
DYNAMICAL EQUIVALENCE OF NETWORK

ARCHITECTURE FOR COUPLED DYNAMICAL

SYSTEMS II:

GENERAL CASE

N AGARWAL AND M FIELD

Abstract. We show that two networks of coupled dynamical sys-
tems are dynamically equivalent if and only if they are output
equivalent. We also obtain necessary and sufficient conditions for
two dynamically equivalent networks to be input equivalent. These
results were previously described in the companion paper ‘Dynami-
cal equivalence of networks of coupled dynamical systems I: asym-
metric inputs’ but only proved there for the case of asymmetric
inputs. In this paper, we allow for symmetric inputs. We also
provide a number of examples to illustrate the main results in the
case when there are both symmetric and asymmetric inputs.

1. Introduction

In this work we provide the proofs of two general results on equiv-
alence of networks of coupled dynamical systems that were stated in
the companion paper [1] (we refer to [1] for a general introduction
and overview of our results and methodology as well as related refer-
ences). In what follows we assume some familiarity with the notational
conventions of [1] and, in particular, with the concepts of dynamical
equivalence and input and output equivalence. (We give the formal
definitions for symmetric inputs in sections 3 and 4.) In section 3,
we show that networks M and N are dynamically equivalent if and
only if they are output equivalent. In particular, if M and N both
have n identical cells, then we have output equivalence of M and N if
and only if we can order the cells of M and N so that the adjacency
matrices of M and N span the same linear subspace of M(n, n; Q).
In section 4 we give necessary and sufficient conditions for the input
equivalence of two dynamically equivalent networks architectures. We
recall from [1] that dynamically equivalent networks with asymmetric
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inputs are always input equivalent. This is not the case when there
are symmetric inputs and we provide, in sections 4 and 5, simple ex-
amples of dynamically equivalent networks M, N that are not input
equivalent (for the example in section 4, M is not input dominated by
N and N is not input dominated by M — see [1, §3.1] and section 4
for the formal definition of input domination). As a corollary of our
proofs, we obtain algorithms for moving from one network architecture
to an input or output equivalent architecture so that each system in
the second architecture is expressed in terms of cells from the first ar-
chitecture and conversely. We illustrate these algorithms, as well as
instances of the input and output equivalence theorems and the lem-
mas needed for their proof, by a number of examples. Unlike in [1], we
give most examples in a form that emphasizes the relations of output
or input domination and do not usually write down explicit dynamical
equations.

Finally, we remark that although all the results are stated for the
case of identical cell networks, the extension to networks with more
than one class of cell is routine (see also [1]).

2. Preliminaries

2.1. Adjacency and connection matrices. Following [1], we define
for k ∈ N, k = {1, · · · , k}. It is also useful to define k̄ = {0, · · · , k}.
Given k, n ∈ N, let Mk(n; Z+) ⊂ M(n; Z) denote the set of n × n-
matrices with entries in Z+ and valency k. That is, M ∈ Mk(n; Z+) if
the entries of M are positive integers and each column of M sums to
k.

Let M be a coupled cell network consisting of n identical cells with
r inputs and p input types. We suppose there are ri ≥ 1 (symmetric)
inputs of type i, i ∈ p. Necessarily, we have

∑
i∈p ri = r. Label the

cells of M as C1, · · · ,Cn. We recall the definition of the adjacency
matrices matrices M0, · · · ,Mp ∈ M(n; Z+) of M. We take M0 to be
the identity matrix. For ℓ ∈ p, we define Mℓ = [mℓ

ij] ∈ Mrℓ
(n; Z+) to

be the matrix defined by mℓ
ij = k if there are exactly k inputs of type

ℓ to Cj from the cell Ci. If there are no inputs of type ℓ from Ci, then
mℓ

ij = 0. We refer to Mℓ as the adjacency matrix of type ℓ for M. The
jth column of Mℓ identifies the source cells for all the inputs of type ℓ
to the cell Cj.

We extend the definition of connection matrix given in [1] to allow
for symmetric inputs. (We use connection matrix terminology in sev-
eral of the proofs and technical definitions; it is not needed for the
statements of the main results.) For j ∈ n, we define m

j
i ∈ nri by
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requiring that m
j
i = (mj

i1, · · · ,mj
iri

), where m
j
ik ∈ n and m

j
ik identifies

the source cell for the kth input of type i to Cj, k ∈ ri. The vector

mj = (mj
1, · · · ,mj

p) ∈
∏p

i=1 nri ∼= nr specifies all of the inputs to Cj.

The matrix m = [m1, · · · ,mn] ∈ M(r, n; Z+) is a connection matrix for
the network. If, in addition, we require that 1 ≤ m

j
i1 ≤ · · · ≤ m

j
iri

≤ n,

then m
j
i is uniquely determined and we refer to the associated connec-

tion matrix as the default connection matrix of the network (or just
the connection matrix of the network).

2.2. Choose and pick cell. In addition to the Add-Subtract and scal-
ing cells defined in [1], we introduce one further construction that will
be useful in simplifying the diagrams we use for some of the examples
(this gadget is not used in any of the proofs).

+

+

+

+

+

+
C

C

C

C

C

C

C(1:2)

P(2:2)

C(a:u)

P(b:v)

(a) (b)

Figure 1. Choose and pick cells C(a, b : u, v), C(1, 2 : 2, 2)

Let C be a cell which has r inputs all of the same type (we may allow
other input types, but they will not effect the construction which only
affects inputs of one type). Suppose that continuous dynamics are de-
termined by the vector field h : M×M r → TM , where h(x0; x1, · · · , xr)
is symmetric in the variables x1, · · · , xr. Suppose that a, b, u, v ∈ N sat-
isfy u + v = r and a ≤ u, b ≤ v. The choose and pick cell C(a, b : u, v)
is a new cell built by adding outputs from

(
v+b−1

b

)(
u
a

)
class C cells. The

cell C(a, b : u, v) will have two input types; u inputs of the first type, v
inputs of the second type. More precisely, the cell C(a, b : u, v) has two
components, denoted C(a : u) and P (b : v), corresponding to the two
input types. If x1, · · · , xu are the inputs to the C(a : u) component and
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y1, · · · , yv are the inputs to the P (b : v) component, then the output
of C(a, b : u, v) is defined to be

∑

1≤j1≤···≤jb≤v
1≤i1<···<ia≤u

h(x0; yj1 , · · · , yjb
, xi1 , · · · , xia).

The output of C(a, b : u, v) is symmetric in x1, · · · , xu and y1, · · · , yv.
We use the symbol for C(a, b : u, v) shown in figure 1(a). In figure 1(b),
we show the connections for the choose and pick cell C(1, 2 : 2, 2).

3. Output Equivalence

Let M and N be coupled n identical cell networks. Denote the cells
of N by D1, · · · , Dn (this fixes an ordering of the cells). Suppose cells
in N have s inputs and q input types with si inputs of type i, for i ∈ q

(s =
∑q

i=1 si). Let A(N ) = {N0 = I, Ni ∈ Msi
(n; Z+), i ∈ q} be the

set of adjacency matrices and A(N ) denote the subspace of M(n; Q)
spanned by A(N ). Let n = [n1, · · · , nn] be a connection matrix for
N . In this section we always assume that n is the default connection
matrix (see §2.1) and so the vectors n

j
i are uniquely determined by the

condition n
j
iℓ ≤ n

j
iℓ′ if ℓ ≤ ℓ′. We adopt similar conventions for the

network M but now suppose there are r inputs and p input types (see
§2.1). Given an ordering of the cells of M, we let A(M) = {M0 =
I, Mi ∈ Mri

(n; Z+), i ∈ p} denote the set of adjacency matrices and
A(M) denote the subspace of M(n; Q) spanned by A(M). Denote the
associated default connection matrix of M by m = [m1, · · · ,mn].

Next we formalize the concepts of output dominance and output
equivalence for networks with symmetric inputs.

