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1. Introduction

In this work we provide methods for constructing interesting realiza-
tions of heteroclinic cycles and networks in homogeneous and heteroge-
nous networks of identical coupled cells. We also address a number of
general issues about the structure of networks of dynamical systems.
In the next section, we give a careful review of past work on hete-

roclinic networks, their realizations and their interest and significance.
For the remainder of the introduction, we give basic definitions and
describe our main results. Throughout, we let N denote the (strictly
positive) natural numbers and, given n ∈ N, use the convention that
n = {1, · · · , n}.
Let Γ(N,E) = Γ be a directed graph withN ≥ 2 vertices, v1, · · · ,vN ,

and directed edges eα, α ∈ E. The edges connect vertices of Γ. If eα
is an edge from vj to vi, we often write vj→vi rather than eα. Note,
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however, that we allow multiple edges between vertices. Let d out
i de-

note the out-degree of vertex vi: total number of edges from vi to other
vertices. We may analogously define the in-degree d in

i

Unless the contrary is indicated, we assume throughout the article
that every graph Γ is directed and satisfies

(C1) There are no self-connections vi→vi, i ∈ N.
(C2) For every (ordered) vertex pair vi,vj , there is a chain of (di-

rected) edges vj→vk1 , vk1→vk2 ,..., vks→vi joining vj to vi

(note i = j is allowed).

Conditions (C1, C2) imply that Γ is strongly connected and that every
vertex lies on a cycle of length at least two.
Let Γ(N,E) = Γ be a graph and M be a connected differential

manifold of dimension at least two. We say that Γ has a realization as
a heteroclinic network Σ in M , if we can choose a C1 vector field X on
M such that

(H1) X has hyperbolic saddles pi ∈M , i ∈ N.
(H2) Associated to every edge eα from vj to vi, there is a unique X-

trajectory φα : R→M from pj to pi (that is, φα(R) ⊂ W s(pi)∩
W u(pj) and α 6= β implies φα(R) 6= φβ(R)).

(H3) Σ =
⋃

i∈N{pi} ∪
⋃

α∈E φα(R).

The realization is robust if (H1 – 3) hold for all C1 vector fields Y in
a C1 open neighbourhood of X (we assume equilibria and connections
depend continuously on the deformation Y of X).
It is easy to show that every graph Γ can be realized as a hete-

roclinic network in M if dimM ≥ 4 (Γ(2, 8) cannot be realized in a
3-dimensional manifold if d out

1 = 4). Without further restrictions, ro-
bustness will always fail because cycles of intersecting stable and unsta-
ble manifolds (forced by (C2)) can always be destroyed by arbitrarily
small C∞ perturbations (transversality of invariant manifolds of hyper-
bolic equilibria is generic by the Kupka-Smale theorem [57]). However,
if we restrict to classes of vector fields with additional structure, for ex-
ample, equivariant vector fields or Lotka-Volterra population models,
then there may be subspaces ofM that are invariant for all vector fields
in the class and this can lead to the presence of robust heteroclinic cy-
cles and networks. In our case we are interested in the realization of
robust heteroclinic cycles in networks of interacting dynamical systems
and this will constrain the type of equilibria we consider.
We briefly review the idea of a (dynamical) network (more details

are in the next section). Let N be a network consisting of ℓ ≥ 2 nodes
A1, · · · , Aℓ each with phase space M and denote the phase variable
corresponding to the node Ai by xi ∈M . We suppose dynamics on N
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is given by a C1 vector field f onM ℓ. In terms of differential equations,
we may write

(1.1) x′
i = fi(xi;xji(1), · · · ,xji(ki)), i ∈ ℓ.

We do not assume that ki is independent of i – the network is heteroge-
neous – and the map ji : ki→ℓ need be neither injective nor surjective
(even if ki ≥ ℓ). The presence of the variable xji(s) in the arguments
of fi means that the evolution of Ai depends on the state of Aji(s) or,
equivalently, that there is a ‘connection’ from Aji(s) to Aji(s).
Associated to the network N , we may define the network graph

G(N ) to consist of ℓ-vertices ai, corresponding to the nodes Ai, and
edges eα, aji(s)→ai, for every α = (i, ji(s)), s ∈ ki. We allow self-edges
– though they will not play a major role in what follows. We always
assume that N (that is, G(N )) is connected. We do not assume inputs
are symmetric – the component functions fi need not be symmetric
functions of xji(1), · · · ,xji(ki).
If fi = f , ki = k ≥ 1, for all i ∈ ℓ, we say the network is a homoge-

neous network of identical cells.
Let N be a homogeneous network of identical cells A1, · · · , Aℓ. Let

∆(M) = {(x1, · · · ,xℓ) | x1 = · · · = xℓ} denote the diagonal subspace
of M ℓ (we also write ∆ℓ(M) if we need to emphasize the number of
factors). The subspace ∆(M) is flow-invariant for all network vector
fields and is partitioned into trajectories along which all cells are syn-
chronized. Depending on the connection structure, there may be many
other invariant subspaces, each of which will correspond to a subset (or
subsets) of synchronized nodes. In some cases, the invariant subspace
structure will support robust heteroclinic cycles and networks.
We may now state our main result.

Theorem 1.1. Let M be any connected differential manifold. There
exists a sequence (Pn)n≥3 of homogeneous networks, with Pn having n
nodes A1, · · · , An and node phase space M , such that if Γ(N,E) = Γ is
a graph satisfying (C1,C2) then we can realize Γ as a robust heteroclinic
network Σ in PE+1. Furthermore, if we denote the equilibria on Σ by
pi, i ∈ N, we have

(1) pi ∈ ∆E+1(M), i ∈ N. (The equilibria are all synchronized.)
(2) If α ∈ E corresponds to a connection pj→pi, then there exists

k = k(α) ∈ E+ 1 such that
(a)

φ(R) ⊂ Pk = {x | xa = xb, a, b 6= k}.

(Node Ak desynchronizes from the other nodes along the
connection pj→pi.)
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(b) If α, β ∈ E, α 6= β, then k(α) 6= k(β).

Remarks 1.2. (1) We prove theorem 1.1 in the most difficult case of
1-dimensional node dynamics (M = R or T) and the vector fields we
construct are C∞. The heteroclinic network structure persists under
C1 perturbations (by Cr network vector fields, r ≥ 1).
(2) We may require additive input structure for the network Pn – we
give the definition in section 2.4 . This allows for time varying connec-
tion structures [15].
(3) The network P3 previously appeared in [6, §5] in connection with
the existence of heteroclinic cycles in coupled cell systems.
(4) Theorem 1.1 has some formal resemblance with the result on cylin-
der realization in Ashwin & Postlethwaite [13, Proposition 2] though
their results do not address realization in identical cell networks (see
also the general discussion in section 2).

We also have partial results related to theorem 1.1 that apply to het-
erogeneous networks (for which ∆(M) may or may not be an invariant
subspace) as well as different realizations of Γ in Pn which connect
equilibria which are not fully synchronized.
We conclude by describing the contents of the paper by section. In

section 2, we give an overview of heteroclinic cycles and networks as
well as review past work on the realization problem. We conclude the
section with generalities on networks of coupled dynamical systems. In
section 3 we construct the sequence (Pn) referred to in theorem 1.1
(and also a related sequence (Qn)). In section 4, we prove theorem 1.1.
In section 5, we prove that theorem 1.1 continues to hold with the as-
sumption of additive input structure and also show how to apply our
results to heterogeneous networks. In section 6 we discuss generaliza-
tions where we connect groups of synchronized cells, rather than fully
synchronized equilibria. We conclude in section 7 with discussion and
a description of some outstanding problems. Readers who are familiar
with heteroclinic networks and coupled cell systems should probably
skim quickly through the background material in section 2.

2. Preliminaries and past work

2.1. Heteroclinic cycles and networks. We start with a definition
of a heteroclinic network that suffices for our needs.

Definition 2.1. LetX be a C1 vector field on the connected differential
manifold M . A compact, connected, flow invariant subset Σ ⊂ M is a
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heteroclinic network if we can write

Σ =
⋃

i∈I

pi ∪
⋃

b∈J

γb(R)

where

(1) S = {pi | i ∈ I} is a finite non-empty set of hyperbolic saddle
equilibria for X.

(2) C = {γb : R→M | b ∈ J} is a finite set of connecting trajecto-
ries between equilibria in S satisfying the conditions
(a) For every γb ∈ C, there exist pi,pj , i 6= j, such that γb is

a connection from pj to pi (γb(R) ⊂ W u(pj) ∩W
s(pi)).

(b) For every ordered pair pi,pj ∈ S, there exists a sequence
of connections pj→pk1 ,pk1→pk2 , · · · ,pks→pi ∈ C, with
s ≥ 1 and k1, · · · , ks 6= i, j.

If Σ contains an equal number of equilibria and connections, Σ is a
heteroclinic cycle. If W u(pi) is 1-dimensional for all i ∈ I, we say Σ is
a simple heteroclinic network (or cycle).

Remarks 2.2. (1) If Σ is a heteroclinic network then every equilibrium
point of Σ lies on a cycle of length at least two.
(2) For our definition, we deny homoclinic loops (no self-connections).
(3) If Σ is a heteroclinic cycle, then the number of connections equals
the number of equilibria. In the case of G-equivariant systems, a G-
invariant heteroclinic network Σ is usually called a heteroclinic cycle if
Σ is the G-orbit of a heteroclinic cycle. If Σ/G is a homoclinic loop, it
is common to call Σ a homoclinic cycle.
(4) If we let Γ(|I|, |J |) = Γ have vertices vi, i ∈ I, and require the
number of connections from vj to vi to be |{γb | γb(R) ⊂ W u(pj) ∩
W s(pi)}|, then Γ satisfies (C1,C2) and Σ will be a realization of Γ.

