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Abstract. We prove results that enable the efficient and natu-
ral realization of a large class of robust heteroclinic networks in
coupled identical cell systems. We also propose some general con-
jectures that relate a natural and large class of robust heteroclinic
networks that occur in networks modelled by equations of Lotka-
Volterra type, and certain networks of symmetric systems, to ro-
bust heteroclinic networks in coupled cell networks.
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1. Introduction

This work is about the realization of heteroclinic networks and cycles
in networks of coupled dynamical systems. Since the definition of a
heteroclinic network (or cycle) varies in the literature, we start by
briefly reviewing some standard terminology and notation and then
give the precise definition of a heteroclinic network that is appropriate
for our intended applications.
LetM be a differential manifold andX be a smooth (at least C1) vec-

tor field on M with associated flow Φ. Let E = {pi | i ∈ I} be a finite
set of hyperbolic saddle points for X. For all p ∈ E, let W s(p),W u(p)
respectively denote the (global) stable and unstable manifolds of p. If
p,q ∈ E, a connection from p to q will be a Φ-trajectory φ : R→M
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such that φ(R) ⊂ W u(p)∩W s(q). We denote the connection by p
φ→ q.

We always assume there are no self-connections (homoclinic loops) and
so W s(p) ∩ W u(p) = {p}, all p ∈ E. If we let C⋆ = {φα | α ∈ J⋆}
denote the set of all connections between equilibria in E, then

⋃

p,q∈E,p 6=q

W u(p) ∩W s(q) =
⋃

α∈J⋆

φα(R).

If C ⊂ C⋆, define Φ(C) = ∪φ∈Cφ(R) ⊂ M .

Definition 1.1. (Notation and assumptions as above.) A connected
Φ-invariant subset Σ of M is a heteroclinic network, with equilibrium
set E and connection set C, if

(a) If C = {φα | α ∈ J} is a subset of C⋆.
(b) Σ = E ∪ Φ(C).
(c) For all ordered pairs p,q ∈ E, there is a sequence

(1.1) p
φα0−→ s1

φα1−→ s2
φα3−→ · · · φ

αk−1−→ sk
φαk−→ q

of connections, where k = k(p,q) ≥ 1, the si are distinct equi-
libria in Er {p,q}, and each connection φαj ∈ C.

If Σ contains equal numbers of equilibria and connections, then Σ is a
heteroclinic cycle.

Remarks 1.2. (1) Taking p = q in (1.1), we see that every equilibrium
point p ∈ E lies on a heteroclinic cycle. Consequently, every hetero-
clinic network is a union of heteroclinic cycles.

(2) If p
φ−→ q, then p 6= q by our standing assumption that there are

no homoclinic loops. If dim(W u(p)) = 1, then φ(R) is a connected
component of W u(p)r {p}. If dim(W u(p)) = 1, for all p ∈ E, then Σ
is a simple heteroclinic network (or cycle). Necessarily, Σ is compact
and if C = C⋆, Σ = ∪p∈EW

u(p). In many applications, M will have
boundary (for example, be a simplex) and W u(p)r{p} may only con-
tain a single trajectory. If Σ is not simple, and C is not finite, then Σ
need not be compact. ⊛

Definition 1.1 does not require that Σ contains all the connections
between equilibria in E. Define Σ(E) ⊂ M by

(1.2) Σ(E) = E ∪ Φ(C⋆) =
⋃

p,q∈E

W u(p) ∩W s(q).

Obviously, Σ(E) is a heteroclinic network if and only if there is a finite
subset C ⊂ C⋆ for which E ∪ Φ(C) is a heteroclinic network. If Σ(E)
is a heteroclinic network, then it is the maximal heteroclinic network
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with equilibrium set E. Without further conditions, Σ(E) may not be
compact and the dynamics of Φ|∂Σ(E) may be very complex.
If Σ(E) is simple, thenC⋆ is finite, Σ is compact and Σ = ∪p∈EW

u(p).
For general heteroclinic networks Σ, these conditions do not hold.
We say that the heteroclinic network Σ is clean if Σ is compact and
Σ =

⋃
p∈E W u(p). If Σ is clean then

Σ ⊂
⋃

p∈E

W s(p)(1.3)

Σ = Σ(E) =
⋃

p,q∈E,p 6=q

W u(p) ∩W s(q).(1.4)

It is easy to see that a heteroclinic network Σ can be realized as an
asymptotically stable attractor if and only if Σ is clean.
We refer to [26, §2] for a general review of heteroclinic cycles and

networks and their applications. Our interest here is in robust het-
eroclinic cycles and networks. On account of the Kupka-Smale the-
orem [51], heteroclinic cycles and networks can only be robust, that
is persist under all sufficiently small C1 perturbations of the associ-
ated vector field, if we work within a class of vector fields with addi-
tional structure. Invariably this structure is associated with the pres-
ence of invariant subspaces. Robust heteroclinic networks and cycles
are well-known phenomena in models of population dynamics, ecology
and game theory based on the Lotka-Volterra equations (for example,
[44, 34, 35, 36, 37]). Typically, these systems are defined on a sim-
plex, or the positive orthant On = {x ∈ Rn | xi ≥ 0, i = 1, · · · , n}
of Rn, and have the ‘extinction’ hyperplanes xi = 0 as invariant sub-
spaces. Heteroclinic networks and cycles also occur robustly in differ-
ential equations which are equivariant with respect to a compact Lie
group of symmetries (for example, [53, 46, 41, 27, 42, 40, 10, 21, 25]). In
this case, robustness can occur because generic intersections of stable
and unstable manifolds of equilibria in equivariant dynamics need not
be transverse but can nonetheless be stable under sufficiently smooth
equivariant perturbation of the underlying vector field [17, 18, 19].
If a heteroclinic network Σ contains a homoclinic loop (or self con-

nection), then Σ cannot be robust by the Kupka-Smale theorem; this
is the main reason we deny self-loops in definition 1.1.
In this article we make a careful exploration of the relationship be-

tween robust heteroclinic networks in semilinear feedback systems and
coupled identical cell systems (see sections 2 and 3 for formal defini-
tions). Semilinear feedback systems constitute a large class of network
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models, including Lotka-Volterra systems and some equivariant sys-
tems, for which there is a substantial body of results on robust hetero-
clinic networks and cycles. From a mathematical and conceptual point
of view, the theory is relatively elementary; in particular, it is straight-
forward to construct examples of clean heteroclinic networks. On the
other hand, less is known about heteroclinic networks, or even hetero-
clinic cycles, in coupled systems of identical cells [57, 31, 30]. This is
an unfortunate gap as coupled identical cell systems form a potentially
attractive class of models (see below).
In previous work [26], it was shown that every strongly connected

directed graph Γ with q edges and no self-loops could be realized as
the graph of a robust heteroclinic network in a coupled system of q+1
identical cells with 1-dimensional cell dynamics. In this paper, we show
how this realization theorem is one case of a general correspondence
between heteroclinic networks in semilinear feedback systems and cou-
pled identical cell systems. Our main result, theorem 4.10, gives an
efficient and natural realization of a large class of robust heteroclinic
networks that occur in semilinear feedback systems as robust hetero-
clinic networks in coupled identical cell systems. These realizations are
embedded in identical cell networks with close to the minimal possible
number of identical cells, unlike in the realization theorem given in [26]
(see also [11]). They have the attractive feature that each connection
in the realization corresponds to a unique pattern of desynchroniza-
tion and resynchronization along the connecting trajectory. We refer
to [6, 5] for more examples and background on heteroclinic networks
in coupled cell systems.
In [11], Ashwin and Postlethwaite consider the problem of realizing

graphs as robust heteroclinic networks, though not in coupled identi-
cal cell networks. Their concept of a ‘simplex network’ realization is
closely related to what we call an edge network (or cycle) in section 2
(see also [21]). In recent work [12], Ashwin and Postlethwaite have
investigated the realization of graphs as robust heteroclinic networks
in a class of networks with two cell types – though not a coupled cell
network in the sense of Golubitsky et al. [30].
There has been significant recent interest in potential applications

of robust heteroclinic networks to neural microcircuits and it has been
suggested that they provide a useful model to explain the function of
certain neural systems [52, 49]. Specifically, heteroclinic networks and
cycles model “winnerless competition” where there is a local competi-
tion between different states but not necessarily a global winner. The
models used in these works are based on systems (networks) of gener-
alized Lotka-Volterra equations [2, 48] and part of the motivation for
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the present article is to provide models based on a natural identical cell
model. Our results go some way towards achieving this objective and
identify some of the obstructions to obtaining realistic models based
on fewer connections and more symmetry in an (additive) input struc-
ture [26]. We address some of these issues in more detail later and
especially in the concluding comments. In general terms, robust het-
eroclinic phenomena seem particularly useful for explaining sequence
generation and spatio-temporal encoding and have been found in rate-
based [1] models, Hodgkin-Huxley-based models [33] and more general
phase oscillator models [9] where they have been used to perform finite-
state computations [8].
We conclude with a brief description of the contents of the work by

section. In section 2 we review the theory of semilinear feedback sys-
tems – a large class of networks that includes Lotka-Volterra models
– and describe the less well-known class of face heteroclinic cycles and
networks [21]. In section 3, we review that part of the theory of cou-
pled identical cell systems applicable to cells with asymmetric inputs
and strongly connected networks without self loops. In section 4 we
introduce the idea of a synchronization transform. This constitutes
the basis of our method of going from heteroclinic face networks for a
semilinear feedback system to a heteroclinic network for a coupled cell
system. We pose two conjectures concerning the scope of the synchro-
nization transform and prove a number of associated results, notably
theorem 4.10. Section 5 is devoted to illustrative examples and includes
part of the verification of the realization conjectures for identical cell
networks containing three or four cells. We conclude the section with
two examples illustrating the realization of robust heteroclinic networks
in coupled identical cell systems. In section 6, we discuss a number of
outstanding questions as well as comment on the possibility of obtain-
ing more physically realistic models.

2. Semilinear Feedback systems

Semilinear Feedback systems (SLF systems) are a large, simple and
transparent class of network models that naturally support many dif-
ferent types of robust heteroclinic cycles and networks. Well-known
examples include Lotka-Volterra equations and some classes of equi-
variant systems. Parts of what we discuss here appear in [21, chapters
6 & 7] and [22] – though the terminology ‘semilinear feedback system’
was introduced later by the author (for example, [24]). Before we give
our main definition, we need to establish some notational conventions.
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Let N denote the natural numbers (the strictly positive integers) and
Z+ denote the set of nonnegative integers. Let R denote the real num-
bers and R+ = {x ∈ R | x ≥ 0}. Given k ∈ N, define k = {1, . . . , k},
and k• = {0, 1, . . . , k}. For clarity, we sometimes use an overline, rather
than brackets; for example, k− 1 rather than (k− 1) or k− 1.

Definition 2.1. An SLF system is a network modelled by differential
equations

(2.5) ẋi = fi(xi) + Ai(xi, Fi(x1, . . . ,xi−1,xi+1, . . . ,xk)), i ∈ k,

where xi ∈ Rn, Ai : R
n × Rn→Rn is a bilinear form, and fi(0) = 0,

i ∈ k.

Remark 2.2. The simplest examples of SLF systems, and those that
we focus on in this article, occur when n = 1 and Ai is multiplication,
i ∈ k. That is,

(2.6) ẋi = fi(xi) + xiFi(x1, . . . , xi−1, xi+1, . . . , xk), i ∈ k.

Examples where n > 1 appear in [21]. ⊛

The equation ẋi = fi(xi) defines the intrinsic dynamics of the ith
node, i ∈ k. If f1 = . . . = fk, the nodes have identical intrinsic
dynamics. We usually assume identical intrinsic dynamics but that as-
sumption is not needed for our main results. Systems of the form (2.6)
often have additive input structure [26] – for example, if Fi is linear.
Henceforth assume n = 1. We regard (2.6) as equations for a network

N = {N1, . . . , Nk} consisting of k coupled nodes, N1, . . . , Nk, where the
node Ni has state xi and phase space Ri where Ri is either R or R+

(we assume the same choice for all i ∈ k). Let R =
∏

i∈k Ri denote
the network phase space. If the node phase space is R+, then R is the
positive orthant Ok of Rk. Observe that since xi = 0 is flow-invariant
for SLF systems, all i ∈ k, so also is Ok.
For i ∈ k, define Hi = {x ∈ R | xi = 0}, and let Ik denote the set

of all intersections Hi1 ∩ . . . ∩ Hip

def
= Hi1...ip . We assume R ∈ Ik and

note that H1...k = {(0, . . . , 0)}. Every V ∈ Ik is flow-invariant for an
SLF system (since this is so for Hi, i ∈ k).