Let GN =
∏q

i=0 Ssi
, where Ssi

denotes the symmetric group on si

symbols and we have taken s0 = 1 (so that Ss0
= S1 is the trivial

group consisting of the identity). We define GM =
∏p

i=0 Sri
, where

r0 = 1.
We take the natural action of GN on s̄ (we regard s as identified with

{s1, · · · , sq} and s̄ = {0} ∪ s — see §2.1). Let A(r, s) denote the set of
all maps γ : r → s̄. We have natural left and right actions of GN and
GM on A(r, s) defined by

γ 7→ σγ, γ ∈ A(r, s), σ ∈ GN ,

γ 7→ γβ, γ ∈ A(r, s), β ∈ GM.

A map C : A(r, s) → Q will be GN -invariant if C(γ) = C(σγ) for all
σ ∈ GN .

Let M be a smooth manifold. We write points X ∈ M ×
∏p

i=1 M ri in
the form X = (X0;X1, · · · ,Xp), where Xi = (xi

1, · · · , xi
ri
), i ∈ p. We
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often write x0 rather than X0 as the variable belongs to a single factor
rather than a product of factors. We use similar notation for points in
M ×

∏q
i=1 M si . Given j ∈ n, i ∈ p, we let X

m
j
i
∈ M ri be the variables

defined by the connection vector mj. We similarly define X
n

j
i
∈ M si

for i ∈ q. GM acts on X ∈ M ×
∏p

i=1 M ri by

βX = (X0; β1X1, · · · , βpXp)

= (X0; x
1
β1(1), · · · , x1

β1(r1), · · · , xp
βp(1), · · · , xp

βp(rp))

for β = (β1, · · · , βp) ∈ GM =
∏p

i=0 Sri
. GN similarly acts on X ∈

M ×
∏q

i=1 M si .
Let f : M ×

∏p
i=1 M ri → TM be a family of GM-invariant vector

fields on the smooth manifold M . For γ ∈ A(r, s), define fγ : M ×∏q
i=1 M si → TM by

fγ(x0; x1, · · · , xs) = f(x0; xγ(1), · · · , xγ(r)),

where (x0; x1, · · · , xs) ∈ M ×
∏q

i=1 M si .

Definition 3.1. (Notation and assumptions as above.) Suppose that
f : M ×

∏p
i=1 M ri → TM is GM-invariant, g : M ×

∏q
i=1 M si → TM ,

and C : A(r, s) → Q is GN -invariant. We say that f is (C,m, n)-output
dominated by g, written f <O

(C,m,n) g, if

(1) g =
∑

γ∈A(r,s) C(γ)fγ.

(2) For j ∈ n we have g(xj;Xn
j
1

, · · · ,X
n

j
q
) = f(xj;Xm

j
1

, · · · ,X
m

j
p
).

Remark 3.2. Since C is GN -invariant, g =
∑

γ∈A(r,s) C(γ)fγ is auto-
matically GN -invariant, even if f is not GM-invariant. We use this
remark below to obtain a useful simplification of the formula g =∑

γ∈A(r,s) C(γ)fγ.

The next three lemmas (lemmas 3.4,3.5,3.6) show that the number
of terms in the relation between g and f can be reduced using the
GM-invariant property of f . The reduced relation obtained will define
a new GN -invariant map Ĉ. Before we state and prove these lemmas,
it may be helpful to illustrate the ideas by means of a simple example.

Example 3.3. Let the single input type networks M and N have

non-identity adjacency matrices M1 =

(
2 1
1 2

)
and N1 =

(
1 1
1 1

)
re-

spectively. As usual, M0 = N0 = I. We have M1 = I + N1. If F ∈ M
has model f and we define

(3.1) g(x0; x1, x2) = f(x0; x0, x1, x2),
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then g models a system G ∈ N with identical dynamics to F . In this
case, GM = S3, GN = 〈σ〉 = S2, where σ(x1, x2) = (x2, x1). Obviously,
g(x0; σ(x1, x2)) = g(x0; x2, x1) = f(x0; x0, x2, x1) = f(x0; x0, x1, x2)
and so g is GN -invariant. Following definition 3.1, we may also de-
fine g by

g(x0; x1, x2) = af(x0; x0, x1, x2) + bf(x0; x0, x2, x1),

where a + b = 1, a, b ∈ R. Since f is GM-invariant, the expression for
g is equal to that given by (3.1).

Lemma 3.4. (Notation and assumptions as above.) If f is GM-
invariant, then fγ = fγβ for all β ∈ GM.

Proof. The model f is GM-invariant and so we have f(x0; x1, · · · , xr) =
f(x0; xβ(1), · · · , xβ(r)) for all β ∈ GM. Hence, if β ∈ GM, γ ∈ A(r, s),
we have

fγ(x0; x1, · · · , xs) = f(x0; xγ(1), · · · , xγ(r)),

= f(x0; xγβ(1), · · · , xγβ(r)),

= fγβ(x0; x1, · · · , xs).

Therefore fγ = fγβ. ¤

Let Ã(r, s) = A(r, s)/GM denote the orbit space of A(r, s) under the
right action by GM. Since the actions of GN and GM on A(r, s) com-

mute, the GN -action on A(r, s) induces a (left) GN -action on Ã(r, s).
Although a GN -invariant map C : A(r, s) → Q will not generally in-

duce a map on Ã(r, s), we do have a trivial converse.

Lemma 3.5. (Notation and assumptions as above.) If C̃ : Ã(r, s) → Q

is GN -invariant, then C̃ lifts to a GN × GM-invariant map

Ĉ : A(r, s) → Q.

We regard the orbit space A(r, s)/GM as the set of group orbits for
the GM-action on A(r, s). It is convenient to fix a subset R = {γ ∈
A(r, s)} such that the {GMγ | γ ∈ R} partitions A(r, s). That is,
∪γ∈RGMγ = A(r, s) and GMγ ∩ GMν 6= ∅ iff γ = ν.

Lemma 3.6. (Notation as above.) Suppose that f is GM-invariant
and C : A(r, s) → Q is GN -invariant. Then there exists a GN × GM-

invariant map Ĉ : A(r, s) → Q such that
∑

γ∈A(r,s)

C(γ)fγ =
∑

γ∈R

Ĉ(γ)fγ.
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Proof. We have

∑

γ∈A(r,s)

C(γ)fγ =
∑

γ∈R

(
∑

τ∈GMγ

C(τ)fτ

)
.

By lemma 3.4, fτ = fν for all τ, ν ∈ GMγ. Letting [γ] ∈ Ã(r, s) denote
the coset defined by γ, we define C̃([γ]) =

∑
τ∈GMγ C(τ), γ ∈ R. This

defines a GN -invariant map C̃ : Ã(r, s) → Q. Let Ĉ : A(r, s) → Q be
the GN × GM-invariant lift given by lemma 3.5. ¤

Remark 3.7. In the lemmas and examples in this paper, the lifted map
Ĉ will be used to define the output relation between f and g.

Definition 3.8. Let M and N be coupled identical cell networks such
that

(a) Both networks have n cells.
(b) Cells in M have p input types, cells in N have q input types.
(c) If we fix an ordering of the cells in N , then the associated

connection matrix is n = [n1, · · · , nn].

We write M ≺O N and say M is output dominated by N , if there
exist an ordering of the cells of M, with associated connection matrix
m, and a GN -invariant map C : A(r, s) → Q, such that for every
F ∈ M, there exists G ∈ N for which fF <O

(C,m,n) gG. (Recall F is

modelled by fF , and G is modelled by gG.) If M ≺O N and N ≺O M,
we say N and M are output equivalent and write M ∼O N .

Lemma 3.9. The relation ≺O is transitive.

Proof. Let M,N ,H be coupled n identical cell networks with r, s, t
inputs and p, q, u input types, respectively. Suppose M ≺O H and
H ≺O N . We show that M ≺O N . Fix an ordering of cells in N
with associated connection matrix n = [n1, · · · , nn]. Since H ≺O N , it
follows by the definition of output domination that we have an associ-
ated ordering of the cells of H, connection matrix h = [h1, · · · , hn] and
GN -invariant map C1 : A(t, s) → Q. If K ∈ H is modelled by k, there
exists G ∈ N modelled by g such that

(1) g =
∑

σ∈A(t,s) C1(σ)kσ.