Heteroclinic and homoclinic cycles can occur in low codimension bi-
furcations of vector fields and have been intensively studied by many
authors (see, for example, the volumes by L Shilnikov et al. [62, 63]).
Of particular interest are the mechanisms whereby homoclinic bifurca-
tions can lead to complex dynamics and chaos. In a related direction
that dates back to Duffing [21], and follows on earlier work by Wang &
Ott [65], Mohapatra & Ott have recently shown how periodic forcing
of homoclinic loops and heteroclinic cycles can lead to the formation
of non-uniformly hyperbolic attractors [52] – these works address the
difficult problem of finding explicit examples of non-uniform hyperbol-
icity and build on earlier work of L-S Young et al. on shear induced
chaos and rank one attractors [48, 66].
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On account of the Kupka-Smale theorem, robust heteroclinic cycles
and networks only occur when vector fields possess additional structure
which is invariably associated with the presence of invariant subspaces.
They are a well-known phenomenon in models of population dynamics,
ecology and game theory based on the Lotka-Volterra equations (for
example, [49, 37, 38, 39, 40]). Typically, these systems are defined on
a simplex or the positive orthant Rn

+ = {x ∈ R
n | xi ≥ 0, i = 1, · · · , n}

and have the ‘extinction’ hyperplanes xi = 0 as invariant subspaces.
The first example of a heteroclinic cycle that the author is aware of in
the literature appears in the 1975 paper by May & Leonard [49]1 – and
has been used to model the ‘rock-paper-scissors’ game and winnerless
competition (for example, [49, 16, 2, 59]).
Another large and well-studied class of dynamical systems with in-

variant subspaces are differential equations which are equivariant with
respect to a compact Lie group of symmetries (for example, [60, 50, 46,
25, 47, 45, 12, 26, 29]). Robust heteroclinic cycles and networks occur
because generic intersections of stable and unstable manifolds of equi-
libria in equivariant dynamics need not be transverse [22, 23, 24]. This
breakdown of transversality is closely associated with a rich invariant
subspace structure. Specifically, if a finite or compact Lie group G acts
smoothly on the phase space M , and H is any non-empty subset of G,
then the submanifold MH = {x ∈ M | hx = x, ∀h ∈ H} is invariant
by the flow of every C1 G-equivariant vector field on M .
From the mathematical point of view, robust heteroclinic networks

often lead to interesting complex dynamics. For example, the phe-
nomenon of random switching between nodes [41, 7, 10, 42]. Evidence
of heteroclinic switching has even been observed in vivo in Abeles et
al. [1]. From the point of view of applications, there has been recent
interest in robust heteroclinic cycles that appear in neural microcir-
cuits where they give nonlinear models with ‘winnerless competition’ –
there is a local competition between different states but not necessarily
a global winner [58]. These models seem useful for explaining sequence
generation and spatio-temporal encoding and have been found in rate-
based [3] and other models [55]. They can also be found in phase
oscillator models derived from Hodgkin-Huxley models [35] or more
general phase oscillator models [11]. Heteroclinic networks can be used
to perform finite-state computations in phase oscillator systems [8, 10]
(see also [53, 54] for pulse coupled systems). Analogous behaviour is
also found in hybrid models of neural systems such as the networks of

1Interest has continued since that time notwithstanding the authors remark that
“Biologically, the behaviour illustrated in Figs. 4 and 5 is nonsense”.
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unstable attractors in systems of delay-pulse coupled oscillators [51] as
well as in coupled chemical reaction systems [43].
The class of equivariant dynamical systems is very large and, of

course, many of the possible groups and group actions appear quite
uninteresting for applications. It is useful to define a subclass of group
actions that results in heteroclinic cycles and networks that naturally
complement those occurring in Lotka-Volterra models. Let ∆n denote
the group of diagonal matrices acting on R

n

∆n = diag(±1, · · · ,±1) ≈ Z
n
2 .

Let H be a subgroup of Sn (the symmetric group on n symbols acting
on R

n by permutation of coordinates) and define the group G ⊂ O(n)
to consist of all linear maps A : Rn→R

n of the form

A(x1, · · · , xn) = (±xσ(1), . . . ,±xσ(k)), ((x1, . . . , xk) ∈ R
k) ,

where σ ∈ H (G is a group of signed permutation matrices). We may
write G as the semidirect product ∆n⋊H. If H is the trivial subgroup
group {e}, we obtain the action of ∆n on R

n. The case n = 3, leads
to the first explicit example of robust heteroclinic cycles in equivariant
dynamics by dos Reis [60]. Much later, the case n = 4 led to one of
the first investigations of a robust heteroclinic network by Kirk and
Silber [44]. There is a rich theory for heteroclinic cycles and networks
when H is a transitive subgroup of Sn (and G acts irreducibly on R).
We refer to [29] for details and more references as well as to Dias et
al. [17] who investigate more general linear actions by wreath products.
We may define a natural class of dynamical systems on R

n (more

generally
∏k

i=1 R
mi) intermediate between Lotka-Volterra systems and

actions of groups of signed permutation matrices on R
n. This class will

have a natural connection with network dynamics.

Definition 2.3 ([26, Chapter 7],[28]). A semi-linear feedback system
on R

n is a system of differential equations of the form

x′i = fi(xi) + xiFi(x1, · · · , xi−1, xi+1, · · · , xn), i ∈ n

where fi(0) = 0, i ∈ n, and the maps fi, Fi are all at least C1.

Remarks 2.4. (1) Lotka-Volterra systems define semi-linear feedback
systems on R

n (typically with Fi linear, fi(xi) = aixi−bix
2
i , and ai, bi >

0).
(2) Signed permutation group actions G = ∆n ⋊H on R

n define semi-
linear feedback systems if we restrict to cubic truncations (this usually
suffices for the study of heteroclinic cycles, see [29, Chapter 5]). In this
situation fi will be a odd cubic map fi(xi) = aixi − bix

3
i (with all the
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fi equal if H is transitive).
(3) The ‘extinction’ hyperplanes xi = 0 are invariant for semi-linear
feedback systems.
(4) In general, we may define semi-linear feedback systems on R

m =
∏n

i=1 R
mi in the obvious way by replacing xiFi by 〈xi,Fi〉i, where 〈 , 〉i

is an R
mi-valued bilinear form on R

mi . In this case, the subspaces
xi = 0 are invariant.

For a semi-linear feedback system, the evolution of xi according to
x′i = fi(xi) is modified by the linear feedback term xiFi which may de-
pend nonlinearly on the remaining variables, see figure 1. The feedback

xi xi

Fi

Fi
Cell i

Figure 1. The model for a semi-linear feedback system

loop can lead to bistability of equilibria on the xi-axes. For example,
in the Lotka-Volterra case, fi has equilibria at xi = 0, ai/bi > 0. Along
a trajectory x̄ = (x1, · · · , xi−1, xi+1, · · · , xn), variation of xiFi(x̄) can
result in switching between a single stable equilibrium at xi = 0 and a
stable equilibrium at xi > 0. This mechanism easily leads to the for-
mation of heteroclinic cycles. We refer to [26, Chapter 7, §2] where this
approach is used to construct edge and face heteroclinic cycles in sym-
metric systems (though symmetry plays no essential role, see [26, 28]).
In recent work, Ashwin & Postlethwaite [13] have shown that every
heteroclinic network, with cycle lengths at least three, can be realized
in a semi-linear feedback network. The realization is achieved using
explicit cubic vector fields (with Fi linear in x

2
j , j 6= i).

Heteroclinic cycles (or networks) that occur for Lotka-Volterra equa-
tions or semi-linear feedback systems have the following network inter-
pretation. Equilibria on the cycle correspond to groups of saturated
(fully active) nodes and dead nodes. For example, the equilibrium
(1, 0, 0) will correspond to one saturated node (the first), and two dead
nodes. An equilibrium of the form (a, b, 0, 0), with a, b > 0, corresponds
to two saturated nodes and two dead nodes. If (1, 0, 0) lies on a hete-
roclinic cycle, which has a connection (1, 0, 0)→(0, 1, 0), then along the
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connection node 3 will be dead, node 1 will be active and damped, and
node 2 will be active and growing.
From the point of view of much contemporary research on networks,

in particular neural dynamics, it is interesting to consider networks of
coupled nonlinear oscillators and look for patterns of synchronization.
The simplest models of this type are Kuramoto style coupled phase
oscillators where node dynamics is defined on the circle T = R/Z. In
this context, the previously described models of heteroclinic networks
comprised of connections between equilibria are not directly relevant
as nodes cannot be naturally grouped into dead and active/saturated.
One approach, due to Ashwin & Swift [14], is to look at all-to-all cou-
pled systems of n-cells with Sn symmetry where there is often synchro-
nization into clusters of cells combined with heteroclinic phenomena
(see, for example, [36, 56, 10]). We instead consider networks of in-
teracting dynamical systems with no symmetries (local or global) but
where the network architecture can lead to invariant subspaces com-
prised of groups of synchronized cells. An advantage of this approach
is that we avoid higher multiplicity of eigenvalues resulting from the
group action and the unavoidable Sn-invariance of heteroclinic cycles
and networks.

2.2. Network dynamics and coupled cell systems. A general the-
ory of networks of coupled cells has been formalized by Stewart, Golu-
bitsky and coworkers [64, 32, 34] (a survey and review of some of this
work appears in [33]). Their approach is relatively algebraic in char-
acter and depends on groupoid formalism, graphs and the idea of a
quotient network. Although we use some of their formalizm and termi-
nology, we follow a more synthetic and combinatorial way of describing
coupled systems that fits better with our intended applications of con-
structing networks with particular properties – for example, additive
input structure, intrinsic cell dynamics and realistic coupling models.
We use a ‘flow-chart’ formalism similar to that used in electrical and
computer engineering. We give necessary definitions, establish nota-
tional conventions and refer the reader to [4, 6, 5, 27] for more details,
discussion and examples. We remark that we generally use the term
coupled cell network to refer to the network architecture – a directed
network graph codifying the connection structure and node types – and
use coupled cell system to refer to a specific realization of a coupled cell
network as a system of coupled differential equations [4]. On occasions,
it is convenient to abuse this convention and allow network structure
notation to represent a coupled cell system.
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Recall from the introduction that dynamics on a network N with
ℓ ≥ 2 nodes (or ‘cells’) A1, · · · , Aℓ, each with same phase space M , is
given by a C1 vector field f on M ℓ. In terms of differential equations,
we have

(2.2) x′
i = fi(xi;xji(1), · · · ,xji(ki)), i ∈ ℓ.

