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Notes on the notes

I have added some notes at the end of these slides.
These notes contain a few references as well as
comments on some of the results.
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Heteroclinic cycles
Assume given an ODE x′ = f(x) defined on the
phase space Rn.

Let S0, . . . , SN = S0 be a set of nodes which may be
equilibria, limit cycles or more generally (hyperbolic)
chaotic sets.

Assumptions
(1) We assume all of the nodes are saddles:

dim(Si) < dim(W u(Si)) < n.

(2) We assume there exist connections between
successive nodes:

W u(Si) ∩W s(Si+1) 6= ∅, 0 ≤ i < N.
Heteroclinic cycles – p.3/61



Heteroclinic cycles ctd.
If these assumptions hold, we say we have a
heteroclinic cycle linking the nodes S0, . . . , SN .

This is very general. We say the heteroclinic cycle is
simple if in addition

(3) Each node is an equilibrium.
(4) dim(W u(Si)) = 1.

We might then define the 1-dimensional invariant set

Σ = ∪iW u(Si) ∩W s(Si+1)

and refer to the subset Σ ⊂ Rn as a heteroclinic cycle.
Under certain conditions Σ may be an asymptotically
stable attractor.
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Robust heteroclinic cycles
If Σ is a simple cycle then at least some of the
intersections W u(Si) ∩W s(Si+1) must be
non-transverse. Consequently, without restrictions on
the class of ODEs, heteroclinic cycles will never
persist under all perturbations of the ODE.

However, if there are subspaces of phase space that
are flow invariant for all vector fields in the class, then
we can expect to see failure of genericity of
transversality of invariant manifolds. This allows for
the possibility of robust heteroclinic cycles.
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Invariant subspaces
Certain classes of dynamical system naturally have
invariant spaces. That is, subspaces of phase space
that are invariant for the dynamics of all systems in
the class.

• Symmetric (+ reversible or Hamiltonian)
systems.

• Population models based on Lotka-Volterra.

• ‘Semilinear’ feedback systems (SLF models).

• Coupled cell systems.
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SLF systems
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Heteroclinic cycles
In both equivariant dynamics, population models (&
SLF models), it is possible to have robust cycles of
non-transverse saddle connections. First observed by
May & Leonard (1975) (population dynamics), later
by Dos Reis (1978) (equivariant dynamics on
surfaces) and then by Guckenheimer and Holmes
(1988) using an equation of Busse & Clever
(equivariant bifurcation theory).
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Heteroclinic cycles: interest
Models for intermittency.

Very much a feature of symmetric and population
dynamics.

Of interest in dynamics which have approximately
invariant subspaces. More precisely: Given a system
with lots of invariant subspaces, we might expect to
see many different types of heteroclinic cycle. Under
small (general) perturbations, the invariant subspaces
may disappear and the heteroclinic cycles may
bifurcate into periodic orbits. This is analytically
quite tractable when we have attracting simple cycles.

Switching.
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A second example
The (symmetric) system

x′ = x− x(x2 + ay2 + bz2 + cw2) + dyzw,

y′ = y − y(y2 + az2 + bw2 + cx2)− dzwx,

z′ = z− z(z2 + aw2 + bx2 + cy2) + dwxy,

w′ = w −w(w2 + ax2 + by2 + cz2)− dxyz,

defined on R4 has equilibria at (±1, 0, 0, 0), . . . , (0, 0, 0,±1). For
appropriate values of a, . . . , d there is a network of connections
between these equilibria. (If d = 0, we can get an attracting cycle
between (1, 0, 0, 0), . . . , (0, 0, 0, 1).)
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Numerics

Heteroclinic cycles – p.11/61



Aim of talk

Our aim in this talk is to show that (simple)
heteroclinic cycles are a very common phenomenon
in coupled cell systems. As a result we can expect to
often see dynamical phenomena like periodic
switching between synchronous states in a coupled
cell system.

