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1 Introduction

Let Λ be a topologically mixing hyperbolic basic set equipped with an equilibrium
state (Gibbs measure). It is by now classical (see for example Bowen [5], Ratner [29],
Ruelle [32], Parry & Pollicott [26]) that Hölder continuous observations φ : Λ→ R sat-
isfy strong statistical properties such as exponential decay of correlations and the cen-
tral limit theorem (CLT). Furthermore, an almost sure invariance principle (ASIP),
Denker & Philipp [10], states that the partial sums of φ approximate Brownian motion
on the line.

Recently, interest has focused on (skew product) extensions Λ×G of a hyperbolic
basic set Λ by a compact connected Lie group G. Such extensions are automatically
partially hyperbolic and are typically ergodic and even stably ergodic and mixing [15,
27].

Counterexamples of Dolgopyat [11] show that even when Λ×G is stably ergodic,
the decay of correlations of Hölder observations may be arbitrarily slow. The coun-
terexamples are toral extensions of subshifts of finite type. On the other hand, if G
is semisimple, or if Λ is Anosov, then Dolgopyat obtains rapid (though not exponen-
tial) decay of correlations when Λ×G is stably ergodic. The CLT then follows from
Liverani [21].

Motivated by issues arising for certain noncompact (primarily Euclidean) group
extensions, Nicol et al. [23] considered a class of G-equivariant n-dimensional obser-
vations φ : Λ × G → Rn. Under the same hypotheses as in [11], Nicol et al. [23]
obtained an n-dimensional CLT with convergence to a normal distribution N(0,Σ)
where Σ is an n× n covariance matrix. Furthermore, Σ is typically nonsingular.

In this paper, we show that by restricting to equivariant observations from the
outset, it is possible to bypass [11, 21]. Instead, we use an equivariant version of
the Ruelle transfer operator studied by Parry & Pollicott [25, 26]. This leads both
to cleaner proofs and stronger results. For example, the counterexamples of Dolgo-
pyat [11] do not apply to equivariant observations, and we obtain exponential decay
of correlations (not merely rapid decay) for equivariant Hölder observations on weak
mixing extensions of arbitrary hyperbolic basic sets. Our results apply to principal
extensions as well as to (skew product) extensions by compact connected Lie groups.

We also prove a version of the ASIP, where for almost every initial condition the
partial sums of φ approximate n-dimensional Brownian motion. Immediate conse-
quences of the ASIP are the law of the iterated logarithm (LIL), the CLT and the
weak invariance principle (WIP).

The remainder of the paper is organized as follows. In Section 2, we state our
main results for extensions of hyperbolic basic sets. In Section 3, we describe a gen-
eral framework for proving exponential decay of correlations, the CLT, the WIP, and
the upper half of the LIL for classes of observations for noninvertible dynamical sys-
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tems. In Section 4, we prove exponential decay of correlations for skew and principal
extensions of hyperbolic basic sets. In Section 5, we quickly review the definition and
properties of the covariance matrix. In Section 6, we prove the ASIP for extensions
of hyperbolic basic sets.

2 Statement of main results

Let M be a C∞ compact manifold and suppose that Λ ⊂M is a topologically mixing
hyperbolic basic set for the diffeomorphism f : M → M . In the remainder of the
paper, we always assume f is smooth – that is, of class at least C1. Let d denote a
choice of smooth Riemannian metric on M .

Recall that ρ : Λ → R is Hölder continuous with exponent α, i.e., ρ ∈ Cα, if
α ∈ (0, 1) and for all x, y ∈ Λ, we have |f(x)− f(y)| ≤ Cd(x, y)α, for some constant
C ≥ 0. In the sequel, when we refer to Hölder continuous maps defined on subsets of
manifolds, we always assume Hölder continuity is with respect to some fixed exponent
α.

Let ρ : Λ→ R be Hölder continuous and µ denote the associated equilibrium state
(Gibbs measure). In the sequel, we regard µ as a measure on M supported on Λ.
Necessarily, f |(Λ, µ) is µ-mixing (and more, see [5]). Let G be a compact connected
Lie group with Haar measure ν and define the product measure m = µ×ν on M×G.
In the sequel, unless otherwise stated, all integrals are over M × G (equivalently,
Λ×G) with respect to the measure m.

Let fh : M ×G→M ×G be the compact group extension defined by h : M → G.
That is, fh(x, g) = (fx, gh(x)), (x, g) ∈ M ×G. We make the standing assumptions
that (1) all group extensions are determined by Hölder continuous skewing maps h,
and that (2) fh : M ×G→M ×G is weak mixing (with respect to the measure m).
Note that it follows from Rudolph’s theorem [31] that if fh is weak mixing then it is
mixing. However, as we only make use of properties of weak mixing in the sequel, we
emphasize weak mixing rather than mixing.

Remark 2.1 Field and Parry [15] prove that weak mixing holds for an open and
dense set of smooth G-extensions fh : M × G → M × G provided either Λ is a
hyperbolic attractor or G is semisimple (see also [14]). Even if none of these con-
ditions holds, a residual set of G-extensions are weak mixing (this is an elementary
consequence of Parry and Pollicott [27, Proposition 8]).

Suppose that Rn is an orthogonal representation of G. An observation φ : M ×
G→ Rn is G-equivariant if φ(x, ag) = aφ(x, g) for all a ∈ G. Equivalently, φ(x, g) =
gv(x) where v : M → Rn. Equivariant observations arise naturally in applications to
problems with noncompact symmetry group, see [1, 23].
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In the following, if b, c are vectors in Rn, then bcT denotes an n × n matrix in
Matn(R). We always assume observations are Hölder continuous.

Theorem 2.2 (Exponential decay of correlations) Let fh : M × G → M × G
be a weak mixing G-extension of a hyperbolic basic set.

Then there is a constant τ ∈ (0, 1) such that for all Hölder continuous G-
equivariant observations φ, ψ : M ×G→ Rn there is a constant C > 0 such that

|
∫

φ ◦ f jh ψ
T −

∫

φ
∫

ψT | ≤ Cτ j, for all j ≥ 1.

Analogous results hold for principal G-extensions.

Remark 2.3 The restriction to equivariant observations is crucial, since Dolgo-
pyat [11] has counterexamples for general observations when Λ is a subshift of finite
type and G is a torus — even when Λ × G is stably weak mixing. In fact, Dolgo-
pyat obtains superpolynomial (but not exponential) decay of correlations for general
observations provided G is semisimple or M is Anosov.

Let φ : M ×G→ Rn be a G-equivariant observation, and define

φN =
∑N−1

j=0 φ ◦ f
j
h.

If φ has mean zero (
∫

φ = 0), then it is an elementary consequence of Theorem 2.2
that the limit limN→∞

1
N

∫

φNφ
T
N exists (see Section 3(b) below).

Definition 2.4 Let φ : M×G→ Rn be a G-equivariant observation with mean zero.
Define its covariance matrix Σ = Σφ = limN→∞

1
N

∫

φNφ
T
N .

Note that Σ is a G-equivariant symmetric positive semidefinite linear operator on
Rn. In fact, there are no further restrictions on Σ, and generically (for a C0-open and
C∞-dense set of C∞ observations φ) Σ is nonsingular (see Nicol et al. [23] and also
Remark 5.4 below).

A stochastic process W : [0,∞) × Ω → Rn is called an n-dimensional Brownian
motion if (i) W (0) = 0 almost surely, (ii) there is an n× n covariance matrix Σ such
that W (t) has distribution N(0, tΣ) for each t ≥ 0, and (iii) for each 0 ≤ t1 < t2 <
· · · < tk, the increments W (t1), W (t2)−W (t1), . . . ,W (tk)−W (tk−1) are independent
random variables. When Σ = In, W (t) is called a standard n-dimensional Brownian
motion. It is a basic property of Brownian motion that W ∈ C([0,∞),Rn) almost
surely. That is, W is a random element with values in C([0,∞),Rn). (This generalizes
the notion of a random variable with values in R.) We can now state our second main
result.
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Theorem 2.5 (Almost sure invariance principle (ASIP)) Let fh : M × G →
M ×G be a weak mixing G-extension of a hyperbolic basic set. Let φ : M ×G→ Rn
be a G-equivariant observation with mean zero and nonsingular covariance Σ.