We do not yet assume that ki is independent of i – the network is
heterogeneous.

Remarks 2.5. (1) At this level of generality, nothing is said about the
input structure or intrinsic node dynamics (see [15, §2] for an extended
discussion on this point and the role of reductionism).
(2) The model assumes that the evolution of each node depends on com-
plete information about the states of the other nodes. This is an unreal-
istic assumption for most systems. For example, in biology, technology
and control, communication of information is expensive (in terms of en-
ergy and resources devoted to communication channels) and efficiency
is obtained through communicating the essential minimal information
for the task in hand. One more realistic approach is to assume that
each node Ai has an associated observable ξi : M→R

s (often with
s = 1) and that network equations are of the form

x′
i = fi(xi; ξji(1)(xji(1)), · · · , ξji(ki)(xji(ki))), i ∈ ℓ.

This is the scalar signalling model described in [4, §2.5] which allows
for situations where there is only partial communication of informa-
tion between nodes, such as pulse coupling or spiking models. Scalar
signalling models are also appropriate for situations where the node
phase spaces vary across the network or there is a diffusive or additive
input structure. None of this matters in the simplest case when M is
1-dimensional (R or T) since the tangent bundle TM ≈M ×R and we
may always assume evolution depends on 1-dimensional node states.
The 1-dimensional case will be of primary concern in this article and
so we assume the model given by (2.2) rather than the more realistic
scalar signalling model. We discuss extensions of our main results to
scalar signalling networks in the concluding section of this paper.

We regard each node of a network as a cell with a possibly variable
number of inputs and an output. Diagrammatically, we represent a
cell as shown in figure 2. Referring to figure 2, cell Ai receives single
inputs from the cells A2, A7, A9 and three inputs from A3 (ki = 6). The
identical arrowheads indicate that inputs 2 and 3 are the same (and so
the connections from A3, A9 can be interchanged without affecting the
dynamics or network structure). The remaining inputs are all different
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Aixi

1

3

2

4

5

6

x9

x2

x3

x3

x3

x7

A9

A7

A2

A3

A3

A3

Input

Input

Input

Input

Input

Input

from cell

from cell

from cell

from cell

from cell

from cell

Figure 2. A cell with six inputs and one output. Inputs
of the same type (for example the second and third input)
can be permuted without affecting the output.

(and any interchange of inputs to 1, 4–6 will potentially change dy-
namics and certainly changes the network structure). We shall mainly
be concerned with the case of asymmetric inputs [4]: no inputs can
be interchanged without changing network dynamics – rather than the
case of symmetric inputs [5]. We explain why shortly.
Since we are assuming all cells have the same phase space, any cell

can be connected to any input of any other cell in the network. A
coupled cell network N will then consist of the cells Ai together with
connections between cells. If each cell has a fixed number of inputs,
then we require that all inputs are filled. Associated to the coupled
cell network N , we define the network graph G(N ) exactly as in the
introduction. We always assume that N (that is, G(N )) is connected.
If fi = f , ki = k ≥ 1 for all i ∈ ℓ, the network is a homogeneous

network (of identical cells2).
Let N be a homogeneous network with cells A = {A1, · · · , Aℓ}.

Suppose that X = {Xj | j ∈ p} is a partition of A such that each Xj

contains at least one cell and at least one Xj contains two or more cells.
Let d(j) = |Xj| be the number of cells in Xj , j ∈ p. Label cells in Xj

as Aj1 , · · · , Ajd(j) and define Jj = {j1, · · · , jd(j)}. We have ∪j∈pJj = ℓ.

If x = (x1, . . . ,xn) ∈ M ℓ denotes the state of the network, then we
may group states according to the partition X and write

x = (x1, . . . ,xp),

2We allow either asymmetric or symmetric inputs
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where xj = (xj1 , . . . ,xjd(j)) ∈ Md(j) will denote the state of the d(j)

cells in Xj . Define

∆j = {xj | xj1 = · · · = xjd(j)}, j ∈ p

and

∆(X ) = {x = (x1, . . . ,xp) | xj ∈ ∆j, j ∈ p}.

Definition 2.6 ([6, 4], cf [64, 34, 33]). The partition X is a synchrony
class for the coupled cell network N if the subspace ∆(X ) is dynam-
ically invariant for every realization of N as a coupled cell system. If
X is a synchrony class then we say ∆(X ) is a synchrony subspace or
invariant subspace.

If the network is homogeneous, then X = {A1, · · · , Aℓ} is always
a synchrony class: the maximal synchrony class. The associated in-
variant space is the trivial or minimal synchrony subspace and is the
synchrony subspace of minimal dimension for any given realization of
a coupled cell network (this should be contrasted with the null syn-
chrony class which is the set-theoretic complement of the union of all
synchrony classes and is the open invariant set consisting of desynchro-
nized cells). We usually denote the minimal synchrony subspace by
∆(M) (or ∆ℓ(M) if we wish to emphasize the number of cells).
We remark the following elementary proposition characterizing syn-

chrony classes.

Proposition 2.7 (cf [33, §7]). Let N be a coupled cell network as
above. Suppose that X = {Xj | j ∈ p} is a partition of A. Then X is
a synchrony class iff for all i, j ∈ p and every input type k, every cell
in X i receives the same number of inputs of type k from cells in Xj.

Proof. One implication is an immediate consequence of the existence
and uniqueness theorem for differential equations.
For the converse, it is enough to show that if the condition fails then

X cannot define an invariant subspace for all systems with the given
architecture. It is enough to find one example. Our assumption is that
there exist i, j ∈ p and an input type ℓ such that there exists two cells
Aa, Ab in X

i which receive a different number of inputs of type ℓ from
cells in Xj . Suppose cells have rℓ inputs of type ℓ. Without loss of
generality, take ℓ = 1 and set rℓ = r. Assume the phase space is R

and take as model f(x0; x1, · · · ) = x1 + x2 + · · · + xr (sum linearly
over inputs of type ℓ). Initialize cells in Xj so that their initial state is
1 ∈ R. Initialize to zero cells not in Xj (note the case i = j is covered).
Observe that the value of the model function f will be different on the
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two cells Aa, Ab (f sums to the number of inputs of type ℓ from cells
in Xj). Hence X is not a synchrony class. �

2.3. Notation for synchrony classes and subspaces. Let ∆(X )
be the synchrony subspace determined by the synchrony class X =
{Xj | j ∈ p}. Let X ′ = {Xj | d(j) > 1}. Each Xj ∈ X ′ corresponds
to a group of at least two cells. If X ′ = {Xj1 , . . . , Xjk}, we denote the
synchrony subspace (or class) by {Xj1‖Xj2‖ . . . ‖Xjk}. Typically, we
expand each Xji to identify the individual cells. For example, suppose
that X ′ = {X1, X2} and X1 = {A1, A2, A5}, X

2 = {A3, A4}, then
we denote the associated synchrony subspace by {A1, A2, A5‖A3, A4}.
The notation indicates that both groups of cells A1, A2, A5 and A3, A4

may be synchronized, but not necessarily to the same state. Indeed,
{A1, A2, A3, A4, A5} may not be a synchrony class (see [6, §7.1] for a
simple example).

Example 2.8. In figure 3 we show two identical cell networks com-
prised of three cells, each cell with two inputs. Suppose first that
the cells have symmetric inputs. Then the two networks are dynami-
cally identical (see [4, §3] for formal definitions). Both networks have
{A1, A2}, {A1, A3}, and {A2, A3}, as non-trivial synchrony classes.
Now suppose that the cells in both networks have asymmetric inputs.

Then the two networks are dynamically different. Indeed, the network
of figure 3 (a) has two non-trivial synchrony classes {A1, A2}, {A1, A3},
while the second network has no non-trivial synchrony classes.

A1 A2 A3

1

2 2 2

11

A3A2A1

1 1

2 2

1

2

(b)(a)

Figure 3. Two 3 identical cell networks, each cell with
two inputs.

Based on the invariant subspace structure, one might guess that ro-
bust heteroclinic cycles are most likely when inputs are symmetric.
This turns out not to be so: there are no robust heteroclinic cycles
when there are symmetric inputs. This is a consequence of multiplici-
ties forced in eigenvalues at fully synchronized equilibria. On the other
hand when there are asymmetric inputs, the network of figure 3(a) sup-
ports robust simple heteroclinic cycles, even when M is 1-dimensional.
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We refer to [6, §5] and the next section. We remark that robust hetero-
clinic networks can occur in systems of at least four all-to-all symmet-
rically coupled phase oscillators (see [9, 10] but note the restrictions
placed on coupling functions). On account of eigenvalue multiplicities,
which are often absent in systems with asymmetric inputs, we concen-
trate on realizing heteroclinic networks in networks of identical cells
with asymmetric inputs.

2.4. Additive input structure, Heterogeneous networks. While
the all-to-all coupled identical cell model is attractive mathematically,
it is not very realistic in some applications. In particular, we are in-
terested in networks for which cells have well defined dynamics when
uncoupled and to which one can add (or subtract) inputs in a coherent
way. We give a general definition of additive input structure which is
applicable to general networks, and then specialize to systems that can
synchronize into clusters and have a weak form of diffusive coupling.

Definition 2.9. Suppose that N is a dynamical network with cells
A1, · · · , Aℓ and dynamics given by

x′
i = fi(xi;xji(1), · · · ,xji(ki)), i ∈ ℓ.