We start by reviewing the concepts of a coupled cell
system and synchrony class.

Heteroclinic cycles – p.12/61



Coupled cell systems: Cell types
We shall be looking at a finite collection of different
cell types. We write these A,B,C, . . .. Each cell has
a finite number of inputs and an output.

.............

Inputs

Outputs

A B C
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Cells: Inputs
InputsOutput 

(type A)

a

a

b1

b2

b2
c
c

c
d

e

A
c

1 input type b1 (from a cell of type B)

1 input type d (from a cell of type D)

2 inputs type a (from cells of type A)

2 inputs type b2 (from cells of type B)

4 inputs type c (from cells of type C)

1 input type e (from a cell of type E)

A given cell type may receive inputs from cells of vari-
ous types. In the figure, a cell of type A receives inputs
from cells of types A, B, C, D and E.
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Patchcord rules
We interconnect cells using patchcords. A type a
patchcord goes from the output of a cell of type A to
the a input of a cell. If there are type a1, a2,. . . inputs,
then we colour code patchcords so as to indicate
which type of input the cord should be patched into.

There are no restrictions on the number of outputs we
take from a cell.

No more than one patchcord is plugged into a given
input.

Normally we regard patchcords as ‘dynamically
neutral’. However, patchcords could include, for
example, a delay line.
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Example

a
a

a
a

a
a

b1
b2

a
b1
b2

a

b1 b1 b1

Type A: red

Type B: green

A1 A2

B1 B2 B3
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Patching the a inputs.

a
a

a
a

a
a

b1
b2

a
b1
b2

a

b1 b1 b1

Type A: red

Type B: green

A1 A2

B1 B2 B3
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Patching the b inputs.

a
a

a
a

a
a

b1
b2

a
b1
b2

a

b1 b1 b1

Type A: red

Type B: green

A1 A2

B1 B2 B3
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Another Patching.

a
a

a
a

a
a

b1
b2

a
b1
b2

a

b1 b1 b1

Type A: red

Type B: green

A1 A2

B1 B2 B3
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ODE representation
In terms of ODEs we represent the previous coupled
cell system by

A1′ = F (A1; A1,B1,B1),

A2′ = F (A2; A1,B3,B3),

B1′ = G(B1; B3,A2,A2),

B2′ = G(B2; B3,A2,A2),

B3′ = G(B3; B2,A2,A2).

The vector field G is symmetric in the A-variables but
F is not symmetric in the B-variables.
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Coupled cell systems
For us, a coupled cell system will consist of
• A (finite) number of cells, a finite number of cell

types.

• The cells will be patched together according to
the input-output rules sketched above. If a cell
has multiple inputs of a particular type it is
immaterial which input the patchcord is plugged
into (=⇒ local symmetry).
• No inputs will be left unfilled.
• There are no restrictions on the number of

outputs from a cell of given type.
• Evolution of cells governed by ODEs.

Heteroclinic cycles – p.21/61



Coupled cell systems
For us, a coupled cell system will consist of
• A (finite) number of cells, a finite number of cell

types.
• The cells will be patched together according to

the input-output rules sketched above. If a cell
has multiple inputs of a particular type it is
immaterial which input the patchcord is plugged
into (=⇒ local symmetry).

• No inputs will be left unfilled.
• There are no restrictions on the number of

outputs from a cell of given type.
• Evolution of cells governed by ODEs.

Heteroclinic cycles – p.21/61



Coupled cell systems
For us, a coupled cell system will consist of
• A (finite) number of cells, a finite number of cell

types.
• The cells will be patched together according to

the input-output rules sketched above. If a cell
has multiple inputs of a particular type it is
immaterial which input the patchcord is plugged
into (=⇒ local symmetry).
• No inputs will be left unfilled.

• There are no restrictions on the number of
outputs from a cell of given type.
• Evolution of cells governed by ODEs.