Then for each c ∈ Rn, there is a one-dimensional Brownian motion W with
variance cTΣc and a sequence of random variables Sc(N) such that the sequences
{cTφN , N ≥ 1} and {Sc(N), N ≥ 1} are equal in distribution and such that for each
δ > 0,

Sc([t]) = W (t) +O(t1/4+δ) as t→∞,

almost surely.
Analogous results hold for principal G-extensions.

Remark 2.6 The error term O(t1/4+δ) is slightly better than the error term
(O(t1/2−δ) that is more usual in statements of the ASIP [10, 28].

There are a number of standard consequences of the ASIP (see for example [28]).
A few of these are listed below.

Corollary 2.7 (Central limit theorem (CLT)) Suppose that fh and φ are as in
Theorem 2.5. Then 1√

N
φN converges in distribution to an n-dimensional normal

distribution with mean zero and covariance Σ as N →∞.

Proof Let W be an n-dimensional Brownian motion with covariance Σ. Let c ∈ Rn
and note that cTW is a one-dimensional Brownian motion with variance cTΣc. It
follows from the ASIP that 1√

N
cTφN converges in distribution to a one-dimensional

normal distribution with mean zero and variance cTΣc. By the Cramer-Wold tech-
nique (see for example [4, Theorem 29.4]), this implies the required result.

Set WN(0) = 0, and

WN(t) = 1√
N
φNt =

1√
N

Nt−1
∑

j=0

φ ◦ f jh, t = 1/N, 2/N, . . .

Linearly interpolating on each interval [(k− 1)/N, k/N ], k ≥ 1, we obtain a sequence
of random elements WN ∈ C([0,∞),Rn).

Corollary 2.8 (Weak invariance principle (WIP)) Suppose that fh, φ and W
are as in Theorem 2.5. Then WN converges weakly in C([0,∞),Rn) to W as N →∞.
(In other words, the measures induced by WN on C([0,∞),Rn) converge weakly to an
n-dimensional Wiener measure.)
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Proof The ASIP implies that cTWN converges weakly to cTW for each c ∈ Rn and
again this is enough to imply the n-dimensional result.

Remark 2.9 Let χ : C([0,∞),Rn) → R be continuous. A consequence [3] of the
WIP is that the sequence of random variables χ(WN) converges weakly to χ(W ).
Taking χ to be evaluation at t = 1, we see that the WIP implies the CLT. (The WIP
is often called the functional CLT.)

As usual, a version of the LIL, together with its functional form which we do not
state explicitly, follows directly from the ASIP:

Corollary 2.10 (Law of the iterated logarithm (LIL)) Suppose that fh and φ
are as in Theorem 2.5. For each c ∈ Rn,

lim sup
N→∞

cTφN√
2N log logN

= σc,

almost surely, where σ2
c = cTΣc.

Remark 2.11 We have proved n-dimensional versions of the CLT and WIP, but our
versions of the ASIP and LIL are restricted to one-dimensional projections cTφN .
We conjecture that the n-dimensional versions of the ASIP and (functional) LIL are
valid under the same hypotheses, but the proof will require a different approach from
the one in this paper (this is already the case for n-dimensional independent random
variables, see [9]).

3 General framework

Suppose that (Y,m) is a probability space and that T : Y → Y is a measure-preserving
endomorphism. In this section, all integrals are over Y with respect to the measure
m. Let U : L2(Y,Rn) → L2(Y,Rn) be the induced isometry (Uφ = φ ◦ T ), with
adjoint operator U∗.

Let F be a Banach space embedded in L2(Y,Rn), with norm ‖ ‖ scaled so that
|φ|2 ≤ ‖φ‖ for all φ ∈ F . We assume (without loss) that the constant functions lie in
F . Define the closed subspace F0 = {φ ∈ F :

∫

φ = 0}. We suppose that U and U∗

restrict to operators on F and that the following property holds:

There are constants C > 0 and ρ ∈ (0, 1) such that (3.1)

‖(U∗)jφ‖ ≤ Cρj‖φ‖ for all j ≥ 1 and φ ∈ F0.
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Remark 3.1 All the results in this section go through with ρj replaced by any pos-
itive function a(j) such that

∑∞
j=1 ja(j) <∞.

The remainder of the section is divided in several subsections. Exponential decay
of correlations is derived in Subsection (a) and is used to define the covariance matrix
in Subsection (b). Subsection (c) consists of a standard Gordin-type argument which
yields information on the nondegeneracy of the covariance matrix, and at the same
time leads to a multiplicative sequence of random variables. The CLT, WIP and
upper LIL are consequences of multiplicativity.

(a) Exponential Decay of Correlations

Proposition 3.2 There exist constants K > 0 and ρ ∈ (0, 1) such that

|
∫

(U jφ)ψT −
∫

φ
∫

ψT | ≤ Kρj|φ|2‖ψ‖,

for all j ≥ 1 and all φ ∈ L2(Y,Rn), ψ ∈ F (Y,Rn).

Proof Note that

∫ (

(U jφ)ψT −
∫

φ
∫

ψT
)

=
∫

U jφ(ψ −
∫

ψ)T =
∫

φ (U∗)j(ψ −
∫

ψ)T

so that

|
∫

U jφψT −
∫

φ
∫

ψT | ≤ |φ|2|(U∗)j(ψ −
∫

ψ)|2.

But

|(U∗)j(ψ −
∫

ψ)|2 ≤ ‖(U∗)j(ψ −
∫

ψ)‖ ≤ Cρj(‖ψ‖+ |
∫

ψ|) ≤ 2Cρj‖ψ‖,

so the result follows with K = 2C.

(b) Covariance matrices

For notational convenience, given φ, ψ ∈ L2(Y,Rn), we write E(φ, ψ) =
∫

φψT ∈
Matn(R). Also, we set φN =

∑N−1
j=0 U jφ.

We prove below that the covariance matrix (see Definition 2.4) is well defined, so
the limit Σφ = limN→∞

1
N

∫

φNφ
T
N exists. We conclude that the covariance matrix Σφ

is a symmetric positive semidefinite n× n matrix.
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Proposition 3.3 If φ ∈ F0, then the series

Σφ = E(φ, φ) +
∞
∑

j=1

E(U jφ, φ) +
∞
∑

j=1

E(φ, U jφ) (3.2)

converges absolutely and

E(φN , φN) = NΣφ +O(1), as N →∞.

Proof The case n = 1 is standard (see for example [8]) and the proof for general n
is similar. We give the details for completeness.

Absolute convergence of the series for Σφ is an immediate consequence of decay
of correlations. Next compute that

E(φN , φN) =
N−1
∑

i,j=0

E(U iφ, U jφ) =
(
∑

i=j

+
∑

i>j

+
∑

i<j

)

E(U iφ, U jφ).

Since E(U iφ, U iφ) = E(φ, φ), the first term reduces to NE(φ, φ). The second term
can be written as

∑

i>j

E(U iφ, U jφ) =
∑

i>j

E(U i−jφ, φ) =
N−1
∑

r=1

(N − r)E(U rφ, φ)

= N
∞
∑

r=1

E(U rφ, φ)−
N−1
∑

r=1

rE(U rφ, φ)−N
∞
∑

r=N

E(U rφ, φ)

It follows from decay of correlations that

∣

∣

∣

N−1
∑

r=1

rE(U rφ, φ)
∣

∣

∣ ≤ K|φ|2‖φ‖
∞
∑

r=1

rρr <∞.

Similarly,

∣

∣

∣N
∞
∑

r=N

E(U rφ, φ)
∣

∣

∣ ≤ N
∞
∑

r=N

Kρr|φ|2‖φ‖ = NρNK|φ|2‖φ‖/(1− ρ)→ 0,

as N → ∞. Hence
∑

i>j E(U iφ, U jφ) = N
∑∞

r=1 E(U rφ, φ) + O(1) as N → ∞.

Similarly,
∑

i<j E(U iφ, U jφ) = N
∑∞

r=1 E(φ, U rφ) + O(1) as N → ∞. We conclude
that E(φN , φN) = NE(φ, φ)+N

∑∞
r=1 E(U rφ, φ)+N

∑∞
r=1 E(φ, U rφ)+O(1) = NΣφ+

O(1) as required.
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(c) Multiplicative sequences and martingales

We recall a standard argument of Gordin [17].