(2) For j ∈ n we have g(xj;Xn
j
1

, · · · ,X
n

j
q
) = k(xj;Xh

j
1

, · · · ,X
h

j
u
).

Also, since M ≺O H, we have an associated ordering of the cells of
M, connection matrix m = [m1, · · · ,mn] and GH-invariant map C2 :
A(r, t) → Q. If F ∈ M is modelled by f , there exists K ∈ H modelled
by k such that

(3) k =
∑

γ∈A(r,t) C2(γ)fγ.
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(4) For j ∈ n we have k(xj;Xh
j
1

, · · · ,X
h

j
u
) = f(xj;Xm

j
1

, · · · ,X
m

j
p
).

For σ ∈ A(t, s), set xσ
i = xσ(i) for i ∈ t. We have,

g(x0; x1, · · · , xs) =
∑

σ∈A(t,s)

C1(σ)kσ(x0; x1, · · · , xs)

=
∑

σ∈A(t,s)

C1(σ)k(x0; xσ(1), · · · , xσ(t))

=
∑

σ∈A(t,s)

C1(σ)k(x0; x
σ
1 , · · · , xσ

t )

=
∑

σ∈A(t,s)

C1(σ)
∑

γ∈A(r,t)

C2(γ)fγ(x0; x
σ
1 , · · · , xσ

t )

=
∑

σ∈A(t,s)

C1(σ)
∑

γ∈A(r,t)

C2(γ)f(x0; x
σ
γ(1), · · · , xσ

γ(r))

=
∑

σ∈A(t,s)

γ∈A(r,t)

C1(σ)C2(γ)f(x0; xσ◦γ(1), · · · , xσ◦γ(r)).

Let Ã(r, s) = {σ ◦ γ ∈ A(r, s) | γ ∈ A(r, t), σ ∈ A(t, s)} ⊂ A(r, s).
Define C : A(r, s) → Q by

C(φ) =

{
C1(σ)C2(γ) if φ = σ ◦ γ ∈ Ã(r, s)

0 if φ ∈ A(r, s) \ Ã(r, s)

Let β ∈ GN . We have C(β(σ ◦ γ)) = C((βσ) ◦ γ) = C1(βσ)C2(γ) =
C1(σ)C2(γ) = C(σ ◦ γ). Therefore, C is GN -invariant and the relation
between f and g given by

g(x0; x1, · · · , xs) =
∑

φ∈Ã(r,s)

C(φ)fφ(x0; x1, · · · , xs).

Hence M ≺O N (input matching conditions follow from (2,4)). ¤

Example 3.10. Let M,K,N be single input type networks with non-

identity adjacency matrices M1 =

(
1 1
1 1

)
, K1 =

(
0 2
2 0

)
, N1 =

(
0 1
1 0

)

respectively. Note that M1 = I + K1/2 and K1 = 2N1. We claim that
M ≺O K and K ≺O N . Indeed, if f : M × M2 → TM is the model
for the system F ∈ M, then h : M × M2 → TM defined by

h(x; y, z) =
1

2
(f(x; y, x) + f(x; z, x))



EQUIVALENCE OF NETWORKS WITH SYMMETRIC INPUTS 9

models H ∈ K with the same dynamics as F ∈ M. Similarly, if we
define g : M × M → TM by

g(x; y) = h(x; y, y)

then g models a system G ∈ N with the same dynamics as H. Observe
that

g(x; y) = h(x; y, y) =
1

2
(f(x; y, x) + f(x; y, x)) = f(x; y, x)

It is easy to check that g models a system G ∈ N with the same
dynamics as F ∈ M and so M ≺O N .

Before we give the main result of this section, we state and prove a
useful result about output domination (an analogous result holds for
input domination — see lemma 4.3). We continue with our assumptions
on M and N and assume that we have fixed an ordering of the cells
in N . Given an ordering of the cells in M, denote the associated set
of adjacency matrices by M0,M1, · · · ,Mp. For j ∈ p, Let Mj denote
the n-cell network with 1 input type and adjacency matrices {M0,Mj}.
Denote the connection matrix associated to {M0,Mj} by mj.

Lemma 3.11. (Notation and assumptions as above). The following
conditions are equivalent.

(1) M ≺O N .
(2) There exists an ordering of the cells in M such that Mj ≺O N ,

for all j ∈ p.

Proof. Suppose first that M ≺O N . By definition of output domi-
nation, we have an associated ordering of the cells of M, connection
matrix m and GN -invariant map C : A(r, s) → Q. If F ∈ M has
model f , there exists G ∈ N with model g such that

(1) g =
∑

γ∈A(r,s) C(γ)fγ.

(2) For j ∈ n we have g(xj;Xn
j
1

, · · · ,X
n

j
q
) = f(xj;Xm

j
1

, · · · ,X
m

j
p
).

Now suppose that f depends only on the variables (x0,Xj) ∈ M×M sj .
Then the associated system can be identified with a system in Mj.
The input matching condition (2) implies trivially that we have the
correct input matching for the connection matrix mj of Mj. Hence
Mj ≺O N . Conversely, suppose that there exists an ordering of the
cells in M such that Mj ≺O N , for all j ∈ p. For each j ∈ p, there
exists a GN -invariant map Cj : A(rj, s) → Q such that if f j is the
model for Fj ∈ Mj, there exists Gj ∈ N with model gj such that

gj =
∑

γ∈A(rj ,s)

Cj(γ)f j
γ .
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and the input matching conditions hold (with m replaced by mj). Now
suppose F ∈ M has model f . We define g by

(3.2) g =
∑

γ1∈A(r1,s)

· · ·
∑

γp∈A(rp,s)

C1(γ1) · · ·Cp(γp)fγ1···γp
.

where we define fγ1···γp
by making the natural identification between∏p

j=1 A(rj, s) and A(r, s) (that is, using the identification of r and

{r1, · · · , rp}). It is straightforward to verify that g does define a system
G ∈ N which satisfies the input matching conditions (2). ¤

Theorem 3.12. (Notation as above.) M ∼O N iff A(M) = A(N )
iff M ∼ N .

In order to prove theorem 3.12 it suffices to show that

(A) A(M) ⊆ A(N ) =⇒ M ≺O N .
(B) M ≺O N =⇒ M ≺ N .
(C) M ≺O N =⇒ A(M) ⊆ A(N ).
(D) M ≺ N =⇒ A(M) ⊆ A(N ).

Statement (B) is trivial. We prove (C,D) by reducing to the case of
linear vector fields. Most of the work involves the proof of (A) and we
start with the proof of (A) and conclude with the proofs of (C,D).

We break the proof of (A) into a number of lemmas. These lemmas
also give an algorithm for computing an explicit output equivalence or
domination. Throughout we assume that M, N are identical cell net-
works and follow our established notational conventions. In particular,
we assume given orderings of the cells of M, N and associated adja-
cency and connection matrices and the inclusion A(M) ⊆ A(N ). The
result extends to non-identical cell networks by applying the proof cell
class by cell class (see [1] and note that the linear equivalence results
in [3] apply to networks with multiple cell classes).

Lemma 3.13. If p = q, and Mi = Ni, i /∈ {a, b}, Na = Mb, Nb = Ma

then M ≺O N .

Proof. If a = b, there is nothing to prove. Suppose without loss of
generality that a < b. We have ri = si, i ∈ p r {a, b}, ra = sb, rb = sa.
Suppose that F ∈ M has model f : M ×

∏p
i=1 M ri → TM . Define

g : M ×
∏p

i=1 M si → TM by

g(x0;X1, · · · ,Xa, · · · ,Xb, · · · ,Xp)

= f(x0;X1, · · · ,Xb, · · · ,Xa, · · · ,Xp).

It is easy to check that g defines the required system G ∈ N . ¤
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Remark 3.14. As a consequence of lemma 3.13, we see that if the adja-
cency matrices of M are a permutation of those of N , then M ∼O N .

Lemma 3.15. Let p = 2, and M1 =
∑

i∈A αiNi, M2 =
∑

j∈B ǫjNj,
where A,B ⊂ q, and αi, ǫj ∈ N, i ∈ A, j ∈ B. Then M ≺O N .