Heteroclinic cycles – p.21/61



Coupled cell systems
For us, a coupled cell system will consist of
• A (finite) number of cells, a finite number of cell

types.
• The cells will be patched together according to

the input-output rules sketched above. If a cell
has multiple inputs of a particular type it is
immaterial which input the patchcord is plugged
into (=⇒ local symmetry).
• No inputs will be left unfilled.
• There are no restrictions on the number of

outputs from a cell of given type.

• Evolution of cells governed by ODEs.

Heteroclinic cycles – p.21/61



Coupled cell systems
For us, a coupled cell system will consist of
• A (finite) number of cells, a finite number of cell

types.
• The cells will be patched together according to

the input-output rules sketched above. If a cell
has multiple inputs of a particular type it is
immaterial which input the patchcord is plugged
into (=⇒ local symmetry).
• No inputs will be left unfilled.
• There are no restrictions on the number of

outputs from a cell of given type.
• Evolution of cells governed by ODEs.

Heteroclinic cycles – p.21/61



Invariant subspaces
Given: a coupled cell system. We are interested
initially in synchronised solutions of the system.
These correspond to certain types of invariant
subspace of the phase space.

We illustrate the ideas with some simple examples.
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Examples

A1 A2

Two identical cells

The only invariant subspace of synchronous solutions
corresponds to both cells being synchronized. We
write this {A1,A2}.
(This property is true for all coupled cell networks –
trivial synchronised state.)
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Examples ctd.

A1 A2 Ai . . . . . .. . . . . . . AN

N identical cells
Each cell has two inputs of (different) type.

The only invariant subspace of synchronous solutions
is {A1, . . . ,AN}. If N ≥ 2 is prime, we can make
do with single input cells.

We call an invariant subspace (synchrony class) which
contains no proper invariant subspaces
(sub-synchrony class) a synchrony atom – or just an
atom.
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Examples ctd.

A1 A2 A3

Three identical single input cells

This network has three invariant subspaces of
synchronous solutions:
{A1,A2,A3} (trivial symchronized state).
{A1,A2},
{A1,A3}.
Note that {A2,A3} is not an invariant subspace.
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Variations on a 4 cell system

A1 A2

B1 B2

Base system
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Variations on a 4 cell system

A1 A2

B1 B2

Base system

{A1,A2}, {B1,B2}, {A1,A2||B1,B2}
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First Variation

A1 A2

B1 B2
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First Variation

A1 A2

B1 B2

{A1,A2},  {B1,B2}, {A1,A2||B1,B2}
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Second Variation

A1 A2

B1 B2
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Second Variation

A1 A2

B1 B2

{A1,A2||B1,B2}
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Third Variation

A1 A2

B1 B2
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Third Variation

A1 A2

B1 B2

{A1,A2},  {A1,A2||B1,B2}

Heteroclinic cycles – p.33/61



Some Metatheorems
Associated to a coupled cell system C are finitely
many cell types, each cell type with a prescribed
number of inputs, and a set of connections between all
pairs of cells. Obviously, this structure can be
represented as a graph Γ = Γ(C) with directed
(labelled) edges representing connections and
(labelled) nodes representing cells.

The graph Γ(C) uniquely determines the set of
synchrony classes (invariant subspaces).

Let U denote the set of all graphs of coupled cell
systems.
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Synchronous attractors
METATHEOREM 1
Suppose Γ ∈ U and that S is a synchrony class for Γ.
Then there exists a coupled cell system C such that
• C has graph Γ.
• There is a hyperbolic attracting equilibrium for C

with synchrony precisely S.
This system can be realized without any restriction on
phase space dimensions.

A similar result holds for periodic attractors - in this
case phase space dimensions will be at least two for
the cells associated to the synchrony class.
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Proof...

Heteroclinic cycles – p.36/61



Proof ctd.
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Proof ctd.
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Proof ctd.