Lemma 3.4 If φ ∈ F0, then φ is cohomologous to an element ψ ∈ F0 such that
U∗ψ = 0. That is, there exists ψ, χ ∈ F0 such that U∗ψ = 0 and

φ = ψ + Uχ− χ.

Moreover, Σφ = Σψ = E(ψ, ψ).

Proof The sequence of partial sums
∑N

j=1(U∗)jφ is a Cauchy sequence in F0 and

hence converges to χ =
∑∞

j=1(U∗)jφ ∈ F0. Note that χ − U∗χ = U∗φ. Now define
ψ = φ+ χ− Uχ ∈ F0 and note that U∗ψ = U∗φ+ U∗χ− χ = 0.

If j ≥ 1, then E(U jψ, ψ) =
∫

U jψ ψT =
∫

ψ
(

(U∗)jψ
)T

= 0, and simi-
larly E(ψ,U jψ) = 0. Hence, by definition (equation (3.2)) of Σψ, we have that
Σψ = E(ψ, ψ).

It remains to prove that Σφ = Σψ. Equivalently, cTΣφc = cTΣψc for all c ∈ Rn.
But cTφN = cTψN + cT (UNχ− χ), so taking L2-norms,

|cTφN |2 ≤ |cTψN |2 + 2|cTχ|2.

Since |cTφN |22 =
∫

cTφNφ
T
Nc = cTE(φN , φN)c, we deduce that 1

N
cTE(φN , φN)c ≤

1
N
cTE(ψN , ψN)c + o(1). Hence cTΣφc ≤ cTΣψc and the reverse inequality follows by

the same argument.

Corollary 3.5 Let φ ∈ F0. Then Σφ = 0 if and only if φ = Uχ−χ for some χ ∈ F0

(that is, φ is a coboundary in F0).

Proof If φ is a coboundary, then φN = UNχ − χ and E(φN , φN) = O(1), so that
Σφ = 0. Conversely, suppose that Σφ = 0 and write φ = ψ+Uχ−χ as in the lemma.
Then 0 = Σφ = E(ψ, ψ) =

∫

ψψT so that ψ = 0 and φ = Uχ− χ.

Remark 3.6 This argument, which directly produces a coboundary in F0, answers
positively a question raised by Bowen [5, p. 39]. The usual approach is to first con-
struct an L2 coboundary and to then prove regularity, see for example [26, Proposi-
tion 4.12]. (The L2 coboundary criterion for degeneracy holds very generally, see [26,
Proposition 4.12] and for a simpler argument [8, Lemma 2.4].)

Definition 3.7 A sequence of random variables {Xj} is multiplicative if
∫

Xj1Xj2 · · ·Xjr = 0 for all j1 > j2 > · · · > jr ≥ 0, r ≥ 1. (3.3)
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Proposition 3.8 Suppose that U∗φ = 0 and let c ∈ Rn. Define Xj = cTU jφ. Then
{Xj} is a multiplicative sequence.

Proof The isometries U on L2(Y,Rn) and L2(Y,R) are related by U(cTψ) = cTUψ
and hence the corresponding adjoints U∗ satisfy U∗(cTψ) = cTU∗ψ. In particular,
U∗X0 = cTU∗φ = 0. Suppose that j1 ≥ · · · ≥ jr−1 > jr. Let ki = ji− jr and compute
that

∫

Xj1Xj2 · · ·Xjr =
∫

Xk1 · · ·Xkr−1X0 =
∫

U{Xk1−1 · · ·Xkr−1−1}X0

=
∫

Xk1−1 · · ·Xkr−1−1U
∗X0 = 0

as required.

Corollary 3.9 Suppose that T : Y → Y is ergodic and φ ∈ F0. Then 1√
N
φN con-

verges in distribution to an n-dimensional normal distribution with mean zero and
covariance matrix Σφ.

Proof By Lemma 3.4, φN = ψN + O(1) where U∗ψ = 0, and Σφ = Σψ. Hence,
without loss of generality we may suppose that U∗φ = 0. In particular, Σφ =

∫

φφT .
By the Cramer-Wold technique it is sufficient to prove the CLT for the sequence

cTU jφ for each vector c ∈ Rn. It follows from Proposition 3.8 that this is a multiplica-
tive sequence, and hence we can apply results of McLeish [22] or Fukuyama [16].

Remark 3.10 Similarly, the WIP holds for multiplicative sequences by [16, 22]. Fur-
thermore, if F ⊂ L∞, it follows from Takahashi [36, Theorem 2] that the upper half
of the law of the iterated logarithm holds for φN . That is, for each c ∈ Rn,

lim sup
N→∞

cTφN√
2N log logN

≤ σc,

almost surely, where σ2
c = cTΣφc.

Remark 3.11 We have not assumed that Σφ is nonsingular in Corollary 3.9 or Re-
mark 3.10.

Remark 3.12 In this section, we have used probabilistic limit theorems for multi-
plicative sequences rather than for martingales. However, the martingale approach
proves useful in Section 6, so we recall this formulation for later reference.

Suppose that T : Y → Y is ergodic and letM be the σ-algebra on Y . Of course, T
and φ are M-measurable and T−1M⊂M. Suppose that U∗φ = 0. The conditional
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expectation E(·|T−1M) is equal to the projection UU∗, from which it follows that
E(φ|T−1M) = 0.

It follows immediately that T−jM is a decreasing sequence of σ-algebras, and that
for all j ≥ 0, φ ◦ T j is T−jM-measurable and E(φ ◦ T j|T−(j+1)M) = 0.

The CLT and WIP can now be recovered by a standard argument, which is implicit
in Gordin [17]. For completeness, we sketch the argument — although the approach
using multiplicative sequences is more elementary.

First embed T : Y → Y in its natural extension ̂T : ̂Y → ̂Y (see [30]). The

observation φ : Y → Rn lifts to an observation ̂φ : ̂Y → Rn, and the joint distributions
of ̂φN are identical to those of φN for N ≥ 1. Let ̂M be the σ-algebra M lifted to
̂Y . Then ̂T j ̂M, j ≥ 1, is an increasing filtration of σ-algebras and moreover for all
j ≥ 1, ̂φ ◦ ̂T−j is ̂T j ̂M-measurable, and E(̂φ ◦ ̂T−j|̂T j−1

̂M) = 0. In other words,

{
∑N

j=1
̂φ ◦ ̂T−j, N ≥ 1} is a stationary martingale.

If T : Y → Y is ergodic, then ̂T : ̂Y → ̂Y is ergodic, so that {
∑N

j=1
̂φ◦ ̂T−j, N ≥ 1}

is an ergodic stationary martingale. It now follows from Billingsley [2, 3] that the

CLT and WIP hold for
∑N

j=1
̂φ ◦ ̂T−j. But

∑N−1
j=0

̂φ ◦ ̂T j =
∑N

j=1
̂φ ◦ ̂T−j ◦ ̂TN so

that the partial sums
∑N−1

j=0 φ ◦ T j,
∑N−1

j=0
̂φ ◦ ̂T j, and

∑N
j=1
̂φ ◦ ̂T−j have the same

distribution. It follows easily that the CLT and WIP hold for φ as N →∞.

4 Exponential decay of correlations

In this section we prove exponential decay of correlations for equivariant observa-
tions. For one-sided shifts this is a direct consequence of the fact that condition (3.1)
of Section 3 holds in our setting (Proposition 4.5). For two-sided shifts (Theorem
4.10) we use the one-sided results and an adaptation of the proof for scalar-valued
observations.

In Subsections (a) and (b), we consider G-extensions of one-sided subshifts and
two-sided subshifts respectively. In Subsection (c) we consider G-extensions of general
hyperbolic basic sets. In Subsection (d) we show that these results extend to a
larger class which includes principal G-extensions over hyperbolic basic sets as well
as examples of partially hyperbolic sets where the G-action is not free.

(a) Extensions of one-sided subshifts

The Ruelle operator Let σ : X+ → X+ denote an aperiodic subshift of finite
type. The Hölder spaces Fθ(X

+,R), 0 < θ < 1, are defined in the usual way, see the
appendix. Given f ∈ Fθ(X+,R), the Ruelle operator Lf : C(X+,R) → C(X+,R) is
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defined by

(Lfw)(x) =
∑

σy=x

ef(y)w(y).

