notation, we will
typically label elements of E by the associated eigenvalue. Thus, we label eigenvalues
µi, λj ∈ E so that

|µ1| ≤ |µ2| ≤ . . . ≤ |µS| < 1 < |λT | ≤ . . . ≤ |λ1|.

In particular, S+T = k and each ρ ∈ E will be associated to the Jordan block Jρ. We let
pρ denote the algebraic multiplicity of ρ (thus, for real ρ, Jρ will be a pρ×pρ square matrix
whereas for ρ complex, Jρ, Jρ̄ act on the same generalized eigenspace of real dimension
2pρ). We have the decompositions

Es =
S
⊕

i=1

Eµi , Eu =
T
⊕

j=1

Eλj ,

where Eρ is the generalized eigenspace associated to ρ ∈ E . We define Gs = G|Es,
Gu = G|Eu.

We denote coordinates on Es by x = (x1, . . . ,xS), where each xi = (xi1, . . . , xipµi ) ∈
Eµi ∼= Kpµi , where K = R, µi real, and K = R2 ∼= C, µi complex. We similarly denote
coordinates on Eu by y = (y1, . . . ,yT ) and follow the same labeling conventions as for
the stable subspaces. For our proofs, we usually assume eigenvalues are real — the
assumption of complex eigenvalues presents no new difficulties but does complicate the
notation a little.

Let xH ∈ Es be a transverse homoclinic point for p. Let x̃H ∈ Eu be the point
corresponding to xH , now regarded as lying on the unstable manifold of p — see Figure 1.
Let O(xH) denote the Φ-orbit of xH . Note that the forward orbit of xH is contained in
Es, while the backward orbit of xH = x̃H is contained in Eu and that we regard xH and
x̃H as identified. Let O(xH)? = O(xH) \ {xH} ⊂ Es ∪ Eu (no identification). Let W ,
W̃ be neighborhoods of xH , x̃H chosen so that (W ∪ W̃ ) ∩ O(xH) = {xH}. We regard
W, W̃ as identified (that is, in the ambient manifold.) Let K be an open neighborhood of

O(xH) which is the union of W ∪ W̃ together with an open neighborhood K̂ of O(xH)?

disjoint from W ∪ W̃ . We may suppose that K,W, W̃ are chosen so that Φ(W ) ⊂ K̂,

Φ−1(W̃ ) ⊂ K̂.
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From now on, we regard Φ as defined on K with the understanding that if z ∈ K then
Φn(z) is defined provided that the iterates of z up to and including Φn(z) all lie in K.
Henceforth all our computations, perturbations and estimates will be done inside K. Of
course, everything translates back to the ambient manifold M .

W
~

XH = (A,0)

=(0,B)HX

WK = K 

Identified

p

W

K

Figure 1. Basic local setup near the Φ-orbit of xH

4.2. Basic expansion and contraction rates. For the present we assume that Φ is
linear when restricted to neighborhoods of p in Es and Eu. This is a mild restriction —
if Φ is sufficiently smooth only finitely many non-resonance conditions are required on
eigenvalues of DΦ(0)|Es, DΦ(0)|Eu for linearizability. In particular, we do not make the
stronger requirement that Φ is C2-linearizable at p. We indicate later (in §4.9) how we
can remove the assumption of linearizability on the invariant manifolds at the cost of
incurring some minor extra technical detail. However, including the detail at this point
would only serve to needlessly complicate our exposition.

Write xH = A = (A1, . . . ,AS) ∈
⊕S

i=1 Eµi , x̃H = B = (B1, . . . ,BT ) ∈
⊕T

j=1 Eλj .

Lemma 4.1. Let J be a p×p Jordan block over C with eigenvalue ρ 6= 0. Let [anij] denote
the matrix of Jn, n ∈ Z. Then

anij = 0, i > j,

=

(

n

j − i

)

ρn+i−j, i ≤ j.

In particular, given p, there exist C, c > 0, independent of n, i, j, such that for |n| ≥ j− i,
c|n|j−i|ρ|n+i−j ≤ |anij| ≤ C|n|j−i|ρ|n+i−j, n ∈ Z, 1 ≤ i ≤ j ≤ p.

Proof. The proof is elementary and omitted. �
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For m ≥ 0, we define

Am = Gm
s (A),

Bm = G−mu (B).

We have limm→∞Am,Bm = 0.
Fix i ∈ {1, . . . , S}. If Ai = 0, then Am

i = 0, all m ≥ 0. If Ai 6= 0, write Am
i =

(Ami1, . . . , A
m
ip) 6= 0, m ≥ 0. We may find pi ∈ {2, . . . , p}, such that Amipi−1 6= 0, m ≥ 0,

Amij = 0, j ≥ pi, all m ≥ 0. We similarly define positive integers qj for the Bm
j components.

Lemma 4.2. Let Ai 6= 0 and define pi ∈ {2, . . . , p} as above. There exist m = m(i) ≥ 0,
C, c > 0, such that for all n ≥ m

(1) Ani1 6= 0.
(2) C|Anij| ≥

(

n
pi−1−j

)

|A0
ipi−1||µi|n ≥ c|Anij|, j ∈ {1, . . . , pi − 1}.

We have a similar result for the nonzero Bj terms.

Proof. A straightforward application of Lemma 4.1. �

Remark 4.3. A consequence of Lemma 4.2 is that for large values of n, Ani1 is the dominant
term in An

i . Indeed, it follows from Lemma 4.2 that we can choose c > 0 so that for n ≥ m,
|Anij|/|Ani1| ≤ cn1−j.

Let Es? denote the set of eigenvalues µi for which Ai 6= 0. We similarly define Eu? .

Let µ̃ be the largest value of |µi|, µi ∈ Es? , and λ̃−1 be the largest value of |λ−1
j |, λj ∈ Eu? .

We define
Ψ = max(µ̃, λ̃−1).

We say there is a Ψ-resonance if we can find i, j such that µ̃ = |µi|, λ̃−1 = |λ−1
j | and

µiλj = 1.
Let Cs ⊂ {1, . . . , S} consist of those i for which µi ∈ Es? and |µi| = µ̃. Let p denote the

maximum of pi, i ∈ Cs. Let ı̄ denote a value of i for which pi = p and set ā = p−1. Thus,
Amı̄ā 6= 0, m ≥ m(̄ı), and, if |µi| = µ̃, then Amia = 0, a > ā.

Let Cu ⊂ {1, . . . , T} consist of those j for which µj ∈ Eu? and |λj| = λ̃. Let q denote the
maximum of qj over j ∈ Cu. Just as above, we let ̄, b̄ denote the corresponding values of
j and q − 1. In particular, Bn

̄b̄
6= 0, n ≥ n(̄).

Let α = min{− ln |λ̃|, ln |µ̃|}/ ln Ψ. If Ψ = |µ̃|, define m(p, q) = ((p−1)α+q−1)/(1+α),
otherwise set m(p, q) = (p− 1 + (q − 1)α)/(1 + α). For N ∈ N and 0 < r < 2, define

βN =







Np−1ΨN if Ψ = µ̃ > λ̃−1,

N q−1ΨN if Ψ = λ̃−1 > µ̃,

Nmax(p,q)−1ΨN if Ψ = µ̃ = λ̃−1

β̄N = Nm(p,q)
(

ΨN
) α

1+α

β̄N(r) =







(β̄N)r if α(r − 1) < 1,

N(β̄N)r = Nm(p,q) 1+α
α

+1ΨN if α(r − 1) = 1,
βN if α(r − 1) > 1

γN =

{

βN if not Ψ-resonant,
Np+q−1ΨN if Ψ-resonant
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Remark 4.4. In the simplest case where G is semisimple and there is no Ψ-resonance, we
have γN = βN = ΨN . If G is semisimple and there is a Ψ-resonance, we have βN = ΨN

and γN = NΨN . We only need the terms β̄N and β̄N(r) when considering cocycles of
class Cr, r < 2. Note that γN = β̄N(2).

4.3. Technical lemmas. In this section we state, usually without proof, some useful
elementary lemmas.

Lemma 4.5. Given p ≥ 0, there exists C > 0, independent of n, such that

npβ2
n ≤ CΨn/2βn.

