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Preface

This book is about the geometric theory of smooth dynamical systems that
are symmetric (equivariant) with respect to a Lie group of transformations.
The project started with a series of lectures I gave on equivariant bifurcation
theory and equivariant transversality while I was a visiting Leverhulme pro-
fessor at Imperial College, London, during the academic year 2004-2005.
At the invitation of Laurent Chaminade and Imperial College Press, the
lecture notes evolved into a more comprehensive work on symmetric dy-
namics. One special reason I had for undertaking this project was to give
a careful and systematic introduction to equivariant transversality which
was geared towards applications in dynamics. The theory of equivariant
transversality was developed independently in the mid 1970’s by Ed Bier-
stone and myself. My interest was in applications to equivariant dynamics,
Bierstone’s was in extending Mather’s stability theory to equivariant maps.
Much later, it turned out that equivariant transversality had powerful ap-
plications to equivariant bifurcation theory, many of which are described in
this text. More recently, my host at Imperial, Jeroen Lamb, together with
Mark Roberts and Luciano Buono, had started work on applying meth-
ods based on equivariant transversality to reversible equivariant dynamical
systems. Their work resonated with an old (and much deferred) project
of mine to develop equivariant transversality in the context of equivariant
Hamiltonian systems. All in all, it seemed timely to write a systematic
introduction to equivariant transversality that was geared to applications
in dynamics and that would form a good basis for potential extensions to
reversible and Hamiltonian dynamics.

The emphasis in this book is theoretical. While I give no applications to
the physical sciences, I believe many of the methods developed have the po-
tential for significant applications. For the reader interested in applications,
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I recommend the fine texts by Golubitsky, Schaeffer & Stewart [84,85] and
Golubitsky & Stewart [87] which also contain comprehensive bibliographies
of applications. Of course, the texts by Golubitsky et al. include a theory
of local equivariant bifurcation. However, their singularity theory approach
is quite different from the techniques used in this book.

The ten chapters of the book naturally group together: Chapters 1, 2
and 3 cover prerequisites; Chapters 4 and 5 form an elementary introduc-
tion to equivariant bifurcation theory; Chapters 6 and 7 develop the theory
of equivariant transversality and its applications to equivariant bifurcation
theory (mainly for finite groups); Chapter 8 describes the general theory
of equivariant dynamical systems which are equivariant with respect to a
compact Lie group and includes both the local theory of relative equilibria
and periodic orbits as well as global theorems of the Kupka-Smale type.
This work is developed further in Chapter 10 where we give an introduc-
tion to the bifurcation theory of equivariant maps and relative periodic
orbits. Finally, Chapter 9 gives an overview of that part of the global
theory of equivariant dynamical systems that does not depend on equiv-
ariant transversality. It remains to write the chapter on global dynamics
depending on equivariant transversality.

In a little more detail, the first three chapters are introductory and
cover prerequisites on groups, representations and smooth G-manifolds re-
spectively. The level is sharply graded in these chapters — for example,
the first chapter on groups progresses rapidly from the definition of a group
up to topological and Lie groups, including a proof of the theorem that
a closed subgroup of a Lie group is Lie. The more advanced material in
these chapters is, however, not used until later in the book and readers are
strongly advised to skim quickly through the first three chapters so as to
familiarize themselves with notational conventions and refer back as needed
(there is an index of notational conventions at the end of the book).

Chapter 4 is an introduction to steady state equivariant bifurcation the-
ory on a G-representation, where G is a finite group. After carefully setting
up the formalism of branching patterns, the chapter includes a large number
of examples which are related to the standard irreducible representations of
the hyperoctahedral and symmetric groups. Among the few non-elementary
results in the chapter is a general theorem that gives a large class of ex-
amples (related to the hyperoctahedral and symmetric groups) where the
Mazimal Isotropy Subgroup Conjecture (MISC) fails. We also show that
the examples studied in this chapter are all 2- or 3-determined. The proof,
which uses results on constructible sets, is given in an appendix at the end
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of the chapter.

Chapter 5 is devoted to a study of some of the rich dynamics that can
be generated in equivariant bifurcations. We start with a proof of the in-
variant sphere theorem. This result is used many times throughout the
chapter and allows us to reduce to studying dynamics on a compact space
— in this case a sphere. Apart from some more theoretical sections on
the equivariant Hopf bifurcation that use blowing-up techniques from com-
plex algebraic geometry, the remainder of the chapter is devoted to specific
examples of dynamics that can be generated in equivariant bifurcations.
These examples include steady state bifurcations generating branches of
homoclinic cycles and periodic orbits and the generation of complex dy-
namics in low dimensional steady state bifurcation (‘instant chaos’ and
Shilnikov networks). Together, Chapters 4 and 5 constitute an elementary
introduction to equivariant bifurcation theory which includes a substantial
set of interesting examples as well as basic results and terminology.

Chapter 6 is an introduction to equivariant transversality. I tried to
write this chapter so that it is readable by those who do not have a strong
background in stratification theory and differential analysis. I have also
written the development in a way that gives the essential structure needed
for applications to bifurcation theory relatively early on. More general
results, such as equivariant transversality openness and density theorems,
are covered towards the end of the chapter.