Note that Lf ((v◦σ)w) = vLfw. We recall some basic facts about the Ruelle operator
and refer to the books by Ruelle [32], Bowen [5], or Parry and Pollicott [26] for details.

First of all, f can be ‘normalized’ so that Lf1 = 1. We shall always assume that
f is normalized. It follows immediately that LfU = I where Uw = w ◦ σ. There is
a unique σ-invariant equilibrium state µ such that L∗fµ = µ. Note that Lf acts on
L2 = L2(X+, µ) and that U is an isometry on L2. Moreover, Lf = U∗.

It is clear that the spectrum of Lf lies inside the unit disk and that 1 is an
eigenvalue (since Lf1 = 1). In fact, 1 is a simple eigenvalue and there are no further
eigenvalues on the unit circle. Restricting to Hölder spaces, it can be shown that
Lf : Fθ(X

+,R)→ Fθ(X
+,R) has essential spectral radius θ. Outside this radius, the

spectrum consists of isolated eigenvalues of finite multiplicity. Hence, the spectrum
of Lf , excluding the simple eigenvalue 1, has radius ρ0 ∈ (θ, 1).

The subspace of Fθ(X
+,R) consisting of functions w with

∫

X+ w dµ = 0 is pre-
served by Lf , and on this subspace, Lf has spectral radius ρ0. Hence, for any
ρ ∈ (ρ0, 1) there is a constant C > 0 such that ‖Ljfw‖θ ≤ Cρj‖w‖θ for all j ≥ 1

and w ∈ Fθ(X+,R) with
∫

X+ w dµ = 0.
Similarly, Lf : Fθ(X

+,Rn) → Fθ(X
+,Rn) has an eigenvalue 1 of multiplicity n

(the eigenfunctions are the constant functions) and the reminder of the spectrum lies
in the disk of radius ρ0. Again, ‖Ljfw‖θ ≤ Cρj‖w‖θ, for all j ≥ 1 and w ∈ Fθ(X+,Rn)

with
∫

X+ w dµ = 0.
Therefore, it follows from [5, 32, 26] that the Banach space F = Fθ(X

+,Rn) satis-
fies the property (3.1) required in Section 3 and that exponential decay of correlations
holds for Hölder observations.

The equivariant Ruelle operator Let G be a compact Lie group with Haar
measure ν. Suppose that G acts (orthogonally) on Rn and identify G with a subset
of O(n). For f ∈ Fθ(X

+,R) normalized as above, and h ∈ Fθ(X
+, G), define the

equivariant Ruelle operator Lf,h : Fθ(X
+,Rn)→ Fθ(X

+,Rn) by

Lf,hw = Lf (h
−1 · w).

The operator Lf,h was introduced and studied extensively by Parry and Pollicott [25],
see also [26]. Again, Lf,h has spectral radius at most 1 and essential spectral radius θ.

We define the skew product σh : X+ × G → X+ × G by σh(x, g) = (σx, gh(x)).
The product measure m = µ × ν is invariant under σh. Recall that σh is weak
mixing if the only measurable eigenfunctions are the constants (that is, the equation
φ ◦ σh = αφ a.e., where φ : X+ × G → C is measurable and α ∈ C, has only
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the ‘trivial’ solutions α = 1 and φ constant). It is a consequence of a Livšic-type
regularity theorem [24] that measurable solutions φ have Hölder continuous versions
(and hence σh is weak mixing if and only if it is topologically weak mixing).

In the remainder of this subsection, we suppose that f ∈ Fθ(X
+,R) and h ∈

Fθ(X
+, G) are such that σh is weak mixing.

Corollary 4.1 Suppose that FixG = {0}. Then Lf,h : Fθ(X
+,Rn) → Fθ(X

+,Rn)
has spectral radius less than one.

Proof (cf. [26, Theorem 8.3]) Since Lf,h has essential spectral radius θ < 1, it is suf-
ficient to rule out the existence of eigenvalues α ∈ C with |α| = 1. Such an eigenvalue
leads to the equation Lf,hw = αw and by a standard convexity argument [26, p. 130],
h(x)w(σx) = α−1w(x). Equivalently, φ ◦ σh = α−1φ where φ(x, g) = gw(x). By
definition of weak mixing, φ is constant. Since FixG = {0} we deduce that w = 0.

Write Rn = FixG ⊕ (FixG)⊥. Then Fθ(X
+,Rn) = Fθ(X

+,FixG) ⊕
Fθ(X

+, (FixG)⊥), and Lf,h preserves the splitting. Moreover, Lf,h = Lf on the
first summand, and Corollary 4.1 applies to the second summand. Hence there is the
eigenvalue 1 of multiplicity equal to the dimension of FixG and, provided σh is weak
mixing, the remainder of the spectrum of Lf,h lies within a disk of radius ρ0 < 1.

Corollary 4.2 Let ρ ∈ (ρ0, 1). Then there is a constant C (that depends only on
θ, ρ, f and h) such that

‖Ljf,hw −
∫

X+×G g · w dm‖θ ≤ C‖w‖θ ρj,

for all j ≥ 1 and all w ∈ Fθ(X+,Rn).

Proof For the FixG components of w, we have Ljf,hw = Ljfw →
∫

X+ w ex-

ponentially quickly, as in the nonequivariant case. For the (FixG)⊥ components,
∫

X+×G g · w dm = 0 and we apply Corollary 4.1.

Remark 4.3 Viewed as an operator on L2(X+,Rn), Lf,h is the adjoint of the isom-

etry ̂U defined by ̂Uv = hv ◦ σ.

The one sided shift σh : X+ × G → X+ × G induces an isometry U : L2
G(X+ ×

G,Rn) → L2
G(X+ × G,Rn) defined by Uφ = φ ◦ σh. We have a natural bijective

isometry L2
G(X+ × G,Rn) ∼= L2(X+,Rn), defined by mapping φ ∈ L2

G(X+ × G,Rn)

to ̂φ ∈ L2(X+,R), where φ(x, g) = ĝφ(x), for all (x, g) ∈ X+ × G. Under this

natural isomorphism, the isometry U of L2
G(X+ ×G,Rn) determines the isometry ̂U

of L2(X+,Rn) defined above. The next result is an immediate consequence of these
observations.
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Proposition 4.4 The adjoint U? of U : L2
G(X+×G,Rn)→ L2

G(X+×G,Rn) is given

by ̂U∗ = ̂U?. (That is, given φ ∈ L2
G(X+ ×G,Rn), ̂U∗φ = Lf,ĥφ.)

Let FG
θ (X+×G,Rn) denote the space of equivariant observations φ(x, g) = gv(x)

where v ∈ Fθ(X+,Rn), and define ‖φ‖θ = ‖v‖θ. Just as above, we have the natural
‖ ‖θ preserving isomorphism FG

θ (X+ × G,Rn) ∼= Fθ(X
+,Rn). The operators U , U∗

on L2
G(X+ ×G,Rn) restrict to operators on FG

θ (X+ ×G,Rn).

Proposition 4.5 Let C > 0 and ρ ∈ (0, 1) be as in Corollary 4.2. Suppose that
φ ∈ FG

θ (X+ ×G,Rn) and
∫

φ = 0. Then

‖(U∗)jφ‖θ ≤ Cρj‖φ‖θ, for all j ≥ 1,

Proof It follows from Corollary 4.2 that ‖Ljf,ĥφ‖θ ≤ Cρj‖̂φ‖θ. Hence

‖(U∗)jφ‖θ = ‖Ljf,ĥφ‖θ ≤ Cρj‖̂φ‖θ = Cρj‖φ‖θ.

It follows that F = FG
θ (X+ × G,Rn) satisfies the requirement (3.1) of Section 3.

In particular, we have established exponential decay of correlations for extensions of
one-sided subshifts:

Theorem 4.6 Let C > 0 and ρ ∈ (0, 1) be as in Corollary 4.2. Then

∣

∣

∫

φ ◦ σjh ψ
T −

∫

φ
∫

ψT
∣

∣ ≤ C|φ|2 ‖ψ‖θ ρj,

for all j ≥ 1, and for all φ ∈ L2
G(X+ ×G,Rn), ψ ∈ FG

θ (X+ ×G,Rn).