Examples 2.3 (Examples of SLF systems). (1) A (generalized) Lotka-
Volterra system is defined on the positive orthant Ok = Rk

+ by

(2.7) ẋi = xiGi(x) = fi(xi) + xiFi(x), i ∈ k,

where x = (x1, . . . , xk) ∈ Rk, fi(xi) = xi(ai+ bixi), Fi(x) =
∑

j 6=i aijxj,

and ai, bi, aij ∈ R, i, j ∈ k, We refer to [44, 34, 35, 36, 37] for explicit
examples and applications.
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(2) The cubic truncation of an equivariant system on Rk with symmetry
group G satisfying Zk

2 ⊂ G ⊂ Hk, where Zk
2 is the group of orthogonal

diagonal k × k-matrices and Hk = Zk
2 ⋊ Sk is the hyperoctahedral

group of symmetries of the k-dimensional hypercube. For i ∈ k, x =
(x1, . . . , xk) ∈ Rk, we have

fi(xi) = aixi + bix
3
i ,

Fi(x) =
∑

j 6=i

aijx
2
j ,

We refer to [21, chapter 3] or [25, §4.5] for more details when G acts
absolutely irreducibly on Rk. ※

Remark 2.4. Every Zk
2-equivariant cubic truncation restricted toOk can

be transformed into a Lotka-Volterra system under the invertible trans-
formation x2

i ↔ ui of the positive orthant Ok. In practice, for Lotka-
Volterra systems, it is common to satisfy the constraint u1+. . .+uk = 1
and dynamics is naturally defined on the (k− 1)-simplex in Ok defined
by u1+. . .+uk = 1 using the replicator equation ẋi = xi(Gi(x)−G(x)),
i ∈ k, where G(x) =

∑
i∈k xiGi(x). Analogously, in the equivariant

case, given a cubic truncation, dynamics is uniquely defined on the
(spherical) simplex ∆k−1 = Sk−1 ∩ Ok using the phase vector field
(see [25, Chapters 4,5] and section 2.2 below). Dynamics on the sim-
plex and spherical simplex ∆k−1 are conjugate by the transformation
x2
i ↔ ui. Either viewpoint has its advantages; our preference is for

working on the spherical simplex as this works well for bifurcation the-
ory [25, Chapter 5]. ⊛

2.1. The SLF model, bistability and heteroclinic cycles. In fig-
ure 1 we show a single node with 1-dimensional dynamics given by

ẋ = f(x) + xF (u).

If we regard u as a control variable, then feedback is linear in the
node variable x. Using the control variable u, we can easily switch
the cell between two different attracting states. For example, suppose
f(x) = x − x2 and F (u) = u, u ∈ R. If u = 0, then x = 1 is
the unique asymptotically stable state of ẋ = f(x) + xF (u). On the
other hand, if u = −2, then the unique asymptotically stable state of
ẋ = f(x) + xF (u) occurs at x = 0.
Now consider a network N built from nodes of this type. If we

suppose the control variable for each node Ni ∈ N depends on the
states of the remaining nodes in a network then it is easy to choose
controls so that nodes repeatedly switch states in a fixed order.
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u

xF(u)x

Output Input

Controller

Figure 1. A single node with feedback loop

Example 2.5. Suppose that k = 3 and equations are given by

(2.8) ẋi = xi(1− x2
i )− 3xix

2
i+1, i ∈ 3,

where x3+1
def
= x1 and Fi(x) = 3x2

i+1, i ∈ 3. The intrinsic dynamics of
the ith node is ẋi = xi(1 − x2

i ) and xi = 1 the unique asymptotically
stable equilibrium in O3. If we add in the inhibitory feedback term
−3xix

2
i+1, then if xi+1 = 1, dynamics for the ith node is ẋi = −2xi−x3

i

and there is a unique asymptotically stable equilibrium at xi = 0.
We regard a node Ni as being active if its state is close to 1, and

quiescent if its state is close, but not equal, to zero. The node is
growing if its state is increasing, and damped if its state is decreasing.
Let x ∈ O3 be close to (1, 0, 0) with x2, x3 6= 0 (so N1 is active, and
N2, N3 are quiescent). Node N2 will be be inhibiting N1 weakly (small
negative feedback), and node N1 will be inhibiting N3 strongly (x2

1 is
close to 1). On the other hand, N2 will not be inhibited by N3 (because
N3 is quiescent and growing smaller and the intrinsic dynamics will
dominate the small negative feedback term). As N2 grows it will start
to inhibit N1 strongly and eventually drive N1 close to zero. At the
same time N2 grows towards 1. Once N1 is close enough to zero, it
stops inhibiting N3 which can then grow and eventually inhibit N2 and
so on.
This mechanism leads to the formation of heteroclinic cycles. Indeed

the system (2.8) has a simple asymptotically stable heteroclinic cycle
Σ contained in a unique attractive flow invariant 2-sphere [25, Chapter
5, §2]. In the sequel we refer to this cycle as the rock-paper-scissors, or
RPS, heteroclinic cycle. We refer to [44] where this heteroclinic cycle
was first described (in the context of Lotka-Volterra equations) and
to [53, 21, 32] for examples occurring in symmetric systems. ※
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2.2. Heteroclinic cycles and networks in SLF systems. We start
by defining the graph of a heteroclinic network with finite connection
set. and then describe the theory of heteroclinic networks in SLF sys-
tems.

Heteroclinic networks: basic formalism and definitions. Suppose that
Σ is a heteroclinic network with equilibrium set E = {pi | i ∈ I} and
finite connection set C = {φα | α ∈ J}. The directed graph Γ = Γ(Σ)
of Σ is defined to have vertex set V = {vi | i ∈ I} and edges E =
{eα | α ∈ J}, where eα is a directed edge vj→vi if φ

α is a connection
from pj to pi (we allow multiple edges between two vertices). It follows
from definition 1.1 that Γ is strongly connected and without self-loops.
If v ∈ V , let d out

v denote the out-degree of v: the number of edges in
E which connect v to the remaining vertices in V . If v corresponds to
the equilibrium p ∈ E, define d out

p = d out
v .

We will mainly be interested in heteroclinic networks Σ ⊂ ∆k for
which C = {φα | α ∈ J} is finite and

(2.9) d out
p = dim(W u(p)), for all p ∈ E.

If (2.9) holds and Σ is not simple, the set of connections C will typi-
cally be a skeleton or framework for the maximal heteroclinic network
Σ(E) (1.2). This viewpoint turns out to be natural for our discussion of
heteroclinic networks in SLF systems. Of course, the way in which we
choose C will be important. In many situations, a heteroclinic network
will be robust only if the connection set C is finite (and well chosen).

2.3. Reduction to a simplex. We start by considering the well-
studied [27, 25] class of SLF systems modelled by equations of the
form

(2.10) ẋi = fi(xi) + xi

(
∑

j 6=i

aijx
2
j

)
, i ∈ k,

where fi(x) = x− bix
3, bi > 0. The resulting system is Zk

2-equivariant
with fundamental domain the positive orthant Ok. All our construc-
tions will be within Ok (and so results relate directly to Lotka-Volterra
systems by remark 2.4). Aside from working on Ok and using the in-
variance of the subspaces Ik, we make no use of symmetry properties
of the system. Indeed, it will generally be the case that there are no
symmetries in the matrix A = [aij ] of coupling coefficients and no per-
mutation symmetries of the network (no assumptions on the intrinsic
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dynamics beyond fi(0) = 0). We now use a simplification exactly anal-
ogous to the reduction of a Lotka-Volterra system to the simplex (see
remark 2.4).
Write (2.10) in vector form as

(2.11) ẋ = x+Q(x), x ∈ Rk,

where the components Qi of the vector field Q are given by Qi(x) =
−bix

3
i +xi(

∑
j 6=i aijx

2
j), i ∈ k. Note that Q : Rk→Rk is a homogeneous

cubic polynomial map of Rk. Associated to the system (2.11), we define
a vector field PQ on the unit sphere Sk−1 in Rk by

PQ(u) = Q(u)− (Q(u),u)u, u ∈ Sk−1,

where ( , ) denotes the standard inner product on Rn. (The vector
field PQ is called the phase vector field in [20, 25].) The dynamics
of PQ encodes the nontrivial dynamics of the original system (2.11):
every nonzero trajectory in Rk of (2.11) is the setwise lift of a PQ-
trajectory on Sk−1. Moreover, by the invariant sphere theorem [20, 25],
if we define Qa(x) = Q(x) − a‖x‖2x, a ∈ R, then PQ = PQa

and,
for sufficiently large a, ẋ = x + Qa(x) has an invariant attracting
k − 1-sphere S(a) such that the dynamics on S(a) is conjugate to the
dynamics of PQ on Sk−1. In particular, every robust heteroclinic cycle
or network for PQ will uniquely determine a robust heteroclinic cycle
or network for ẋ = x+Qa(x) for sufficiently large a. Conversely, every
robust heteroclinic cycle or network for ẋ = x +Q(x) can be realized
as a robust heteroclinic cycle or network for PQ.
More generally, suppose that Ψ is a smooth flow on Sk−1 that pre-

serves the invariant subspace structure induced by Ik (and so Ψ pre-
serves the spherical simplex ∆k−1 = Sk−1∩Ok). It is easy to show that
there exists a smooth SLF system on Rk, with flow Φ and the origin
a source (as in (2.11)), such that Sk−1 is Φ-invariant and attracting
with Φ|Sk−1 conjugate to Ψ. Of course, Φ need not be given by a cubic
polynomial vector field.
As a consequence of these observations, we focus on the study of

robust heteroclinic phenomena for smooth vector fields on Sk−1 that
preserve the invariant subspace structure determined by Ik. Generally,
we restrict to the spherical simplex ∆k−1. This is no loss of generality
if we have Zk

2-equivariance: ∆k−1 is a fundamental domain for the
Zk
2-action on Sk−1.

2.4. Edge and face heteroclinic cycles and networks. Assume
k ≥ 3. Let r ∈ k− 2

•
. If V ∈ Ik is r + 1-dimensional, then ∆k−1 ∩ V

is an r-face of ∆k−1. In particular, if r = 0 then V is a coordinate
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axis and ∆k−1 ∩ V is a vertex, and if r = 1, ∆k−1 ∩ V is an edge. We
remark that if F is an r-face, then ∂F is a union of r − 1-faces. In
particular, ∂∆k−1 is the union of all k − 2-faces. In coordinates, the
vertices of ∆k−1 are given by the set V(k) = {v1,v2, . . . ,vk}, where vj

is the positive unit vector along the coordinate axes xj of Rk, j ∈ k.
Every edge is uniquely determined by two vertices, every 2-face by
three vertices and so on. It is easy to verify that there are

(
k

r+1

)
r-

faces, r ∈ k− 2
•
. If F = ∆k−1 ∩ V is an r-face of ∆k−1, define

Int(F ) = F r ∂F where ∂F is the boundary of F within the sphere
V ∩ Sk−1.

Definition 2.6 ([21]). Let k ≥ 3, r ∈ k− 2 and Φ be a smooth flow
on ∆k−1 which preserves the invariant subspace structure determined
by Ik. Suppose that Σ is a heteroclinic network for Φ with equilibrium
set E = {pi | i ∈ ℓ}, and finite connection set C = {φi | i ∈ q}. We
say that Σ is an r-face heteroclinic network if

(1) For each i ∈ ℓ, there exists an r − 1-face Li of ∆k−1, such that
(a) pi ∈ Int(Li) (if r = 1, pi is a vertex of ∆k−1).
(b) If i 6= j, Li 6= Lj.

(2) For each connection pa
φi

→ pb ∈ C,
(a) there is an r-face Fi of ∆k−1 such that φi(R) ⊂ Int(Fi).
(b) If j ∈ q, i 6= j, then Fi 6= Fj.

(3) For all p ∈ E, d out
p = dim(W u(p)).

Remarks 2.7. (1) If ℓ = q in definition 2.6, we say that Σ is an r-
face heteroclinic cycle. In this case, we label so that each vertex pi is

connected by φi to pi+1 (with the standard convention that pℓ+1
def
= p1).

(2) If r = 1 in definition 2.6, we refer to Σ as an edge network (edge
cycle if Σ is a heteroclinic cycle). If r > 1, we refer to Σ as a face
network (face cycle if Σ is a heteroclinic cycle).
(3) If dim(W u(p)) = 1, p ∈ E, then d out

p = 1 and Σ will be a simple
heteroclinic cycle: since p ∈ ∂∆k−1, there are no simple heteroclinic
networks that are not heteroclinic cycles.
(4) If p lies in the interior of an r − 1-face L, then d out

p ≤ k − r − 1
(exactly k − r r-faces contain L and so dim(W u(p)) ≤ k − r − 1). ⊛

Lemma 2.8. If Σ is a r-face heteroclinic network, then W u(p) is con-
tained in a d out

p + r − 1-face of ∆k−1.

Proof. Using definition 2.6(3), the required face is spanned by the set
of vertices of the faces given by definition 2.6(2b). �

Remark 2.9. Suppose Σ is an r-face heteroclinic network and Σ(E)
is clean (Σ(E) is compact and Σ(E) =

⋃
p∈E W u(p)). Let p ∈ E



HETEROCLINIC NETWORKS 13

and F be the d out
p + r − 1-face of ∆k−1 given by lemma 2.8. Then

∂W u(p) =
⋃

q∈E W s(q) ∩ ∂F . This condition is often robust and easy
to satisfy for edge networks. On the other hand, apart from simple
cycles, clean r-face heteroclinic networks are not usually robust and
many face heteroclinic networks will not have a clean realization. ⊛

2.5. Examples of edge and face cycles and networks.

Examples 2.10. (1) In figure 2(a) we show a simple edge cycle Σe on
∆3 and in figure 2(b) an edge network Σn on ∆3 that is the union of
two edge cycles Σ1,Σ2 which share the common edge v1 −→ v2. The

Σe

v1

v2

v4

v3

Σ =n Σ1 Σ2U

Σ2

Σ1

Σ1 Σ2

U

v2

v4

v1 v3

(a) (b)

Figure 2. (a) Edge cycle and (b) edge network on ∆3

edge cycle Σe shown in (a) was first studied in the setting of Z4
2 ⋊ Z4-

equivariant dynamics [28] and the edge network Σe was first analysed
by Kirk and Silber [39] & Brannath [13]. The cycle Σe is clean but the
network Σn is not clean. If we change dynamics so as to remove the
equilibrium on the edge joining v3,v4 and instead have a connection
v3→v4, then the resulting network, defined as the union of the unstable
manifolds of the vertices of ∆3, is clean and robust (see [13] for this
and other variations). It is straightforward to realize either cycle or
network using cubic maps as in (2.10) (see [28, 11]). More generally,
any edge network can be realized using cubic polynomials [11]. We
refer also to [21], where the equilibria at vertices are replaced by more
complex dynamics. Finally, there are no face heteroclinic networks on
∆2 – only heteroclinic edge cycles and no edge networks.
(2) The 2-face simple heteroclinic cycle on ∆3 shown in figure 3 was
first studied in [28] (we adopt the notational convention that vij is an
equilibrium lying in the interior of the edge joining vi to vj). The
cycle can be realized using cubic polynomials [28]. For example, the
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Z4
2 ⋊ Z4-equivariant system

ẋi = xi(1 + ax2
i ) + xi

(
3∑

j=1

(bj + a)x2
i+j)

)
, i ∈ 4,

admits a 2-face cycle provided that

a, 2a+ b2, 4a+ b1 + b3, 4a+ b1 + b2 + b3 < 0,

b1b3 > 0, (b21 + b3(b2 − b1))× (b23 + b1(b2 − b3)) < 0.