The network (or cells) has additive input structure if there exist P ∈
N, C1 families of vector fields hj : M ×M→TM , j ∈ P, and maps
τ i : ki→P, i ∈ ℓ, such that

(2.3) fi(xi;xji(1), · · · ,xji(ki)) =

ki
∑

s=1

hτ i(s)(xi,xji(s)), i ∈ ℓ.

Remarks 2.10. (1) We regard the second variable of hj as the parame-
ter: h(x,y) ∈ TxM for all y ∈M .
(2) If P = 1, then the network has symmetric inputs – there is just
one input type. If the maps τ i are all injective and at least one ki > 1,
then the network will have asymmetric inputs.
(3) The additive input structure allows the addition and deletion of
connections. In particular, the connection structure may be time de-
pendent (cf. [15]).

Additive input structure requires there are no nonlinear interactions
between different inputs to the cell Ai though each input may certainly
interact in a nonlinear way with the state variable xi. Kuramoto style
phase oscillator networks, most pulse coupled networks, and the N -
body problem of celestial mechanics all have additive input structure
with gj(x0,xj) = Gj(xj − x0) (diffusive coupling – this requires an
additive structure on each phase space).
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Examples 2.11. (1) Consider the homogeneous 4 identical cell net-
work with dynamics defined by

f(x0; x1, x2, x3) = x0x1x2x3, xi ∈ R.

(We do not specify the connection structure.) The input structure is
not additive: there is no natural way to remove (or add) a connection.
(2) Consider the homogeneous 4-cell semi-linear feedback network with
dynamics defined by

f(x0; x1, x2, x3) = x0 − x30 + x0 (2x1 + 3x3 − 4x3) , xi ∈ R.

This system has additive input structure (asymmetric inputs).

The decomposition (2.3) is far from unique. However, if we define

Fi(xi) =

ki
∑

s=1

hτ i(s)(xi,xi),

gτ i(s)(xi,xji(s)) = hτ i(s)(xi,xji(s))− hτ i(s)(xi,xi),

then we have

fi(xi;xji(1), · · · ,xji(ki)) = Fi(xi) +

ki
∑

s=1

gτ i(s)(xi,xji(s)),(2.4)

gj(x.x) = 0, for all j ∈ P, x ∈M.(2.5)

and this decomposition of fi, subject to (2.5) is unique
3. If all the Fi are

equal, say to F0, then N will be a heterogeneous network of identical
cells with additive input structure and the ‘intrinsic’ dynamics of each
cell is given by x′ = F0(x). This formulation of additive input structure
is appropriate for the analysis of synchronization in the network and
allows for variable numbers of inputs across the network.

Example 2.12. For example 2.11(2), the gj will be selected from the
maps E(x, y) = 2x(x − y), F (x, y) = 3x(x − y), G(x, y) = −4x(x −
y) according to the connection structure. The Fi will depend on the
specific connection structure and the resulting ‘intrinsic’ dynamics is
artificial and unnatural: dynamics of semi-linear feedback systems does
not naturally lead to clustering and synchronization.

The next examples fit well in the additive input model given by
(2.4,2.5).

3Strictly speaking, unique if ji : ki→ℓ is injective, i ∈ ℓ.
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Examples 2.13. (1) Suppose

f(θ0; θ1, θ2, θ3, · · · , θℓ) = ω +
ℓ

∑

i=1

a sin(θi − θ0), θi ∈ T, 0 ≤ i ≤ ℓ.

This defines the classic Kuramoto phase oscillator model. The intrinsic
dynamics is given by θ′ = ω and we can add or subtract connections
without changing the intrinsic dynamics. Similar comments hold if we
replace sin(θi−θ0) by any odd trigonometric polynomial in θi−θ0. We
can easily generalize and let the coefficient a depend on i.
(2) Suppose Ji ⊂ ℓr {i}, i ∈ ℓ, and

fi(θi; θ1, θ2, θ3, · · · , θℓ) = ωi +
ℓ

∑

j∈Ji

a sin(θj − θi + ψij), θi ∈ T, i ∈ ℓ.

In this case, adding an input j→i, will result in a frequency change for
Ai from ωi to ωi + a sin(ψij). This situation is relevant for power grid
models based on a second order differential equation model of phase
oscillators (see [30, 19, 20, 61]).
(3) Spiking neural networks typically have additive input structure4.
Similar remarks hold for pulse-coupled systems [54].

Remark 2.14 (Diffusive coupling). If the phase spaceM has an additive
structure (for example, M is either Rn or Tn), then we can write the
input maps gj of (2.4,2.5) as functions of x,y − x (a weak form of

diffusive coupling). Specifically, if we define Gj(x, z) =
∫ 1

0
d
dt
gj(x,x +

tz) dt, then we may rewrite (2.4) in the form

(2.6) fi(xi;xji(1), · · · ,xji(ki)) = Fi(xi) +

ki
∑

s=1

Gτ i(s)(xi,xji(s) − xi),

where now Gj(x, 0) = 0 for all j ∈ P, x ∈ M . We can extend this
model to phase spaces with no additive structure using scalar signalling:
replace y − x by ξ(y)− ξ(x) ∈ R

s.

Suppose we are given a coupled cell system with additive input struc-
ture (2.4,2.5) with all cells in the network having identical intrinsic
dynamics. Even though the cells in the network may have different
numbers of inputs, the minimal synchrony subspace ∆(M) is always
an invariant subspace of M ℓ and there may exist many synchrony sub-
spaces of M ℓ. dynamics. We give examples later in section 5.1.

4We do not discuss the issue of spike amplification that can occur in pyramidal
neurons in the hypo-campus [31] – this can be modelled using a non-autonomous
version of additive input structure that depends on relative timings.



18 M J FIELD

3. Two classes of identical cell homogeneous coupled

cell systems that support heteroclinic networks

We follow the notational conventions given in the previous section.
Up to equivalence [18, 4], there are exactly two connected two identical
cell networks with each cell having exactly one input. In figure 4 we
show representative networks for each equivalence class.

Q2P2

2A
x1 x2

1A x2x1
2A1A

Figure 4. The two inequivalent connected two cell networks

Referring to the figure, cells in either network are assumed iden-
tical with one input. The phase space of each cell is an unspecified
manifold M and state variables are denoted by x1,x2. The only syn-
chrony subspace of either P2 or Q2 is the minimal synchrony subspace
∆2(M) = {(x1,x2) | x1 = x2}.
Dynamics on a two identical cell network can never support robust

heteroclinic cycles (see [6, §4]).
We will extend the networks P2 and Q2 to sequences (Pn)n≥2 and

(Qn)n≥2, where Pn, Qn are identical n-cell homogeneous networks, with
each cell having n − 1 inputs. Either network Pn or Qn will have
{A1, Aj} = {x1 = xj} as a synchrony subspace for j > 1. We start
with the case n = 3 which was previously considered in [6, §5].

3.1. 3-cell networks with two non-trivial synchrony subspaces.
In figure 5, we show the two equivalence classes of the two asymmetric
input three cell identical cell networks that admit two non-trivial syn-
chrony subspaces. Observe that P3 and Q3 are both obtained from P2

and Q2 by adding an input and one cell which is connected to the orig-
inal cells the same way (for both networks). Note that we use different
arrowheads to distinguish between different input types.

Heteroclinic networks on P3, Q3. The networks P3, Q3 have non-trivial
synchrony subspaces {A1, A2} and {A1, A3}. It is shown in [6, §5] that
P3 and Q3 support robust heteroclinic cycles. More precisely, if we
assume each cell has phase space R (analysis for the phase space T

is similar; higher dimensional dynamics is easier), then we can choose
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P3 Q3

A1 A2 3A A1 A2 3A

Figure 5. The two inequivalent three cell networks with
non-trivial synchrony classes {A1,A2}, {A1,A3}.

network dynamics so that there is a simple heteroclinic cycle connecting
hyperbolic saddle equilibria p,q lying in the trivial synchrony subspace
∆3(R), with 1-dimensional connections lying in {A1, A2} and {A1, A3}.
Both equilibria have a 1-dimensional unstable manifold lying in one
of the 2-planes {A1, A2} and {A1, A3} (but not in ∆3(R)). We refer
to figure 6 for one possible configuration. We have only shown p,q
connections in one half plane, but it is possible (see [6]) to construct
network dynamics so that there are two connections p→q in x1 = x3
and two connections q→p in x1 = x2. In case cells have 2-dimensional
dynamics, Agarwal has constructed an explicit low degree polynomial
vector field which realizes all four connections [6, §5].

x1 x3=

x1 x2=

qp
x1 x2 x3= =

 

Figure 6. A simple heteroclinic cycle connecting p,q.

Referring to figure 6, along each connection one of the three cells
desynchronizes from the other two (which remain synchronized) and
then resynchronizes at the end of the trajectory. For example, A2

desynchronizes from the pair {A1, A3} along the connection q→p. This
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is precisely the type of desynchronization and resynchronization that
occurs along the connections given in our main theorem.

Remark 3.1. Along similar lines to those used in [6], it is not hard to
show5 that any simple heteroclinic n-cycle can be realized in either of
the networks P3 and Q3 provided that n is even. Indeed, we use the
obvious generalization of the setup in figure 6 – see figure 7. If n is odd,
it is not possible to realize a simple heteroclinic n-cycle if we assume
1-dimensional node dynamics. If node dynamics are 2-dimensional,
realization is straightforward.

p1 p2

p2m
x1 x2 x3= =

x1 x3=

x1 x2=

p3

 

Figure 7. A simple heteroclinic cycle connecting 2m
nodes: p1, · · · ,p2m.

In general, the graph of any heteroclinic network, with out- and in-
degrees at most two for each node, can easily be realized as a simple
heteroclinic network in either P3 or Q3 provided that we allow cell dy-
namics to be 2-dimensional. In many (possibly all) cases we can realize
using 1-dimensional cell dynamics (we have not found any counterex-
amples to realization by 1-dimensional node dynamics for graphs with
at most 6 nodes).