(b) Extensions of two-sided subshifts

Let σ : X → X be an aperiodic two-sided subshift of finite type. The Hölder spaces
Fθ(X,Rn), Fθ(X,G), θ ∈ (0, 1) are defined as in the one-sided case, see Appendix A.
Let f ∈ Fθ(X,R) be a Gibbs potential. It is known [26] that f is cohomologous to

a potential ˜f ∈ Fθ1/2(X+,R). We denote the corresponding equilibrium states on
X, X+ by µ, µ̃ respectively. If φ : X+ → R is µ̃-measurable, then the natural map
induced by φ on X is µ-measurable and the integrals over X, X+ coincide (if they
exist).

We consider skew products σh : X × G → X × G induced by h ∈ Fθ(X,G), and
write σjh(x, g) = (σjx, ghj(x)) for j ∈ Z. In particular, hj(x) = h(x)h(σx) · · ·h(σj−1x)
when j ≥ 1.
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Suppose that G acts orthogonally on Rn. Again, there is a natural one-to-one
correspondence between equivariant observations φ : X × G → Rn and functions
̂φ : X → Rn. We define the spaces of Hölder equivariant observations FG

θ (X ×
G,Rn) ∼= Fθ(X,Rn) just as we did in the one-sided case.

The following result enables us to apply results for one-sided subshifts.

Lemma 4.7 Suppose that ̂φ ∈ Fθ(X,Rn), h ∈ Fθ(X,G), where 0 < θ < 1. Then

there exist functions ˜h,̂M ∈ Fθ1/2(X,G) and ̂ψ, χ ∈ Fθ1/4(X,Rn) such that ̂ψ and ˜h
depend only on future variables and

h = ̂M˜h(̂M ◦ σ)−1, ̂M−1
̂φ = ̂ψ + χ− ˜hχ ◦ σ.

Moreover, σ
˜h is weak mixing if and only σh is weak mixing.

Proof The construction of ˜h and ̂M can be found in Parry and Pollicott [26, Ap-

pendix II]. The construction of ̂ψ and χ is a simple adaptation of the standard proof

where ˜h is absent and is proved in Appendix A.

Let φ, ψ : X × G → Rn be the equivariant observations corresponding to ̂φ, ̂ψ
respectively. We define M : X ×G→ G by M(x, g) = ĝM(x)g−1. For N ≥ 1, define
ψN =

∑N−1
j=0 ψ ◦ σj

˜h
.

Corollary 4.8 φN = MψN +O(1).

Proof It suffices to show that ̂φN = ̂M ̂ψN + O(1). Since hj = ̂M˜hj(̂M ◦ σj)−1, we
have

̂U j
̂φ = hj ̂φ ◦ σj = ̂M˜hj(̂M ◦ σj)−1

̂φ ◦ σj = ̂M˜hj(̂M
−1
̂φ) ◦ σj

= ̂M˜hj(̂φ ◦ σj + χ ◦ σj − ˜h ◦ σjχ ◦ σj+1)

= ̂M ̂U j
̂ψ + ̂M(˜hjχ ◦ σj − ˜hj+1χ ◦ σj+1).

The result follows.

Lemma 4.9 Suppose that h ∈ Fθ(X+, G) ↪→ Fθ(X,G) and that σh is weak mixing.
Let ρ ∈ (ρ0, 1) where ρ0 is as in Corollary 4.2. Then there is a constant C > 0 such
that

∣

∣

∫

φ ◦ σjh ψ
T −

∫

φ
∫

ψT
∣

∣ ≤ C‖φ‖θ ‖ψ‖θ(ρ1/3)j, (4.1)

for all j ≥ 1, and for all φ, ψ ∈ FG
θ (X ×G,Rn).
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Proof We follow the proof of [26, Proposition 2.4], taking into account the extra
complications due to the presence of h. We may restrict to the case FixG = 0
(since when G acts trivially we are in the nonequivariant case which is proved in [26,
Proposition 2.4]). In particular, φ and ψ automatically have mean zero. Since

∫

X×G φ◦
σjh ψ

Tdm =
∫

X
hjv ◦ σj wTdµ, we reduce to proving that

|
∫

X
hjv ◦ σj wTdµ| ≤ C‖v‖θ ‖w‖θ(ρ1/3)j.

Following [26], for each k ≥ 1, we choose vk depending only on coordinates xi,
|i| ≤ k, such that |vk|∞ ≤ |v|∞ and |v − vk|∞ ≤ |v|θ θk. Similarly, choose wk for
w. (For example, choose ϕk : X → X depending only on coordinates xi, |i| ≤ k,
and such that (ϕk(x))i = xi for |i| ≤ k. Define vk(x) = v(ϕk(x)) and note that
|v − vk|∞ ≤ vark(v).) Write

∫

X
hjv ◦ σj wTdµ =

∫

X
hj(v − vk) ◦ σj wTdµ+

∫

X
hjvk ◦ σj (w − wk)Tdµ

+
∫

X
hjvk ◦ σj wTk dµ.

The first two terms are estimated just as in [26]. The first term is dominated by
|hj(v − vk) ◦ σj|∞|w|∞ ≤ |v|θ|w|∞θk. Similarly, the second term is dominated by
|v|∞|w|θθk. Hence

|
∫

X
hjv ◦ σj wTdµ| ≤ (|v|θ |w|∞ + |v|∞ |w|θ)θk + |Ijk|, (4.2)

where Ijk =
∫

X
hjvk ◦ σj · wTk dµ.

Since µ is σ-invariant,

Ijk =
∫

X
hj ◦ σkvk ◦ σk ◦ σj · wTk ◦ σkdµ.

Note that hj+k = hkhj ◦ σk = hjhk ◦ σj so that hj ◦ σk = h−1
k hjhk ◦ σj. It follows that

Ijk =
∫

X
hj(hkvk ◦ σk) ◦ σj · (hkwk)T ◦ σkdµ.

By definition of vk, wk and by our assumption on h, the integrand depends only on
future coordinates. Therefore, it follows from Theorem 4.6 that we can choose a
constant C1 ≥ 1 such that

|Ijk| ≤ C1 |hkvk ◦ σk|∞ ‖hkwk ◦ σk‖θ ρj.

But |hkvk ◦ σk|∞ = |vk|∞ ≤ |v|∞ and we claim that

‖hkwk ◦ σk‖θ ≤ C2|w|∞θ−2k,
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where C2 ≥ 1 depends only on h and θ. Hence

|Ijk| ≤ C|v|∞|w|∞θ−2kρj, (4.3)

where C = C1C2. To verify the claim, compute that

‖hkwk ◦ σk‖θ = |hkwk ◦ σk|∞ + |hkwk ◦ σk|θ ≤ |wk|∞ + |wk ◦ σk|θ + |hk|θ|wk|∞,
and use the inequalities |wk|∞ ≤ |w|∞, |wk ◦ σk|θ ≤ θ−k|wk|θ ≤ θ−k2θ−k+1|w|∞, and
|hk|θ ≤ |h|θ + · · · + |h ◦ σk−1|θ ≤ |h|θ(1 + · · · + θ−k+1) ≤ |h|θθ−k+1/(1 − θ). This
establishes the claim.

Combining (4.2) and (4.3), we have

|
∫

X
hjv ◦ σj wTdµ| ≤ C(|v|θ |w|∞ + |v|∞ |w|θ)θk + C|v|∞ |w|∞θ−2kρj.

Now, let r > 1 be such that ρr = θ and set k = j/3r to obtain the required result.

Theorem 4.10 Suppose that h ∈ Fθ(X,G) and that σh is weak mixing. There are
constants C > 0 and τ ∈ (0, 1) such that

∣

∣

∫

φ ◦ σjh ψ
T −

∫

φ
∫

ψT
∣

∣ ≤ C ‖φ‖θ1/2‖ψ‖θ1/2 τ j,

for all j ≥ 1, and for all φ, ψ ∈ FG
θ (X ×G,Rn).

Proof Again, we may suppose that FixG = 0 so that it suffices to estimate
∫

φ ◦
σjh ψ

T =
∫

̂U j ̂φ̂ψT .