Lemma 4.6. Let p, q, m̄, m̄?, N ∈ N. For x 6= 0, define

χN(x) = max((N − m̄−m?)p|x|N−m? , (N − m̄−m?)q|x|m̄), x 6= 1,

= (N − m̄−m?)p+q+1, x = 1.

There exist constants c = c(x, p, q), C = C(x, p, q) > 0, independent of N, m̄,m?, such
that given m̄, m̄?, we can choose N? ∈ N such that for N ≥ N?

CχN(x) ≥ |
N−m?
∑

n=m̄

(

n− m̄
p

)(

−N + n+m?

q

)

xn | ≥ cχN(x),

with the proviso that if x = −1, p = q = 0, then N −m? − m̄ is even.

Proof. Suppose that x 6= 1. It is straightforward to verify that

N−m?
∑

n=m̄

(

n− m̄
p

)(

−N + n+m?

q

)

xn =
xm̄+p

p!q!
(
d

dx
)p[xN−m̄−m

?+q(
d

dx
)q[
x−N+m̄+m? − x

1− x
]].

The result in case x 6= ±1 or x = −1, p + q 6= 0 follows easily from this identity. If
p = q = 0, x = −1, and N − m? − m̄ is even the result is easily verified by direct
computation. If x = 1, all terms have the same sign. Set m = m̄ + m?. For sufficiently
large N , the absolute value of each of the approximately (N −m)/2 terms in the range
[(N − m)/4] ≤ n ≤ 3[(N − m)/4] is bounded below by ((N − m)/4)p+q. The result
follows. �

As an immediate corollary of Lemma 4.6, or directly, we have

Lemma 4.7. Let µ ∈ (0, 1), p ∈ N. There exists C = C(µ, p) > 0, independent of N ,
such that

N
∑

n=0

(

n

p

)

µnβN ≤ CβN .

4.4. Construction of a sequence of periodic points converging to xH. For N
sufficiently large, we will construct a sequence (pN) ⊂ K of periodic points converging
to xH . The point pN will be of prime period N . Our construction depends on the
construction of a pseudo-orbit followed by an application of the Anosov Closing Lemma.
We present the proof first on the basis of our assumption that Φ is linear when restricted
to the stable and unstable manifolds of p. This assumption of linearizability is removed
in §4.9.

Since Φ is C2, our assumption on the linearity of Φ restricted to the stable and unstable
manifolds of p allows for nonlinearities of the form aij(x,y)xiyj, where aij is continuous.
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Set Φ = (Φs,Φu). Since we are assuming Φ|Es = Gs, Φ|Eu = Gu, it follows that on K
we may write

Φs(x,y) = Gs(x) +
∑

i,j

xiyjaij(x,y),(4.6)

Φu(x,y) = Gu(y) +
∑

i,j

xiyjbij(x,y),(4.7)

where aij, bik are continuous.

Proposition 4.8. There exist N̄ ∈ N, C > 0, such that for N ≥ N̄ , there exists a point
pN ∈W of prime period N , such that if we set Φn(pN) = pnN = (xn,yn), then

(1) xni = Jni (Ai) + Cn
i βN .

(2) ynj = Jn−Nj (Bj) + Cn
j βN .

(3) (pnN) ⊂ K.

where ‖Cn
i ‖, ‖Cn

j ‖ ≤ C, all n ∈ {0, . . . , N}.

Proof. Given N > 0, define for n ∈ {0, . . . , N}, z̃n = (x̃n, ỹn), where x̃ni = Jni (Ai),
ỹnj = Jn−Nj (Bj). Certainly there exists N̄ > 0 such that for N ≥ N̄ , (z̃n) is well-
defined as a subset of K. A routine computation, using Lemmas 4.7, 4.1 and (4.6,4.7),
shows that there exists C̄ > 0, independent of N , such that for all N ≥ N̄ we have
‖Φ(z̃n) − z̃n+1‖ ≤ C̄βN . We give the computation in case the matrix G = DΦ(0) is
semisimple. Under this assumption, we have x̃` = µn`A`, ỹk = λn−Nk Bk and so, using (4.6),
we have

Φ(z̃n)i = µn+1
i Ai +

∑

`,k

x̃`ỹka`k(z̃
n),

Φ(z̃n)j = λn+1−N
j Bj +

∑

`,k

x̃`ỹkb`k(z̃
n).

Shrinking K if necessary, let C ′ = max`,k ‖a`k‖0, ‖b`k‖0, where the C0 norms are computed
on K. We have

|
∑

`,k

x̃`ỹka`k(z̃
n)| ≤ C ′

∑

`,k

|A`||Bk||µ`|n|λk|n−N ,

≤ C ′D
∑

`,k

ΨnΨN−n, where D = max
`,k
|A`||Bk|,

≤ C ′DΨN
∑

`,k

1,

≤ CiΨ
N ≤ CiβN ,

where Ci is independent of N . We have a similar estimate on
∑

`,k x̃`ỹkb`k(z̃
n). In case

n = N , we use the (smooth) identification between W̃ and W and our estimates on
‖z̃N − x̃H‖, ‖z̃0 − xH‖, to deduce that ‖z̃N − z̃0‖ ≤ C̄βN .

SinceX is hyperbolic, we may now apply the Anosov Closing Lemma [15, §6.4] to deduce

that for a possibly larger value of N̄ , there exists Ĉ > 0, such that for N ≥ N̄ , there exists
a point pN ∈W of prime period N such that for n ∈ {0, . . . , N}, ‖pnN− z̃n‖ ≤ ĈC̄βN . �
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Corollary 4.9. Given m ∈ N, there exists C1 > 0 such that for all N ≥ N̄ , n ∈
{0, . . . ,m} we have

‖pnN −An‖, ‖pN−nN −Bn‖ ≤ C1βN .

Proof. When m = 0, the estimate follows with C1 = 2C by Proposition 4.8. For m > 0,
we obtain the result by applying the Mean Value Theorem to Φn,Φn−N . �

Remarks 4.10. (1) The extension of Proposition 4.8 to allow for the case where G has
complex eigenvalues is immediate — indeed, the formalism already allows for complex
eigenvalues.
(2) Since the original H-set X is locally maximal, the periodic points given by Proposi-
tion 4.8 lie in X.
(3) If we assume that Φ is C1-linearizable at p, we can give somewhat sharper esti-
mates on pnN . Specifically, in the linearizing coordinates, the relations Φ(pnN) = pn+1

N ,
0 ≤ n ≤ N − 1, imply that xni = Jni (Ai + CiβN), ynj = Jn−Nj (Bj + CjβN), where the con-

stants Ci, Cj are independent of n. It follows that if we define Θ = max(|µS|, |λT |−1) + ε,
where ε > 0 is chosen sufficiently small so that Θ < 1, then we can write

xni = Jni (Ai) + Cn
i ΘnβN , ynj = Jn−Nj (Bj) + Cn

j ΘN−nβN .

If Φ is C2-linearizable at p, then these estimates yield simpler proofs of some of our lemmas
(notably Lemmas 4.13 and 4.14). However, the results of these lemmas may fail if Φ is not
C2-linearizable at p, and the full proof of Theorem 2.9 requires some special arguments
to take account of this. For ease of exposition, we assume C2-linearizability wherever it
is helpful to do so, and sketch the general case at the end of this section, see §4.9.

Remark 4.11. From now on we identify a neighborhood U of the closure of the homoclinic
orbit of xH in M with K̂ ∪W in Rn.

Therefore, functions F defined on Rn induce functions on U ⊂M through their restric-
tion F |(K̂ ∪W ). When we compute the average of F , we use the representatives of pN
and xH situated in W , that is, near (A, 0).

4.5. Upper bounds. We continue to assume that that Φ is linear when restricted to the
local stable and unstable manifolds at p — (this assumption is relaxed in §4.9). Through-
out this and the following subsection ‘c’, ‘C’ will always denote constants independent of
N ≥ N̄ and cocycles F .

Let (pN)N≥N̄ be the sequence of periodic points given by Proposition 4.8. Recall that
we defined AN(F ) = Av(F, xH)− Av(F,pN) in §3.