Example 3.2. Both graphs shown in figure 8 can be realized using
1-dimensional cell dynamics as a simple heteroclinic network. To see
why this is so, observe that for realization as a heteroclinic network,
the connections between equilibria lie either in x1 = x2 or x1 = x3.
Once we have decided which subspace W u(p) is contained in, all the
other subspaces are determined. Thus in figure 8(a), W u(p),W u(r)
are contained in one invariant subspace, say x1 = x2, the remaining
connections lie x1 = x3 (broken lines). If we apply the same argument
to figure 8(b), W u(s),W u(p) lie in the same subspace and so must
intersect. However, if we place s between q and r, W u(s),W u(p) no

5We review the methods used in [6] when we address the general case.
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longer have to intersect and we can realize the graph as a heteroclinic
network. Similar arguments work for every 4 node network.

srqp

q
r sp

(a) (b)

Figure 8. Graphs with 4 nodes that can be realized in
P3, Q3 as simple heteroclinic networks connecting 4 cells
with 1-dimensional cell dynamics.

3.2. The sequences (Pn)n≥3, (Qn)n≥3.

Proposition 3.3. We may construct a sequence (Pn)n≥2 of coupled
cell networks uniquely characterized by the following properties:

(1) Pn consists of n identical cells A1, · · · , An, each with n − 1
(asymmetric) inputs.

(2) For 2 ≤ i ≤ n, {A1, Ai} is a synchrony class of Pn.
(3) For n ≥ 2, Pn+1 is built from Pn by taking a new cell An+1 with

n-input types i1, . . . , in and then
(a) Connecting the first n cells A1, · · · , An according to the

pattern of Pn using only the input types i1, · · · , in−1.
(b) Connecting the output of cell An+1 to the in inputs of A1, · · · , An.
(c) Connecting the output of Aj to the ij−1-input of An+1, 1 ≤

j ≤ n where our convention is that the output of A1 goes
to the in-input of An+1.

(4) P2 is the coupled cell network of figure 4.

Proof. By (3b), the cells A1, · · · , An of Pn+1 see the same inputs from
An+1. It is immediate from (3a) and proposition 2.7 that if Pn has
synchrony classes {A1, Ai}, 2 ≤ i ≤ n, the same will be true for Pn+1.
Hence, by (3c) and proposition 2.7, {A1, An+1} is a synchrony class for
Pn+1. The proof is immediate by the obvious induction. �

Remark 3.4. An easy consequence of proposition 2.7 is that {Ai, Aj}
is not a synchrony class of Pn if i, j ≥ 2.
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A A1 2 3A

A A1 2 A A43

P3

P4

Figure 9. Constructing P4 from P3.

Example 3.5. In figure 9 we illustrate the construction of P4 used in
the proof of proposition 3.3.

We have an analogous result to proposition 3.3 but starting with the
network Q2. We omit the proof.

Proposition 3.6. We may construct a sequence (Qn)n≥2 of coupled
cell networks uniquely characterized by the following properties:

(1) Qn consists of n identical cells A1, · · · , An, each with n − 1
(asymmetric) inputs.

(2) For 2 ≤ i ≤ n, {A1, Ai} is a synchrony class of Qn.
(3) For n ≥ 2, Qn+1 is built from Qn by taking a new cell An+1

with n-input types i1, . . . , in and then
(a) Connecting the first n cells A1, · · · , An according to the

pattern of Qn but using only the input types i1, · · · , in−1.
(b) Connecting the output of cell An+1 to the in inputs of A1, · · · , An.
(c) Connecting the output of A1 to the in input of An+1, and

the output of A2 to the i1-input of An+1.
(d) Connecting the output of Aj to the ij input of An+1, 3 ≤

j ≤ n.
(4) Q2 is the coupled cell network Q2 of figure 5.
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4. Realization of heteroclinic networks in Pn and Qn

Let Γ = Γ(N,E) be a graph with N ≥ 2 vertices v1, · · · ,vN and E
edges joining vertices (as usual, we assume conditions (C1, C2) hold).
We show that there exists n ≤ E+1 such that Γ can be realized as a

robust heteroclinic network for a coupled cell system with network ar-
chitecture either Pn or Qn. The representation will be implemented in
an interesting way that reflects the possibilities of synchronization in Pn

andQn (this will require n = E+1). In more detail, we prove our result
in the hardest case where cell dynamics is 1-dimensional and dynamics
is C∞. Each vertex vi ∈ Γ will correspond to a fully synchronized hy-
perbolic saddle pi ∈ ∆n(R) and edges vj→vj will correspond to con-
necting orbits pj→pi lying in a 2-dimensional invariant (synchrony)
subspace. The robustness of the realization will follow in the standard
way from the hyperbolicity of nodes and the (trivial) transversality of
stable and unstable manifolds within invariant subspaces. Finally, the
realization will reflect synchronization and desynchronization patterns
in Pn and Qn. To explain this, we need new definitions and notation.
Unless stated to the contrary, we henceforth assume that each cell

has phase space R – the extension to the case where the phase space is a
general connected manifold is routine. For Pn and Qn, let P2, · · · , Pn ⊂
R

n be the 2-planes defined by

P2 = {(x1, x2, x1, · · · , x1) | (x1, x2) ∈ R
2} = ∩i 6=2{A1, Ai}

P3 = {(x1, x1, x3, x1, · · · , x1) | (x1, x3) ∈ R
2} = ∩i 6=3{A1, Ai}

..... = ...........

Pn = {(x1, x1, x1, x1, · · · , xn) | (x1, xn) ∈ R
2} = ∩i 6=n{A1, Ai}.

As the planes Pj are synchrony subspaces, they are invariant by network
dynamics.

Definition 4.1. Let N be a coupled cell system with network archi-
tecture either Pn or Qn. Denote the cells of N by A1, · · · , An. Assume
networks dynamics given by the vector field X.

(1) Let k ≥ 2. A connecting trajectory p→q between hyperbolic
equilibria p,q ∈ ∆(R) is k-simple if the cells {Aj | j ∈ n, j 6=
k} are synchronized along the connection and Ak is desynchro-
nized from {Aj | j ∈ n, j 6= k}. If the connection is k-simple,
set s(p→q) = k.

(2) A heteroclinic network for X is well-adapted if all connections
are simple.
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(3) The representation of a connected graph as a well-adapted het-
eroclinic network in N is strict if given connections γ, ρ then
s(γ) = s(ρ) if and only if γ = ρ.

Remarks 4.2. (1) The k-simplicity of a connection p→q is equivalent
to requiring that the connection lies in the 2-plane Pk.
(2) It is convenient to weaken our definition of strictness – at least for
the case of 1-dimensional cell dynamics – and say that the representa-
tion of a connected graph as a well-adapted heteroclinic network in N
is strict if (a) there are at most two connections in each Pk, and (b)
they connect the same nodes in the same direction.

Examples 4.3. (1) The heteroclinic cycle of figure 6 is well-adapted
and strict.
(2) The heteroclinic cycle of figure 7 is well-adapted but not strict
(unless m = 1).
(3) Realizations of the graphs of figure 8 as heteroclinic networks in P3

are well-adapted but never strict.

Theorem 4.4. Let Γ = Γ(N,E) be a graph which satisfies conditions
(C1,C2). Then we can realize Γ as the graph of a robust heteroclinic
network Σ in Pn, where n = E + 1 and Σ is well-adapted and strict.
We may similarly represent Γ as the graph of a heteroclinic network

Σ in Qn, n = E + 1.
In either case we may require the network vector field to be smooth

(C∞). The heteroclinic network Σ will persist under sufficiently small
C1 perturbations by Cr network vector fields, r ≥ 1.

Before giving the detailed proof of theorem 4.4, we summarize the
main steps. We assume throughout that n = E + 1. In section 4.3,
we construct N affine linear vector fields with hyperbolic equilibria
Z = {p1, · · · ,pN} ⊂ ∆n(R) with preassigned stabilities. We patch
these vector fields together to define a smooth map f on a neighbour-
hood D of ∆(R) in R

n so that the set of equilibria for the associated
network vector field contains Z. Working on the invariant subspaces
Pj, we next choose for each j ∈ n, j > 1, a connection between a pair
of equilibria in Z and then smoothly extend f from D to this set of
connections. Finally, we extend f to R

n. The tricky step is defining f
so the network vector field has the right connections. As each connec-
tion will lie in a unique 2-dimensional synchrony subspace, there will
not be a problem of possible intersection of connections (unlike in ex-
ample 3.2). The difficulty comes from the constraints that the network
architecture imposes on the restriction F j of the network vector field
to the invariant subspace Pj: the vector fields Fj all have the same
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‘vertical’ components. We include a few details needed for the proof of
proposition 3.6.

4.1. Linearization at synchronized equilibria: architecture Pn.
We continue to assume 1-dimensional node dynamics (results are sim-
ilar for k-dimensional node dynamics with constants α, βi replaced by
general k × k real matrices A, Bi).
Evolution of the nodes is given by

x′1 = f(x1; x2, x3, · · · , xn)

..... = ...........

x′n = f(xn; x2, · · · , xn−1, x1),

where f : R×R
n−1→R determines cell dynamics. Denote the associated

vector field on R
n defining network dynamics by F . Suppose that

p ∈ ∆(R) is an equilibrium of the system. Define

α =
∂f

∂x1
(p), β2 =

∂f

∂x2
(p), · · · , βn =

∂f

∂xn
(p).

(Here we regard f = f(x1; x2, · · · , xn)).

Lemma 4.5. The rows R1, · · · , Rn of the Jacobian matrix J(F )(p) of
F at p are given by

Rj = [β2, · · · , βj , α, βj+1, · · · , βn], j ∈ n.

The eigenvalues of J(F )(p) are

α +
n

∑

i=2

βi, α− β2, · · · , α− βn.