Proof. Suppose that A = {a1, · · · , au}, B = {b1, · · · , bw} ⊂ q. Suppose
that F ∈ M has model f : M ×

∏2
i=1 M ri → TM . Define g : M ×∏q

i=1 M si → TM by

g(X0;X1, ..,Xk) = f(X0;X
α1

a1
, · · · ,Xαu

au
,Xǫ1

b1
, · · · ,Xǫw

bw
),

where Xi ∈ M si (variables corresponding to inputs of type i, i ∈ q)
and Xα

i denotes Xi repeated α times. It is straightforward to check
that g defines the required system G ∈ N . ¤

Example 3.16. (Illustration of Lemma 3.15) Let N be the network

with non-identity adjacency matrices N1 =




3 0 2
1 2 2
0 2 0



, N2 =




1 0 0
1 2 0
0 0 2





and Q be the network with non-identity adjacency matrices P =




4 0 2
2 4 2
0 2 2



,

Q =




2 0 0
0 2 0
0 0 2



. It is straightforward to check P = N1 +N2, Q = 2N0

and so A(Q) ⊆ A(N ). Suppose that F ∈ Q has model h : M × M6 ×
M2 → TM . Following lemma 3.15, we define g : M ×M4×M2 → TM
by

g(x0; x1, · · · , x4, x5, x6) = h(x0; x1, · · · , x4, x5, x6, x0, x0)

It can be easily checked that g models the required system G ∈ N .

The next two lemmas handle the most difficult cases of output dom-
ination.

Lemma 3.17. Let p = 1 and suppose M1 = N1 − N2 then M ≺O N .

Proof. Set r1 = r, s2 = s̃ so that s1 = r + s̃. Suppose that F ∈ M
has model f : M × M r → TM . Set Z = (X3, · · · ,Xq) ∈

∏q
i=3 M si

(the variables represented by Z play no role in what follows). Define
g : M ×

∏q
i=1 M si → TM by

(3.3) g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z)

=
r∑

i=0

(−1)i
∑

Ci

f(x0; y
a1

1 , · · · , yas̃

s̃ , xj1 , · · · , xjr−i
),
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where Ci is the set of all (s̃ + r − i)-tuples (a1, · · · , as̃, j1, · · · , jr−i)
satisfying a1 + · · · + as̃ = i, 1 ≤ j1 < · · · < jr−i ≤ r + s̃.

Let xr+i = yi, i = 1, · · · , s̃. It suffices to show that

g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z) = f(x0; x1, · · · , xr).

Suppose t ∈ r and b1, · · · , bs̃ ∈ Z+ satisfy
∑s̃

i=1 bi = t. We find the coef-

ficient of f(x0; y
b1
1 , · · · , ybs̃

s , xj1 , · · · , xjr−t
), where jv ∈ r, v ∈ r − t. Let

(b1, · · · , bs̃, j1, · · · , jr−t) ∈ Ct and m denote the number of bi that are

greater than equal to 1. We find that f(x0; y
b1
1 , · · · , ybs̃

s̃ , xj1 , · · · , xjr−t
)

appears in the sum for g when t − m ≤ i ≤ t and has coefficient
(−1)i

(
m
t−i

)
. Hence, the coefficient of this term is

∑t
i=t−m(−1)i

(
m
t−i

)
.

This is zero unless m = 0 (t = 0), in which case the coefficient is
1 and we get f(x0; x1, · · · , xr). Hence g defines the required system
G ∈ N . ¤

Remark 3.18. Another way to write equation 3.3 is

(3.4) g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z)

=
r∑

i=0

(−1)i
∑

1≤j1<···<jr−i≤r+s̃
1≤k1≤···≤ki≤s̃

f(x0; yk1
, · · · , yki

, xj1 , · · · , xjr−i
)

Example 3.19. (Illustration of lemma 3.17) Let Q be the network of
example 3.16 and R be the network with non-identity adjacency ma-

trix R1 =




2 0 2
2 2 2
0 2 0



. It is straightforward to check R1 = P − Q and

so A(R) ⊆ A(Q). Hence, by lemma 3.17, we have R ≺O Q. Suppose
that F ∈ R has model e : M × M4 → TM . We construct G ∈ Q with
model h such that e is output dominated by h. Noting remark 3.18,
we define h : M × M6 × M2 → TM by

(3.5) h(x0; x1, · · · , x6, x7, x8)

=
4∑

i=0

(−1)i
∑

1≤j1<···<j4−i≤6
7≤k1≤···≤ki≤8

e(x0; xk1
, · · · , xki

, xj1 , · · · , xj4−i
)

It can be easily checked that h models the required system G ∈ Q. We
can define a new cell class D, built from the cells of the system F , which
realizes the dynamics of F when these cells are coupled according to
the network architecture Q. See figure 2.
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+

+

+

C(4:6)

C(3,1:6,2)

C(2,2:6,2)

C(1,3:6,2)

P(4,2)

D

Figure 2. The cell D. The choose and pick cells are
linear combinations of the vector field f modelling F .

Lemma 3.20. If p = 1 and M1 = 1
m

N1, then M ≺O N .

Proof. Just as in the proof of lemma 3.17, the variables Xj ∈ M sj play
no role if j > 1 and so it is no loss of generality to take p = q = 1.
The computations do not use the internal variable which we also omit.
Since p = q = 1 and there is no internal variable, all functions will
be symmetric and we omit the overline signifying symmetry. Since the
case when m = 1 is trivial we assume m ≥ 2. Set r1 = r, s1 = s and
note that s = mr. Let J denote the set of all tuples j = (j1, · · · , ju)
of positive integers such that j1 ≥ j2 ≥ · · · ≥ ju ≥ 1 and

∑u
i=1 ji = r.

We define lexicographical ordering on J :

j = (j1, · · · , ju) > j ′ = (j′1, · · · , j′u′),

if ∃k ∈ u such that

ji = j′i, i < k, and jk > j′k.

Note that j > j ′ does not imply u ≶ u′. The unique maximal and
minimal elements of J are (r) and (1, 1, · · · , 1) respectively.

Suppose f : M×M r → TM models F ∈ M. Define g : M×M rm →
TM by

(3.6) g(x1, · · · , xrm) =
∑

j∈J

cj

∑

i1,··· ,iu∈rm

f(xj1
i1
· · · , xju

iu
),
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where cj ∈ Q are constants to be determined. For fixed j ∈ J , define

gj(x1, · · · , xrm) =
∑

i1,··· ,iu∈rm

f(xj1
i1
· · · , xju

iu
).

Thus

g(x1, · · · , xrm) =
∑

j∈J

cjgj(x1, · · · , xrm).

We remark that each gj is symmetric in (x1, · · · , xrm). Hence g is
symmetric in (x1, · · · , xrm).

Given j = (j1, · · · , ju) ∈ J , define J (j) ⊂ J to consist of all
ℓ = (ℓ1, · · · , ℓu′) ≥ j such that each ℓt can be written as a sum

∑
i∈It

ji,
It ⊂ u.

Suppose we are given y1, · · · , yr and j ∈ J . Suppose x1, · · · , xp =
y1, · · · , x(r−1)m+1, · · · , xrm = yr. Then there exist strictly positive in-

tegers Aj
ℓ such that

gj(y
m
1 , · · · , ym

r ) =
∑

ℓ∈J (j)

Aj
ℓfℓ(y1, · · · , yr),

where

fℓ(y1, · · · , yr) =
∑

f(yℓ1
i1

, · · · , y
ℓu′

iu′
),

and the sum is taken all distinct u′-tuples (i1, · · · , iu′) of integers in r.
Each fℓ is symmetric in y1, · · · , yr. We have

g(ym
1 , · · · , ym

r ) =
∑

j∈J

cj




∑

ℓ∈J (j)

Aj
ℓfℓ(y1, · · · , yr)



 .