Lemma 4.12. Let r ≥ 2. There exists C > 0 such that if F ∈ Cr(Rm,R) with F (0) = 0
and DF (0) = 0, then

|AN(F )| ≤ CγN‖F‖2 for all N ≥ N̄ .

Proof. We assume that G = DΦ(0) is semisimple with real eigenvalues. In particular,
βN = ΨN and either γN = ΨN or γN = NΨN (Ψ-resonance). The proof in the case when
G has complex eigenvalues or is non-semisimple is essentially the same, just longer (note
that when we consider the more difficult problem of finding lower bounds we do allow for
the non-semisimple case).



18 MICHAEL FIELD, IAN MELBOURNE, ANDREW TÖRÖK

It follows from Taylor’s theorem that we may write

F (x, y) =
∑

i

xiLi(x) +
∑

i,`

xiy`Mi`(x, y) +
∑

`

y`N`(y),

where Li, N` are C1 and vanish at the origin, and Mi` is continuous.
We start by estimating the second term in this sum. We have Av(xiy`Mi`, xH) = 0 and

so it suffices to estimate Av(xiy`Mi`,pN). We have

|Av(xiy`Mi`,pN)| = |
N−1
∑

n=0

xni y
n
`Mi`(p

n
N) |,

≤ ‖Mi`‖0|
N−1
∑

n=0

(µni Ai + cni βN)(λn−N` B` + cn` βN)|,

≤ ‖Mi`‖0|
N−1
∑

n=0

µni λ
n
` λ
−N
` AiB` + c1βN(|µi|n + |λ`|n−N) + c2β

2
N)|,

≤ ‖Mi`‖0(|
N−1
∑

n=0

µni λ
n
` λ
−N
` AiB`|+ |c|βN).

If µiλ` 6= 1 and we ignore trivial cases where AiB` = 0, then

|
N−1
∑

n=0

µni λ
n
` λ
−N
` | = |

λ−N` − µNi
1− µiλ`

| ≤ cΨN = cβN = cγN .

If µiλ` = 1, then
∑N−1

n=0 µ
n
i λ

n
` λ
−N
` = Nλ−N` . In case |λ`|−1 = Ψ we have the estimate

|
∑N−1

n=0 µ
n
i λ

n
` λ
−N
` | ≤ cNΨN , otherwise we bound by cΨN . Using our estimates, it follows

that |Av(xiy`Mi`,pN)| ≤ c‖Mi`‖0γN , hence

|Av(xiy`Mi`,pN)| ≤ cγN‖F‖2.

Summing over i, `, we obtain the required estimate.
We conclude by estimating the first sum. We have

AN(xiLi) ≤ |
N−1
∑

n=0

(µni Ai + cni βN)Li(µ
n
i Ai + cni βN)− µni AiLi(µni Ai)|+

∞
∑

n=N

|µni AiLi(µni Ai)|,

≤ |
N−1
∑

n=0

(µni Ai + cni βN)(Li(µ
n
i Ai) + c‖Li‖1βN)− µni AiLi(µni Ai)|+ c|Ai|ΨN‖Li‖0,

≤ c‖Li‖1βN ≤ c‖F‖2γN ,

where we have used |Li(µni Ai)| ≤ ‖Li‖1|µni Ai|. �

Lemma 4.13. Fix r > 0. Assume that Φ is C2-linearizable at p if r ≥ 2. There exists
C > 0, such that for all F ∈ Cr(Rm,R) with F (0) = 0 we have

(1) if 0 < r < 2,

|AN(F )| ≤ Cβ̄N(r)‖F‖r for all N ≥ N̄ .
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(2) If r ≥ 2,

|AN(F )| ≤ CγN‖F‖2 for all N ≥ N̄ .

Proof. First of all we take r ≥ 2. Again, we give the details only for the case when G is
semisimple and eigenvalues are real. Without loss of generality, we may make a prelim-
inary C2-linearizing change of coordinates. Since F is C2, we may find ai ∈ C1(Es,R),
bj ∈ C1(Eu,R) and Hij ∈ C0(Rm,R) such that

F (x,y) =
S
∑

i=1

xiai(x) +
T
∑

j=1

yjbj(y) +
S
∑

i=1

T
∑

j=1

xiyjHij(x,y).

It follows from Lemma 4.12 that we can reduce to the case where

F (x,y) =
S
∑

i=1

xiai +
T
∑

j=1

yjbj,(4.8)

and ai, bj ∈ R. It follows from Proposition 4.8 and Remark 4.10(3) that xni = Aiµ
n
i +

cni ΘnΨN , 1 ≤ i ≤ S, where the (cni ) are uniformly bounded and 0 < Θ < 1. Fixing i, we
have |AN(xiai)| ≤ E1 + E2, where

E1 = |
N−1
∑

n=0

(µni Ai + cni ΘnΨN)ai − µni Aiai|, E2 = |
∞
∑

n=N

µni Aiai|.

Estimates on E1, E2 are trivial if Ai = 0. Therefore, we suppose in what follows that
Ai 6= 0 and so |µi| ≤ Ψ. Then

E1 = |ai||
N−1
∑

n=0

cni ΘnΨN ≤ c‖F‖2ΨN ≤ cγN‖F‖2,

E2 = |
∞
∑

n=N

µni Aiai | ≤ c|ai||µi|N ≤ cγN‖F‖2.

Summing over i, we have shown |AN(xiai)| ≤ cγN‖F‖2. A completely analogous argu-

ment handles the term
∑T

j=1 yjbj.

It remains to consider what happens if 0 < r < 2 (still assuming that Φ is linear

restricted to the stable and unstable manifolds of p.) We allow for µ̃ and λ̃ to be non-
simple eigenvalues.

On K̂ ∪ W we may write F (x, y) = L(x) + M(y) + H(x, y), where L(x) = F (x, 0),
M(y) = F (0, y) and H(x, y) = F (x, y)−L(x)−M(y). Necessarily, H vanishes on Es,Eu
in K̂ ∪ W . If 0 < r ≤ 1, then we may use the obvious Hölder estimates on L and
the estimates of Proposition 4.8 to show that |AN(L)| ≤ cβ̄N(r)‖L‖r. Similarly for M .
This leaves the term H(x, y). Since Av(H, xH) = 0, we must estimate |Av(H,pN)|. For
0 ≤ n ≤ N , we may write H(pnN) = H(pnN) − H(xnN) = H(pnN) − H(ynN). We have the
estimates

|H(pnN)−H(xnN)| ≤ ‖H‖r‖ynN‖r, |H(pnN)−H(ynN)| ≤ ‖H‖r‖xnN‖r.
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In order to get the optimal estimate, we switch from x- to y-coordinates at the value Nc

of n for which ‖xnN‖ ≈ ‖ynN‖. A straightforward computation shows that if Ψ = µ̃ then

Nc =
αN

1 + α
− p− q

1 + α

lnN

ln Ψ
+O(1),(4.9)

where α = min{− ln |λ̃|, ln |µ̃|}/ ln Ψ. It follows easily that we can choose Θ ∈ (Ψ, 1) and
a constant C > 0 such that ‖xnN‖ ≤ CΘnβ̄N , n ≥ Nc, We have a similar estimate on
‖ynN‖, n < Nc. This suffices to obtain the estimate |Av(H,pN)| ≤ cβ̄N(r)‖H‖r. The

analysis in case Ψ = λ̃−1 is similar.
Finally suppose r ∈ (1, 2). We write F = L+M +H as before and assume Ψ = µ̃. The

estimates on L and M are straightforward and we omit details. It remains to consider
the term H(x, y). Noting that H vanishes on the x- and y-axes, and applying Taylor’s
theorem with integral remainder, we have

H(x, y) = DyH(x, 0)(y) +

∫ 1

0

[DyH(x, ty)−Dy(x, 0)](y) dt = A(x)(y) + I1(x, y),

= DxH(0, y)(x) +

∫ 1

0

[DyH(tx, y)−Dy(0, y)](x) dt = B(y)(x) + I2(x, y),

where A(x), B(y) are linear maps depending Cr−1 on x and y respectively, The inte-
gral terms are estimated by |I1(x, y)| ≤ ‖H‖r‖y‖r, and |I2(x, y)| ≤ ‖H‖r‖x‖r. Since
A and B vanish at the origin, we also have the estimates |A(x)(y)| ≤ ‖H‖r‖x‖r−1‖y‖
and |B(y)(x)| ≤ ‖H‖r‖y‖r−1‖x‖. Just as in the first part of the proof, we switch
from one expansion to the other at n = Nc, and bound using the above estimates on
|I1(x, y)|, |I2(x, y)|, |A(x)(y)| and |B(y)(x)|. The sum of the ‖x‖‖y‖r−1 terms involves the
exponent n(1−α(r−1)), its sign determines the three possible outcomes in the definition
of β̄N(r). We omit the straightforward details. �

4.6. Lower bounds for functions in the class Cr, r ≥ 2. We continue to assume
that that Φ is linear when restricted to the local stable and unstable manifolds at p. In
this subsection we construct an explicit C∞ cocycle F for which |AN(F )| decays at the
slowest possible rate for C2 functions. (The lower bound obtained in this subsection is
not optimal when r < 2.)