The eigenvalue α+
∑n

i=2 βi has eigenspace the minimal synchrony sub-
space∆n(R). The eigenspace associated to α−βk lies in the 2-dimensional
synchrony subspace Pk, k ≥ 2.

Proof. Routine elementary computations using row and column oper-
ations to identify eigenvalues. �

Remark 4.6. Each synchrony subspace Pk is invariant by the Jacobian
matrix J(F )(p) and J(F )(p)|Pk has eigenvalues α+

∑n

i=2 βi and α−βk
(α +

∑n

i=2 βi is an eigenvalue for each J(F )(p)|Pk since ∆n(R) ⊂ Pk

for all k ≥ 2).
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4.2. Linearization at synchronized equilibria: architecture Qn.
As above, let F denote the vector field defining network dynamics on
Qn and assume p ∈ ∆(R) is an equilibrium of the system.

Lemma 4.7. The eigenvalues of the Jacobian matrix J(F )(p) are

α +
n

∑

i=2

βi, α, α− β3, · · · , α− βn.

The eigenvalue α +
∑n

i=2 βi has eigenspace ∆(R). The eigenspace as-
sociated to α lies in the synchrony subspace P2 and the eigenspace as-
sociated to α− βk lies in the synchrony subspace Pk, k = 3, · · · , n.

4.3. Constructing network compatible vector fields near ∆(R).
Our goal in this section is to show that given n ≥ 3, we can choose
(smooth) network dynamics on Pn with a pre-specified set of of equi-
libria on ∆(R) and pre-specified Jacobian matrices at these equilibria
(consistent with the matrix structure given by lemma 4.5).

Lemma 4.8. Let N ≥ 2. Choose distinct points pℓ ∈ ∆(R), ℓ ∈ N.
Given real constants αℓ, βℓ

j , ℓ ∈ N, 2 ≤ j ≤ n, define the n×n matrices

Jℓ by requiring that Jℓ has rows Rℓ
j given by

Rℓ
j = [βℓ

2, · · · , β
ℓ
j , α

ℓ, βℓ
j+1, · · · , β

ℓ
n], j ∈ n.

Then there exists a smooth (C∞) f : R×R
n−1→R such that the asso-

ciated network vector field F on Pn has the following properties:

(1) pℓ ∈ ∆(R) is an equilibrium of F , ℓ ∈ N.
(2) F is affine linear in a neighbourhood of each pℓ, and

J(F )(pℓ) = Jℓ, ℓ ∈ N

Proof. Let g, h1, · · · , hn : R→R be C∞. Let π : R
n→∆(R) be the

orthogonal projection on the diagonal. Define the smooth map f :
R× R

n−1→R by

f(x1; x2, · · · , xn) = g(π(x1, · · · , xn)) +
n

∑

i=1

hi(π(x1, · · · , xn))xi

Observe that

f(x) = g(x) + x

n
∑

i=1

hi(x), x ∈ ∆(R) ≈ R.

Choose the maps hi so that (a) each hi is constant near pℓ, ℓ ∈ N, and
(b) h1(pℓ) = αℓ, hi(pℓ) = βℓ

i , i > 1. Now choose g, constant near each
pℓ, so that f(pℓ) = 0 for ℓ ∈ N. �
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4.4. Compatibility conditions for network vector fields. We con-
sider the case where cells have one dimensional phase space R. The
case where the phase space is of dimension at least two is easier and
omitted (see [6, §5]). Recall that dynamics on Pn is given by the system
of differential equations

x′1 = f(x1; x2, x3, · · · , xn)

x′2 = f(x2; x1, x3, · · · , xn)

..... = ...........

x′n = f(xn; x2, · · · , xn−1, x1),

where f : R × R
n−1→R is smooth. Restricted to the flow invariant

2-plane Pj, dynamics is given by the system

x′1 = f(x1; x1, · · · , x1, xj , x1, · · · , x1)(4.7)

x′j = f(xj; x1, · · · , x1, x1, x1, · · · , x1).(4.8)

Denote the vector field defined by (4.7, 4.8) on Pj by F j = (Hj, Vj),
j ≥ 2. We need to choose f so that the vector fields F j have the
properties necessary for the heteroclinic network. Already we have
constructed f so that on a neighbourhood D of ∆(R) in R

n, we have
the required equilibria with assigned stabilities. Observe that outside
of a neighbourhood D ⊂ R

2 of the diagonals xi = xj, j > 1, the x1-
component Hj of the vector fields on Pj can be chosen freely. On the
other hand, the vertical components must satisfy

(4.9) Vi(u, v) = Vj(u, v) (= f(v; u, · · · , u)), (u, v) ∈ R
2, all i, j ∈ n.

Set V (u, v) = f(v; u, · · · , u), (u, v) ∈ R
2. Outside of a neighbourhood

D of ∆(R), we can choose V freely and, in particular, not affect choices
made for H1, · · · , Hn.

4.5. Proof of Theorem 4.4. Suppose Γ has N vertices v1, · · · ,vN

and E edges e1, · · · , eE. Take n = E + 1 and choose distinct points
pi ∈ ∆(R), i ∈ N. If ei connects vs to vr, set S(ei) = s, T (ei) = r and
note that by (C1), s 6= r. For each ℓ ∈ N, let O(ℓ) = {j | S(ej) = ℓ}
and set dℓ = |O(ℓ)| (dℓ is the out-degree d

out
ℓ ). By conditions (C1,C2),

1 ≤ dℓ < E. Set d0 = 2 and define a partition of {2, · · · , E + 1} by

E1 = {d0, d0 + 1, · · · , d1 + d0 − 1},

E2 = {d0 + d1, · · · , d1 + d2 + d0 − 1},

... = .............

EN = {
N−1
∑

i=0

di, · · · ,
N
∑

i=0

di − 1 = E + 1}.
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Relabelling the edges ei we may suppose that

(1) If S(ei) = s, then i ∈ Es.
(2) if i < j ∈ Es then T (ei) ≤ T (ej).

For ℓ ∈ N, choose αℓ, βℓ
2, · · · , β

ℓ
n ∈ R such that

αℓ − βℓ
j < 0, if j /∈ Eℓ

αℓ − βℓ
j > 0, if j ∈ Eℓ,

αℓ +
N
∑

j=2

βℓ
j < 0.

Apply lemma 4.8 to construct f which has the specified Jacobian ma-
trices Jℓ at each equilibrium pℓ, ℓ ∈ N. Perturbing the αℓ, βℓ

j if neces-
sary, we may further assume that the set of 1-dimensional eigenspaces
at each equilibrium are distinct when viewed as subsets of R2 (identify
each Pj with R

2).
Let d denote the Euclidean distance on R

n. Given δ > 0, set
D = {x ∈ R

n | d(x,∆(R)) ≤ δ}. Let π : D→∆(R) denote the as-
sociated tubular neighbourhood of ∆(R) (π will be the restriction to
D of orthogonal projection on ∆(R)). Choose δ > 0 sufficiently small
so that for each ℓ ∈ N, we can choose an interval neighbourhood Uℓ of
pℓ in ∆(R) such that the network vector field F associated to f is lin-
ear on π−1(Uℓ). In particular, the trajectories along the 1-dimensional
eigenspaces (in the stable and unstable manifolds at pℓ) will intersect
∂D transversally.
Thus far we have defined f and the network vector field F on D. It

remains to extend f to Rn to obtain the desired heteroclinic connection
structure. We do this by first extending F smoothly to the set of
connecting trajectories and then extending to the network phase space.
Given i ∈ Ej, make a smooth connection γi in Pi from pj to pt, where

t = T (γi). We do this so that γi ∩D is contained in the eigenspace of
αℓ−βℓ

i and is a trajectory of F |D (note lemma 4.5 and that αℓ−βℓ
i > 0).

Taking the projection into R
2, it is clear that there may be multiple

intersections between different γi. By perturbing the constants αℓ, βℓ
i ,

we may adjust the trajectories in Pj ∩ D so that the trajectories in
Pj ∩ D are all disjoint when projected into R

2. Next observe that if
we have connections γi from pu→pv and γr from pa→pb then if either
(pu,pv) ⊃ [pa,pb] or (pa,pb) ⊃ [pu,pv], then we can always smoothly
deform the connections outside of D so that their projections in R

2 do
not intersect. In the remaining case, we can deform the connections so
that there is at most one intersection which we can assume is transverse
(within R

2). We may further require that the intersection points are
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distinct (within R
2). A formal proof is based on the obvious inductive

argument over i ∈ E.
Denote the points of intersection of connections in R

2 by z1, · · · , zk.
Choose ε > 0, so that the closed disc neighbourhoods {Dε(zi) | i ∈ k}
are mutually disjoint: Dε(zi) ∩ Dε(zj) = ∅ if i 6= j. There are two
cases we need to consider. Referring to figure 10(a), observe that at
the intersection point zi the vertical components of γ′a and γ′b point
in the same direction. Reparametrizing γa we can assume the vertical
components are identical (alternatively, multiply the vector field γ′a(t)
by an appropriate strictly positive smooth function equal to 1 outside
Dε(zi)).

γ

γ

r

s

γ

γ

r

s

zi

(zi )Dε

γ
b

a
γ

(a) (c)(b) 

Figure 10. Intersections of connecting trajectories

In the second case, where the vertical components point in opposite
directions, we deform one of the curves to achieve the situation of (a) –
see figure 10(c). Note that this case handles the situation where one of
the curves has zero vertical component at the intersection. All of these
changes are supported inside the family of discs Dε(zi). Now extend
the vector field F as a network vector field from D to D ∪i∈E γi(R) by
defining F (γi(t)) = γ′i(t). This defines f as a smooth map on a closed
subset of Rn. Now smoothly extend f to all of Rn using either the
Whitney extension theorem or a simple partition of unity argument.
Finally, we remark that the heteroclinic network we have constructed

is robust under C1 perturbations of network vector fields. This is
a standard argument: equilibria are hyperbolic and, within the 2-
dimensional invariant subspace, we have a connection from a saddle
point to a sink which is not destroyed under perturbation by network
vector fields. �

We conclude this section with two examples and a remark about the
effect of removing the requirement of strictness.