The cycle is clean. Moreover, there will be no equilibria in the interior
of any 2-faces of ∆3 (in the interior of ∆3 there will be an equilibrium
on x1 = . . . = x4 and possibly a limit cycle, see [28]).

v12 v23

v34

v4

v41

v3v1

v2

Face cycle

Figure 3. 2-face heteroclinic cycle on ∆3

(3) Every 2-face heteroclinic network supported on ∆3 must be a het-
eroclinic cycle since every 2-face heteroclinic network on ∆3 is simple.
We indicate how to construct 2-face heteroclinic networks supported
on ∆4. The spherical simplex ∆4 has 10 2-faces and each edge lies on
3 2-faces. We can construct a smooth vector field X on O5 which has a
2-face heteroclinic network Σa with 9 connections and 6 equilibria – see
figure 4(a). Every vertex of Γ(Σa) has degree 3 and each connection of
Σa will lie in a unique 2-face of ∆4 (there is no connection in the 2-face
∆134 spanned by the vertices v1,v3,v4). We may choose X so that the
stable and unstable manifolds of vertices only meet in the connections
lying in 2-faces. The resulting network Σa will then be robust.
We cannot choose a vector field which has a clean (face) heteroclinic

network with the same equilibrium set as Σa – ∂W u(v23) will always
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Σa

v24

v12 v23 v35

v45 v15

Σb

v24

v12 v23

v45 v15

(a) (b)

Figure 4. 2-face heteroclinic networks on ∆4. (a) Ro-
bust network Σa with 9 connections; (b) A 6 connection
network Σb that can be realized as a clean network.

contain points not in the unstable manifolds of the other equilibria. If
we remove the connection v23−→v35 and vertex v35, then we obtain the
heteroclinic 2-face network Σb shown in figure 4(b) (dimW u(v) = 1 un-
less v = v12). We can construct a clean maximal network Σm with the
same equilibrium set as Σb. However, Σm will not be robust: W u(v12)
will not intersectW s(v24) transversally inside the 3-face spanned by the
vertices v1,v2,v3,v4. If Σ

m is an asymptotically stable heteroclinic at-
tractor, then there is the likelihood that vector field perturbations that
preserve the invariant subspace structure but break the clean structure
will result in dynamics for which Σb contains an essentially asymptot-
ically stable attractor [45, 13, 39]. ※

Example 2.11 (Explicit construction using polynomials). It is obvious
that we can realize 2-face cycles on ∆k, k ≥ 3, if we work with general
smooth vector fields of the form (2.5). Although we have not checked all
the details, our expectation is every 2-face simple heteroclinic cycle can
be realized on ∆k, k ≥ 3, using cubic polynomials of the form (2.10)
(see also remark 2.13 below). It is not too difficult to find a cubic
vector field of the form (2.11) which realizes the heteroclinic network
Σa of examples 2.10(3). We indicate a few of the details for the reader
interested in numerical experiments. Note that we implicitly use a
method, based on Bézout’s theorem [25, Chapter 4, §9], to show that
2-faces ∆ijk which contain a face connection have no equilibria in the
interior of the face. Consider the system

(2.12) ẋi = xi + xi

(
∑

j 6=i

βijx
2
j − α‖x‖2)

)
, i ∈ 5.
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Assume α ≫ maxij |βij|, so that the conditions of the invariant sphere
theorem [25, Chapter 5, §1] apply, and the dynamics of (2.12) is as-
ymptotic to an invariant 4-sphere. For each i ∈ 5, (2.12) has a unique
strictly positive equilibrium vi on the xi-axis. The eigenvalue of the
linearization of (2.12) at vi in direction vj, i 6= j, is βji/α. Noting that
α > 0, we assume

β13, β25, β41, β43 < 0

and that all other βij are strictly positive. Every connection of Σa is of
the form vij−→vjk and lies in the 2-face ∆ijk with vertices vi,vj , vk.
For example, there is a connection v12−→v23 contained in ∆123. Hence
the eigenvalue of linearization of (2.12) at v12 given by the eigendirec-
tion tangent to the connection at v12 is required to be strictly positive;
that at v23 will be strictly negative. Noting that α ≫ maxij |βij|, we
find (using [25, Chapter 4, §9]) that the required eigenvalue conditions
on the connection in ∆123 hold if and only if

β31

β21

+
β32

β12

> 1,
β13

β23

+
β12

β32

< 1

The remaining 16 conditions for the other 8 2-faces are obtained from
these inequalities by trivial permutation arguments. We claim there is a
non-empty open subset of the parameters βij for which the inequalities
hold. We start by taking

β13, β31, β25, β52, β14, β41β34, β43 = 0.

The first term in each of the 18 inequalities will then be zero. All 18
(strict) inequalities will then hold if and only if β21 > β51, β15 > β45 >
β35, β42 > β32 > β12, β53 > β23 and β54 > β24. Hence we can choose
nonzero βij of the correct sign so that all inequalities hold. The vector
field we have constructed has a heteroclinic network Σ containing Σa.
We cannot exclude there being additional connections that do not lie
in 2-faces, though Σ,Σa have the same equilibrium sets. ※

Theorem 2.12. Let k ≥ 2, 0 < r ≤ k − 1. Then ∆k supports (clean)
r-face heteroclinic cycles. If r ≤ k − 2, ∆k supports (clean) r-face
heteroclinic networks. In all cases, cycles and networks can be realized
using smooth vector fields on Ok+1 of form (2.5).

Proof. We omit details of the routine construction of r-face hetero-
clinic cycles – see [21] for the case of heteroclinic face cycles. The
existence of clean r-face heteroclinic networks is straightforward – see
examples 2.10(3). �

Remark 2.13. As we did in example 2.11, we can require in theorem 2.12
that the nodes have identical intrinsic dynamics defined by f(x) =
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x− αx3, α > 0. We conjecture that the conditions of the theorem can
be satisfied using cubic vector fields of the form (2.10). A useful tool
for the verification of the conjecture is that generically there is at most
one equilibrium in the interior of each face. We refer to [25, Chapter
4, §9] for the general method which depends on Bezout’s theorem and
the invariant subspace structure. ⊛

2.6. Lattice structure on Ik. We conclude this section with a few
brief remarks on the natural lattice structure on Ik defined by inter-
section and vector space sum.
Let ≺ denote the partial order on Ik defined by reverse inclusion:

V ≺ W if W ⊂ V . Necessarily, 0 = H1...k is the unique maximal
element of Ik and R is the unique minimal element of Ik. We use some
standard definitions from lattice theory (see Davey and Priestly [14] for
more details). We define the operations of join ∨ (least upper bound)
and meet ∧ (greatest lower bound) on Ik by

V ∨W = V ∩W,

V ∧W = V +W (vector space sum),

where V,W ∈ Ik. It is trivial to verify that (Ik,∨,∧) has the structure
of a (complete) lattice and that for all V ∈ Ik we have

V ∨ 0 = 0, V ∧R = R.

When we relate SLF and coupled identical cell systems, we use a natural
lattice structure on the set of synchrony subspaces. This structure will
sometimes (not always) relate to the natural lattice structure on Ik.

3. Coupled identical cell systems – asymmetric inputs

We refer to Stewart, Golubitsky and coworkers [57, 29, 31, 30] for
general theory and background on coupled cell systems. Here we mainly
review the formalism we use for networks of coupled identical cells.
We use a ‘flow-chart’ formalism, similar to that used in electrical and
computer engineering, that fits well with our intended applications
of constructing networks with particular properties. We give neces-
sary definitions, establish notational conventions and refer the reader
to [3, 6, 4, 23] for more details, discussion and examples. We use the
term coupled cell network to refer to the abstract object – a directed
network graph codifying the connection structure with vertices corre-
sponding to nodes – and generally use the term coupled cell system
when we view the coupled cell network as a system of coupled differ-
ential equations [3]. We frequently abuse notation by letting N refer
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to both the abstract network structure as well as a realization as a
coupled cell system.
Let N be a coupled cell system consisting of m ≥ 2 identical nodes

(or ‘cells’) N1, · · · , Nm each with phase space M . Denote the state
variable for node Ni by xi ∈ M . Let M = Mm denote the network
phase space. If each cell has p inputs, dynamics will be given by a
system of differential equations of the form

(3.13) ẋi = f(xi;xIi(1), · · · ,xIi(p)), i ∈ m,

where Ii : p→m, i ∈ m. We refer to f : M ×Mp→TM as the network
map and the corresponding vector field F : M→TM defined by (3.13)
as the network vector field.
Under explicitly indicated to the contrary, we assume

(1) There are no self loops: i /∈ Ii(p), all i ∈ m.
(2) Inputs are asymmetric: f(x;x1, . . . ,xp) is not symmetric in any

subset of the variables x1, . . . ,xp.

Remark 3.1. The assumption of asymmetric inputs is a major simpli-
fication that often allows us to reduce proofs to the case where cells
have a single input. From the application point of view (for example,
in neuroscience) what seems to be most appropriate are asymmetric
inputs that are not too far from symmetric. ⊛

Associated with the coupled cell network N , there is the network graph
G(N ). This consists of m-vertices vi, corresponding to the nodes Ni,
and mp directed edges eα, vIi(s)→vi, i ∈ m, s ∈ p. We always as-
sume that N (that is, G(N )) is connected. Usually, N will be strongly
connected (every vertex pair vi, vj lies on a cycle). At this level of gen-
erality, the network N and graph G(N ) represent the same structure.
Since inputs are asymmetric (condition (2)), the graph has p distinct
edge types. In terms of the system, each cell has p input types. If
α ∈ p, i ∈ m, let d in

α,i denote the in-degree of vertex i for inputs of type

α. Since inputs are asymmetric, d in
α,i = 1 for all α ∈ p, i ∈ m.

3.1. Synchrony classes and synchrony subspaces. Let P(m) de-
note the set of partitions of N . If X = {Xj | j ∈ ℓ} ∈ P(m), let
s(j) be the number of cells in Xj , j ∈ ℓ. The partition is nontrivial if
ℓ < m (at least one s(j) is strictly bigger than 1). Label cells in Xj as
N

i
j
1
, · · · , N

i
j

s(j)
, where ij1 < . . . < ij

s(j), and set J j = {ij1, · · · , ijs(j)}. We

have ∪j∈ℓJ
j = m.

Now view N as a coupled cell system. If x = (x1, . . . ,xm) ∈ M

denotes the state of the network, we may group states according to the
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partition X and write x = (x1, . . . ,xℓ), where xj = (x
i
j
1
, . . . ,x

i
j

s(j)
) ∈

M s(j) will denote the state of the s(j) cells in Xj . Define

∆j = {xj | x
i
j
1
= · · · = x

i
j

s(j)
} ⊂ M s(j), j ∈ ℓ,

and let

∆(X ) =
∏

j∈ℓ

∆j = {x = (x1, . . . ,xℓ) | xj ∈ ∆j, j ∈ ℓ}.

denote the corresponding polydiagonal subspace.

Definition 3.2 ([6, 3], cf [57, 31, 30]). The partition X is a synchrony
class for the coupled cell network N if the subspace ∆(X ) is dynam-
ically invariant for every realization of N as a coupled cell system. In
terms of coupled cell systems, if X is a synchrony class then the invari-
ant subspace ∆(X ) ⊂ M is a synchrony subspace (a polysynchronous
subspace in the terminology of [30]).

Let D(m) = {∆(X ) | X ∈ P(m)} denote the set of all polydiagonal
subspaces of M. Obviously D(m) is indepenendent of M and D(m) ≈
P(m).
If X = {{N1, . . . , Nm}}, then X is always a synchrony class: the

maximal synchrony class s0. The associated invariant space is the

diagonal S0
def
= ∆(M) and is referred to as the minimal synchrony

subspace. It is the synchrony subspace of minimal dimension for every
realization of a coupled cell network. If T = {{N1}, . . . , {Nm}} is the
trivial partition of m, then T defines the null synchrony class s∞ and

M = ∆(T )
def
= S∞ defines the null or trivial synchrony subspace.

We give a simple and very useful criterion for synchrony subspaces
(see [26], [30, §7] for greater generality).