Lemma 4.14. Let D ⊂ K be an open neighborhood of p. There exists F ∈ C∞(Rm,R)
with supp(F ) ⊂ D and C > 0 such that for infinitely many values of N we have

|AN(F )| ≥ CγN .

Proof. For the proof we assume the notation of §4.2. Let m̄,m? ∈ N and define O?(xH) =
{Φn(xH) | n ∈ (−m?, m̄)} and Om(xH) = O(xH) \ O?(xH). For m̄,m? sufficiently large,

we may choose disjoint compact neighborhoods Um, Vm of Om(xH), O?(xH) respectively

so that Um ⊂ D, Vm ⊂ K̂ \ D. We remark that having chosen m̄,m?, we can find
N? = N(m̄,m?) ≥ N̄ such that for all N ≥ N?, pnN ∈ Um, n /∈ (−m?, m̄), and pnN ∈ Vm,
n ∈ (−m?, m̄). In the sequel we shall assume this without further comment.

Define F = Fm̄,m? ∈ C∞(Rm,R) by

F (x,y) = 0, (x,y) /∈ D,
= xı̄1ȳ1, (x,y) ∈ Um.
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We show that we can choose m̄,m? so that F satisfies the conditions of the Lemma.
Although in the proof we allow G to have non-trivial Jordan blocks, we simplify a

little by assuming that the dominant eigenvalues µ = µı̄, λ = λ̄ are real. (If dominant
eigenvalues are complex, we work with a C-valued cocycle F and obtain the required
estimates by taking the real part of F ).

Since F vanishes identically on Es,Eu, it follows that it suffices to find C > 0, N̂ ≥ N̄ ,
m ∈ N such that for N ≥ N̂

|Av(F,pN) | ≥ CγN .

As usual, we write pnN = (xn,yn) and set xn = (xn1 , . . . ,x
n
s ), yn = (yn1 , . . . ,y

n
t ). We need

to compute the ı̄, 1-component of Gn
s (x0) and the ̄, 1-component of Gn

u(y0), 0 ≤ n ≤ N .
Set µ = µı̄, λ = λ̄ and m̄ = m(̄ı) > 0. We have

xm̄ı̄ = Am̄
ı̄ + Cm̄

ı̄ βN ,

where ‖Cm̄
ı̄ ‖ ≤ C, independent of m,n,N , and An

ı̄1 6= 0, for all n ≥ m̄. (In future we
drop the sub- and superscripts from the constants Cm̄

ı̄ .) It follows from Lemma 4.1 and
the definition of p that for N ≥ n ≥ m̄, we have

xnı̄1 =

p
∑

i=1

(

n− m̄
i− 1

)

µn+1−i−m̄Am̄ı̄i + CβN ,

= E ′1 + E ′2,

where (Lemma 4.2)

|Am̄ı̄p| ≥ C|µ|m̄,(4.10)

and C is independent of m̄. It follows from our choice of m̄ = m(̄ı), that Am̄ı̄1 6= 0 and
hence the dominant term in the sum for E ′1 is Am̄ı̄p

(

n
p−1

)

µn+1−p
ı̄ . Increasing m̄ if necessary,

it follows from the estimates of Lemma 4.1 that for m̄ ≤ n ≤ N ,

E ′1 = Am̄ı̄p

(

n− m̄
p− 1

)

µn−m̄+1−p
ı̄ (1 + kn),

where |kn| ≤ 0.1 . Notice that we only improve this estimate if we further increase m̄ –
working always within the requirement that m̄ ≤ n ≤ N .

On the other hand, for all m̄ ≤ n ≤ N , |E ′2| is bounded above by CβN . Combining our
estimates for E ′1, E

′
2, it follows that for m̄ ≤ n ≤ N we have

xnı̄1 = Am̄ı̄p

(

n− m̄
p− 1

)

µn−m̄+1−p
ı̄ (1 + kn) + CβN .

We may similarly choose m? ∈ N such that for 0 ≤ n ≤ N −m?

yn̄1 = Bm?

̄q

(

−N + n+m?

q − 1

)

λ−N+n+m?−q+1(1 + k?n) + C?βN ,

where |k?n| ≤ 0.1. Again, we only improve estimates by increasing m?. We also have the
estimate

|Bm?

ı̄q | ≥ C?|λ|−m?(4.11)

Increasing m̄,m? will not change any of the previous estimates as all constants C,C?

are independent of m̄,m?.
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Set K? = Am̄ı̄pB
m?

̄q 6= 0. Noting our definition of Fm̄,m? , and relabeling the error terms
k, k?, we see that

Av(Fm̄,m? ,pN) =
N−m?
∑

n=m̄

xnı̄1y
n
̄1,

= E1 + E2 + E3 + E4 where,

E1 = K?

N−m?
∑

n=m̄

(

n− m̄
p− 1

)(

−N +m? + n

q − 1

)

µn+1−m̄−pλ−N+m?+n−q+1(1 + kn)(1 + k?n),

|E2| ≤ |C||Bm?

̄q |βN
N−m?
∑

n=m̄

(

n− m̄
p− 1

)

|µ|n+1−m̄−p(1 + kn),

|E3| ≤ |C?||Am̄ı̄p|βN
N−m?
∑

n=m̄

(

−N +m? + n

q − 1

)

|λ|−N+m?+n−q+1(1 + k?n),

|E4| ≤ |C||C?|β2
N .

Suppose first that we are in the non-resonant case and G = DΦ(0) is semisimple.
Without loss of generality, we take Ψ = |λ|−1 ≥ |µ| and so |λµ| ≤ 1 (if λµ = −1, we take
N−m̄−m? to be even). It follows from (4.10,4.11) that |K?| ≥ C|λ|−m? |µ|m̄. Substituting
in our expression for E1, it follows (since |λµ| ≤ 1) that

|E1| ≥ cΨN |λµ|m̄,
where c > 0 is independent of m,N . On the other hand, for large enough N , we find that

|E2| ≤ C2|λ|−m
?

ΨN ,

|E3| ≤ C3|µ|m̄ΨN ,

where C1, C2 are independent of m̄,m?, for large enough N . Since |λµ| > |µ|, it is obvious
that |E1| � |E3| for sufficiently large m̄. Fix such an m̄. Now choose m? large enough so
that C3|λ|−m

? � c|λµ|m̄. Hence |E1| dominates |E2| and |E3|.
Since |E1| obviously dominates |E4| (Lemma 4.5), it follows that we can choose m̄,m?,

C > 0, so that for all sufficiently large N we have |Av(Fm̄,m? ,pN)| ≥ CΨN (note that if
λµ = 1, we choose the parity of N so that the E1 sum is nonvanishing!).

The proof in the resonant case is similar, the main difference being the appearance of
the factor N − m̄−m? in the sum for E1.