By Lemma 4.7, we may write h = ̂M˜h(̂M ◦ σ)−1 where ̂M,˜h ∈ Fθ1/2(X,G) and ˜h

depends only on future coordinates. Since hj = ̂M˜hj(̂M ◦ σj)−1, we have

hj ̂φ ◦ σj ̂ψT = ̂M˜hj(̂M
−1
̂φ) ◦ σj ̂ψT = ̂M˜hĵΦ ◦ σj ̂ΨT

̂MT = ˜hĵΦ ◦ σj ̂ΨT ,

where ̂Φ = ̂M−1̂φ, ̂Ψ = ̂M−1 ̂ψ and Φ,Ψ ∈ FG
θ1/2(X ×G,Rn). Hence

∫

φ ◦ σjh ψ
T =

∫

̂U j
̂φ̂ψT =

∫

˜hĵΦ ◦ σj ̂ΨT =
∫

Φ ◦ σj
˜h

ΨT .

Note that Φ,Ψ ∈ FG
θ1/2(X ×G,Rn).

Since ˜h depends only on future coordinates, it follows from Lemma 4.9 that there
are constants D > 0, τ ∈ (0, 1) such that

|
∫

φ ◦ σjh ψ
T | ≤ D‖Φ‖θ1/2‖Ψ‖θ1/2τ j = D‖̂Φ‖θ1/2‖̂Ψ‖θ1/2τ j.

Finally, note that there is a constant K > 1 depending only on M and θ such that

|̂Φ|θ1/2 ≤ K|φ|θ1/2 , |̂Ψ|θ1/2 ≤ K|ψ|θ1/2 .

The result follows with C = DK2.

Remark 4.11 Actually, Theorem 4.10 holds for all φ, ψ ∈ FG
θ1/2(X × G,Rn). (Of

course, h must lie in Fθ(X,G).)
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(c) Extensions of Axiom A diffeomorphisms

Suppose that Λ ⊂ M is a hyperbolic basic set for a diffeomorphism f : M → M ,
where M is a compact manifold. Let ρ : Λ→ R be Hölder continuous and µΛ denote
the corresponding equilibrium state on Λ. Bowen [5] proved that there is a two-sided
subshift of finite type σ : X → X and a Hölder semiconjugacy π : X → Λ such that
πσ = fπ. Further, π is an isomorphism with respect to µΛ and the equilibrium state
µX on X defined by the potential ρπ.

Let G be a compact connected Lie group with Haar measure ν. Let S : Λ×G→
Λ×G be the compact group extension defined by the Hölder map h : Λ→ G. Then
hπ : X → G is Hölder and defines a group extension σhπ : X × G → X × G. Note
that Π = π × id : X ×G→ Λ×G defines a semiconjugacy between σhπ and S. Also
Π is an isomorphism with respect to the measures mX = µX × ν and mΛ = µΛ × ν.
In particular, S is weak mixing if and only if σhπ is weak mixing.

It is therefore immediate that exponential decay of correlations for subshifts im-
plies the same for hyperbolic basic sets, proving Theorem 2.2.

(d) Principal extensions

The previous results extend to principal extensions. Specifically, suppose that M is
a compact G-manifold, F : M → M is a G-equivariant diffeomorphism and Ω ⊂ M
is a G- and F -invariant subset of M . We assume that G acts freely on Ω. It follows
by standard results on smooth G-actions that G acts freely on an open G-invariant
neighborhood U of Ω (see Bredon [6]). If we choose an open G-invariant neighborhood
V of Ω, V ⊂ U , such that F (V ) ⊂ U , then F induces a smooth embedding f : V/G ⊂
U/G and Λ = Ω/G is then a compact f -invariant subset of U/G. We assume that
Λ is a hyperbolic basic set for f . Equivalently, and more naturally, we may assume
that Ω is a partially hyperbolic subset of M with center foliation given by the G-orbits
(see [13]).

Choose a Hölder continuous potential ρ on Λ and let µΛ denote the corresponding
equilibrium state on Λ. (Equivalently, we could have chosen a Hölder continuous
G-invariant potential on Ω.) As usual, we assume that f is topologically mixing and
therefore is µΛ-mixing. Let m denote the Haar extension [13] of µΛ to Ω. Extend m by
zero to all of M . With this convention, F is measure preserving. We further assume
that F is weak mixing. Just as in the case of skew extensions, it is straightforward to
verify that weak mixing holds generically (we refer to [15, 13] for a precise description
of allowable perturbations). Note that if the principal bundle Ω → Λ admits no
principal H-subbundles, for any compact Lie subgroup H of G, then F is always
mixing (cf. [27, 7]).

Following the case of skew extensions of Axiom A diffeomorphisms, we choose a
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two-sided subshift of finite type σ : X → X and a Hölder semiconjugacy π : X → Λ
such that πσ = fπ. Let µX denote the equilibrium state on X defined by the Gibbs
potential ρπ.

Let p : Ω → Λ denote the orbit map. Recall that the pullback p?X by p of X is
defined to be p?X = {(x, ω) ∈ X × Ω : π(x) = p(ω)}. Clearly, G acts freely on p?X
and the natural projection P : p?X → X gives p?X the structure of a G-principal
Hölder bundle over X. Since X is totally disconnected, p?X is a trivial bundle and
so we may write p?X = X × G. The map H : p?X → p?X induced by F and σ is
G-equivariant and hence we can write H = σh : X × G → X × G for some Hölder
continuous skewing map h : X → G. Let Π : X × G → Ω denote the corresponding
projection on Ω. Suppose φ : Ω→ Rn is a Hölder continuous equivariant observation
on Ω. Then φ lifts to the Hölder continuous equivariant observation φΠ : X×G→ Rn.
Everything now goes through just as in the skew extension case and so it follows that
Theorem 2.2 holds for principal extensions.

Remarks 4.12 (1) Note that the result on principal extensions holds even though
equivariant observations on Ω do not correspond to observations on Ω/G. That is,
Rn-valued maps on Ω/G do not determine equivariant maps on Ω unless p : Ω→ Ω/G
is a trivial G-principal bundle.

(2) Theorem 2.2 continues to hold if we can construct equivariant Hölder surjec-
tions of twisted products X ×H G onto Ω. This is relevant for generalizations of our
main results to more general partial hyperbolic G-invariant sets for which the action
of G is no longer free (see [13]). For example, if H ⊂ G is a finite group and Λ is an
H-invariant hyperbolic set for an H-equivariant diffeomorphism, then Theorem 2.2
applies to the twisted product Λ×H G.

5 Covariance matrix for equivariant observations

In Section 3(b), we defined the covariance matrix Σ = Σφ within a quite gen-
eral framework. In particular, we used decay of correlations to show that Σ =
limN→∞

1
N

∫

φNφ
T
N .

In the specific context of equivariant observations on a compact group extension,
the covariance matrices have additional structure. Moreover, we have good necessary
and sufficient conditions for nondegeneracy, cf. [23]. We recall these results now
within the context of G-extensions of one-sided subshifts.

As in Section 4(a), we fix f ∈ Fθ(X+,R) and h ∈ Fθ(X+, G), and suppose that
σh is weak mixing.

Proposition 5.1 Let φ ∈ FG
θ (X+ × G,Rn) with

∫

X+×G φ dm = 0. Define the co-
variance Σ = Σφ as in Proposition 3.3. Then Σ commutes with the action of G
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on Rn.

Proof By Proposition 3.3, Σ = limN→∞
1
N

∫

φNφ
T
Ndm. Equivariance of φ means that

φ(x, ag) = aφ(x, g) for all a ∈ G. It follows from invariance of Haar measure that
∫

φNφ
T
Ndm = a(

∫

φNφ
T
Ndm)aT = a(

∫

φNφ
T
Ndm)a−1 for all a ∈ G. Hence Σ = aΣa−1

for all a ∈ G.

Recall that Σ is degenerate if det Σ = 0.

Remark 5.2 If G acts irreducibly on Rn, then the real version of Schur’s lemma [20,
Theorem 2, p. 119] states that the space of commuting linear maps on Rn is a real
division ring and hence isomorphic toR, C orH. Positive semidefiniteness implies that
Σ is a real scalar multiple of the identity. It follows that when G acts irreducibly, Σ is
degenerate if and only if Σ = 0. Consequently, by Corollary 3.5, if G acts irreducibly,
then Σ is degenerate if and only if φ is a Hölder coboundary.