Proposition 3.3. Let N be a coupled cell network as above. Suppose
that X = {Xj | j ∈ ℓ} is a partition of N . Then X is a synchrony
class iff for all i, j ∈ m and every input type α ∈ p, either no cell in
X i receives an input of type α from a cell in Xj or else every cell in
X i receives exactly one input of type α from a cell in Xj.

Remark 3.4. Let d in
α,i(j) denote the in-degree at node i for inputs of

type α originating from cells in Xj . Proposition 3.3 implies that X is
a synchrony class iff for every input type α and all j, k ∈ ℓ, d in

α,·(j) is

constant on Xk. ⊛

As a straightforward consequence of proposition 3.3 and remark 3.4,
we have a useful result that allows us to combine synchrony subspaces.
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Proposition 3.5 ([6, Theorem 3.8]). Let N be a coupled cell network
with asymmetric inputs. Suppose that the partitions X = {Xi | i ∈ I},
Y = {Yj | j ∈ J} both define synchrony classes of N . Then the inter-
section partition X ∩ Y = {Xi ∩ Yj | i ∈ I, j ∈ J} defines a synchrony
class of N .

Remark 3.6. Proposition 3.5 fails if cells have symmetric inputs – see
[6, §7] (or later this section). We refer to Stewart [56] for the general
theory when there are symmetric inputs (see also [7]). ⊛

Let S = S(N ) denote the set of all synchrony subspaces of the
coupled cell system N . We have a partial order ≺ on S defined by
reverse inclusion.

Proposition 3.7. S has the natural structure of a complete lattice
(S,∨,∧) with join and meet defined by

(1) V ∨W = V ∩W .
(2) V ∧W is the synchrony subspace defined by the intersection of

the partitions defining V and W .

The maximal element of (S,∨,∧) is S0 = ∆(M) (the minimal syn-
chrony subspace). The minimal element of S is S∞ = M (correspond-
ing to the null synchrony class s∞).

Proof. Immediate from proposition 3.5. �

Remark 3.8. The meet and join operations are naturally defined on
the set D(m) ≈ P(m) of all polydiagonal subspaces of M and so
(P(m),∨,∧) has the structure of a complete lattice. The set S(N )
of all synchrony subspaces of an coupled identical cell system with m
nodes is a sublattice of (P(m),∨,∧) provided that cells have asymmet-
ric inputs [56]. In what follows we usually omit reference to the null
synchrony subspace S∞. ⊛

Notation for synchrony subspaces. It is useful to introduce some sim-
plified notation for synchrony subspaces. Let X = {Xj | j ∈ ℓ} be a
nontrivial partition of N . After relabelling we may assume that for
some q ≤ ℓ, we have s(1), . . . , s(q) > 1, s(i) = 1, i > q. For j ∈ q, we
have ∆j = {xj | x

i
j
1
= . . . = x

i
j

s(j)
}. With these conventions, we write

∆(X ) = (i11i
1
2 . . . i

1
s(1)‖ . . . ‖iq1 . . . iqs(q)).

Examples 3.9. (1) S0 = ∆(M) = (12 . . . m).
(2) The notation is naturally compatible with the meet and join op-
erations. For example, if (125‖89), (127‖48) and (46) are synchrony
subspaces of an identical cell network, then
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(1) (125‖89) ∨ (127‖48) = (1257‖489).
(2) (125‖89) ∧ (127‖48) = (12).
(3) (125‖89) ∨ (46) = (125‖89‖46), (127‖48) ∨ (46) = (127‖468).
(4) (125‖89) ∧ (46) = (127‖48) ∧ (46) = S∞. ※

Let (S,∨,∧) be a finite lattice with maximal element S0 and minimal
element S∞. If G is a nonempty subset of the finite lattice (S,∨,∧),
we define < G > to be the subset of S generated from G, using the
operations ∨,∧, together with the minimal element S∞.

Definition 3.10. (Notation and assumptions as above.) Let G be a
subset of the finite lattice (S,∨,∧) and suppose that S∞ /∈ G. The
set G is a generating set for (S,∨,∧) if < G >= S. If every other
generating set for (S,∨,∧) contains at least as many elements as G,
then G is a basis for S.
Example 3.11. The lattice (D(m),∨,∧) has basis B = {(1, j) | j =
2, . . . ,m} ∪ {(23 . . . m)}. To see this, observe that (1j1 . . . js) ∈<B>,
2 ≤ j1 < j2 < . . . js ≤ m, using only the ∨ operation on {(1, j) | j =
2, . . . ,m}. Hence, (j1 . . . js) = (1j1 . . . js) ∧ (2 . . .m) ∈< B >, 2 ≤
j1 < j2 < . . . js ≤ m. We easily obtain the remaining polydiagonal
subspaces using only the ∨ operation and so B is a generating set. We
leave it to the reader to verify that every generating set has at least m
elements and so B is a basis (in this case, if m > 2, S∞ lies in the set
generated from B using the operations ∨,∧). ※

Next we consider when a coupled identical m cell network N has
S(N ) = D(m).

Lemma 3.12. Let N be a coupled identical cell network with m ≥ 3
cells and lattice of synchrony subspaces S. A necessary condition for
S = D(m) is that N has self-loops.

Proof. By remark 3.4, it is enough to consider the case where cells
have just one input type. Suppose S = D(m) and N is connected.
By proposition 3.3, there exists j ∈ m such that there is a connection
j→i, for all i ∈ m. Hence Nj has a self-loop. If N is not connected,
then every connection will be a self-loop. �

Example 3.13. It follows from lemma 3.12 that a strongly connected
m cell network without self loops has S ( D(m). For example, if
m = 3, there are at most three synchrony subspaces (see [6] and also
below). If we allow self-loops, then an m-cell identical cell network
can be strongly connected and have S = D(m), provided that cells
have at least m inputs. See figure 5(a) for the case m = 3. If we
allow symmetric inputs, it is easy to construct an m-cell identical cell
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N1 N2 N3 N1 N2 N3

(a) (b)

Figure 5. 3 cell connected networks with the maximal
number of synchrony subspaces: (123), (12), (13) and (23):
(a) Asymmetric inputs; (b) Symmetric inputs.

network with S = D(m), provided that cells have at least m−1 inputs.
See figure 5(b) for case m = 3. From our perspective, the networks of
figure 5 are not particularly interesting as neither can support robust
heteroclinic cycles. ※

In [6] it was shown that (up to network equivalence) there were ex-
actly two strongly connected identical three cell networks, asymmetric
inputs, supporting robust heteroclinic cycles (one of these networks
had self-loops). Subsequently, it was shown [26] that every heteroclinic
network N with q connections could be realized as a robust heteroclinic
network in a strongly connected identical cell network Pq+1 consisting
of q + 1 cells, each with q asymmetric inputs. Rather than restate the
general result, we give an example that embeds the RPS heteroclinic
3-cycle in P4.

Example 3.14. In figure 6, we show the network P4 constructed
in [26]. Every synchrony subspace of P4 can be written as a join of

N3 N41N N2

Figure 6. A 4 cell network with synchrony subspaces gen-
erated by (12), (13) and (14).

generating synchrony subspaces. Assuming cells have 1-dimensional
dynamics, with phase space R, the heteroclinic 3 cycle a→b→c→a
can be realized as a robust heteroclinic cycle Σ in P4. The result fol-
lows from the main theorem in [26]: the equilibria a,b, c ∈ Σ will
lie on the synchrony subspace (1234); the connection a→b will lie in
(123); the connection b→c will lie in (124); and the connection c→a
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will lie in (134). Each equilibrium will have a 1-dimensional unstable
manifold and along each connection, one of the nodes desynchronizes
from the other three (synchronized) nodes. Note that Σ is not sim-
ple according to the strict definition we gave in section 1: Σ only
contains one component of W u(p) r {p} for each equilibrium point
p ∈ Σ. Subsequently, our approach will be to work on a flow-invariant
‘fundamental domain’ D+ ⊂ R4 for the coupled cell system so that
each W u(p) r {p} has just one component in D+. For P4, define
D+ = {x ∈ R4 | xi ≥ x1, i = 2, 3, 4} and note that we can construct
Σ so that Σ ⊂ D+ and Σ is simple if we restrict dynamics to D+.
Henceforth, we use the term simple heteroclinic cycle (or network) in
this restricted sense (we give a formal definition in section 5). ※

In example 3.14, the RPS heteroclinic cycle lying in ∆2 ⊂ O3 is re-
alized as a heteroclinic 3 cycle in a four identical cell system. In the
remaining sections, we describe a far reaching generalization of this
simple result and prove that a heteroclinic r-face network Σ in an SLF
system on Ok can be realized (in many ways) as a robust heteroclinic
network in a strongly connected coupled identical cell system with k+1
cells, each with k asymmetric inputs, and no self loops. Each connec-
tion will be associated to a unique pattern of desynchronization and
resynchronization (at the equilibria at the end points); these patterns
correspond precisely to the connection structure for Σ viewed as an
SLF system.
We conclude this section with an example illustrating some of the

issues that arise if we allow symmetric inputs (see also the concluding
comments at the end of the article).

Examples 3.15. (1) It is often the case that the presence of many in-
variant subspaces can lead to the existence of robust heteroclinic cycles
and networks. However, if we assume cells have symmetric inputs, this
intuition may fail. There are two problems: (a) ‘too many’ invariant
subspaces – this may lead to multiplicities in eigenvalues; (b) symmetry
in the inputs leads to fewer free parameters and this can make it harder
to obtain specified linearizations at equilibria. For example, consider
the network shown in figure 5(b) and assume 1-dimensional node dy-
namics. The synchrony subspaces (12), (13) and (23) form a pencil of
planes containing the line (123). Since the synchrony subspaces are
all flow-invariant, this suggests that if p ∈ (123) is an equilibrium of
the network vector field F, then the two eigenvalues of DF(p) cor-
responding to eigendirections transverse to (123) should be equal. A
straightforward computation verifies that if the network vector field F

is given by the map f : R3→R, (x, y, z) 7→ f(x; y, z) (symmetric in y, z)



24 M J FIELD

and we let α = ∂f

∂x
(p), β = ∂f

∂y
(p) = ∂f

∂z
(p), then DF(p) has eigenvalues

α−β (multiplicity 2) and α+2β. It follows there can be no heteroclinic
loops lying in two of the planes (12), (13) and (23) connecting saddle
equilibria on (123). Moreover, there are only two free parameters α, β
and so it is not possible to choose three eigenvalues independently at
an equilibrium on (123). Similar remarks and comments apply to the
(m− 1)-symmetric input generalization of figure 5(b) to an m cell net-
work, m ≥ 3.
(2) Notwithstanding the previous example, it is certainly possible to
find robust heteroclinic cycles in identical cell networks with some sym-
metric inputs. We give an example based on [23],[6, §7.1]. Consider
the 6 identical cell system N with network equations

ẋ1 = f(x1; x3, x6), ẋ2 = f(x2; x4, x5), ẋ3 = f(x2; x5, x1),

ẋ4 = f(x4; x5, x1), ẋ5 = f(x5; x3, x2), ẋ6 = f(x6; x3, x2).

If cells have symmetric inputs – f(x; y, z) = f(x; z, y) – there are four-
teen synchrony subspaces:

S0 = (123456), S1 = (12‖3456), S2 = (34‖1256),
S3 = (12‖34‖56), S4 = (34‖256),S5 = (34‖56), S6 = (34),

S7 = (56), S8 = (12‖35‖46), S9 = (134‖56), S10 = (1234‖56),
S11 = (13‖56), S12 = (25‖34), S13 = (134‖256).

(For asymmetric inputs, S8, . . . ,S13 are not synchrony subspaces.) The
network N also has a Z2-symmetry generated by the cell permutation
N1 ↔ N2, N3 ↔ N5, N4 ↔ N6. Proposition 3.5 fails if inputs are
symmetric: take X to be the partition defined by S8 and Y the partition
defined by S3.
Under the assumption of symmetric inputs, we show that we can

choose network dynamics determined by f : R3→R such that there is a
robust, simple (in the sense of example 3.14) and asymptotically stable
heteroclinic cycle Σ contained in S6 ∪ S7 with equilibria p,p ∈ S5 =
S6 ∩ S7.
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Let p = (a1, a2, b, b, c, c) ∈ S5 and define

∂f

∂x
(a1; b, c) = α1,

∂f

∂y
(a1; b, c) =

∂f

∂z
(a1; b, c) = β

∂f

∂x
(a2; b, c) = α2,

∂f

∂y
(a2; b, c) =

∂f

∂z
(a2; b, c) = γ

∂f

∂x
(b; c, a1) = α3,

∂f

∂y
(b; c, a1) =

∂f

∂z
(b; c, a1) = δ

∂f

∂x
(c; b, a2) = α4,

∂f

∂y
(c; b, a2) =

∂f

∂z
(c; b, a2) = η.

The linearization of the network vector field F determined by f at p is

(3.14) J(p) =




α1 0 β 0 0 β
0 α2 0 γ γ 0
δ 0 α3 0 δ 0
δ 0 0 α3 δ 0
0 η η 0 α4 0
0 η η 0 0 α4




.

Noting that S5 is J(p)-invariant, the matrix of J(p)|S5 = JBC is

(3.15) JBC =




α1 0 β β
0 α2 γ γ
δ 0 α3 δ
0 η η α4


 .