Chapter 7 applies equivariant transversality to the study of bifurcations
equivariant with respect to a finite group. Perhaps surprisingly, it follows
easily from our methods that the topological stability of the branching pat-
tern of an equivariant bifurcation does not depend on the invariant structure
— only on the equivariants (similar results hold for general compact Lie
groups). For the discussion of stabilities along branches, we develop the
necessary part of Bierstone’s equivariant jet transversality theory and then
prove more refined stability and determinacy theorems. We conclude the
chapter with a discussion of higher order versions of equivariant transversal-
ity and show how our results generalize more or less immediately to general
compact groups and bifurcation of equilibrium group orbits.

Chapter 8 is an introduction to the qualitative theory of smooth vector
fields and diffeomorphisms equivariant with respect to a compact Lie group.
At the local level we give a classification of dynamics on relative fixed and
periodic sets (for diffeomorphisms) and relative equilibria and periodic or-
bits for flows. Next follows the local stability theory and then the local
and global stable manifold theory. We conclude the chapter with the state-
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ment and (abbreviated) proof of equivariant versions of the Kupka-Smale
theorems.

Chapter 9 describes some basic classes of equivariant dynamical system
on a compact G-manifold. After a quick review of skew products, we con-
sider G-invariant Morse functions and obtain special handlebundle decom-
positions of a G-manifold using a restricted class of G-Morse functions. We
investigate equivariant versions of topological Markov chains (subshifts of
finite type) and, using our results on handlebundle decompositions, obtain
equivariant versions of the Shub-Smale C°-density and isotopy theorems.
The chapter concludes with results on solenoidal attractors (after Williams)
and equivariant versions of Anosov diffeomorphisms and flows. Equivariant
transversality plays virtually no role in the chapter. Indeed, as indicated
above, it remains to obtain large classes of dynamically interesting exam-
ples which possess robustly non-transverse, equivariantly transverse, inter-
sections of invariant manifolds that go beyond the well-known examples on
homoclinic and heteroclinic cycles.

In Chapter 10 we extend our results based on equivariant transversality
to include equivariant bifurcation to relative equilibria and the equivari-
ant Hopf bifurcation. We also present the general theory for bifurcation
of smooth families of equivariant maps and, following the recent work of
Lamb, Melbourne and Wulff, conclude by indicating how our results may
be applied to equivariant bifurcation from relative periodic orbits.

Chapters 4 to 10 all include brief notes on the history of the topics
covered in the chapter.

Many of the results described in this work resulted from rewarding and
enjoyable collaborations with mathematicians in Australia, the UK, Europe
and North America. Although I investigated equivariant dynamics in my
thesis (1970) and developed equivariant transversality in the mid 1970’s,
the work on equivariant bifurcation theory did not start until the Armi-
dale meeting of the Australian Mathematical Society in 1987. It was at
this meeting that Marty Golubitsky suggested to Roger Richardson and I
that a good project to investigate would be the Maximal Isotropy Subgroup
Conjecture. Although not a bifurcation theorist, Roger was an expert in
representation theory and algebraic group actions and we both got inter-
ested in investigating the conjecture in cases where the invariant structure
was well-known and simple: finite reflection groups. We ended up inde-
pendently finding infinite families of counterexamples to the conjecture,
promptly joined forces and wrote a number of papers on symmetry break-
ing which form the basis of Chapter 4. During the period 1987-1996, I
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developed new methods in equivariant bifurcation theory based on equiv-
ariant transversality. This work benefited enormously from many contacts
and conversations with Ed Bierstone and Gerry Schwarz. Several of the
main results in Chapter 5 on steady state and the Hopf bifurcation were
joint work with Jim Swift done over the period 1989-94. In Chapter 5 I
also report on Manuela Aguiar’s PhD thesis work on chaos in ‘Shilnikov
networks’. The work on solenoidal attractors described in Chapter 9 is a
small part of a long, continuing and wide-ranging collaboration with Ian
Melbourne and Matt Nicol. Finally, in Chapter 10, I introduce some recent
and, in my opinion, very rich and interesting work by Jeroen Lamb, Tan
Melbourne and Claudia Wulff on bifurcation from relative periodic orbits.

Over the years I have learnt and benefitted much from conversations
with many dynamicists, geometers and algebracists. Aside from those men-
tioned above, I would particularly like to record my thanks and gratitude
to Peter Ashwin, Luciano Buono, Sofia Castro, Pascal Chossat, Jim Da-
mon, Michael Dellnitz, Ana Dias, Stefan van Gils, John Guckenheimer, Bob
Howlett, Martin Krupa, Tzee-Char Kuo, Isabel Labouriau, Reiner Lauter-
bach, Pierre Milman, Mark Roberts, Ian Stewart, Andrew T6rok, and Bob
Williams.

I would like to record my thanks to Laurent Chaminade and Imperial
College Press for giving me the opportunity to write this book. Many
thanks also to Imperial College, and the Universities of Colorado, at Boul-
der, and Richmond, Virginia, for providing ideal environments for signifi-
cant periods when the book was being written and to Jeff Morgan at UH for
helping to make all of this possible. Last, but not least, my appreciation to
the Leverhulme Foundation for supporting a very enjoyable and productive
year in London at Imperial and to the NSF for their continuing support
through DMS grants #0244529 and #0600927.
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