We choose the coefficients cj so that g(ym
1 , · · · , ym

r ) = f(y1, · · · , yr).
The term f(y1, · · · , yr) only occurs once in the sum we have for g
(when j is the minimal element (1, 1, 1, · · · , 1) of J ). Hence c(1,··· ,1)

is uniquely determined. Our choice of order on J orders the the rows
of the matrix of the linear system and our construction implies that
the matrix is in upper triangular form. Hence we can solve for the
coefficients cj. ¤

Example 3.21. (Illustration of lemma 3.20) Let R be the network
of example 3.19 and M be the network with non-identity adjacency

matrix M1 =




1 0 1
1 1 1
0 1 0



. We have M1 = R
2
. Suppose that F ∈ M

has model f : M × M2 → TM . Following lemma 3.20, define e :
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M × M4 → TM by

e(x0; x1, · · · , x4) =
∑

j∈J

cj

∑

i1,··· ,iu∈4

f(x0; x
j1
i1

, · · · , xju

iu
)

where, J = {(1, 1), (2)} (lemma 3.20) and we have omitted the over-
lines denoting symmetric inputs. Setting a = c(1,1), b = c(2), we have

(3.7) e(x0; x1, · · · , x4) = a
∑

i1,i2∈4

f(x0; xi1 , xi2) + b
∑

i1∈4

f(x0; xi1 , xi1).

After substituting x1 = x2 = u, x3 = x4 = v, we get the following
terms: f(x0; u, u), f(x0; u, v), f(x0; v, v). The coefficient of f(x0; u, u)
and f(x0; v, v) is 4a + 2b and the coefficient of f(x0; u, v) is 8a. Since
we require e(x0; u, u, v, v) = f(x0; u, v), we obtain a = 1

8
, b = −1

4
. It

is straightforward to check that e models the required system G ∈ R.
We can define a new cell class D, built from the class C cells of the
system F , which realizes the dynamics of F when these cells are coupled
according to the network architecture R. See figure 3.

+

+

+

+

+_

C

C

C

C

C(2,4)

1/4

1/8

Figure 3. The cell D, built from class C cells

Lemma 3.22. If p = 1, then A(M) ⊆ A(N ) implies M ≺O N .

Proof. Since M1 ∈ A(N ), we may write M1 =
∑

i∈A λiNi−
∑

i∈B λiNi,
where A,B are disjoint subsets of q and for i ∈ A ∪ B, λi = ai

bi
, where

ai, bi ∈ N, and (ai, bi) = 1.
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Let λ = lcm{bi | i ∈ A ∪ B} and define αi = λλi ∈ Z+, i ∈ A ∪ B. If
we define P =

∑
i∈A αiNi, Q =

∑
i∈B αiNi, then

M1 =
1

λ
(P − Q)

Let N1 be the network with adjacency matrices {I, P,Q}, and M1 be
the network with adjacency matrices {I, R = P − Q}. Note that

(1) If Q = 0, M1 = N1.
(2) If λ = 1, M1 = M.
(3) If Q = 0 and λ = 1, N1 = M1 = M.

We claim that
M ≺O M1 ≺O N1 ≺O N .

Assuming the claim, the transitivity of ≺O (Lemma 3.9) gives M ≺O

N . The claim follows since lemma 3.15 implies N1 ≺O N , lemma 3.17
implies M1 ≺O N1 and lemma 3.20 implies M ≺O M1. ¤

Example 3.23. (Illustration of lemma 3.22.) Let N be the network
defined in example 3.16 and M be the network of example 3.21. We
have M1 = N1

2
+ N2

2
− N0. Following the notation of the proof of

lemma 3.22, we have λ = 2, P = N1 + N2, Q = 2N0. Note that P,Q
are the non-identity adjacency matrices of the second network Q of ex-
ample 3.16. We have Q ≺O N (example 3.16); R ≺O Q (example 3.19),
and M ≺O R (example 3.21). Since ≺O is transitive, M ≺O N . By
using the output relations between g and h from example 3.16, h and
e from example 3.19, and e and f from example 3.21, it can be shown
(after some computation) that the output relation between g and f is
given by

g(x0; x1, · · · , x4, x5, x6) =

1

4

∑

1≤j1<j2≤6

f(x0; xj1 , xj2) + f(x0; x0, x0)

−
1

8

∑

1≤j1≤6

f(x0; xj1 , xj1) −
1

2

∑

1≤j1≤6

f(x0; x0, xj1)

Lemma 3.24. If A(M) ⊆ A(N ), then M ≺O N (statement (A) is
true).

Proof. By lemma 3.11, it suffices to show that Mj ≺O N for all j ∈
p. By lemma 3.13, we may assume j = 1. The result follows from
lemma 3.22. ¤

Lemma 3.25. If M ≺O N then A(M) ⊆ A(N ) (statement (C) is
true).
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Proof. Suppose M ≺O N . The method we use is based on the linear
equivalence ideas described in [3]. Specifically, we prove that A(M) ⊆
A(N ) by restricting to the case where phase spaces equal R and vector
fields are linear. (Notice that output domination preserves linearity of
vector fields.)

Let F ∈ M have (linear) model f : R ×
∏p

i=1 Rri → R. Then there
exists a system G ∈ N with linear model g : R ×

∏q
i=1 Rsi → R such

that for each j ∈ n we have

(3.8) g(xj;Xn
j
1

, · · · ,X
n

j
q
) = f(xj;Xm

j
1

, · · · ,X
m

j
p
),

where X
n

j
i
= (x

n
j
i1
, · · · , x

n
j
isi

), i ∈ q, and X
n

j
i
= (x

m
j
i1
, · · · , x

m
j
iri

), i ∈ p.

Let k ∈ p and take

f(x0;X1, · · · ,Xp) =

rk∑

i=1

xki

where Xv = (xv1, · · · , xvrv
), v ∈ p. The corresponding g given by

output domination is linear and so, noting the symmetry of inputs, we
may write

g(x0;X1, · · · ,Xq) = ck0x0 +

q∑

i=1

cki

si∑

ℓ=1

xiℓ,

where Xi = (xi1, · · · , xisi
), i ∈ q, and the cαβ are constants. From (3.8)

we get

ck0xj +

q∑

i=1

cki

si∑

ℓ=1

x
n

j
iℓ

=

rk∑

i=1

x
m

j
ki
, j ∈ n.

Putting these equations in matrix form, we obtain
q∑

i=0

ckiNi = Mk.

Hence for each k ∈ q, we have shown that Mk ∈ A(N ) and so A(M) ⊆
A(N ). ¤

Lemma 3.26. If M ≺ N then A(M) ⊆ A(N ) (statement (D) is
true).

Proof. (Sketch) Working within the class of C1-vector fields with phase
space R, it follows that if F has linear model f , then there exists
G ∈ N with C1-model g such that G has identical dynamics to F . The
statement remains true if we replace g by the derivative of g at 0 ∈
R×Rq and then the method of proof of lemma 3.25 applies (essentially
we reduce to linear equivalence, cf [3]). With a little more work, we can
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remove the assumption that g is C1 — identical dynamics to a linear
system implies the flow is linear and from this one can show that we
can always choose g to be linear. ¤

Proof of theorem 3.12. Lemmas 3.24, 3.25, 3.26 give statements
A,C,D and, as noted previously, statement B is trivial. Interchange M
and N to obtain the reverse relations. ¤

4. Input Equivalence

We start by giving the definition of input equivalence applicable
to networks with symmetric inputs. This a straightforward exten-
sion of the definition given in [1, §3] for networks with asymmetric
inputs. Aside from assuming that models are defined on vector spaces
V rather than manifolds M , we closely follow the notational conven-
tions established in sections 2 and 3. In particular, M and N will
be coupled n identical cell networks. We fix an ordering of the cells
of N . Suppose cells in N have s inputs and q input types. Let
A(N ) = {N0 = I, Ni ∈ Msi

(n; Z+), i ∈ q} be the set of adjacency
matrices and A(N ) denote the subspace of M(n; Q) spanned by A(N ).
Let n = [n1, · · · , nn] be the default connection matrix for N .

We suppose cells in M have r inputs and p input types. Given
an ordering of the cells of M, we let A(M) = {M0 = I, Mi ∈
Mri

(n; Z+), i ∈ p} denote the set of adjacency matrices and A(M) de-
note the subspace of M(n; Q) spanned by A(M). Let m = [m1, · · · ,mn]
be the default connection matrix for M.