We have similar expressions for JB = J(p)|S6 and JC = J(p)|S7. For a
simple cycle, all eigenvalues of JBC(p) must have strictly negative real
part and the eigenvalues corresponding to the eigenlines not contained
in S5 must be real, nonzero and of opposite sign. Since S6 ⊃ S5 and
both spaces are J(p)-invariant, we see that the eigenvalue of JB with
eigenline transverse to S5 must be α4 – the sum of the eigenvalues of
JBC(p) is α1 + α2 + α3 + α4, while the sum of the eigenvalues of JB
is α1 + α2 + α3 + 2α4. Similarly the eigenvalue of JC with eigenline
transverse to S5 must be α3. Hence for a simple cycle with saddle at p
we must have α3α4 < 0 and all eigenvalues of JBC strictly negative. It
is not hard to choose α1, . . . , α4, β, γ, δ, η to achieve this. For example,
if we take α1 = α2 = α4 = −1, α3 = 1, β = 0, γ = 2, δ = 1 and
η = −2, then the characteristic equation of JBC is λ3+λ2+6λ+1 = 0
and so by the Routh-Hurwitz criterion all roots of the characteristic
equation have strictly negative real parts. With a little more work,
we may also require that the weakest contracting eigenvalue dominates
the expanding eigenvalue. This is sufficient to guarantee asymptotic
stability of the cycle we construct.
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The previous arguments show there is no obstruction to construct-
ing a network vector field which has a hyperbolic saddle point on S5

with 1-dimensional (punctured) stable manifold lying in either S6rS5

or S7 r S5. We briefly sketch how to construct a network vector
field with connecting trajectories giving a heteroclinic cycle between
two hyperbolic saddle points on S5. Pick p = (a1, a2, b, b, c, c), p =
(ā1, ā2, b̄, b̄, c̄, c̄) ∈ S5 with {a1, a2, b, c} ∩ {ā1, ā2, b̄, c̄} = ∅. Choose hy-
perbolic linear maps A,A at p,p so that unstable eigendirections are
1-dimensional and lie in S6, S7 respectively. Using A,A we construct
the network vector field on a neighbourhood of S5 in M with index
1 saddle points at p,p. Next choose smooth connections p→p ⊂ S6,
p→p ⊂ S7 which match with the eigenlines, transverse to S5, near the
equilibria p,p. Using the method of [26], perturb connections so that
the network vector field is well defined on the connections – regard the
connections as subsets of S6 = S7 = R5. Extend the network vector
field smoothly to all of R3. ※

4. The Synchronization Transform

In the next two section we describe a general method for transform-
ing invariant subspaces and heteroclinic networks of SLF networks to
synchrony subspaces and heteroclinic networks of coupled identical cell
networks.
Henceforth we always assume

(1) Identical cells with asymmetric inputs.
(2) The network graph is strongly connected and without self loops.
(3) If the network has k cells, then each cell has at most k − 1

asymmetric inputs.
(4) Node dynamics for coupled cell systems is 1-dimensional (phase

space R).

Suppose that k ≥ 2 and let D(k) denote the lattice of all proper
polydiagonal subspaces of R = Rk with minimal element S∞ = R and
maximal element (minimal synchrony subspace) S0 = ∆(R). Let L(k)
be the sublattice of Ik generated by the subspaces {Hi | i ∈ k, i 6= 1}.
The maximal element V0 of L(k) is the subspace H2...k – the x1-axis.
The minimal element is R.

Definition 4.1. (Notation and assumptions as above.) A synchroniza-
tion transform of weight s is a triple (T,B,S) where

(1) T : Rk→Rk is a linear isomorphism: the synchronization map.
(2) S is a complete sublattice of D(k) with maximal element S0,

and minimal element S∞.
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(3) B = {W1, . . . ,Ws} is a subset of L(k) and {T (Wi) | i ∈ s} is a
basis of S.

(4) T (V0) = S0 ∈ S.
(5) If V ∈ D(k)r S, then T−1(V ) /∈ L(k).
A coupled k identical cell network N supports (or has) a synchro-

nization transform if we can find a synchronization transform (T,B,S)
such that T : Rk→Rk and S = S(N ).

Remarks 4.2. (1) If (T,B,S) is a synchronization transform then S0 ∈
S by (4). In particular, s ≥ 1 and either V0 ∈ B or V0 lies in the
sublattice generated by B.
(2) Although S∞ ∈ S (see the preamble to definition 3.10), we do not
require that S∞ can be written in terms of T (W1), . . . , T (Ws) using the
∨,∧ operations. Of course, since T is a linear isomorphism, T (R) =
S∞. In what follows we invariably omit reference to the minimal classes
R, S∞ in our descriptions of lattices and sublattices.
(3) It it neither required, nor true, that T induces a lattice isomorphism
between S and the sublattice of L(k) generated by B. ⊛

Examples 4.3 (Networks supporting synchronization transforms).
(1) Suppose k = 3. Up to permutation of coordinates, there are three
nonempty subsets of L(3) containing V0:

B0 = {V0, H2, H3} = L(3), B1 = {V0, H2}, B∞ = {V0}.
We remark that B0,B1,B∞ are sublattices of L(3). If (T,Bα,Sα) is a
synchronization transform, α ∈ {0, 1,∞}, then (up to permutation of
coordinates) we have

(1) S0 = {(123), (12), (13)} (s = 2).
(2) S1 = {(123), (12)} (s = 2).
(3) S∞ = {(123)} (s = 1).

The synchronization map for α = 0 is given by the linear isomorphism
T0 satisfying T0(H2) = (12), T0(H3) = (13) and T0(V0) = (123). In
matrix form,

T0 =



1 b c
1 b2 c
1 b c3


 ,

where (b2 − b)(c3 − c) 6= 0. For example, we may take b = c = 0,
b2c3 6= 0. Finding explicit synchronization maps for the other two
cases is a simple computation. Note that (12) ∧ (13) = S∞ for S0 but
that S∞ cannot be expressed in terms of basis elements for S1,S∞. In
all cases, T will induce a lattice isomorphism T ⋆ : Bα→Sα.
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We have already given a 3 identical cell network that realizes S0 –
see figure 5(b). In figure 7 we show identical cell networks that realize
S1 and S∞. Note that for (a) we need two input types and at least

N1 N2 N3

(a) (b)

N1 N2 N3

Figure 7. Three node identical cell system with nontrivial
synchrony subspaces (a) (12), (123), and (b) (123).

one cell will have a duplicated input – in this case N3. For (b) we
only need one input – shown by the unbroken line in figure 7(b). The
second set of inputs (broken line in the figure) can be filled using any
configuration (denying self loops).
(2) Take k = 5, s = 3, B = {H23, H45, H235} and require T (H23) =
(12‖34), T (H45) = (15‖23) and T (H235) = (12‖345). We have

(1) V0 = H23 ∩H45.
(2) S = {(12‖34), (15‖23), (12‖345), (12345)}.

We may realize a synchronization map with the matrix

T = [tij] =




1 a b c d
1 a2 b2 c d
1 a2 b2 c3 d3
1 a4 b4 c3 d3
1 a b c3 d5




.

where (c − c3)(d5 − d3), [(a2 − a)(b4 − b2) − (b2 − b)(a4 − a2)] 6= 0 are
required for T to be nonsingular and

a2 − a4, a− a2, a4 − a2, b− b2, b2 − b4, b− b4, d− d5, d− d3 6= 0

are needed to ensure S = {(12‖34), (15‖23), (12‖345), (12345)} and
(3c) of definition 4.1 are satisfied. The coupled cell system shown in
figure 8 has exactly these synchrony subspaces.
Note that T does not induce a lattice isomorphism between S and

the sublattice of L(k) generated by B under the join and meet opera-
tions on Ik. Indeed, H45 ∧H235 = H5 and T (H5) /∈ S.
(3) If k > 2, it is not possible to choose a synchronization transform
(T,B,S) such that S = D(k) since the maximal number of elements
in S is 2k−1 (the cardinality of L(k)). Since we deny self loops, and
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N4 N5N3N2N1

Figure 8. A five node identical cell system with nontrivial
synchrony subspaces: (12‖34), (15‖23), (12‖345), (12345).

k > 2, there are no strongly connected coupled cell networks for which
every polydiagonal subspace is a synchrony subspace (lemma 3.12).
(4) If k = 4 and we take the sublattice S of D(4) generated by
(123), (124), (12‖34), then there is no synchronization transform. It
is straightforward to verify that there is no strongly connected network
N , without self loops, for which S(N ) = S. ※

Remark 4.4. We conjecture that if T : Rk→Rk and (T,B,S) is a syn-
chronization transform of weight s, then (a) S contains at most 2k−1

synchrony classes and (b) that s ≤ k−1. We note that (a) is immediate
if T induces a lattice isomorphism between the lattice generated by B
and S. ⊛

Theorem 4.5. Let k ≥ 2.

(1) If B = {V0}, there exists a strongly connected coupled iden-
tical k cell network N without self loops for which S(N ) =
{(12 . . . k)}. It suffices that cells have s ≤ 2 input types.

(2) Suppose that (ai, bi) ∈ D(k), i ∈ k− 1. Let S ⊂ D(k) be
the sublattice generated by {(ai, bi) | i ∈ k− 1} and suppose
that ∨i∈k−1(ai, bi) = S0. Then there exists a strongly connected
coupled identical k cell network N without self loops for which
S(N ) = S. Each cell will have k − 1 input types.

In both cases, there are synchronization transforms (T,B,S) for which
S is generated by {T (Wi) | Wi ∈ B}.
Proof. (1) Let N1 be the k identical cell network with one input type
and connections N2→N1, . . . , Nk→Nk−1, N1→Nk. If k is prime, the
only synchrony subspace will be (12 . . . k). If k is not prime, then it is
straightforward exercise, based on proposition 3.3, to show that every
synchrony subspace of N1 is of the form

SPQ = (1Q+1 . . . (P−1)Q+1‖2 . . . (P−1)Q+ 2‖ . . . ‖Q 2Q . . . PQ),
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where k = PQ is a proper factorization of k (note that SPQ 6= SQP un-
less P = Q). Choose a second input type and connections Nj+1→Nj,
j > 1 and N3→N1 so as to define the network N2 with two input types.
The only synchrony subspace of N2 is (12 . . . k).
(2) We proceed by induction on k. The result is true trivially if
k = 2 and follows by examples 4.3(1) if k = 3. Suppose the result
is proved for k < n. We prove for k = n. By a simple counting ar-
gument, there exists i ∈ n such that either ai or bi occurs just once
in {a1, b1, a2, . . . , an−1, bn−1}. Relabelling, suppose that i = n − 1,
bn−1 = n occurs just once and an−1 = 1. Then {(ai, bi) | i ∈ n− 2} sat-
isfies the hypotheses of the proposition for k = n−1 and so there exists
a strongly connected coupled identical n−1 cell network Nn−1 without
self loops for which S(Nn−1) is generated by (a1, b1), . . . , (an−2, bn−2).
Change cells in Nn−1 by adding one new input type and form the n
cell network N by adding one new cell Nn to Nn−1, and

(1) connecting Nn to the n− 1-input of cells N1, . . . , Nn−1,
(2) connecting N1 to the n− 1-input of cell Nn,
(3) connecting Nj to the j − 1-input of cell Nn, j = 2, . . . , n− 1.

It is straightforward to check that S(N ) is equal to the sublattice
generated by {(ai, bi) | i ∈ n− 1}.
Finally, it is easy to construct synchronization transforms (T,B,S)

for which S is generated by {T (Wi) | Wi ∈ B}. In case (2) T will map
xj+1 = 0 to xaj = xbj , j ∈ k− 1. �

Remark 4.6. If we take generating set {(1, j) | j = 2, . . . , k}, then the
network given by the proposition will be the network Pk of [26]. Even
though the sublattices of theorem 4.5(2) are always isomorphic to the
sublattice generated by {(1, j) | j = 2, . . . , k}, the associated networks
are generally not linearly or dynamically equivalent [16, 3] (allowing
for permutation of cells). ⊛

Suppose that N = {N1, . . . , Nk} is an identical cell network and that
each cell has p ≥ 1 asymmetric inputs. We construct a new identical

cell network N̂ = {N̂1, . . . , N̂k+1} such that each cell N̂j has p + 1

asymmetric inputs and N is naturally embedded in N̂ . To do this, we
start with the network N and add one input type to each cell Nj to

obtain a new cell N̂j with p + 1 input types. Add a new cell N̂k+1. It

remains to fill the inputs of type p + 1 for N̂1, . . . , N̂k and the inputs

of type 1, . . . , p + 1 of N̂k+1. The output of N̂k+1 will go to the input

of type p + 1 for each of the cells N̂1, . . . , N̂k. We fill all the inputs of

N̂k+1 with the output of N̂1. This defines the identical cell network N̂ .
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Lemma 4.7. (Notation and assumptions as above.) Let N be a strongly
connected identical cell network without self loops and with cells having
p ≥ 1 asymmetric inputs.

(1) N̂ is a strongly connected identical cell network without self
loops.

(2) S(N̂ ) = S(N ) ∪ {S0}, where S0 is the maximal element of

S(N̂ ).
(3) N has a synchronization transform (T,B,S(N )) of weight s if

and only if N̂ has a synchronization transform (T̂ , B̂,S(N̂ )) of
weight s+ 1.

Proof. The first statement is trivial. Concerning (2), it suffices to show

that the only synchrony subspace for N̂ containing Nk+1 is (1 . . . k+1).