Examples 4.9. (1) The heteroclinic cycle of figure 7 can be realized
in Pn as a strict network provided n ≥ 2m+ 1. The same is true if we
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require pairs of connections from pi→pi+1 (note remarks 4.2(2)).
(2) Suppose Γ = Γ(2, E) satisfies conditions (C1,C2). Then we can
realize Γ as a strict heteroclinic network Σ in Pn for n ≥ E + 1. In
this case we can do better if we pair connections between nodes and use
remarks 4.2(2)). For example, if E is even and there are 2k connections
from v1→v2, we can realize Γ by a strict heteroclinic network Σ in Pn

for n ≥ E
2
+ 1.

Remark 4.10. If we drop the requirement of strictness, we can realize
graphs as robust heteroclinic networks in much smaller coupled cell net-
works. We have already indicated that the heteroclinic cycle of figure 7
can be realized in P3 as a well-adapted network for allm ≥ 2. Similarly,
heteroclinic cycles with an odd number of nodes can always be realized
as well-adapted heteroclinic networks in P4. The graph Γ = Γ(2, E)
of examples 4.9 can be represented as a well-adapted heteroclinic net-
work in P5. Briefly, suppose hyperbolic equilibria p,q ∈ ∆(R). As-
sume (a) p,q are both sinks for dynamics restricted to ∆(R), (b) the
unstable manifolds of p, q are 2-dimensional and W u(p) ⊂ P2 × P3,
W u(q) ⊂ P4 × P5, (c) W

u(p) intersects W s(q) transversally in n con-
nections, and W u(q) intersects W s(p) transversally in m connections,
where n + m = E and n gives the number of connections in Γ from
p→q.

5. Additive input structure

In the previous section we made no assumptions about cell dynamics
beyond assuming that dynamics on a cell with k inputs and state space
M was determined by a smooth map f :M×Mk→TM . In applications
it is often important to assume an additive input structure that allows
variation in the number of inputs between cells.

Proposition 5.1. We may require additive input structure in theo-
rem 4.4. Specifically, given a graph Γ(N,E) satisfying (C1,C2), there
exist smooth functions F0 : R→R and g2, · · · , gE+1 : R2→R such that
the requirements of theorem 4.4 are satisfied if network dynamics are
defined by

(5.10) f(x1; x2, · · · , xE+1) = F0(x1) +
E+1
∑

j=2

gj(x1, xj),

where gj(x, x) = 0, all x ∈ R, 2 ≤ j ≤ E + 1.

Proof. By theorem 4.4, there exists a smooth map f : R×R
E→R which

realizes Γ as a heteroclinic network in Pn, where n = E+1. We have to
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prove that f can be chosen in the desired form. Observe that if (5.10)
holds then

(5.11) F0(x) = f(x; x, · · · , x), x ∈ R.

As usual we identify the 2-planes Pj with R
2 and take coordinates

(x1, xj) on Pj . Denote the network vector field associated to f by
F : Rn→R

n. For j = 2, · · · , E + 1, define (Hj, Vj) = F |Pj.
We have

H2(x1, x2) = f(x1; x2, x1, x1, · · · , x1)

H3(x1, x3) = f(x1; x1, x3, x1, · · · , x1)

... = ...

HE+1(x1, xE+1) = f(x1; x1, x1, · · · , xE+1)

Vj(x1, xj) = f(xj; x1, · · · , x1), 2 ≤ j ≤ E + 1.

Viewed as functions on R
2, theHj : R

2→R can be chosen freely, subject
only to Hj(x, x) = F0(x), for all x ∈ R

2, 2 ≤ j ≤ n. On the other
hand, we have V2 = · · · = VE+1 and Vj(x, x) = F0(x), for all x ∈ R

2,
2 ≤ j ≤ n. Set V (x, y) = V2(x, y) = · · · = VE+1(x, y). Assume then
that H2, · · · , Hn, V, F0 are given. Substituting in (5.10), we must find
smooth functions g2, · · · , gE+1 so that

H2(x, y) = F0(x) + g2(x, y)

H3(x, y) = F0(x) + g3(x, y)

... = ...

HE+1(x, y) = F0(x) + gE+1(x, y)

V (x, y) = F0(y) +
E+1
∑

j=2

gj(y, x).

Solve the first E equations uniquely for the unknowns g2, · · · , gE+1:
gj(x, y) = Hj(x, y) − F0(x), 0 ≤ j ≤ 2. Without further work we
cannot satisfy the final equation for the vertical component since this,
together with (5.10), implies the relation

(5.12) f(x; yE) + (E − 1)f(x; xE) =
E−1
∑

j=0

f(x; xj, y, xE−j−1),

where xs is abbreviated notation for s copies of x, 0 ≤ s ≤ E. Obvi-
ously (5.12) fails for general maps f : R × R

n−1→R. However, since
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the common vertical components satisfy

(5.13) V (x, y) = F0(y) +
E+1
∑

j=2

gj(y, x), (x, y) ∈ R
2.

it follows that if we insist the connection in Pj is always made by a
trajectory in ∆+

j = {(x1, xj) | xj > x1} then the vertical component

Vj(x1, xj) = F0(xj) +
∑E+1

j=2 gj(xj, x1) depends only on the values of

g2, · · · , gE+1 in ∆−
j = {(x1, xj) | xj < x1} which are not used in the

connection construction for the horizontal vector fields. We can mod-
ify the original proof of theorem 4.4 in the following way. We start
as before by constructing a vector field giving the required fully syn-
chronous equilibria and stabilities on a tubular neighbourhood of the
diagonal – there is no difficulty with the additive input structure on D.
Let π : R2→R

2 denote the reflection in the diagonal: π(x, y) = (y, x).
Choose connections γj ⊂ ∆+

j so that the curves π(γj) intersect transver-
sally in at most one point. Just as in the proof of theorem 4.4 we do a
local deformation of Hj (in ∆−

j ) so that the vertical components match
at points of intersection. �

Remark 5.2. In the proof of proposition 5.1, we assumed connections
lay in ∆+

j = {(x1, xj) | xj > x1}, 2 ≤ j ≤ E + 1. It is not hard to

extend the proof to allow for connections in ∆±
j . In particular, we can

require both additive input structure and pairs of connections in each
Pk between equilibria (see remarks 4.2(2)).

5.1. Heterogeneous Networks. Our results can be applied to het-
erogeneous networks consisting of identical cells with additive input
structure. We give an example to illustrate the general idea.

Example 5.3. In figure 11 we show a 4 cell network with additive input
structure. We assume there are 3 input types and identical dynamics
on the uncoupled cells. Cells 1, 2 and 3 have three inputs; cell 4 has
two inputs (of types 2 and 3). The network has synchrony subspaces
{A1, A2}, {A1, A3}, {A1, A2, A3}, {A1, A2, A4}, and {A1, A2, A3, A4}.
It is straightforward to show that we can choose 1 dimensional cell

dynamics and an additive input structure so that there is a robust het-
eroclinic cycle joining equilibria p,q ∈ {(x1, · · · , x4) | x1 = x2 = x3}.
Indeed, the verification is simpler than in proposition 5.1 as we can en-
sure the projections into R

3 of the connecting trajectories between p,q
do not intersect. It is also straightforward to construct a robust simple
heteroclinic cycle joining equilibria p,q ∈ ∆4(R), with connections in
the 2-dimensional synchrony subspaces {A1, A2, A3} and {A1, A2, A4}.
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3A A1 2 A A4

Figure 11. A 4 cell heterogenous network with additive
input structure.

Here we have a heteroclinic cycle between cells with different numbers
of inputs.

Remark 5.4. The previous example shows that a heterogeneous net-
work N consisting of identical cells with additive input structure may
support robust heteroclinic networks. Of course, one can build com-
plex heterogeneous networks N which contain a subnetwork N ⋆ with
N ≥ 3 cells such that

(a) every cell in N ⋆ has the same number of inputs,
(b) if we delete all inputs to cells of N ⋆ coming from outside N ⋆,

then the resulting network is either PN or QN (up to a rela-
belling of cells),

(c) when we reinsert the deleted connections then the invariant
subspace structure of N ⋆ is unchanged

Under these conditions we expect to be able to choose 1-dimensional
dynamics on nodes so that N ⋆ supports heteroclinic cycles along the
lines of proposition 5.1. More generally, we expect the same result if
instead of (c) we assume an invariant subspace structure on N which
induces the given invariant subspace structure on N ⋆. In particular, for
the heteroclinic network on N ⋆, cells outside N ⋆ may need to be syn-
chronized. We refer to figure 12 for a simple variation on example 5.3.
In this case we take N ⋆ to be the network with cells A1, A2, A3. If
we remove all inputs to cells in N ⋆ from cells outside N ⋆, we recover
the network P3. In this case {A1, A2}, {A1, A3}, {A1, A2, A3} are not
invariant subspaces for N . However, {A4, A5} is an invariant subspace
and so also are

{A1, A2‖A4, A5}, {A1, A2‖A4, A5}, {A1, A2, A3‖A4, A5}.

(We follow the notational conventions of section 2).
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A4

A5

6A

3A A1 2 A

Figure 12. A 6 cell heterogenous network with additive
input structure.