Let L = (L1, · · · , Lp) ∈
∏p

i=1 M(ri, 1+
∑q

j=1 sj; Q) and define the lin-

ear map L : V ×
∏q

i=1 V si →
∏p

i=1 V ri in the obvious (V -independent)
way. Recall that L is GM,N -equivariant if there exists a homomorphism
h : GN → GM such that

L(γ(X)) = h(γ)L(X), for all γ ∈ GN , X ∈ V ×

q∏

i=1

V si .

If f : V ×
∏p

i=1 V ri → V is GM-invariant, define g : V ×
∏q

i=1 V si → V
by

(4.9) g(X0;X1, · · · ,Xq) = f(X0;L(X0;X1, · · · ,Xq)).

Since L is GM,N -equivariant, g is GN -invariant. We write f <ı
(L,m,n) g,

if

(1) (4.9) is satisfied.
(2) For j ∈ n, we have g(xj;Xn

j
1

, · · · ,X
n

j
q
) = f(xj;Xm

j
1

, · · · ,X
m

j
p
).
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Definition 4.1. (Notation and assumptions as above.) The coupled
cell network M is input dominated by N , denoted M ≺I N , if there
exist a linear map L, an ordering of the cells of M, with associated
connection matrix m, such that for every F ∈ M(L), there exists
G ∈ N (L) for which fF <ı

(L,m,n) gG. If N ≺I M and M ≺I N , we say
M and N are input equivalent and write M ∼I N .

Remarks 4.2. (1) As we shall see later (remark 4.13), the map L may
not preserve default connection matrices. However, since inputs are
symmetric, it is no loss of generality to require the default connection
matrix of M in definition 4.1. When we come to prove our main
theorem, we allow for general connection matrices.
(2) We write M ≺I,Z N if M ≺I N and we can require the entries of
L to lie in Z). We similarly define M ∼I,Z N .

Lemma 4.3. (Notation and assumptions as above). The following
conditions are equivalent.

(1) M ≺I N .
(2) There exists an ordering of the cells in M such that Mj ≺I N ,

for all j ∈ p.

Proof. The proof follows by observing that

fF <ı
(L,m,n) gG ⇐⇒ fFj

<ı
(Lj,mj ,n) gG

for all j ∈ p where L = [L1, · · · ,Lp], Lj : V ×
∏q

i=1 V si → V rj ,
Fj ∈ Mj, and mj is the connection matrix induced on Mj by m. ¤

As a consequence of lemma 4.3, it will be no loss of generality in
what follows to assume that M has just one input type; that is, p = 1.
We simplify notation by setting r1 = r. With these conventions, we
have GM = Sr ≈ S1 × Sr.

Suppose that the linear map L : V ×
∏q

i=1 V si → V r is defined by
the matrix L ∈ M (r, 1 +

∑q
i=1 si, Q). The map L is GM,N -equivariant

if there exists a homomorphism h : GN → GM = Sr such that

L(γ(X)) = h(γ)L(X),

for all γ ∈ GN , X ∈ V ×
∏q

i=1 V si .
Given a GM-invariant map f : V × V r → V and GM,N -equivariant

linear map L as above, define the GN -invariant map g : V ×
∏q

i=1 V si →
V by

g(X0;X1, · · · ,Xq) = f(X0;L(X0;X1, · · · ,Xq)).

Let L = [L1, · · · , Lr], where Li ∈ Q×
∏q

i=1 Qsi denotes the ith row of
L, i ∈ r. Since L(γ(X)) = h(γ)L(X) for all γ ∈ GN , X ∈ V ×

∏q
i=1 V si ,
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we have [L1, · · · , Lr] (γX) = h(γ) [L1, · · · , Lr] (X). That is,

[γL1, · · · , γLr] (X) = h(γ) [L1, · · · , Lr] (X),

where, γLi is defined using the natural permutation action of GN on
Q ×

∏q
j=1 Qsj , i ∈ r. This is true for all X, hence

[γL1, · · · , γLr] = h(γ) [L1, · · · , Lr] ,

for all γ ∈ GN .

Definition 4.4. Suppose a finite group G acts on a non-empty set X.
For x ∈ X, let Gx = {gx | g ∈ G} denote the G-orbit of x.

Remark 4.5. We have |Gx| = |G|/|Gx| where Gx = {g ∈ G | gx = x}
denotes the isotropy subgroup of G at x.

Theorem 4.6. There exists u(≤ r) ∈ N, t1, · · · , tu ∈ N, with
∑u

i=1 ti =
r such that {L1, · · · , Lr} =

⋃u
i=1 GNLi where |GNLi| = ti. (We allow

Li = Lj for i 6= j, i, j ∈ u.)

Proof. [γL1, · · · , γLr] = h(γ) [L1, · · · , Lr] for all γ ∈ GN . Therefore,
for each i ∈ r, γLi ∈ {L1, · · · , Lr} for all γ ∈ GN . Hence, the GN -
orbit of Li is contained in {L1, · · · , Lr}. Suppose Lk = Lj for some
k 6= j, then γLk = γLj for all γ ∈ GN . So if an element is repeated
m times then its full orbit is repeated m times. Therefore, there exist
u(≤ r) ∈ N, Lji

, for j1, · · · , ju ∈ r with |GNLji
| = ti and

∑u
i=1 ti = r

such that {L1, · · · , Lr} =
⋃u

j=1 GNLji
. Define Li = Lji

, i ∈ u. ¤

Remark 4.7. For each i ∈ u, there are ti choices for Lji
.

From now on, we write the matrix of L in the form
[
GNL1, · · · , GNLu

]
.

That is, we group rows according to the group orbits of GN . Note that
this ordering is imposing a condition on the order of inputs of M.

Example 4.8. Suppose p, q = 1, s = s1 = 2, r = 3, L =




0 1 2
0 1 1
0 2 1



.

Then we can take L1 = (0, 1, 2), L2 = (0, 1, 1). We have t1 = 2 and

t2 = 1. If we write L in the form [GNL1, GNL2], then L =




0 1 2
0 2 1
0 1 1



.
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4.1. Splittings and connection matrices. We recall from [1] that
dynamically equivalent networks with asymmetric inputs are always
input equivalent. This is not always the case for networks with sym-
metric inputs as we show in the next example.

Example 4.9. Let M be the network with non-identity adjacency ma-

trix M1 =

(
2 4
2 0

)
and N be the network with non-identity adjacency

matrix N1 =

(
3 6
3 0

)
. We have M1 = 2

3
N1 and so A(M) = A(N ).

Suppose
g(x0; x1, · · · , x6) = f(x0;L(x0; x1, · · · , x6)),

where L : V × V 6 → V 4 is a GM,N -equivariant linear map. The only

possible form of L is





a1 b1 b1 b1 b1 b1 b1

a2 b2 b2 b2 b2 b2 b2

a3 b3 b3 b3 b3 b3 b3

a4 b4 b4 b4 b4 b4 b4



. It is easy to check

that there does not exist any ai, bi ∈ Q for which f is input dominated
by g. This shows M ⊀I N . Similarly we can show that N ⊀I M
(in this case, L has two possible forms). This provides an example of
network architectures M and N such that M ∼O N (A(M) = A(N ))
but M ⊀I N and N ⊀I M.

The previous example shows that A(M) = A(N ) is not sufficient for
M ∼I N . Note that M ∼I N ⇒ M ∼ N ⇒ A(M) = A(N ). Thus
A(M) = A(N ) is a necessary condition for M ∼I N . In theorem 4.11,
we give sufficient conditions for input equivalence to hold. The suf-
ficiency conditions come from the structure of the GM,N -equivariant
linear map L. If M ≺I N and we fix a connection matrix for N , then
L determines a connection matrix for M which may not be the default
connection matrix (whatever the choice of L). In order to analyze the
relationship between connection matrices of M and N , we introduce
the idea of splitting a valency k adjacency matrix into a sum of k va-
lency one matrices. We find that there is a one-one correspondence
between splittings and connection matrices.