Proposition 5.3 The covariance matrix Σ is degenerate if and only if there is an
irreducible subspace V ⊂ Rn, with orthogonal projection πV : Rn → V , such that πV φ
is a Hölder coboundary.

Proof Degeneracy means that dim ker Σ ≥ 1. Since ker Σ is G-invariant, there is a
G-irreducible subspace V ⊂ ker Σ. Restricting to V , we have Σ|V = 0. But Σ|V is
the covariance matrix corresponding to the sequence of random variables 1√

N
(πV φ)N .

Since V is G-invariant, πV φ is a G-equivariant observation and we remain within the
setting of Section 3. Now apply Corollary 3.5.

Remark 5.4 Nicol et al. [23, Lemma 5.8] show that typically πV φ is not a cobound-
ary for any projection πV . Indeed, it is sufficient to perturb φ at one point.
Hence, we conclude that for an open and dense subset of equivariant observations
φ ∈ FG

θ (X × G,Rn), the covariance matrix Σ is positive definite. Furthermore, Σ is
a general symmetric positive definite G-equivariant n× n matrix.

6 Almost sure invariance principle

In Subsection (a) we prove the ASIP for extensions of two-sided shifts. This imme-
diately leads to similar results for (principal) extensions of hyperbolic sets, as well as
for extensions of one-sided shifts. These are mentioned in Subsection (b).

Throughout this section, the statement {AN , N ≥ 1} =d {BN , N ≥ 1} means
that the two sequences are equal in distribution. This is equivalent to demanding
equality of the finite distributions {Aj, j = 1, . . . , N} and {Bj, j = 1, . . . , N} for all
N ≥ 1 [19, Theorem 3.29].
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(a) Extensions of two-sided subshifts

Suppose that σ : X → X is a two-sided subshift of finite type and that h ∈ Fθ(X,G)
induces a weak mixing G-extension σh : X × G → X × G. Suppose also that φ ∈
FG
θ (X ×G,Rn) has mean zero and nonsingular covariance Σ.

Recall that if ̂M : X → G, then M : X × G → G is defined by M(x, g) =

ĝM(x)g−1.

Lemma 6.1 There exists ˜h ∈ Fθ1/2(X,G) such that σ
˜h : X × G → X × G is weak

mixing, and there exists ψ ∈ FG
θ1/4(X × G,Rn) with mean zero, and ̂M : X → G

θ1/2-Hölder continuous, such that

(i) {ψN =
∑N−1

j=0 ψ ◦ σj
˜h
, N ≥ 1} is a stationary, ergodic, essentially bounded (Rn-

valued) martingale,

(ii) φN = MψN +O(1), and
∫

ψψT = Σψ = Σ.

Proof Since the class of G-extensions of two-sided subshifts is closed under time-
reversal, it is sufficient to consider reverse time partial sums φ−N =

∑N−1
j=0 φ ◦ σ−jh .

Construct ˜h and ̂ψ depending only on future coordinates as in Lemma 4.7. As in
Corollary 4.8, we can write φ−N = Mψ−N + O(1). By Lemma 3.4, we can replace ψ
by a new ψ depending only on future coordinates and satisfying U∗ψ = 0. (As usual,
the adjoint U∗ corresponds to the isometry U : L2(X+ ×G)→ L2(X+ ×G) induced
by σ

˜h).
Define the sequence

Yj = ψ ◦ σ−j
˜h
, Fj = σj

˜h
(M+ ×G),

whereM+ is the σ-algebra on X+ lifted up to X. Then {Fj : j ∈ Z} is an increasing

sequence of σ-algebras. We claim that {ψ−N =
∑N−1

j=0 Yj,FN , N ∈ Z} is a martingale.
That is, Yj is Fj-measurable and E(Yj|Fj−1) = 0 for all j. By stationarity, it suffices
to prove these for j = 0. Since ψ depends only on future coordinates, Y0 is F0-
measurable. Since in addition ˜h depends only on future coordinates, E(ψ|σ−1

˜h
F0) = 0

by Remark 3.12, proving the claim.

Proposition 6.2 Let c ∈ Rn and set µ2
c = cT

∫

φφT c. Define Xj = (1/µc)c
Tφ ◦ σjh,

and define s2
N =

∑N−1
j=0 X2

j . Then for any δ > 0,

s2
N = N +O(N1/2+δ) almost surely.
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Proof Let φ′ = φφT −
∫

φφT . Then φ′ : X+ × G → Matn(R) is Hölder continuous
with mean zero and is G-equivariant with respect to the obvious representation of
G on Matn(R). It follows from Lemma 6.1 that φ′N = M ′ψ′N + O(1) where ψ′N is a
stationary ergodic Hölder continuous martingale. By Proposition B.2 (strong law of
large numbers for martingales), φ′N = O(N1/2+δ) almost surely.

Now compute that almost surely

s2
N =

N−1
∑

j=0

X2
j = (1/µ2

c)c
T (φφT )N c = (1/µ2

c)[c
Tφ′Nc+Nµ2

c ] = N +O(N1/2+δ),

as required.

Proposition 6.3 If M : X × G → G is measurable, then {MφN , N ≥ 1} =d

{φN , N ≥ 1}.

Proof Fix N ≥ 1. It suffices to show that the finite sequences {Mφj, j =
1, . . . , N} =d {φj, j = 1, . . . , N}. Since the sequences are G-equivariant, their dis-
tributions are determined by G-invariant subsets I ⊂ (Rn)N . But since M ∈ G,
it is immediate that for such subsets (φ1, . . . , φN) and (Mφ1, . . . ,MφN) have equal
probability of lying in I.

Theorem 6.4 For any c ∈ Rn, there is a one-dimensional Brownian motion W with
variance cTΣc and a sequence of random variables Sc(N) (defined on the same space)
such that {cTφN , N ≥ 1} =d {Sc(N), N ≥ 1} and for every δ > 0,

Sc([t]) = W (t) +O(t1/4+δ) almost surely.

Proof Set σ2
c = cTΣc. Rescaling variances to 1, it is equivalent to prove the result

with cTφ replaced by (1/σc)c
Tφ and W replaced by (1/σc)W which is a standard

Brownian motion on the line.
Let ψ, ˜h be as in Lemma 6.1. Define Xj = (1/σc)c

Tψ ◦ σj
˜h
. Then

{
∑N−1

j=0 Xj, N ≥ 1} is a (stationary ergodic) martingale.
Since Xj is stationary and continuous, hypothesis (a) of Theorem B.3 is trivially

satisfied. Hypothesis (b) follows from Proposition 6.2. Combining Theorems B.1
and B.3, we have that {cTψN , N ≥ 1} =d {S ′c(N), N ≥ 1} and S ′c([t]) = W (t) +
O(t1/4+δ) almost surely.

By Proposition 6.3, {MψN} =d {ψN}. Altogether, using Lemma 6.1, we have

cTφN = cTMψN +O(1) (6.1)

{cTMψN , N ≥ 1} =d {S ′c(N), N ≥ 1}
S ′c([t]) = W (t) +O(t1/4+δ) almost surely. (6.2)
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As in [28, p. 23], the probability space on which S ′c(N) and W are defined may
be enlarged so as to support a copy in distribution of {cTφN , cTMψN , N ≥ 1}. This
can be done in such a way that equations (6.1) and (6.2) remain valid, while cTMψN
is identified with S ′c(N). The result follows.

(b) Extensions of hyperbolic sets and one-sided subshifts

Suppose that Λ ⊂M is a basic hyperbolic set, π : X → Λ its coding by a two sided-
shift (as in Section 4(c)), and Π = π× id : X ×G→ Λ×G. If φ : Λ×G→ Rn, then

define ̂φ = φ ◦ Π : X × G → Rn. Since π is an isomorphism of probability spaces,
{φN} =d {̂φN}, and therefore the ASIP for φ follows from Theorem 6.4 applied to ̂φ.

As in Section 4(d), we can reduce the case of principal extensions to extensions
of a basic hyperbolic set. Therefore, Theorem 6.4 holds also for principal extensions.
This completes the proof of Theorem 2.5.