There remains the case when G is not semisimple. There are three cases to consider (1)
Ψ = |µ|, µλ 6= 1, (2) Ψ = |λ|−1, µλ 6= 1, and (3) µλ = 1. We consider case (1). (Details
for the other cases are similar — simpler for the Ψ-resonant case — and make essential use
of Lemma 4.6). Suppose then that Ψ = |µ| and |λµ| ≥ 1. We have γN = βN = Np−1ΨN ,
where p ≥ 2. Estimating E1, E2, E3, using Lemma 4.6, we find constants c, c′, C2, C3 > 0,
independent of m̄,m? and sufficiently large N , such that

|E1| ≥ c(N − m̄−m?)p−1ΨN |λµ|−m? ≥ c′βN |λµ|−m
?

,

|E2| ≤ C2|λ|−m
?

βN ,

|E3| ≤ C3(N − m̄−m?)p−1|µ̃|m̄ ≤ C3|βN |µ̃|m̄.
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First we choose m? sufficiently large so that |E2| � |E1| for large N . Then fix m? and
choose m̄ sufficiently large so that |E3| � |E1| for large N . Since |E1| dominates |E4| for
large N (Lemma 4.5), the result follows. �

4.7. Lower bounds for functions in the class Cr, r < 2. In this subsection, for each
r ∈ (0, 2) we construct an explicit Cr cocycle Pr for which |AN(Pr)| decays at the slowest
possible rate for Cr functions. We continue to assume that Φ is linear on the stable and
unstable manifolds through p.

Lemma 4.15. Let r ∈ (0, 2). Let D ⊂ K be an open neighborhood of p. There exists
Pr ∈ Cr(Rm,R) \ ∪s>rCs(Rm,R) and C = Cr > 0 such that supp(Pr) ⊂ D and for
infinitely many values of N we have

|AN(Pr)| ≥ Cβ̄N(r).

Proof. We shall also take D = K — the construction for general D is analogous to that
of Lemma 4.14.

Let r ∈ (0, 2). Define Pr : Rm→R by

Pr(x,y) = 0, (x,y) /∈ K, or xS = yT = 0,

= xSyT/(x
2
S + y2

T )1− r
2 , (x,y) ∈ K.

It is easy to verify that Pr is of class Cr, r ∈ (0, 2). We claim that |AN(Pr)| ≥ Cβ̄N(r).
Since Pr vanishes on the orbit of xH , it suffices to estimate |Av(Pr,pN)|.

Without loss of generality, suppose that Ψ = |µS| ≥ |λ−1
T |. Let α = ln |λT |−1/ ln Ψ.

For simplicity we assume that both µS and λT are real, positive, and have algebraic
multiplicity one. Details are similar in the general case. Estimating the sum, we find that

|Av(Pr,pN)| = (C + o(1))
N−1
∑

n=0

ΨnΨα(N−n)

(aΨ2n + bΨ2α(N−n))1−r/2 ,

where C, a, b > 0. Estimating the term with n = Nc (see equation (4.9) in the proof of

Lemma 4.13) shows that |Av(Pr,pN)| is at least of order (ΨN)r
α

1+α = (β̄N)r, which proves
the claim for 1 − α(r − 1) > 0. To deal with the general case, break up the sum at Nc,
factor out the leading term in the denominators, and compute the two sums. �

4.8. Proof of Theorem 2.9. For r ≥ 2 and C2 linearizable Φ, Theorem 2.9 follows
immediately from the next result.

Lemma 4.16. Suppose that Φ is C2-linearizable at p. Let r ≥ 2 and let B = Br(U,R),
L = Lr(U,R). Let D? ⊂ U be a neighborhood of the closure of the Φ-orbit of xH and
D ⊂ D? be a neighborhood of p. Let F be the cocycle supported in D that was constructed
in Lemma 4.14. Then

(1) F /∈ B + L.
(2) There is a C2 neighborhood W of F in Cr(U,R) such that F ′ /∈ B + L, F ′ ∈ W.
(3) If H ∈ Cr(U,R) has supp(H) ∩D? = ∅, then F ′ +H /∈ B + L, F ′ ∈ W.

Proof. Choose F as in Lemma 4.14. Then there exists a constant C1 > 0 such that
|AN(F )| ≥ C1γN for all sufficiently large N (in the case λµ = −1, p = q = 1, N will either
be odd or even). In particular, AN(F ) is not eventually zero, so by (3.4) F 6∈ B + L.
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Now, let g ∈ Cr(U,R) and choose g so that ‖g‖2 < C1/2C2 where C2 is the constant in
Lemma 4.13. It follows that

(4.12) |AN(F + g)| ≥ C1

2
γN .

Again, F +g /∈ B+L, proving statements (1,2) of the lemma. The final statement follows
since Av(H, xH) = 0 and Av(H,pN) = 0 for sufficiently large N . This concludes the proof
of Lemma 4.16. �

Remark 4.17. If r ∈ (0, 2) and Φ is linear on the stable and unstable manifolds through
p, then Lemma 4.16 remains true with the proviso that the neighborhood W is now Cr-
open and we no longer require the C2-linearizability of Φ at p. The proof follows that of
Lemma 4.16 except that we use Lemma 4.15 instead of Lemma 4.14, and Pr instead of F .

4.9. The nonlinearizable case. We conclude this section by sketching the approach we
follow in the case when Φ is not C2-linearizable. We begin by supposing that Φ is linear
at least on the local and unstable manifolds of p. Hence we may assume the notation
and results of §4.2. We may suppose that r ≥ 2, since the case r < 2 did not require C2

linearizability.
We start by noting that Lemmas 4.12 and 4.14 hold without the assumption of C2-

linearizability. We now distinguish two cases: (a) γN = ΨN , and (b) γN = N vΨN , v ≥ 1.
Suppose that case (a) holds. First we establish upper bounds. By Lemma 4.12, we

can reduce to the case when F has only linear constant coefficient terms. Without loss of
generality, suppose that F (x, y) = xi, i ≤ S.

We have

|AN(xi)| = |
N−1
∑

n=0

(µni Ai + Cn
i ΨN − µni Ai) +

∞
∑

n=N

µni Ai|,

= |
N−1
∑

n=0

Cn
i ΨN +

∞
∑

n=N

µni Ai| = τ si,NΨN ,

where

τ si,N = |
N−1
∑

n=0

Cn
i + Ψ−N

∞
∑

n=N

µni Ai| = |
N−1
∑

n=0

Cn
i |+O(1).(4.13)

Similarly,

|AN(yj)| = τuj,NΨN . 1 ≤ j ≤ T.

Since the constants Cn
i are uniformly bounded, the τ

s/u
`,N grow at most linearly in N .

If the sequences (τ
s/u
`,N ) are all bounded, then the estimates of Lemma 4.13 apply and we

proceed as before. Otherwise, choose an unbounded sequence, say (τ si,N), which dominates
the other (τN) values (that is, τ si,N = max{τw`,N | w ∈ {u, s}, `}) for infinitely many values
of N , and along this subsequence τ si,N →∞. In order to prove Lemma 4.16, we start with
a cocycle F based on the function xi (instead of the one provided by Lemma 4.14), and
conclude that the inequality (4.12) again holds for infinitely many values of N .

Next we consider case (b), again under the assumption that Φ is linear on the invariant
manifolds through p. If we have a Ψ-resonance, then Lemma 4.13 holds without the
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assumption of C2-linearizability (the extra factorN that suffices to bound the contribution
of the linear part of F is still superseded by γN). Hence Lemma 4.14 gives us an optimal
lower bound and all goes through as before. If there is no Ψ-resonance, then we must

introduce the sequences (τ
s/u
`,N ) as in case (a). In this case we will have |AN(xi)| = τ si,NβN ,

i ≤ S, |AN(yj)| = τuj,NβN , j ≤ T . If all the (τ
s/u
`,N ) sequences are bounded, the estimates

of Lemma 4.13 apply. Otherwise, we modify the proof of Lemma 4.16 as discussed for
case (a).

Finally, we consider the extension of Proposition 4.8 to the case when Φ is not linear
on the local stable and unstable manifolds of p. The arguments we present also apply to
the proofs of Lemmas 4.12 – 4.15.