Dynamics on invariant
          subspace
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1-cycles
METATHEOREM 2. Let Γ ∈ U and suppose that
S0, . . . ,SN = S0 are synchrony atoms. Assume that
• Si ∩ Si+1 = ∅, 0 ≤ i ≤ N − 1, N ≥ 2.
• There exists at least one connection from an
Si-cell to an Si+1-cell, 0 ≤ i ≤ N − 1.

There exists a coupled cell system C with graph Γ,
which supports an attracting simple cycle with node
set (S0,S1), . . . , (SN−1,S0). There are no phase space
dimension restrictions.

We refer to this type of heteroclinic cycle as an
1-cycle. The connection from (Si,Si+1) to
(Si+1,Si+2) will consist of Si+1-synchronized
equilibria.
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Example: N = 2

B1 = B2

A1 = A2

A1 = A2
B1 = B2

A1 A2

B1 B2

Here S0 = {A1,A2}, and S1 = {B1,B2}.
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Phase oscillator example

g(θ) = sin(θ + a) + r sin(2θ).

θ′1 = αg(θ1 − θ3) + βg(θ1 − θ2),

θ′2 = αg(θ2 − θ3) + βg(θ2 − θ1),

θ′3 = αg(θ3 − θ2) + βg(θ3 − θ4),

θ′4 = αg(θ4 − θ2) + βg(θ4 − θ3).

r = 0.2, a = 1.28, α = β = 1.0
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Plots of θ1 − θ2, θ3 − θ4
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Proof...

1

2

12

Case N = 2
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Proof ctd.

1

2

12

Case N = 2
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1-cycles ctd.
The conditions of Metatheorem 2 are unnecessarily
strong and can be significantly weakened. For
example, it is not necessary to assume that synchrony
classes are disjoint. We illustrate by means of two
examples. Recall the earlier example with synchrony
classes {A1,A2}, {A1,A3}, {A1,A2,A3}:

A1 A2 A3

Three identical single input cells

This system does not admit a (simple) heteroclinic
cycle linking two equilibria in {A1,A2,A3}.
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1-cycles ctd.

A1 A2 A3

B

It can be shown that this architecture supports a
simple attracting heteroclinic cycle such that one
connection lies in {A1,A3}, the other in {A1,A2}.
The new cell acts as like a ‘controller’.
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1-cycles ctd.

A1 A2 A3

{A1,A2}, {A1,A3}, {A1,A2,A3}

It can be shown that this architecture supports a
simple attracting heteroclinic cycle such that one
connection lies in {A1,A3}, the other in {A1,A2},
and the phase space dimension equals one. Three is
the minimal number of cells that can support a
heteroclinic cycle in a CCS.

Heteroclinic cycles – p.48/61



1-cycles ctd.
We have to be careful when weaking the condition in
Metatheorem 2 that each synchrony class is an atom.
We show two examples of nodes for which this condi-
tion is weakened. In both cases, the synchrony class is
{A1,A2‖B1,B2} (and so the cells synchronize into
two blocks). The first example cannot appear as one
of the synchrony classes of a node in an 1-cycle; the
second can.
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First Example

A1 A2

B1 B2

{A1,A2},  {B1,B2}, {A1,A2||B1,B2}

(This can be a component of a node if we drop the word ‘simple’.)
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Second Example

A1 A2

B1 B2

{A1,A2},  {A1,A2||B1,B2}
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`-cycles
Suppose that we are given a set of N (disjoint)
synchrony atoms:

S = {S0, . . . ,SN = S0}
Fix an integer `, 1 ≤ ` < N .
A heteroclinic `-cycle with node set S, or `-cycle,
consists of a heteroclinic cycle joining hyperbolic
equilibria ei, where

ei ∈ ∩`+i+1
j=i Sj, 0 ≤ i ≤ N.