Finally, it is clear that, by taking the associated two-sided shift, the ASIP (to-
gether with all of its consequences) for extensions of two-sided subshifts implies the
corresponding results for extensions of one-sided subshifts.

Remark 6.5 The CLT, WIP and upper LIL for one-sided subshifts can be proved
directly within the abstract framework of Section 3. However, our proof of the ASIP
(and the full LIL) for one-sided subshifts relies on the ASIP for two-sided subshifts
and hence on the time-reversal step at the beginning of the proof of Lemma 6.1.

Similarly, our proof of the ASIP for two-sided subshifts relies on the fact that
the class of such dynamical systems is closed under time-reversals. We note that the
martingale approach of Conze and Le Borgne [8] (in the setting of geodesic flows on
spaces of constant negative curvature) relies also on this time-reversal property [8,
Remarques 2.7(1)].

Appendix A Hölder spaces

Suppose that σ : X → X is a two-sided subshift of finite type. If f : X → Rn is
continuous, we define for each N ≥ 1, the N ’th variation varN f = sup |f(x)− f(y)|,
where the supremum is over all x, y ∈ X with xi = yi for |i| < N . If θ ∈ (0, 1), define
|f |θ = supN≥1 varN f/θ

N . Then Fθ(X,R) = {f ∈ C(X,Rn) : |f |θ < ∞} is a Banach
space in the Hölder norm ‖f‖θ = |f |∞ + |f |θ.

Similarly, we define Fθ(X
+,Rn) for the one-sided subshift σ : X+ → X+ induced

by the two-sided subshift σ. There is a natural embedding of Fθ(X
+,Rn) inside

Fθ(X,Rn). Indeed, we can identify functions of Fθ(X
+,Rn) with those functions in

Fθ(X,Rn) that depend only on future coordinates.
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We also define the Hölder spaces Fθ(X,O(n)) as subspaces of Fθ(X,Matn(R)).

Lemma A.1 Let σ : X → X be a two-sided subshift. Suppose that v ∈ Fθ(X,Rn)
and h ∈ Fθ(X,O(n)), where θ ∈ (0, 1). Suppose further that h depends only on future
coordinates.

Then there exists w ∈ Fθ1/2(X,Rn) depending only on future coordinates and χ ∈
Fθ1/2(X,Rn), such that

v = w + χ− h · χ ◦ σ.

Proof This result is a minor modification of [33, 5]. Our proof follows [26, Propo-
sition 1.2]. Fix a map ϕ : X → X that depends only on future coordinates. Define

χ(x) =
∞
∑

n=0

(

hn(x)v(σnx)− hn(x)v(σnϕx)
)

.

(This series converges, since hn is orthogonal and varn(v) ≤ |v|θ θn.)
Compute that v = w + χ− h · χ ◦ σ where

w(x) =
∞
∑

n=0

(

hn(x)v(σnϕx)− hn+1(x)v(σnϕσx),

which clearly depends only on future coordinates.
It remains to show that χ (and hence w) lies in Fθ1/2(X,Rn). First note that

|χ(x)− χ(y)| ≤ A(x, y) + A(ϕx, ϕy) +B(x) +B(y),

where

A(x, y) =
N
∑

n=0

|hn(x)v(σnx)− hn(y)v(σny)|, B(x) =
∞
∑

n=N+1

|v(σnx)− v(σnϕx)|,

for all x, y.
We claim that there is a constant K > 0 such that (i) B(x) ≤ KθN for all N ≥ 1

and x ∈ X, and (ii) A(x, y) ≤ KθN for all N ≥ 1 and x, y ∈ X with xi = yi for
|i| ≤ 2N . It then follows that var2N(χ) ≤ 4KθN for all N ≥ 1, proving the result.

Now, |v(σnx)− v(σnϕx)| ≤ varn(v) ≤ |v|θ θn, for all n ≥ 1. Hence

B(x) ≤ |v|θ θ
(1− θ)

θN ,

verifying (i).

24



Next, A(x, y) ≤
∑N

n=0 |v(σnx)− v(σny)| + |v|∞
∑N

n=0 |hn(x)− hn(y)|. Since xi =
yi for |i| ≤ 2N , we have that (σjx)i = (σjy)i for |i| ≤ 2N − j. It follows that
|v(σnx)− v(σny)| ≤ var2N−n(v) ≤ |v|θ θ2N−n. Also

|hn(x)− hn(y)| ≤ |h(x)− h(y)|+ |h(σx)− h(σy)|+ · · ·+ |h(σn−1x)− h(σn−1y)|
≤ |h|θ(θ2N + θ2N−1 + · · ·+ θ2N−n+1)

≤ |h|θ θ2N−n+1/(1− θ).

Hence

A(x, y) ≤
( |v|θ

1− θ
+
|v|∞|h|θ θ
(1− θ)2

)

θN ,

verifying (ii).

Appendix B Skorokhod representation

We will require the following embedding theorem for martingales which generalizes
the Skorokhod representation theorem [34] for sums of independent random variables.

Theorem B.1 ( [18, Theorem A.1] ) Let {SN =
∑N−1

j=0 Xj, N ≥ 1} be a square-
integrable (R-valued) martingale. Then there exists a probability space supporting
a Brownian motion W and a sequence of nonnegative variables τ0, τ1, . . . with the
following properties:

If TN =
∑N−1

j=0 τj, W (TN) =
∑N−1

j=0 Yj and GN is the σ-field generated by {W (Tj) :
j = 0, . . . , N − 1} and {W (t) : 0 ≤ t ≤ TN}, then

(i) {SN : N ≥ 1} =d {W (TN) : N ≥ 1},

(ii) TN is GN -measurable for each N ≥ 1,

(iii) There is a constant C > 0 such that E(τ 2
N) ≤ CE(Y 4

N) for each N ≥ 1, and

(iv) E(τN |GN−1) = E(Y 2
N |GN−1) almost surely for each N ≥ 1.

Theorem B.1 was extended by Strassen [35] to obtain an ASIP for certain martin-
gales. The error term is typically of the form O(t1/2−α) for sufficiently small α > 0.
In our context, we obtain an improved error term of the form O(t1/4+δ) for arbitrarily
small δ > 0. This is due to the fact that the martingales that we consider in this
paper have the property that the partial sums of X2

j −1 are as amenable as the partial
sums of Xj. (Controlling X2

j − 1 is usually the difficult part of the procedure, see
[28, p. 11].)

We require the following strong law of large numbers for martingales (see for
example [12, p. 238]).
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Proposition B.2 Suppose that {
∑N−1

j=0 Rj, N ≥ 1} is a square integrable martingale

and that the sequence ‖Rj‖2 is bounded. Then for any δ > 0,
∑N−1

j=0 Rj = O(N1/2+δ)
almost surely.

Theorem B.3 Suppose that {SN =
∑N−1

j=0 Xj, N ≥ 1} is a martingale and that

(a) There is a constant M > 0 such that
∫

X4
j < M for all j, and

(b) For any δ > 0,
∑N−1

j=0 X2
j −N = O(N1/2+δ) almost surely.

Let W and TN be as in Theorem B.1. Then, for any δ > 0,

W (TN) = W (N) +O(N1/4+δ) almost surely.

Proof (Following [28].) Let δ > 0. We claim that TN − N = O(N1/2+δ) almost
surely. It follows from the claim that almost surely

W (TN) = W (N +O(N1/2+δ)) = W (N) +O(N1/4+δ′).

It remains to prove the claim. Using property (iv), write

TN −N =
N−1
∑

j=0

(τj − E(τj|Gj−1)) +
N−1
∑

j=0

(E(Y 2
j |Gj−1)− Y 2

j ) +
N−1
∑

j=0

Y 2
j −N.

By the definition of GN and property (ii), the first and second terms are martingales.
Set Rj = E(Y 2

j |Gj−1)− Y 2
j . Then

‖Rj‖2
2 ≤ ‖E(Y 2

j |Gj−1)‖2
2 + ‖Y 2

j ‖2
2 ≤ 2‖Y 2

j ‖2
2 = 2‖X2

j ‖2
2 < 2M.

Hence Proposition B.2 takes care of the second term. The first term is treated simi-
larly, using property (iii). By property (i), the third term is equal in distribution to
∑N−1

j=0 X2
j −N and hence is almost surely O(N1/2+δ) by (b).
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