Let (A1‖ . . . ‖As) be a synchrony subspace for N̂ containing Nk+1 as a
synchronized node. Without loss of generality, we may suppose that k+

1 ∈ A1. Since there are connections N̂k+1→N̂j, j ∈ k, and N̂1→N̂k+1,
all to inputs of type p + 1, we must have 1 ∈ A1. Hence for all i ∈ k,

j ∈ k ∩ A1, ℓ ∈ p, if there is a connection from N̂i to the ℓ-input of

N̂j, then i ∈ A1 (since there is a connection from N̂1 to the ℓ-input of

N̂k+1. It follows by the strong connectivity of N̂ that A1 = (1 . . . k+1),
proving (2). Finally, (3) is a routine computation. �

Examples 4.8. (1) Let k = 4. Up to permutation of nodes, the-
orem 4.5 gives three strongly connected identical cell networks with
synchrony subspaces generated by (a) (1234), (b) (12), (13), (14), and
(c) (12), (23), (34). Using the results for k = 3, lemma 4.7 yields three
additional 4 cell identical network with synchrony subspaces generated
by (d) (12), (123), (1234), (e) (123), (1234), (f) (12), (23), (1234). How-
ever, this list is far from complete – see the concluding remarks 4.2 at
the end of the section and the tables at the end of section 5.
(2) For k ≥ 2, there is a coupled identical k cell network with synchrony
subspaces (12), (123), (1234), . . . , (12 . . . k). This follows by applying
lemma 4.7 a total of k − 2 times to the 2 identical cell strongly con-
nected network with one input type. All networks constructed support
a synchronization transform. ※

Realization Conjecture, part I

Let k ≥ 2 and S be a complete sublattice of D(k). If there exists a
synchronization transform (T,B,S), then there is a strongly connected
coupled identical k cell network N , without self loops and with lattice
of synchrony subspaces S(N ) = S. Cells of N have (at most) k − 1
asymmetric inputs.
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Remarks 4.9. (1) The conjecture is not interesting if we allow self loops
(see example 3.13(1)) or do not require strong connectivity (see exam-
ples 4.3(3)). In particular, the converse to the conjecture – that a
synchronization transform is necessary – is obviously false if we do not
require strong connectivity and no self-loops. Later we give an example
(see example 4.11) where the converse can fail if the network equations
have symmetry which acts non trivially on S.
(2) The conjecture is true for k = 3, 4 (for k = 3, see examples 4.3(1);
the case k = 4 may be shown on a case-by-case basis, see the end of
section 5). ⊛

When the Realization Conjecture holds, it seems to be usually true
that the coupled cell network N can be chosen so that

(A) Generically the linearizations of network vector fields at equi-
libria on synchrony subspaces have no multiple eigenvalues.

(B) Given U ∈ S, m ∈ k•, p ∈ U, there exists a network vector
field which has a hyperbolic equilibrium at p of index m.

In order to verify (A), it suffices to show that equilibria on the mini-
mal synchrony subspace S0 generically do not have multiple eigenval-
ues. More generally, if generically there are no multiple eigenvalues for
equilibria on a synchrony subspace U ∈ S, the same will be true for
all T ∈ S such that T ⊃ U. If there is a synchronization transform,
we have found no examples where the presence of multiple eigenvalues
impacts the existence of robust heteroclinic networks or cycles (see also
the last paragraph of example 4.11). Concerning (B), this is easy to
verify if m = 0, k. Obviously if (B) holds for m, (B) holds for k −m.

Theorem 4.10. Part I of the Realization Conjecture is true for all
identical cell networks satisfying the conditions of theorem 4.5(2). More-
over, conditions (A,B) above hold.

Proof. It is straightforward and easy to verify that any k identical cell
network N satisfying the conditions of theorem 4.5(2) has a synchro-
nization transform (T,B,S(N )) of weight k − 1. By construction, the
cells in N have k − 1 inputs. For condition (A) use remarks 4.9(3).
Finally, for (B) it follows by induction on k, that we can reduce to the
case (12) ∈ S, p ∈ (12), This case is easy to check. �

Realization Conjecture, part II

Let k ≥ 2 and N be a k identical cell network with lattice of synchrony
subspaces S. Let G ⊂ Sk denote the group of permutation symmetries
of N . A synchronization transform (T,B,S) exists if and only if G
acts as the identity on S. In particular, if GS is the subgroup of Sk
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preserving S then a sufficient condition for a synchronization transform
is that GS acts as the identity on S.
Example 4.11 (Scope and converse to the realization conjectures).
Suppose that k = 4, s = 3, B = {H23, H24, H34}, and we require
T (H23) = (12‖34), T (H24) = (13‖24) and T (H34) = (14‖23). We have
S = {(12‖34), (13‖24), (14‖23), (1234)}. We can realize a synchroniza-
tion map with the matrix

T = [tij] =




1 a b c
1 a2 b2 c
1 a2 b c3
1 a b2 c3


 .

where a 6= a2, b 6= b2, c 6= c3. The coupled cell system shown in fig-
ure 9(a) has synchrony subspaces S. A new feature is that S, and the

1N N3

N2 N4

1N N3

N2 N4

(a) (b)

Figure 9. Four identical cell networks with nontrivial syn-
chrony subspaces (a) (12‖34), (13‖24), (14‖23), (1234), (b)
(12), (34), (13‖24), (12‖34), (1234)

network realizing these synchrony subspaces, have a nontrivial sym-
metry group – the Klein four-group K – generated by the involutions
(12)(34), (13)(24), (14)(23). However, S is pointwise fixed by K and
there is no action induced on B – this is compatible with part II of the
realization conjecture.
If instead we take S = {(12), (34), (13‖24), (12‖34), (1234)}, gener-

ated by (12), (34), (13‖24), then it is not possible to find a synchroniza-
tion transform even though there is a coupled identical 4 cell networkN
that realizes these synchrony subspaces (see figure 9(b)). Observe that
the symmetry group of S (or N ) contains the involution σ = (24)(13).
Although σ preserves S it does not act trivially – σ((12)) = (34). As
a consequence, if there is a synchronization map T : R4→R4, there
is a nontrivial Z2 action induced on B ⊂ L(4). This gives an extra
constraint on T which cannot be satisfied. That is, we cannot define
generators for S in terms of elements of L(4). Parts I & II of the
realization conjecture hold.
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In a related direction, suppose

S = {(12), (12‖34), (13‖24), (14‖23), (1234)}.
A basis for S contains four elements. The symmetry group of S con-
tains the involution σ = (12) and acts nontrivially on S. It easy to
verify directly that we cannot find B = {W1,W2,W3,W4} and a syn-
chronization map T such that T (W1), . . . , T (W4) generate S – the con-
ditions force T to be singular. A case by case analysis of the one input
connection structures that support (12‖34), (13‖24), (14‖23) and (12)
shows that (34) will always be a synchrony subspace and so it is not
possible to add a second input type that allows (12) and denies (34) (self
loops do not help here). Although we can find a 4 identical cell network
with synchrony subspaces S ′ generated by (12), (34), (13‖24), (14‖23),
the resulting network is not strongly connected if we deny self loops.
Note that the involution (13)(24) is a symmetry of S ′ which does not
act trivially on S ′. Again, all this is consistent with part II of the
realization conjecture.
Finally suppose that S is generated by (12), (34), (1234). The in-

volution σ = (13)(24) is a nontrivial symmetry of S However, it is
not possible to find a coupled cell network N with S(N ) = S such
that σ is a symmetry of N . Here there exist coupled cell networks
N with S(N ) = S, and which all have associated synchronization
transforms, but σ is never a symmetry of N . Moreover, equilibria
in (1234) r (12‖34) will have multiple eigenvalues. This provides an
example where condition (A) is not satisfied. ※

4.1. Necessary conditions for S to be a lattice of synchrony

subspaces. Fix k ≥ 4 and let S be a complete sublattice of D(k).
We are interested in giving structural conditions on S that imply S
cannot be the lattice of synchrony subspaces of a strongly connected k
identical cell network without self loops.
Suppose that A is a subset of k. Let |A| denote the number of

elements in A. In what follows we assume 3 ≤ |A| < k and set |A| = p.
Relabelling, suppose that A = {1, . . . , p}. If s = (A1‖ . . . ‖Ar) ∈ S,
define supp(s) = ∪i∈rAi and set SA = {s ∈ S | supp(s) ⊂ A}.
Definition 4.12. (Notation and assumptions as above.) The set SA

is a synchrony substructure of S if

(1) (1 . . . p) ∈ SA.
(2) SA is a sublattice of S.

The synchrony substructure SA is indecomposable if given s, t ∈ SA

there is a chain s = s1, . . . , sq = t of synchrony subspaces lying in SA

such that supp(si) ∩ supp(si+1) 6= ∅, i ∈ q− 1.
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Remarks 4.13. (1) If SA a synchrony substructure, then SA naturally
embeds as a sublattice of D(p) with maximal element (1 . . . p).
(2) More generally, if B = (B1‖ . . . ‖Br) ∈ S and supp(B) ∩ A = ∅,
we define SA,B to consist of all s ∈ S such that s = (A1‖ . . . ‖Ar‖B),
Ai ⊂ A, i ∈ r. The set SA,B will be a B-relative synchrony substructure
if (1 . . . p ‖B) ∈ SA,B and SA,B is a sublattice of S. Indecomposability
is defined in the obvious way. ⊛

Lemma 4.14. (Notation and assumptions as above.) Let N be an
identical k cell network with lattice of synchrony subspaces S(N ) = S.
Assume cells have q asymmetric inputs. Suppose that A ⊂ k and SA

is a synchrony substructure of S. For each input type j ∈ q one of the
following conditions holds

(1) There exists ℓ ∈ k r A such that for all i ∈ A, there is a
connection Nℓ→Ni to input j of Ni.

(2) For all i ∈ A, there exists ℓ = ℓ(i) ∈ A, such that there is a
connection Nℓ→Ni to input j of Ni.

In particular, SA determines an identical cell network NA, with cells
{Ni | i ∈ A} defined by deleting all inputs to, and outputs from, cells
Ni ∈ NA which connect to cells Nk, k /∈ A.

Proof. Relabelling cells, we may assume A = p. Since (1 . . . p) ∈ SA,
the result is immediate from lemma 3.3. �

Proposition 4.15. Let k ≥ 4 and S be a complete sublattice of D(k).

(1) A necessary condition for there to exist a strongly connected k
identical cell network N , without self loops, with S(N ) = S, is
that for every indecomposable synchrony substructure SA, with
|A| = p, there exists a p identical cell network NA, without self
loops, and with S(NA) = SA.

(2) A necessary condition for there to exist a strongly connected
k identical cell network N , without self loops, with a synchro-
nization transform (T,B,S), is that for every indecomposable
synchrony substructure SA, with |A| = p, there exists a syn-
chronization transform (TA,BA,SA).

Proof. Both statements follows easily from lemma 4.14; we omit the
routine details. �

Remark 4.16. Proposition 4.15 can easily be generalized to indecom-
posable B-relative synchrony substructures. ⊛

Example 4.17. In figure 10(a) we show a 5 cell network N with
S(N ) ⊃ {(12), (13), (123)}. Taking A = 3, it is easy to see that SA
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N1 N2 N3

N1 N2 N3

N4 N5

(a) (b)

Figure 10. A 5 identical cell network with synchrony
substructure S3.

is a synchrony substructure. The associated network NA is shown in
figure 10(b). ※

Examples 4.18. (1) Suppose that k = 6 and S is generated by

{(12), (34), (13‖24), (14‖23), (1256)}.
It follows from example 4.11 and proposition 4.14 that it is not possible
to find a strongly connected 6 identical cell network N , without self
loops, such that S(N ) = S.
(2) Again, using example 4.11 and proposition 4.14, it is not possible to
find a synchronization transform for the 6 cell network with synchrony
subspaces generated by {(12), (34), (13‖24), (2356)}. Note that these
synchrony spaces cannot be realized by a strongly connected 6 cell
network without self loops. ※

4.2. Summary. The realization conjectures suggest a way to iden-
tify a large class of coupled identical cell networks which have syn-
chrony subspaces closely related to invariant subspaces of SLF sys-
tems. In examples 4.8(1), example 4.11 we have identified eight cou-
pled cell networks where the realization conjectures apply. Parts 1 and
2 (where applicable) of the conjectures also hold when S has generating
sets (i) {(12), (13‖24)}, (j) {(12), (134)}, (k) {(12), (12‖34), (1234)}, (l)
{(12‖34), (13‖24)}, and (m) {(12), (34), (1234)}. We discuss some of
these examples further in the next section where our main focus is on
investigating what this relationship between coupled cell networks and
SLF systems implies about heteroclinic cycles and networks in coupled
cell networks.

5. Transforming heteroclinic networks

In this section we investigate ways of proving the existence of het-
eroclinic cycles and networks in coupled identical cell systems using
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known heteroclinic cycles and networks in SLF systems. Specifically,
suppose that (T,B,S) is a synchronization transform, with synchro-
nization map T : Rk→Rk, and that there is a strongly connected k
identical cell network, without self loops, which has lattice of synchrony
subspaces S(N ) = S – that is, part I of the Realization Conjecture
holds. We show how we can use the synchronization map to transform
robust heteroclinic cycles and networks for SLF systems, with k nodes,
into corresponding results on robust heteroclinic cycles and networks
for a coupled k identical cell network N with S(N ) = S. Our focus
will be on examples that illustrate the approach; we present general
conjectures in the next section.