6. Generalizations

The heteroclinic networks constructed in the previous sections have
the feature that transition between nodes is marked by a desynchro-
nization of one cell along the trajectory. With the exception of the
examples on heterogeneous networks, in the constructed heteroclinic
networks, nodes always correspond to fully synchronized equilibria. In
the past there have been a number of works considering heteroclinic
networks where trajectories correspond to patterns of desynchroniza-
tion and resynchronization and transition between synchronized clus-
ters. For example, the work of Ashwin et al. on computation and
systems of phase oscillators with SN -symmetry [8, 11, 10, 56], and that
of Timme et al. on pulse coupled symmetric networks [51, 53, 54].
Elsewhere, Field [26, Chapter 7] constructs robust heteroclinic cycles
between groups of active and quiescent nodes.
It is not hard to realize in Pn robust heteroclinic networks that ex-

hibit more complex patterns of desynchronization and resynchroniza-
tion. As a general rule, for simple heteroclinic networks, we expect
desynchronization of just one cell along connecting trajectories. If un-
stable manifolds are of dimension greater than 1, then two or more
cells may desynchronize along connecting trajectories. This behaviour
is well-known for phase oscillator systems with Sn-symmetry. Rather
than give a general result, we give an example which illustrates the
general method, and conclude with a conjecture.

Example 6.1 (cf [26, Example 7.22]). We construct a simple hetero-
clinic network Σ in P4 such that
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(1) Cell dynamics is 1-dimensional.
(2) Σ has three equilibria pj ∈ Pj r ∆(R) and three connections

γj ⊂ {x | x1 = xj}, j ∈ {2, 3, 4}.

Each node of Σ corresponds to a cluster of 3 synchronized cells. Along
a connection just two cells are synchronized and the equilibria at the
ends of the connection correspond to synchronized clusters with exactly
two cells in common. We refer to figure 13 showing how Σ relates to
the underlying invariant subspace structure in P4.
We start by choosing the points pj ∈ Pjr∆. It is straightforward to

choose network dynamics F on a neighbourhood U of {pj | j = 2, 3, 4}
such that each pj is a hyperbolic saddle of index 1 and

(a) W u(p2) ⊂ {x | x1 = x3},W
u(p4) ⊂ {x | x1 = x2} andW

u(p2) ⊂
{x | x1 = x4} (see figure 13).

(b) Restricted to Pj, pj is an attracting equilibrium.

P3

P2

P4

p2

p4

p3

X3X1
=

X1 X2
=

X1 X4=

∆

∆∆

Figure 13. The heteroclinic cycle Σ in P4

Just as in the proof of theorem 4.4, we choose connections γj ⊂
{x | x1 = xj} joining the equilibria such that within U each connection
is a trajectory of F . Consider the connection γ3 joining p2 to p4. In
order that γ3 be a trajectory in the network dynamics, we must be able
to choose f : R× R

3→R so that along γ3 we have

x′1 = f(x1; x2, x1, x4)

x′2 = f(x2; x1, x1, x4)

x′4 = f(x4; x2, x1, x1)
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Outside of the neighbourhood U , we can certainly choose f along γ3 to
satisfy these equations (note that near p2 and p3 there are constraints).
The corresponding equations for γ2 are

x′1 = f(x1; x1, x3, x4)

x′3 = f(x3; x1, x1, x4)

x′4 = f(x4; x1, x3, x1)

Observe that the second component of both vector fields is the same.
So choose γ2, γ3 so that the projections into P4 are either disjoint or
meet transversally at one point. We handle similarly the projections
of γ2, γ4 in P3 and γ3, γ4 in P2 and, with the usual identification of Pj

with R
2, we may require that the set of intersection points is distinct.

Now deform the γj in a small neighbourhood of each intersection point
to achieve compatibility – just as in the proof of theorem 4.4. Finally
extend f from U∪∪jγj to all of R×R

3. We remark that using the same
technique we can require W u(pj) ⊂ W s(pj−1), j = 2, 3, 4 (where p1 is
to be taken as p4) and that the corresponding heteroclinic network is
attracting.

Conjecture
Suppose Γ(N,E) = Γ is a graph satisfying (C1,C2). Let m, r be chosen
such that m ≥ 2, m > r ≥ 1 and E ≤

(

m

r

)

(m − r)2. Then we may
realize Γ as the graph of a heteroclinic network Σ in Pm+1 and Σ is
well adapted and strict. Each equilibrium in Σ will lie in an invariant
subspace x1 = xi1 = · · · = xir+1 , where 1 < i1 < · · · < ir+1, and each
connection will lie in an invariant subspace x1 = xj1 = · · · = xjr , where
1 < j1 < · · · < jr.
The conjecture holds in case r+ 1 = m = E by theorem 4.4. Exam-

ple 6.1 verifies the conjecture whenm = 3, r = 1 and E = 3 (3 ≤
(

3
1

)

×4
and note that method used in the example continues to work in case
we allow for twin connections both ways in which case E = 12.)

7. Discussion and concluding comments

We conclude with some open questions relating to our results and
examples.
The use of general sequences of identical coupled cells designed to

realize all heteroclinic networks necessarily comes at a price. For exam-
ple, the sequences (Pn), (Qn) are highly connected and use asymmetric
inputs. While the connectivity can certainly be reduced (for example,
if we use a heterogeneous additive input model), it is not so easy to
reduce the number of input types. However, it is possible to realize
quite complex heteroclinic networks in Pn for small values of n – where
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n depends mainly on the maximal out- and in-degrees of vertices in the
graph of the heteroclinic network (see section 3).
While asymmetric inputs are appropriate for some classes of model

(for example, power grid models [30, 19]), many spiking neural models
effectively assume symmetric inputs (and additive input structure). It
would be helpful to have an idea of the extent to which one can realize
robust heteroclinic networks in identical cell systems with symmetric
inputs but no global symmetries. In particular, are there sequences
of identical cells with symmetric inputs that allow realization of large
classes of heteroclinic networks? Is it necessary to consider networks
with multiple cell types but with most cells of the same type?
The sequences (Pn), (Qn) handle the general embedding problem. It

is natural to ask whether we can construct other sequences for which
we can efficiently realize specific classes of heteroclinic network. For
example, ‘scale free heteroclinic networks’ which have some highly con-
nected vertices or “hubs” (likely relevant for applications tied to com-
puting [8, 54]). Here it might well be appropriate to consider sequences
with more than one cell type (one cell type for highly connected nodes
– hubs – and a different cell type for cells with low connectivity). In-
deed, introducing more than one cell type is already suggested by the
special role that the node A1 plays in our realization theorem (a similar
phenomenom happens in Ashwin and Postlethwaite’s cylinder realiza-
tion [13]).
Is there a natural way to move from realization of heteroclinic net-

works in a semi-linear feedback model to an identical coupled cell sys-
tem? (See [28] for some past work, emphasizing heteroclinic cycles.)
There is the question of why the realization is more difficult when

there is 1-dimensional cell dynamics. While 1-dimensional cell dynam-
ics is often favoured from the mathematical point of view, in physical
problems nodes will rarely have 1-dimensional dynamics. It is not,
however, that higher dimensional cell dynamics is easier; the problem
lies with the unrealistic assumption that inputs depend on the states
of other cells. At this time, as far as we are aware, very little is known
about the dynamics of coupled systems with more realistic coupling
such as the scalar signalling model briefly discussed in section 2. For
example, is there any physical reason why 1-dimensional signals might
be preferred over 2-dimensional signals (for example, signals contain-
ing both amplitude and phase information)? This question relates to
problems in control theory – how much information needs to be com-
municated for effective control? In terms of synchronization of spiking
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neuron’s, does information on spike times alone suffice to ensure syn-
chronization in networks where there is 1-dimensional signalling but
high dimensional node dynamics?
Finally, the heteroclinic networks we construct are not usually attrac-

tors – a consequence of our assumptions that allow unstable manifolds
of equilibria to be of dimension 2 or greater. There is the difficult
question of whether or not we can construct the realization so that it
is contained in a ‘minimal’ heteroclinic attractor. Outside the case of
realization of heteroclinic cycles as attractors, rather little appears to
be known about this problem (see also the discussion in [13, §2]).
Acknowledgements
We thank Peter Ashwin for helpful comments on preliminary drafts of
the paper and the referees for their remarks and questions which have
led to clarifications and improvements in the exposition.

References

[1] M Abeles, H Bergman, I Gat, I Meilijson, E Seidmann & M Tishby, ‘Cortical
activity flips among quasi-stationary states’, PNAS 92 (1995), 8616–8620.

[2] V S Afraimovich, M I Rabinovich & P Varona. ‘Heteroclinic contours in neural
ensembles and the winnerless competition principle’, Inter. J. Bifur. Chaos 14

(2004), 1195–1208.
[3] V S Afraimovich, V P Zhigulin & M I Rabinovich. ‘On the origin of repro-

ducible sequential activity in neural circuits’, Chaos 14(4) (2004), 1123–1129.
[4] N Agarwal & M Field. ‘Dynamical equivalence of networks of coupled dynam-

ical systems I: Asymmetric inputs’, Nonlinearity 23 (2010), 1245–1268.
[5] N Agarwal & M Field. ‘Dynamical equivalence of networks of coupled dynam-

ical systems II: general case’, Nonlinearity, 23 (2010), 1269–1289.
[6] M A D Aguiar, P Ashwin, A Dias & M Field. ‘Dynamics of coupled cell

networks: synchrony, heteroclinic cycles and inflation’, Journal of Nonlinear
Science, 21(2) (2011), 271–323.

[7] M A D Aguiar, S B S D Castro & I S Labouriau. ‘Dynamics near a heteroclinic
network’, Nonlinearity 18(1) (2005), 391–414.

[8] P Ashwin & J Borresen, ‘Discrete computation using a perturbed heteroclinic
network’, Phys. Rev. E 70 (2004), 026203.

[9] P Ashwin, O Burylko & Y Maistrenko. ‘Bifurcation to heteroclinic cycles and
sensitivity in three and four coupled phase oscillators’, Phys. D 237(4) (2008),
454–466.

[10] P Ashwin, G Orosz & J Borresen. ‘Heteroclinic Switching in Coupled Oscillator
Networks: Dynamics on Odd Graphs’, Nonlinear Dynamics and Chaos: Ad-

vances and Perspectives, Understanding Complex Systems, M Thiel, J Kurths,
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