We continue to assume Φ is C2. The first problem is to identify the dominant eigenvalues

for the homoclinic orbit — that is, to define the sets Es/u? . Form ∈ N, define Am = Φm(A),
Bm = Φ−m(B). Noting that a weakest contracting eigenvalue is µS, we may write

Φs(x)S = JSxS + gS(x),(4.14)

where JS is a Jordan block with eigenvalue µS and gS is C2. Since |µS| is maximal among
the contracting eigenvalues there are no resonances of the form µS = Πµnii . It follows from
a parametrized version of a theorem of Sternberg [25, §5] that there is a C2 change of
coordinates on Es which linearizes (4.14) (for the convenience of the reader, we give details
in an appendix at the end of the paper). In the new coordinates we have Φs(x)S = JSxS.
We may repeat this linearization for all contracting eigenvalues µi with |µi| = |µS|. Either
it is the case that for all of these weakest eigenvalues, say µi, S ≥ i ≥ `, Ai = 0, or not.
In the first case, we observe that xS = 0, . . . ,x` = 0 defines a Φs-invariant linear subspace
V of Es. We now restrict attention to Φs|V and repeat the linearization process. Observe
that there are no resonance problems. In this way, we identify a weakest contraction µ̃
associated to the homoclinic orbit. Associated to µ̃ will be a Φs-invariant subspace Vs
of Es. Components of Φs|Vs associated to µi with |µi| = |µ| will be linearizable. The
same process works for Φu|Eu. This gives us sufficient information to define the rates
βN , γN . The proof of Proposition 4.8 now goes through much as before — the fact that
components of Φs|Vs, Φu|Vu associated to the dominant eigenvalues are linear allows us to
push through all of the estimates without difficulty. Although we do not spell out all the
details, this representation of Φ suffices to establish the upper and lower bounds proved
previously. The basic idea is that components associated to eigenvalues stronger than the
dominant eigenvalues can be dominated by linear maps (weaken eigenvalues slightly).

5. A third proof of the Parry-Pollicott theorem

In §3, we gave a new proof of the theorem of Parry & Pollicott [23] on the genericity of
Cα-stability of Hölder cocycles. This proof did not require transfer operator techniques.
We now briefly sketch a further proof that avoids any direct consideration of symbolic
dynamics.

We continue with the notational conventions of §3.2. Suppose that X ⊂ {1, . . . , n}Z
is an (abstract) transitive subshift of finite type. Given θ ∈ (0, 1), let d(x, y) denote
the associated metric on X and Fθ(X) be the Banach space consisting of all Lipschitz
functions f : X→R for this metric. It follows from a theorem of Williams [26], that X can
be represented as a hyperbolic basic set X̃ in the spectral decomposition of a structurally
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stable diffeomorphism F of S3. Indeed, we can require that the Ω-set of F will consist of
two hyperbolic fixed points, one attracting and one repelling, X̃ and a further hyperbolic
basic set Ỹ , where Ỹ is conjugate to the SSFT ‘dual’ to X. Williams’ construction is
quite elementary and all but the final step (adding a repelling hyperbolic fixed point at
∞), is carried out in R3. In particular, we may construct F so that there is a cover of
X̃ ⊂ S3 by n open neighborhoods Ui such that the restriction of F |Ui is affine linear ,
say F |Ui = Aix + bi. Further, if we choose µ ∈ (0, 1) sufficiently small, we may require
that each linear map Ai is semisimple with a double contracting eigenvalue µ and a single
expanding eigenvalue µ−1. We choose a Riemannian metric on S3 which coincides with
the usual Euclidean metric on R3 on a neighborhood of X̃. In this situation, the natural
conjugacy between X̃ and X is a local isometry if we choose θ = µ. Moreover, Hölder
cocycles of class Cα on X̃ (Cα with respect to the Riemannian metric on S3), correspond
exactly to cocycles in Fθα(X). Hence we can apply Theorem 2.9 in case α ∈ (0, 1], to
deduce the Fθα genericity of stable cocycles for all α ∈ (0, 1]. Since this result holds for
all sufficiently small α, we obtain the genericity of stability for all θ ∈ (0, 1).

6. Transitivity and ergodicity of compact group extensions

In this section, we prove Theorems 1.3 and 1.5.
Suppose that X ⊂ M is a hyperbolic basic set for the C1-diffeomorphism Φ : M→M .

Let µ be an equilibrium state on X. Let G be a compact connected Lie group with Haar
measure h and define the product measure µ×h on X×G. Let f ∈ Cr(M,G), r > 0. By
Keynes & Newton [16] and Livšic regularity, a necessary and sufficient condition for the
non-ergodicity of the skew extension Φf : X ×G→X ×G is that there exists a nontrivial
irreducible unitary representation R of G on Cd for some d ≥ 1 and a continuous function
w : X→S2d−1 such that

R(f)−1w = w ◦ Φ.(6.15)

Here, S2d−1 denotes the unit sphere in Cd.

Proposition 6.1. Let X ⊂M be a hyperbolic basic set and µ be an equilibrium state on
X. If f ∈ Cr(M,G), r > 0, then

(1) Φf : X ×G→X ×G is ergodic if and only if Φf is transitive.
(2) If Z ⊂ X is a locally maximal subshift of finite type and Φf |Z × G is transitive,

then Φf : X ×G→X ×G is ergodic.

Proof. (1) Suppose that Φf is not ergodic, then (6.15) has a continuous solution, w :
X→S2d−1. The map W : X × G→S2d−1 defined by W (x, g) = R(g)w(x) is then a non-
constant Φf -invariant continuous function on X×G. Hence Φf cannot be transitive. The
converse is trivial.

(2) Assume by contradiction that Φf : X ×G→X ×G is not ergodic. Then (6.15) has
a continuous solution w : X→S2d−1. Restricting this solution to Z, we conclude, as in
(1), that Φf |Z ×G is not transitive, a contradiction. �

Proposition 6.2. Let X ⊂ M be a locally maximal subshift of finite type for the C2-
diffeomorphism Φ. Let µ be an equilibrium state on X.
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Let r > 0. Then there exists a Cr-open and dense subset Wr of the set of Cr cocycles
Cr(X,G) such that Φf : Λ × G→X × G is ergodic for all f ∈ Wr. Moreover, if r ≥ 2,
then Wr is C2-open in Cr(X,G).

Proof. By Field and Parry [14] it suffices to consider the case of toral extensions G = Km.
The result follows from Theorem 2.9, Lemmas 2.7, 2.10, and the discussion of §2.3. �

Theorem 6.3. Let X ⊂M be a hyperbolic basic set for the C2-diffeomorphism Φ. Suppose
that µ is an equilibrium state on X.

Let r > 0. Then there exists a Cr-open and dense subset Wr of Cr(X,G) such that
Φf : X × G→X × G is ergodic for all f ∈ Wr. Moreover, if r ≥ 2, then Wr is C2-open
in Cr(X,G).

Proof. Transverse homoclinic points are dense inX, so by Smale’s theorem 2.1, we can find
an H-set Z ⊂ X. It follows from Proposition 6.2 that there exists a Cr-open and dense
subset Wr of Cr(X,G) such that Φf |Z ×G is ergodic for all f ∈ Wr. By Proposition 6.1,
Φf : X ×G→X ×G is ergodic for all f ∈ Wr. The fact that Wr is C2-open in Cr(X,G),
r ≥ 2, follows from Proposition 6.2. �

Remark 6.4. The proof of Theorem 6.3 does not rely heavily on the fact that X is a
hyperbolic basic set. In fact, the only properties of X that we require are

(a) X is a locally maximal invariant set with ergodic measure µ,
(b) X contains a transverse homoclinic orbit for a hyperbolic periodic point, and
(c) Livšic regularity theorems hold on X. Specifically, given a compact connected Lie

group G, we require that for each irreducible unitary representation R of G, every
measurable solution w to the equation R(f)−1w = w ◦Φ has a continuous version.

In our proof of Theorem 6.3, we made use of the theorem of Keynes & Newton. In some
situations, we have to use a different version of this theorem — for example, in the analysis
of partially hyperbolic basic sets [12] where we cannot use the strategy of [14] to reduce
to the case where G is either abelian or semisimple. It is then sometimes worthwhile
using a slightly different argument based on maximal transitivity components [8]. We
conclude the section by briefly summarizing the main ideas (for more details, presented
in the context of partially hyperbolic dynamics, see [12]).