Definition 4.10. Let P ∈ Mk(n; Z+). A splitting (P1, · · · , Pk) of P is
an ordered decomposition of P into a sum P = P1 + · · · + Pk, where
each Pj ∈ M1(n; Z+).

Suppose that the network M has one input type and connection
matrix m, where m is not necessarily the default connection matrix.
Denote the adjacency matrices of M by M0 = I and M1. The connec-
tion matrix m naturally determines a unique splitting M1 + · · · + M r
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of M1. Indeed, if we let Mk = [mk
ij], k ∈ r, then we define mk

ij = 1

if input k of cell j comes from cell i, else mk
ij = 0. That is, mk

ij = 1

iff m
j
1k = i. Conversely, every splitting of M1 uniquely determines a

connection matrix m for M. All of this applies equally well if M has
multiple input types.

Let n be a connection matrix for N (not necessarily the default). For
k ∈ q, let Nk = (Nk1, · · · , Nksk

) denote the splitting of Nk naturally
determined by n. Set N = {N1, · · · ,Nq}. We refer to N as the splitting
determined by n.

Let a = (a0; a1, · · · , aq) ∈ Q ×
∏q

j=1 Qsj . We write a = (aji)j∈q,i∈sj ,

where aj = (aj1, · · · , ajsj
) ∈ Qsj , j ∈ q. If N = {N1, · · · ,Nq} is the

set of splittings of the adjacency matrices {N1, · · · , Nq} determined by
n, then we define

a ⋆ N = a0N0 +

q∑

j=1

sj∑

i=1

ajiNji ∈ M(n, n; Q).

Theorem 4.11. (Notation and assumptions as above; in particular
p = 1.) The following statements are equivalent

(1) M ≺I N .
(2) Suppose that n is a connection matrix for N with associated

splitting N. There exist u ∈ N, Li ∈ Q×
∏q

v=1 Qsv , i ∈ u, such
that {b ⋆ N | b ∈ GNLi, i ∈ u} is a splitting of M1.

(3) There exist u ∈ N, Li ∈ Q ×
∏q

v=1 Qsv , i ∈ u such that for
every connection matrix n of N with associated splitting N,
{b ⋆ N | b ∈ GNLi, i ∈ u} is a splitting of M1.

Before giving the proof of theorem 4.11, we make two remarks, the
first of which shows how theorem 4.11 simplifies in the case of asym-
metric inputs.

Remarks 4.12. (1) If all the inputs of the networks M and N are
asymmetric then q = s, si = 1, N = {N1 = N11, · · · ,Nq = Nq1} and
M1 is a splitting of itself. Thus (3) of theorem 4.11 implies that there
exist u ∈ N, Li = (ai0; ai1, · · · , aiq) ∈ Q×Qq, i ∈ u such that for every
connection matrix n of N , {

∑q
j=0 aijNj, i ∈ u} is a splitting of M1.

Since M1 ∈ M1(n, Z), we must have u = 1. Therefore, the condition
simplifies to M1 =

∑q
j=0 aijNj. Hence M1 ∈ A(N ); the condition

obtained for networks with asymmetric inputs in [1].
(2) Condition (3) of the theorem shows that for computations, we can
always take n to be the default connection matrix.
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Proof of Theorem 4.11 (1) ⇒ (2). Suppose M ≺I N . Then there
is a linear transformation L with matrix L = [GNL1, · · · , GNLu]. Let
n be a connection matrix for N and denote the corresponding splittings
of N1, · · · , Nq by N. For each j ∈ n, we have

L(Xj;Xn
j
1

, · · · ,X
n

j
q
) = X

m
j
1

where m is a connection matrix for the network M. Thus {b ⋆ N | b ∈
GNLi, i ∈ u} is a splitting of M1.
(2) ⇒ (3). Suppose statement (2) holds for the connection matrix n

and let n̂ be any other connection matrix for N . Then for each j ∈ n,

n̂j = γjnj for some γj ∈ GN (γjnj is the natural action of GN on
{j} ×

∏q
i=1 nsi). For j ∈ n, let Nj denote the set of jth columns of all

matrices in N. Since {b ⋆ N | b ∈ GNLi, i ∈ u} is a splitting of M1,
{[γ1(b) ⋆ N1, · · · , γn(b) ⋆ Nn] | b ∈ GNLi, i ∈ u} = {[b ⋆ γ1(N1), · · · , b ⋆
γn(Nn)] | b ∈ GNLi, i ∈ u} is a splitting of M1. Hence (2) holds for n̂.
(3) ⇒ (1). Take L = [GNL1, · · · , GNLu]. Fix a connection matrix
n = [n1, · · · , nn] for N and denote the associated family of splittings
of N1, · · · , Nq by N as above. Since {b ⋆ N | b ∈ GNLi, i ∈ u} is a
splitting of M1, we have a connection matrix m = [m1, · · · ,mn] for M,
where mj = (mj

1) ∈ nr satisfies

L(Xj;Xn
j
1

, · · · ,X
n

j
q
) = X

m
j
1

, j ∈ n.

Hence for all j ∈ n,

g(Xj;Xn
j
1

, · · · ,X
n

j
q
) = f(Xj;L(X

n
j
1

, · · · ,X
n

j
q
))

= f(Xj;Xm
j
1

)

This implies M ≺I N . ¤

Remark 4.13. If we have M ≺I N and we take the default connec-
tion matrix for N , then the connection matrix on M given by theo-
rem 4.11(2) will generally not equal the default connection matrix of
M. For example, suppose that N is the network with non-identity ad-

jacency matrix N1 =

(
0 1
1 0

)
and M is the network with non-identity

adjacency matrix M1 =

(
1 1
1 1

)
. We have M1 = N0 +N1 and may eas-

ily check directly that M ≺I N . If F ∈ M has model f : V ×V 2 → V ,
then we define g modelling G ∈ N either by g(x; y) = f(x; x, y) or by

g(x; y) = f(x; y, x). Here the only choices of L are

(
1 0
0 1

)
and

(
0 1
1 0

)
.

Neither of these choices gives the default connection matrix for M.
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Corollary 4.14. (Notation and assumptions as above.) Suppose that
M1 ∈ M1(n; Z+), then M ≺I N iff M1 ∈ A(N ).

Proof. (⇒): Since M ≺I N , there is a linear transformation L with
matrix L = [a] ∈ M(1,

∑q
j=0 sj, Q), where a = [a0; a1, · · · , aq] ∈ Q ×∏q

j=1 Qsj , such that f ≺ı
(L,m,n) g. Since L has only one row, GNa = {a}.

Therefore, for j ∈ q, we may write aj = λj1 ∈ Qsj where λj ∈ Q. If
we take u = 1, and L1 = a, then M1 =

∑q
j=0 λjNj.

(⇐): Let M1 =
∑q

j=0 λjNj. Take L to be the linear transformation

with matrix L = [a] ∈ M(1,
∑q

j=0 sj, Q), a = [a0; a1, · · · , aq] ∈ Q ×∏q
j=1 Qsj , where aj = λj1 ∈ Qsj , j ∈ q. Hence we have

g(x0;X1, · · · ,Xq) = λ0f(x0;

q∑

j=0

λj

sj∑

i=1

xji),

where s0 = 1, x01 = x0 and Xi = (xi1, · · · , xisi
) denotes variables

corresponding to the inputs of type i, i ∈ q. It is straightforward to
check that f ≺ı

(L,m,n) g. ¤

Corollary 4.15. (Notation and assumptions as above.) If M1 has a
splitting (Q1, · · · , Qr) such that {Q1, · · · , Qr} ⊆ A(N ), then M ≺I N .

Proof. For each i ∈ r, let Qi =
∑q

j=0 λijNj. Define

g(x0;X1, · · · ,Xq) = λ0f(x0;

q∑

j=0

λ1j

sj∑

i=1

xji, · · · ,

q∑

j=0

λrj

sj∑

i=1

xji),

where s0 = 1, x01 = x0 and Xi = (xi1, · · · , xisi
) denotes variables

corresponding to the inputs of type i, i ∈ q. It is straightforward to
check that f ≺ı

(L,m,n) g. ¤

Corollary 4.16. (Notation and assumptions as above.) Suppose that
M1 ∈ A(N , Z+), that is, M1 =

∑q
j=0 αjNj, αj ∈ Z+, j ∈ q. Then

M ≺I N .