We have the usual definition of simple cycle.
We denote `-cycles symbolically by:

→[S0, . . . ,S`]→[S1, . . . ,S`+1]→ . . .
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Example
Given Γ ∈ U suppose that (a) N = 3 and (b)
S = {S0,S1,S2} consists of synchrony atoms for Γ.
Assume that there exists at least one connection from
an Si-cell to an Si+1-cell, 0 ≤ i ≤ 2.
There exists a coupled cell system C, graph Γ, which
supports an attracting simple 2-cycle with node set S.
There are no phase space dimension restrictions.

In this case, two groups of cells will be synchronized
along each connection in the 2-cycle.

Heteroclinic cycles – p.53/61



2-cycle example

Synchronized De−synchronized
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`-cycles
METATHEOREM 3
Let N ≥ 2, 1 ≤ ` < N . Let Γ ∈ U and suppose that
S is a set of ` distinct synchrony atoms. There exists
connection data (for example, connections
Si→Si+j, j = 1, . . . , `) that implies there is a coupled
cell system C, graph Γ, which supports an attracting
simple `-cycle with node set S. There are no phase
space dimension restrictions.

We remark that connection data becomes much
stricter if we require that the synchrony classes are
identical – that is consist of identical numbers of cells
of the same type.
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Not so simple, simple cycles

A1

A2

B1 C1

C2B2

This network admits a simple attracting 1-cycle based
on the node set

S = {{B1,B2}, {C1,C2}}

(Connections between two states with synchrony {B1,B2‖C1,C2}).
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Model equations
Equations – assume 1-dimensional dynamics.

ẋA1 = F (xA1;xB1, xC2), ẋA2 = F (xA2;xB2, xC1),

ẋB1 = F (xB1;xC1, xA1), ẋB2 = F (xB2;xC1, xA1),

ẋC1 = F (xC1;xB1, xA2), ẋC2 = F (xC2;xB1, xA2).

Heteroclinic cycles – p.57/61



Linearization on {B1,B2‖C1,C2}
Computing the jacobian matrix J of the system at
(a1, a2; b, b; c, c), we find that

J(a1, a2; b, b; c, c) =



















α1 0 b1 0 0 b̄1

0 α2 0 b2 b̄2 0

c1 0 β 0 c2 0

c1 0 0 β c2 0

0 e1 e2 0 γ 0

0 e1 e2 0 0 γ
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Non simple cycles
The easiest way to find robust heteroclinic cycles
which are not simple is to add a little symmetry. For
example, suppose that a candidate node consists of an
array of p cells which has Zp-symmetry. For example,
if p = 3 we might take

x1
′ = f(x1; x2,x3),

x2
′ = f(x2; x3,x1),

x3
′ = f(x3; x1,x2).

If p is odd, the node can never occur in a simple
1-cycle. The reason is that the unstable eigenspace
associated to asynchronous solutions is always even
dimensional (representation theory of Zp).
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Some conclusions

• Coupled cell systems support many different
types of heteroclinic cycle – including attracting
simple cycles.

• Finding whether a heteroclinic cycle exists in a
given network can be a difficult problem.

• Even for small networks, we are a long way from
obtaining any reasonable sort of classification.

• There are many interesting and significant
questions relating to synchrony breaking and the
appearance of periodic or chaotic phenomena
near vanishing cycles.
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Notes
The talk was based on a paper (in preparation) by Peter Ashwin
and myself on ‘Heteroclinic cycles in coupled cell systems’.
Many of the examples and results, in particular MetaTheorems 2
and 3, are closely related to the theory of edge and face cycles
described in M J Field, Dynamics, Bifurcation and Symmetry,
Pitman Research Notes in Mathematics, 356, 1996.
The statements of Metatheorems 2 and 3 given in the slides are
abbreviated and omit additional restrictions that may be needed
on the network structure.
The phase oscillator example that I included following
MetaTheorem 2 is basically the example of Hansel, Mato and
Meunier (Phy Rev E 48 (1993), 3470) which has been studied, in
the context of heteroclinic cycles, by Kori and Kuramoto (Phy
Rev E 63 (2001)).
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