5.1. Simple heteroclinic networks and cycles for coupled iden-

tical cell systems. As we indicated in example 3.14, heteroclinic cy-
cles in coupled identical cell systems will generally not be simple (as
defined in section 1) unless we restrict domains (just as we do for equi-
variant maps and generalized Lotka-Volterra systems).
Let (T,B,S) be a synchronization transform with B = {Hi | i ≥ 2},

T : Rk→Rk and S generated by T ⋆(Hi) = (ai, bi) as in the statement of
theorem 4.5(2). We have T (Hi) = {y ∈ Rk | yai = ybi}. Let N denote
the associated coupled cell network given by theorem 4.5(2).
Define the domain D+(T ) = D+ ⊂ Rk by

D+ = {T (x) | xi ≥ 0, i ≥ 2}.

Observe that D+ is flow-invariant for coupled cell dynamics on Rk,
∂D+ = D+ ∩ ⋃i≥2 T (Hi), D+ ⊃ ∆(Rk), and there are 2k−1 different
choices for D+ depending on the signs of the matrix entries for T . Up
to homeomorphism, D+ = R × Ok−1. A heteroclinic cycle Σ will be a
simple heteroclinic cycle for network dynamics on N , if we can choose
T so that Σ ⊂ D+ and Σ is simple in the sense of section 1 for dynamics
restricted to D+. The definition extends without difficulty to the case
when B is a proper subset of {Hi | i ≥ 2}.

Example 5.1 (A five cell system). The coupled cell network shown
in figure 11 has lattice S(N ) of synchrony subspaces generated by
{(12), (23), (34), (25)}. Assuming 1-dimensional node dynamics, the
equations for the system of figure 11 are

ẋ1 = f(x1; x3, x4, x5, x2), ẋ2 = f(x2; x3, x4, x5, x1),

ẋ3 = f(x3; x2, x4, x5, x1), ẋ4 = f(x4; x2, x3, x5, x1),

ẋ5 = f(x5; x3, x4, x2, x1).
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N2 N3N1 N4 N5

Figure 11. A 5 node identical cell network N with syn-
chrony subspaces S(N ): (12), (23), (34), (25), (123),
(125), (234), (235), (12‖34), (25‖34), (1234), (1235),
(2345), (125‖34), and (12345).

We claim that we can choose f so that the identical cell system N has
a robust simple heteroclinic cycle Σ

· · ·→(235)
23→ (123)

12→ (12‖34) 34→ (25‖34) 25→ (235)→· · ·
Note that vertices and connections are labelled by synchrony type.
Observe that one cell desynchronizes along each connection of Σ and
there is a resynchronization at the end point of the connection (to a
different cluster of synchronized cells from those at the initial point of
the connection).
It follows from theorem 4.5(2) that there is an associated synchro-

nization transform (T,B,S). The synchronization map T will map
hyperplanes as follows

H2 −→ x1 = x2, H3 −→ x3 = x4

H4 −→ x2 = x5, H5 −→ x2 = x3.

We use the synchronization map T for a formal derivation of Σ from
the heteroclinic 2-face cycle ΣF ⊂ ∆4

· · ·→v23→v34→v45→v25→v23→· · · .
This heteroclinic cycle is supported on the 3-face ∆2345 ≈ ∆3 of ∆4

(see figure 4: map vij to vi−1 j−1).
We have T (v23) = (u, V, V, w, V ) ∈ (235), T (v34) ∈ (123), T (v45) ∈

(12‖34), and T (v25) ∈ (25‖34). Each connection for the face cycle ΣF

will be mapped to the corresponding connection for Σ.
We assumed above that the heteroclinic face cycle ΣF was a subset

of x1 = 0 – although this makes it easier to visualize the face cycle,
the assumption is unnecessary and a little misleading. If we assume
that the x1-coordinates of all of the vertices of the cycle are non-zero,
then ΣF will be a 3-face heteroclinic cycle lying in ∆4. Since the
synchrony map is a linear isomorphism it preserves the dimension of
invariant subspaces. For example, the vertex v123 ∈ Int(∆123), and
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T embeds Int(∆123) into the 3-dimensional synchrony subspace space
(235) = T (H45). The connection from v123 lies in the 3-face ∆1234

spanned by v1,v2,v3,v4 and the interior of this face gets embedded
by T in the 4-dimensional synchrony space (23) = T (H5). If we take
x1 = 0, then v23 lies on the edge spanned by v2,v3. The interior of the
edge still gets mapped into (235) by T .
What is essential is that the number of zero coordinates of a vertex

on the face cycle, not counting the x1-coordinate, is the same for all
vertices on the cycle. In our example, there are two zero coordinates,
not counting the x1-coordinate. We remark that when we have con-
nections between fully synchronous equilibria, there is no choice: we
always take equilibria on the x1-axis V0.
Along similar lines, we can realize

· · ·→(2345)
25‖34→ (125‖34) 12‖34→ (1234)

123→ (1235)
235→ (2345)→· · ·

as a robust heteroclinic cycle Σe. Using the synchronization map T ,
Σe can be derived from the heteroclinic edge cycle (cf. figure 2(a))

· · ·→v2→v5→v4→v3→v2→· · ·
Equivalently, Σe may be derived from the 2-face cycle

· · ·→v12→v15→v14→v13→v12→· · · ,
Having identified two potential heteroclinic cycles via the above mecha-
nism, it is easily verified by direct computation that network dynamics
can be chosen so that either cycle is realized as a robust heteroclinic
cycle in the coupled cell network architecture N .
Summarizing, we propose a method for constructing robust hetero-

clinic cycles and networks for coupled identical cell networks. If part
I of the Realization Conjecture is true, and we can satisfy conditions
(A,B) where required, then, modulo geometric obstructions to making
connections, the method will always work to yield robust heteroclinic
cycles and networks. We give precise conjectures in the final section of
the paper. ※

Remark 5.2. If we assume that the first and second inputs of cells are
symmetric in the previous example, then it can be shown that it is
still possible to construct the robust simple cycle Σ. However, because
of multiple eigenvalues, it is no longer possible to construct a robust
simple cycle Σe. Essentially, synchrony transforms of face heteroclinic
cycles and networks work better than edge cycles if we want to allow
for some symmetry in the input structure to cells. ⊛
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Example 5.3 (A four cell SLF system). Next we consider two ways
of deriving a heteroclinic cycle between synchronized states from the
RPS heteroclinic 3 cycle Σ shown in figure 12.

v2 v4v3

Σ

v1 v3

v4

v2

Figure 12. An SLF system with heteroclinic 3 cycle.

We start by realizing Σ in the coupled cell network of figure 6 – the
coupled cell network P4 of [26]. This network has lattice of synchrony
subspaces S generated by (12), (13), and (14) and so satisfies the con-
ditions of theorem 4.5(2). Hence there is an associated synchronization
transform (T,B,S). The synchronization map T will map hyperplanes
as follows

x2 = 0 −→ x1 = x2

x3 = 0 −→ x1 = x3

x4 = 0 −→ x1 = x4

The heteroclinic cycle Σ transforms to the heteroclinic cycle (134)
13→

(123)
12→ (124)

14→ (134) which can be realized as a robust simple hetero-
clinic cycle in the network P4. We briefly indicate some of the straight-
forward computations. With node phase space R, network dynamics
on P4 is given by the system

ẋ1 = f(x1; x2, x3, x4), ẋ2 = f(x2; x1, x3, x4),

ẋ3 = f(x3; x2, x1, x4), ẋ4 = f(x4; x2, x3, x1).

If t = (a, a, a, b) ∈ (123) is an equilibrium of the network vector field
F, then the eigenvalues of the linearization DF(t) are

λ1,4 =
1

2

(
(ᾱ1 + σ)±

√
(ᾱ1 + σ)2 − 4(ᾱ1σ − α4σ̄)

)

λ2 = α1 − α2,

λ3 = α1 − α3,
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where t̄ = (b, a, a, a), then αi =
∂f

∂xi
(t), ᾱi =

∂f

∂xi
(t̄), i ∈ 4, σ =

∑
i∈3 αi,

σ̄ =
∑

i∈3 ᾱi and we have set t̄ = (b, a, a, a). Consequently, we can
choose F near t so that t is of index 1 with W u(t) ⊂ (13). Similar
computations hold for equilibria in (134) and (124). It follows there
are no local obstructions to realizing the cycle in P4. Using the method
of [26, §4.5], it is easily shown there are no geometric obstructions to
realizing Σ as a robust (simple) heteroclinic cycle in P4.
Next we indicate how we can realize Σ in the coupled cell network

shown in figure 13.

N2

N3

N1

N4

Figure 13. A 4 identical cell network with synchrony sub-
spaces generated by (12), (13), (34).

Just as in the previous example, theorem 4.5(2) applies and there
exists an associated synchronization transform (T,B,S). The synchro-
nization map T maps the hyperplanes according to

x2 = 0 −→ x1 = x2

x3 = 0 −→ x3 = x4

x4 = 0 −→ x1 = x3.

Using the synchronization map T , Σ transforms to the heteroclinic
cycle

· · ·→(134)
34→ (12‖34) 12→ (123)

134→ (134)→· · ·
The heteroclinic cycle may be realized as a robust heteroclinic network
in the identical cell network of figure 13 which has equations

ẋ1 = f(x1; x2, x3, x4), ẋ2 = f(x2; x1, x3, x4),

ẋ3 = f(x3; x2, x1, x4), ẋ4 = f(x4; x2, x1, x3).

Local computations are similar to those given above and omitted. ※

The previous examples all concern strongly connected identical cell
networks which have the maximal number of synchrony subspaces. We
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next look at examples with smaller lattices of synchrony subspaces. For
simplicity, we restrict to 4 cell networks.

5.2. 4 cell networks.

Example 5.4. Consider the 4 cell network N shown in figure 14.

N1 N2 N3 N4

Figure 14. A 4 identical cell network N with lattice of
synchrony subspaces S = {(12), (134), (1234)}.

The network of figure 14 is associated to the synchronization trans-
form (T,B,S), where the synchronization map T maps hyperplanes
according to

H2 −→ x1 = x2

H34 −→ x1 = x3 = x4.

The nontrivial synchrony subspaces have different dimensions and so
we do not expect to see heteroclinic cycles that are transforms of edge
or face cycles.
For this example, the only possible robust heteroclinic cycles for

N must have equilibria on (1234) = S0 and so we expect to use the
synchrony transform T to transform a heteroclinic cycle with equilibria
on V0 to a robust heteroclinic cycle for N with equilibria on S0. The
heteroclinic cycle with equilibria on V0 cannot be a face heteroclinic
cycle – the equilibria would have to lie on the same face.
It is not hard to check that an SLF system in R4 can support a

robust heteroclinic cycle with equilibria on V0. Connections in H2

(respectively, H34) will then be transformed into connections in (12)
(respectively, (134)). Given p,q ∈ S0, we search for a network map f
such that the equations for the network of figure 14,

ẋ1 = f(x1; x2, x3, x4), ẋ2 = f(x2; x1, x3, x4),
ẋ3 = f(x3; x2, x4, x1), ẋ4 = f(x4; x2, x1, x3),

support a robust heteroclinic cycle Σ with equilibria p,q ∈ S0, and

connections p
12→ q and q

134→ p. Observe that two nodes desynchronize
along the connection p→q.
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Assuming node phase space R, the eigenvalues λi(s) of DF(s) at an
equilibrium s ∈ S0 of the network vector field F are

λ1(s) =
∑

i∈4

αi, λ2(s) = α1 − α2,

λ3,4(s) = α1 −
1

2

(
(α3 + α4)± ı

√
3(α3 − α4)

)
,

where αi =
∂f

∂xi
(s), i ∈ 4. The eigenvalue λ1 corresponds to dynamics

on S0; the eigenvalues λ1, λ2 to dynamics on (134); and the eigenvalues
λ1, λ3, λ4 to dynamics on (12). Since λ3, λ4 are complex conjugate, we
cannot find a simple heteroclinic cycle with equilibria at p,q.
One possibility is to require λ1(p), λ2(p) < 0, Re(λ3,4(p)) > 0 >

Re(λ3,4(q)), λ1(q) and W u(p) r {p} ⊂ W s(q) ⊂ (12). If, in addition,
we require that λ2(q) > 0, and there is a connection from q to p

in (134), we obtain a robust heteroclinic cycle with equilibria at p,q
(there will be a continuum of connections from p to q). ※

Example 5.5. The network of figure 15 is associated to the synchro-
nization transform (T,B,S), where T maps hyperplanes according to

H23 −→ x1 = x2, x3 = x4

H34 −→ x1 = x3, x2 = x4.

N1 N2 N3 N4

Figure 15. A 4 identical cell network with synchrony sub-
spaces S = {(12‖34), (13‖24), (1234)}.

The equations for the network are

ẋ1 = f(x1; x2, x3, x4), ẋ2 = f(x2; x1, x4, x3),

ẋ3 = f(x3; x2, x1, x2), ẋ4 = f(x4; x1, x2, x1).