We continue to assume that X is a hyperbolic basic set with equilibrium state µ. Let
f ∈ Cr(X,G). It follows from Keynes & Newton [16] that the skew extension Φf :
X × G→X × G is µ × h ergodic if and only if for every non-trivial irreducible unitary
representation ρ : G→U(d) of G, every µ× h-measurable Φf -invariant and G-equivariant
map w : X × G→Cd is zero (ae). It follows by Livšic regularity [12, §7], that every
measurable Φf -invariant G-equivariant map w : X ×G→Cd has a continuous realization.
It follows in the usual way that Φf is ergodic if and only if Φf is transitive.

Let x ∈ X have dense Φ-orbit in X. For any g ∈ G, the closure T (x, g) of the Φf -orbit
through (x, g) projects onto all of X. We say T (x, g) is a maximal transitivity component
for Φf if whenever T (x′, g′)∩T (x, g) 6= ∅, then T (x′, g′) ⊂ T (x, g). If T (x, g) is a maximal
transitivity component, it is easy to see that P = {T (x, g) | g ∈ G} defines a partition
of X × G and that G acts on P (hT (x, g) = T (x, hg), h ∈ G). The general question of
when maximal transitivity components exist is difficult (Zorn’s Lemma implies that every
transitive set is contained in a maximal transitive set. However, maximal transitive sets
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may not be disjoint). However, transitivity components do exist for skew and principal
extensions over hyperbolic basic sets (Brin [8]) and also for certain classes of partially
hyperbolic basic sets [12, §7].

We have the following useful sufficient condition for transitivity.

Lemma 6.5. Suppose that P = {T (x, g) | g ∈ G} is a partition of X × G into maximal
transitivity components. Then Φf will be transitive if we can find a Φ-invariant closed
subset Z of X such that Φf |Z ×G is transitive.

Proof. Suppose Φf |Z × G is transitive. It follows that there exists (z, γ) ∈ Z × G such
that the Φf -orbit of (z, γ) is dense in Z × G. For some h ∈ G, (z, h) ∈ T (x, g). Hence,

T (x, g) ⊃ O(z, h) = Z ×G. Therefore γT (x, g) ∩ T (x, g) 6= ∅, all γ ∈ G and so T (x, g) =
X ×G. �

We may now use Lemma 6.5 and Proposition 6.2 to prove genericity of stable ergodicity.

7. Transitivity of Rm-extensions

In this section, we prove Theorem 1.7.
Suppose that Φ : X→X is a transitive Anosov diffeomorphism. Niţică and Pollicott [19]

showed that under a cohomological condition (valid for all known cases) there exist C∞

cocycles f : X→Rm such that Φf : X × Rm→X × Rm is C0 stably transitive (that is,
Φf ′ is transitive for all f ′ sufficiently C0 close to f). Previously, in [18], it was proved
that Euclidean group extensions X × SE(m) are transitive for a Cr open and dense set
of Cr cocycles f : X→SE(m) provided m ≥ 4 is even. The result of [18] holds for any
hyperbolic basic set X. Density of transitive extensions clearly fails for the group Rm.

In this section, we show how to extend the result of Niţică and Pollicott [19] to Rm
extensions of arbitrary hyperbolic basic sets. We recover the full strength of their result
for hyperbolic attractors. In general, we obtain C2 stable transitivity.

First, we recall some definitions from [19]. Let Φ : X→X be a hyperbolic basic set and
f : X→Rm a Hölder cocycle. Define the skew-extension Φf : X × Rm→X × Rm. Write

fn =
∑n−1

j=0 f ◦ Φj and define the periodic data Lf ⊂ Rm to be Lf = {fn(x) | Φnx = x}.
Let Gf be the subgroup of Rm generated by Lf . The cocycle f satisfies the separating
condition if Lf is not contained on one side of a hyperplane through 0 in Rn. The
separating condition guarantees that the closure of Gf coincides with the closure of the
subsemigroup generated by Lf . Let Sr denote the set of Cr cocycles f ∈ Cr(X,Rm) that
satisfy the separating condition. Note that Sr is an open and nonempty (but not dense)
subset of Cr(X,Rm). Moreover, it follows from Bousch [4] that Φf is not transitive unless
f ∈ Sr.

We can now state the main result of this section.

Theorem 7.1. Let X ⊂M be a hyperbolic basic set for the C2-diffeomorphism Φ. Let r >
0. Then there exists a Cr open and dense subsetW ⊂ Sr such that Φf : X×Rm→X×Rm
is transitive for all f ∈ W. Moreover, if r ≥ 2, then W is C2 open in Sr. If X is an
attractor, then W is C0 open in Sr.

We require the following lemma.

Lemma 7.2 ([19]). Let X be a hyperbolic basic set and f ∈ Sr for some r > 0. Suppose
that Gf is dense in Rm. Then Φf : X × Rm→X × Rm is transitive.
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Given f = (f 1, . . . , fm) : X→Rm, we define F = (F 1, . . . , Fm) : X→Km by setting
F j = exp(2πıf j).

Theorem 7.3. Let X be a hyperbolic basic set for the C1-diffeomorphism Φ. Let r > 0
and suppose that f ∈ Sr. Then Φf : X ×Rm→X ×Rm is Cr stably transitive if and only
if ΦF : X ×Km→X ×Km is Cr stably transitive.

Proof. It is immediate that transitivity of Φf implies transitivity of ΦF . If ΦF is not

stably transitive, then there is an F̃ , Cr close to F , such that ΦF̃ is not transitive. Since

sufficiently small perturbations are Cr homotopic to the identity, F̃ : X→Km lifts to
f̃ : X→Rm Cr close to f and Φf is not transitive so that Φf is not stably transitive.
Hence stable transitivity of Φf implies stable transitivity of ΦF .

Next, we prove the converse direction. Suppose that ΦF is stably transitive. It suffices
to show that Φf is transitive. By Lemma 7.2, it suffices to show that Gf is dense in
Rm. If not, then Lf lies in a subgroup isomorphic to Rm−1 × Z. Hence there exists a
nonzero k ∈ Rm such that exp(2πık · `) = 1 for all ` ∈ Lf . Choose A ∈ GL(m) near the

identity so that k′ = A
T
k ∈ Qm. Then f̃ = Af is Cr close to f and has the property that

exp(2πık′ · `) = 1 for all ` ∈ Lf̃ . Define k′′ ∈ Zm by clearing denominators in k′. Then

exp(2πık′′ · fn(x)) = 1 whenever Φnx = x.(7.16)

Let F̃ be the Km cocycle corresponding to f̃ and define g = (F̃ 1)k
′′
1 · · · (F̃m)k

′′
m : X→K.

Since k′′ ∈ Zm, the map g is well-defined. Moreover, (7.16) becomes the statement that
if Φnx = x, then g(x)g(Φx) · · · g(Φn−1x) = 1. By the Livšic periodic point theorem,
g = G ◦ ΦG−1 for some G : X→K measurable (even Hölder). That is,

(F̃ 1)k
′′
1 · · · (F̃m)k

′′
mG = G ◦ Φ.

It is immediate from Keynes and Newton [16] that ΦF̃ is not ergodic, and hence (by Livšic
regularity) not transitive. Thus ΦF̃ is a nontransitive Km-extension Cr close to ΦF which
is the desired contradiction. �

Remark 7.4. We have proved the equivalence of stable transitivity for Rm and Km exten-
sions. The corresponding equivalence for transitivity is false.

Proof of Theorem 7.1 It follows from Theorem 7.3 that a Rm extension satisfying the
separating condition is stably transitive precisely when the corresponding Km extension
is stably transitive. Now apply Theorem 6.3. �

8. Mixing for suspension flows

In this section, we prove Theorem 1.9.
Let Φ : X→X be a hyperbolic basic set. A Cr function f : X→R is called a roof

function if f is strictly positive. We let Rr denote the space of Cr roof functions.
Given a roof function f , we define the suspension Xf = {(x, u) ∈ X× [0,∞)}/ ∼ where

(x, f(x)) ∼ (Φx, 0) and define the suspension flow Φf
t : Xf→Xf by Φf

t (x, u) = (x, u + t)
computed subject to identifications.