Proof. Define

g(x0;X1, · · · ,Xq) = λ0f(x0; x
α0

0 ;Xα1

1 , · · · ,Xαq

q ),

where Xi = (xi1, · · · , xisi
) denotes variables corresponding to the in-

puts of type i, i ∈ q. It is straightforward to check that f ≺ı
(L,m,n) g. ¤

Corollary 4.17. (Notation and assumptions as above.) If we can
write M1 = A + S where A ∈ A(N , Z+), and there exists a splitting
(S1, · · · , St) of S such that Si ∈ A(N ), i ∈ t, then M ≺I N .
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Proof. Define the S component of M1 using corollary 4.15 and the A
component using corollary 4.16. ¤

Theorem 4.18. (Notation and assumptions as above except that we
allow p ≥ 1.) The following statements are equivalent

(1) M ≺I N .
(2) Suppose that n is a connection matrix for N . For j ∈ p, there

exist uj ∈ N, Li
j ∈ Q×

∏q
v=1 Qsv , i ∈ uj, such that {b ⋆ N | b ∈

GNLi
j, i ∈ uj} is a splitting of Mj.

Proof. The result is immediate from theorem 4.11 and lemma 4.3. ¤

Corollary 4.19. Let M and N be coupled n identical cell networks.
Assume cells in M have r inputs, cells in N have s inputs. Suppose
that M has adjacency matrices M0 = I,M1, · · · ,Mp and N has ad-
jacency matrices N0 = I,N1, · · · , Nq. We assume that for each i ∈ p

either ri = 1 or sj > ri > 1, for all j ∈ q. Under these conditions the
following statements are equivalent

(1) M ≺I N .
(2) For all i ∈ p, there exists a splitting (Pi,1, · · · , Pi,ri

) of Mi such
that Pi,j ∈ A(N ), for all j ∈ ri.

Proof. (Sketch.) (2) ⇒ (1) is trivial. In order to prove (1) ⇒ (2), we
may assume p = 1. Set r = r1. For every a ∈ Q ×

∏q
j=1 Qsj , GNa has

one element or at least minj∈q sj elements. Since r < sj for all j ∈ q,
we have r < minj∈q sj. Therefore L must be of the form [L1, · · · , Lr]
where Li ∈ Q ×

∏q
j=1 Q1sj . ¤

Remark 4.20. If the network M has asymmetric inputs and A(M) ⊆
A(N ), hypothesis (2) of corollary 4.19 is automatically satisfied (and
so we recover the result for networks with asymmetric inputs — see
lemma [1, §3.13]). However, if M has symmetric inputs and A(M) ⊆
A(N ), then it need not be the case that (2) is satisfied (see example 4.9,

note that the only splitting of M1 is

(
1 1
0 0

)
+

(
1 1
0 0

)
+

(
0 1
1 0

)
+

(
0 1
1 0

)
) and so M may not be input dominated by N , even if we as-

sume linear phase spaces or scaling signalling. We give some examples
in the next section.

5. Examples

We conclude with two examples of network architectures that are
both input and output equivalent as well as an example of self-output
equivalence.
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Example 5.1. If p = q = 1, N1 = bS, and M1 = aS for S ∈ M1(n; Z+),
a, b ∈ N, then M ∼O N and M ∼I N . Here r = a, s = b.
(a) Suppose F ∈ M has model f : M × Ma → TM . Define g :
M × M b → TM by

gO(x0; x1, · · · , xb) =
1

b
[f(x0; x

a
1) + · · · + f(x0; x

a
b )]

gI(x0; x1, · · · , xb) = f(x0; (
1

b

b∑

i=1

xi)
a),

where xa signifies that x repeated a-times. It is easy to verify that gO

and gI give the required output and input dominations of f . Hence,
M ≺O N and M ≺I N . The reverse order is obtained by interchang-
ing a and b. Note that the input relations are same as were defined in
corollary 4.15.

Example 5.2. Let M be the network with non-identity adjacency ma-

trix M1 =

(
1 1
1 1

)
and N be the network with non-identity adjacency

matrix N1 =

(
2 2
2 2

)
. Note that N1 = 2M1 and so A(M) = A(M).

We show that M ∼O N and M ∼I N . (a) Suppose that G ∈ N has
model g. Let the system F ∈ M have model

f(x0; x1, x2) = g(x0; x1, x2, x1, x2)

Then f output and input dominates g and so N ≺I M and N ≺O M.
(b) Suppose that F ∈ M has model f . Define g by

gO(x0; x1, · · · , x4) =
1

4

∑

1≤i<j≤4

f(x0; xi, xj) −
1

8

∑

1≤i≤4

f(x0; xi, xi)

gI(x0; x1, x2, x3, x4) = f(x0; x0,
x1 + x2 + x3 + x4

2
− x0)

Then gO and gI give the required output and input dominations of f
and so M ≺O N and M ≺I N .

Example 5.3. For every network M we have M ∼O M. However,
there may be many ways of achieving this self output equivalence. For
example, consider the two cell network M with asymmetric inputs
shown in figure 4.
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A A
yx

Figure 4. A two cell network M with asymmetric inputs

Suppose F ∈ M has model f . It can be shown that the two-
parameter family defined for c, d ∈ R by

fc,d(x0; x1, x2) = cf(x0; x0, x0) + df(x0; x0, x1)

− (c + d)f(x0; x0, x2) − (c + d)f(x0; x1, x0)

+ (1 + c + d)f(x0; x1, x2) + df(x0; x2, x0)

− df(x0; x2, x1),

gives all output equivalences M ∼O M. For example, if we take c = 0,
d = −1/2, then

g(x0; x1, x2) = f0,−1/2(x0; x1, x2)

=
1

2
(−f(x0; x0, x1) + f(x0; x0, x2) + f(x0; x1, x0)

+ f(x0; x1, x2) − f(x0; x2, x0) + f(x0; x2, x1)).

In terms of ordinary differential equations, if the model for a cell is
f(x0; x1, x2) = x0x1x

2
2 + x0 and we define

g(x0; x1, x2) = f0,−1/2(x0; x1, x2)

=
1

2
(−x2

0x
2
1 + x2

0x
2
2 + x3

0x1 + x0x1x
2
2 − x3

0x2 + x0x2x
2
1 + 2x0).

then x′ = f(x; x, y), y′ = f(y; x, y) and x′ = g(x; x, y), y′ = g(x; x, y)
have identical dynamics, even though the models f and g are quite
different. Note, however, that if f is a linear vector field or is of the
form f(x; y, z) = au(x; y) + bv(x; z) then f = g. In particular, it seems
we cannot usefully develop this idea using the concept of linear self-
equivalence [3].

Continuing with our choice of c = 0, d = −1/2, if we define the new
cell class A⋆ as in figure 5. Although the new cell is different from the
original cell A, when it is incorporated in the network M, it will give
the same dynamics.
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Figure 5. The cell A⋆

This construction leads naturally to a number of observations and
questions and we conclude by briefly discussing some of these issues.
First, to what extent can this process be reversed? That is, given a
network of ‘complex’ cells, when is it equivalent to the same network
but built of simpler cells? Secondly, is there a way of choosing the
specific output equivalence so as to protect against failure of individual
units comprising the new cells? For example, if we build the network
M from the cells A⋆, what is the effect on network dynamics of the
failure of a single A-cell in A⋆? Is there an optimal way of choosing the
output equivalence so as to minimize the effect of failure of individual
units? Are there potential applications to numerical analysis (for ex-
ample, in the solution of partial differential equations)? There are also
questions related to the effects of inflation [2] on A-cells in A⋆. An-
other potentially interesting question is to extend the notion of input
equivalence to allow for nonlinear combinations of inputs. This would
seem to be of particular interest for scalar scalar signalling networks
and self-loops [1].
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