It is straightforward to verify that the network structure supports a

heteroclinic cycle with vertices p,q ∈ S0 and connections p
12‖34→ q

and q
13‖24→ p. This cycle is derived from a cycle for an SLF system

on R4 (but not from a face heteroclinic cycle – see the discussion for
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example 5.4). The eigenvalues of the linearization of the network vector
field an an equilibrium s ∈ S0 are

λ1 =
∑

i∈4

αi, λ2 = α1−α3−α4, λ3 = α1−α3−α4, λ4 = α1−α2+α3−α4,

where αi =
∂f

∂xi
(s), i ∈ 4. The eigenvalue λ1 corresponds to dynamics on

S0; the eigenvalues λ1, λ2 to dynamics on (12‖34); and the eigenvalues
λ1, λ3 to dynamics on (13‖24).
Similarly, we predict and find that the 4 cell identical system of

figure 9(a), with synchrony subspaces (12‖34), (13‖24), (14‖23), and
(1234), supports a robust heteroclinic cycle Σ connecting three equi-
libria p,q, r ∈ S0 and with three connections, each lying in one of the
synchrony subspaces (12‖34), (13‖24), (14‖23). We remark the exam-
ple gives an interesting variation on the standard representation of the
RPS heteroclinic 3 cycle.
The 4-cell network of figure 9(b), which does not have a synchro-

nization transform, does not support robust heteroclinic cycles with
equilibria on S0. The network does support a robust heteroclinic cycle
with equilibria on (12‖34) and connections in (12) and (34). ※

5.3. Summary of the results for 4 cell networks. Assume net-
works are strongly connected, without self loops and that cells have
asymmetric inputs. By simple heteroclinic cycle we mean here that
unstable manifolds of equilibria are one-dimensional. In every case, a
simple heteroclinic cycle will extend to a heteroclinic network which is
simple in the sense of section 1 and has the same set of equilibria.
In table 1, we list the 4 identical cell networks which do not support

robust heteroclinic cycles. These networks all have synchronization
transforms and satisfy parts I and II of the realization conjecture as
well as conditions (A,B).
In table 2, we list the 4 cell networks that support robust heteroclinic

cycles.

Remarks 5.6. (1) The network V1 does not support robust simple het-
eroclinic cycles and does not satisfy condition (B). We refer to exam-
ple 5.4. The networks V2, V4 support both simple and not simple
robust heteroclinic cycles. All three networks show the phenomenon of
two cells desynchronizing along one of the connections.
(2) All networks have a synchronization transform and satisfy the re-
alization conjectures. Other than V1, all networks satisfy (B). ⊛

Finally, in table 3, we list the 4 cell networks that support robust
heteroclinic cycles but do not satisfy condition (A).
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Table 1. 4 cell networks which do not support robust
heteroclinic cycles

Network Generators Multiple
equations of eigenvalues

S(N )

U1 ẋ1 = f(x1;x2, x3, x4) (1234) No
ẋ2 = f(x2;x3, x1, x4)
ẋ3 = f(x3;x4, x4, x2)
ẋ4 = f(x4;x1, x3, x1)

U2 ẋ1 = f(x1;x2, x3, x4) (12), (1234) No
ẋ2 = f(x2;x1, x3, x4)
ẋ3 = f(x3;x4, x2, x4)
ẋ4 = f(x4;x3, x1, x2)

U3 ẋ1 = f(x1;x2, x3, x4) (123), (1234) No
ẋ2 = f(x2;x3, x3, x4)
ẋ3 = f(x3;x1, x2, x4)
ẋ4 = f(x4;x1, x1, x1)

U4 ẋ1 = f(x1;x2, x4, x4) (12‖34), (1234) No
ẋ2 = f(x2;x1, x3, x4)
ẋ3 = f(x3;x4, x1, x2)
ẋ4 = f(x4;x3, x2, x2)

U5 ẋ1 = f(x1;x2, x3, x4) (12), (123), No
ẋ2 = f(x2;x1, x3, x4) (1234)
ẋ3 = f(x3;x2, x2, x4)
ẋ4 = f(x4;x3, x1, x3)

Remarks 5.7. (1) W1 has a synchronization transform. Although there
is no robust heteroclinic cycle joining equilibria on (1234), the network
does support robust heteroclinic cycles joining equilibria on (12‖34).
(2) W2 does not support a synchronization transform. Although there
is no robust heteroclinic cycle joining equilibria on (1234), W2 does
support robust heteroclinic cycles joining equilibria on (12‖34). ⊛

We have identified 16 inequivalent networks which are associated to
a synchronization transform and for which the realization conjectures
hold. There is a network W2 – figure 9(b) – which is not associated
to a synchronization transform and is consistent with part II of the
realization conjecture. Of the 16 networks which are associated to a
synchronization transform, 11 support robust heteroclinic cycles which
in every case are related to heteroclinic cycles in an SLF system.

5.4. Heteroclinic networks. We conclude with an example of a ro-
bust heteroclinic network which can be realized in coupled cell networks
and is the transforms of an SLF face network.

Example 5.8. In figure 16 we show a schematic for a robust 3-face
heteroclinic network ΣN supported in ∆5 ⊂ R6. Referring to figure 16,
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Table 2. 4 cell networks which support robust hetero-
clinic cycles and satisfy condition (A).

Network Generators Multiple Robust Simple
equations of eigenvalues heteroclinic heteroclinic

S(N ) cycles cycles

V1 ẋ1 = f(x1;x2, x3, x4) (12), (134) No Yes, but No:
ẋ2 = f(x2;x1, x3, x4) see remarks complex
ẋ3 = f(x3;x2, x2, x4) eigenvalues
ẋ4 = f(x4;x3, x1, x3)

V2 ẋ1 = f(x1;x2, x3, x4) (12), (13‖24) No Yes Yes, but
ẋ2 = f(x2;x1, x3, x4) complex eigen-
ẋ3 = f(x3;x4, x1, x2) values
ẋ4 = f(x4;x3, x3, x2) possible

V3 ẋ1 = f(x1;x2, x3, x4) (12‖34), (13‖24) No Yes Yes
ẋ2 = f(x2;x1, x4, x3)
ẋ3 = f(x3;x2, x1, x2)
ẋ4 = f(x4;x1, x2, x1)

V4 ẋ1 = f(x1;x2, x3, x4) (12), (12‖34), No Yes Yes, but
ẋ2 = f(x2;x1, x3, x4) (1234) complex eigen-
ẋ3 = f(x3;x4, x1, x2) values
ẋ4 = f(x4;x3, x2, x2) possible

V5 ẋ1 = f(x1;x2, x3, x4) (12), (13), No Yes Yes
ẋ2 = f(x2;x1, x3, x4) (1234)
ẋ3 = f(x3;x2, x1, x4)
ẋ4 = f(x4;x1, x1, x1)

V6 ẋ1 = f(x1;x2, x3, x4) (12), (123), No Yes Yes
ẋ2 = f(x2;x1, x3, x4) (12‖34)
ẋ3 = f(x3;x2, x2, x4)
ẋ4 = f(x4;x1, x2, x3)

V7 ẋ1 = f(x1;x2, x3, x4) (12‖34), (13‖24) No Yes Yes
ẋ2 = f(x2;x1, x4, x3) (14‖23)
ẋ3 = f(x3;x4, x2, x1)
ẋ4 = f(x4;x3, x1, x2)

V8 ẋ1 = f(x1;x2, x3, x4) (123), (124) No Yes Yes
ẋ2 = f(x2;x1, x3, x4)
ẋ3 = f(x3;x2, x2, x4)
ẋ4 = f(x4;x1, x3, x1)

V9 ẋ1 = f(x1;x2, x3, x4) (12), (13), (14) No Yes Yes
ẋ2 = f(x2;x1, x3, x4)
ẋ3 = f(x3;x2, x1, x4)
ẋ4 = f(x4;x2, x3, x1)

V10 ẋ1 = f(x1;x2, x3, x4) (12), (13), (34) No Yes Yes
ẋ2 = f(x2;x1, x3, x4)
ẋ3 = f(x3;x2, x1, x4)
ẋ4 = f(x4;x2, x1, x3)

v145 is an equilibrium on the 2-face ∆145 spanned by vertices v1, v4, v5.
Similarly for the other equilibria. Each connection between equilibria
lies in a 3-face of ∆5. For example, v145→v135 lies in the 3-face ∆1345.
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Table 3. 4 cell networks which support robust hetero-
clinic cycles but do not satisfy condition (A).

Network Generators Multiple Robust Simple
equations of eigenvalues heteroclinic heteroclinic

S(N ) cycles cycles

W1 ẋ1 = f(x1;x2, x4, x3) (12), (34), Yes: Yes: Yes
ẋ2 = f(x2;x1, x4, x3) (1234) (1234) (12‖34)
ẋ3 = f(x3;x4, x2, x2)
ẋ4 = f(x4;x3, x2, x2)

W2 ẋ1 = f(x1;x2, x4, x3) (12), (34), Yes: Yes: Yes
ẋ2 = f(x2;x1, x4, x3) (13‖24) (1234) (12‖34)
ẋ3 = f(x3;x4, x2, x1)
ẋ4 = f(x4;x3, x2, x1)

v145 v135

v125

v124

v123

v146

v136

Figure 16. Schematic for 3-face heteroclinic network ΣN

supported in ∆5.

The index of the equilibria v135 and v124 is 2, all other equilibria have
index 1.
The network P6 has lattice of synchrony subspaces S generated by

{(1j) | j = 2, . . . , 6}. We have an associated synchronization transform
(T,B,S) associated to the network P6 (given by theorem 4.5). The syn-
chronization map T maps the hyperplanes in B = {Hj | j = 2, . . . , 6}
according to Hj −→ (1j), j = 2, . . . , 6.
Apply the synchronization map T to the the heteroclinic network

ΣN to obtain the predicted heteroclinic network Σ for the architecture
P6. We show the result in figure 17 (nodes and connections are la-
belled by synchrony type). After some lengthy, but straightforward,



48 M J FIELD

(1236) (1246) 

(1356)

(1346)(1235)

(1245)

(124)

(145)

(125)

(135)

(1
36

)
(1

46
)

(1
23

)

(126)

(156)

(1456)

Figure 17. The robust heteroclinic network Σ realized in P6

computations it may be shown that a network vector field can be cho-
sen for which Σ is a robust heteroclinic network in the architecture P6

with 1-dimensional cell dynamics. In particular, all equilibria will be
hyperbolic saddles with the correct index, and connections will lie in
the synchrony subspaces indicated in figure 17.
Finally, we remark that the heteroclinic network has 7 equilibria and

9 connections and that no two connections lie in the same synchrony
subspace. The realization is more efficient than that given in [26, The-
orem 1.1] which realizes the heteroclinic network in P10. ※

6. Outstanding Questions and Concluding Comments

6.1. The Realization Conjectures.

(1) Part I of the conjectures proposes that if there is a synchroniza-
tions transform (T,B,S), then there is a coupled identical cell
network N with S(N ) = S. Is it possible to find an algorithm
that gives N (that is, the architecture) in terms of (T,B,S)?

(2) Is it possible to find strong sufficient conditions on a coupled
identical cell network N that imply that linearization of net-
work vector fields have no restrictions on index or multiplicity?
(Conditions (A,B) of section 4.)
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Regarding (2), symmetries of N and S(N ) seem to play a role. How-
ever, conditions such as requiring symmetries of N to act trivially on
S or all symmetries of S to act trivially on S are either false (see W2)
or too weak.

6.2. Transition from SLF to coupled identical cell networks.

It is generally straightforward to construct explicit vector fields that
realize heteroclinic cycles and networks in an SLF system [21, 11, 12].
Often (perhaps always) cubic vector fields suffice. On the other hand
it seems difficult to construct explicit vector fields that realize hetero-
clinic cycles and networks in coupled identical cell systems. Can these
difficulties be overcome by working with heterogeneous networks with
two cell types or by allowing the node (or coupling) dynamics to be
2-dimensional? We refer to the recent work of Ashwin & Postleth-
waite [12] for the use of two cell types and to the comments on scalar
signalling in [3, 26] for restrictions on coupling. We are inclined to
the view that there should be a natural way of transforming from a
coupled identical cell system of the type we construct to systems with
two or more distinct cell types for which it is easy to construct explicit
and natural vector fields realizing heteroclinic cycles and networks1.
In short, we would like to think of the identical cell network, with
one dimensional node dynamics, as a minimal model for coupled cell
networks supporting robust heteroclinic phenomena (just as the Ku-
ramoto phase oscillator model can be viewed as a minimal model for
describing the phase dynamics of a weakly coupled system of nonlinear
oscillators). The question then is how to unfold the minimal model
to obtain more physically realistic models with, for example, additive
input structure [26, §2, §5] (a crucial assumption in the reduction of
weakly coupled networks of nonlinear oscillators to phase oscillator
models [43, 38]).
If a heteroclinic network is clean, can we always require the same

of the network when realized in an coupled identical cell system? In
particular, how straightforward is it to construct asymptotically stable
heteroclinic attractors in coupled cell systems?

6.3. Symmetric inputs and sparseness of coupling. Suppose that
an r-face heteroclinic network is realized in a coupled identical cell
system using one of the architectures given by theorem 4.5(2). Under
what conditions can we ‘symmetrize’ some of the inputs to the cells
without breaking the robust structure – for example, by introducing

1However, this might require thresholds and vector fields may only be piecewise
smooth or pulse coupled [47].
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multiple eigenvalues. Is it the case that the larger r is the more inputs
we can symmetrize and can this be quantified?
In biological and technological networks, coupling is typically sparse

and far from “all-to-all”. In examples 3.15(2) we gave a simple six
identical cell example, with two symmetric inputs, which supported
a robust heteroclinic cycle. Is it possible to find families of identical
cell networks which have relatively few inputs, compared to the total
number of cells, such that (a) the networks support robust heteroclinic
networks, and (b) robustness persists if we allow for (approximately)
symmetric inputs? We would expect that a positive answer to this
question would yield potentially realistic networks for which there were
robust heteroclinic networks connecting relatively small clusters of syn-
chronized cells.
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