We fix an equilibrium state on Xf . However, since mixing is independent of the equi-
librium state chosen and is equivalent to both weak mixing and topological weak mixing
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(see Remarks 1.11), we shall suppress the measure in what follows and usually just refer
to “mixing”.

We now state the main result of this section.

Theorem 8.1. Let X ⊂ M be a hyperbolic basic set for the C2-diffeomorphism Φ. Let
r > 0. Then there exists a Cr open and dense subset W ⊂ Rr of roof functions such that
the suspension flow Φf

t : Xf→Xf is mixing for all f ∈ W. Moreover, if r ≥ 2, then W is
C2 open in Rr. If X is an attractor, then W is C0 open in Rr.

Given the roof function f : X→R, we define the K-cocycle F : X→K by setting
F = exp(2πıf).

Theorem 8.2. Let X be a hyperbolic basic set for the C1-diffeomorphism Φ. Let r > 0
and suppose that f ∈ Rr. Then Φf

t : Xf→Xf is Cr stably mixing if and only if the circle
extension ΦF : X ×K→X ×K is Cr stably transitive.

Proof. Recall from §2.3 that ΦF : X ×K→X ×K fails to be transitive if and only if there
exists an integer ` 6= 0 and a continuous function w : X→K such that

w ◦ Φ = w exp(2πı`f).

On the other hand, the suspension flow Φf
t : Xf→Xf fails to be weak mixing if and only

if there exists a real number a 6= 0 and a continuous function w : X→K such that

w ◦ Φ = w exp(2πıaf),

see [21, Proposition 6.2].

It is immediate that weak mixing for Φf
t implies transitivity for ΦF . If ΦF is not

stably transitive, then there is an F̃ , Cr close to F , such that ΦF̃ is not transitive. Since

sufficiently small perturbations are Cr homotopic to the identity, F̃ : X→Km lifts to

f̃ : X→Rm Cr close to f and Φf̃
t is not weak mixing so that Φf

t is not stably weak mixing.
Hence stable weak mixing for Φf

t implies stable transitivity for ΦF .
Next, we prove the converse direction. Suppose that ΦF is stably transitive. It suffices

to show that Φf
t is weak mixing. If not, then there exists a > 0 and w continuous such

that w ◦ Φ = w exp(2πıaf). In particular, exp(2πıafn(x)) = 1 whenever Φn(x) = x.

Choose a rational number ã close to a and define f̃ = (a/ã)f . Then f̃ is Cr close to f

and has the property that exp(2πıãf̃n(x)) = 1 whenever Φn(x) = x. Define b ∈ Z to be
the numerator of ã. Then

exp(2πıbf̃n(x)) = 1 whenever Φnx = x.(8.17)

Let F̃ be the K cocycle corresponding to f̃ and define g = F̃ b : X→K. Since b ∈ Z,
the map g is well-defined. Moreover, (8.17) becomes the statement that if Φnx = x, then
g(x)g(Φx) · · · g(Φn−1x) = 1. By the Livšic periodic point theorem, g = G◦ΦG−1 for some
G : X→K measurable and hence continuous. We have constructed G : X→K continuous
and b 6= 0 such that

F̃ bG = G ◦ Φ.

It follows that ΦF̃ is a nontransitive K-extension Cr close to ΦF which is the desired
contradiction. �
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Proof of Theorem 8.1 It follows from Theorem 8.2 that a roof function defines a stably
mixing suspension flow precisely when the corresponding K extension is stably transitive.
Now apply Theorem 6.3. �

Appendix A. Linearization along part of an invariant manifold

In this appendix we provide a proof of the partial linearization statements made in §4.9.
Our method is elementary and based on that used by Sternberg in his proof of Poincaré’s
theorem [25].

Let U be an n-dimensional real vector space. Let k ≥ 2, and suppose that F : U→U
is a Ck-diffeomorphism such that DF (0) has all eigenvalues of modulus strictly less than
one. Denote the set of eigenvalues of DF (0) by E and set S = max{|µ| | µ ∈ E}. We
have a DF (0)-invariant splitting U = V ⊕W , where DF (0)|V = L has all eigenvalues of
modulus equal to S and all eigenvalues of DF (0)|W = M have modulus strictly less than
S. Denote coordinates on V ⊕W by (x, p).

Proposition A.1. There exists a local Ck diffeomorphism H : V ⊕W→V ⊕W ; (x, p) 7→
(h(x, p), p) which linearizes F along V :

h(F (x, p)) = Lh(x, p), (x, p) ∈ V ⊕W.
That is, H ◦ F ◦H−1 = (L,G), where G : V ⊕W→W is Ck and DG(0) = M .

We provide a proof of Proposition A.1 in the simplest case when V is 1-dimensional
(and so we can write Lx = Sx, x ∈ R) and k is an integer. The method we present works,
with trivial modifications, when there are multiple eigenvalues of modulus equal to S, L
is not semisimple and when we allow k to be non integral.

Henceforth, we write U = R⊕W . Choose a Euclidean norm ‖ ‖ on U such that R ⊥W ,
‖DF (0)‖ = S and ‖DF (0)|W‖ = s < S. Let BR denote the closed R-ball center the
origin, in U .

For R > 0, we let FkR denote the space of R-valued Ck functions defined on BR such
that ∂αf(0) = 0 for all f ∈ FkR, |α| ≤ k. Define a norm ‖ ‖R,k on FkR by

‖f‖R,k = sup
(x,p)∈BR

‖Dkf(x, p)‖,

where we regard Dkf(x, p) as a symmetric k-linear map and take the corresponding op-
erator norm.

Lemma A.2 (cf [25, Lemma 2]). There exists C = Ck > 0 such that for 0 ≤ j ≤ k − 1
and all f ∈ FkR we have

‖f‖R,j ≤ CRk−j‖f‖R,k.

Proof. A simple consequence of Taylor’s theorem with integral remainder together with
the fact that elements of FkR are k-flat at the origin. �

It follows from the Lemma that (FkR, ‖ ‖R,k) is a Banach space.
Following Sternberg [25], we define the operator DF : FkR→FkR by

DF (h)(x, p) = L−1h(F (x, p)), h ∈ FkR.
Since DF (0) is a contraction, it follows that, provided R is sufficiently small, F (BR) ⊂ BR

and so DF is well-defined.
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Lemma A.3 (cf [25, Lemma 3]). We can choose R > 0 and K ∈ (0, 1) such that

‖DF (h)‖R,k ≤ K‖h‖R,k, h ∈ FkR.

Proof. This estimate is a parametrized version of part of [25, Lemma 3]. Since k ≥ 2, we
may choose δ > 0 so that (S+δ)k/S < 1. Now fix ε > 0 so that K = [(S+δ)k+ε]/S < 1.
Let h ∈ FkR. We have

Dk(h ◦ F ) = (Dkh)F (DF )k + Pα,

where Pα involves derivatives of order less than k of h. Since S is the weakest contracting
eigenvalue, we can choose R > 0 sufficiently small so that ‖DF‖ is bounded by S + δ on
BR. Hence ‖(Dkh)F (DF )k‖ ≤ (S+δ)k‖(Dkh)F‖ on BR. It follows from Lemma A.2 that
we can make ‖Pα‖R,0 an arbitrarily small multiple of ‖h‖R,k by taking R small enough.
Hence, just as in [25, Lemma 3], we may choose R > 0 so that

‖DF (h)‖R,k ≤ S−1[(S + δ)k + ε]‖h‖R,k, h ∈ FkR,
where ε, δ > 0 were chosen above. �

Since there can be no resonances relating a weakest eigenvalue of DF (0) to products of
other contracting eigenvalues – in our case, S 6= Πµmii – we can make a local Ck change
of coordinates H0(x, p) = (h0(x, p), p) on U such that h0 ◦ F − Lh0 ∈ FkR. Composing on
the left by L−1, we have

h0 − L−1h0 ◦ F ∈ FkR.
Applying Lemma A.3, we see that the sequence

hn = L−nh0F
n =

n−1
∑

j=0

DjF (L−1h0 ◦ F − h0) + h0,

is uniformly convergent to a Ck function h : BR→R. Obviously h satisfies the conditions
of Proposition A.1.
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